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ABSTRACT 
Neurophysiological laboratory studies are often constraint to 
immediate geographical surroundings and access to equip-
ment may be temporally restricted. Limitations of ecological 
validity, scalability, and generalizability of findings pose a sig-
nificant challenge for the development of brain-computer in-
terfaces (BCIs), which ultimately need to function in any con-
text, on consumer-grade hardware. We introduce MYND: An 
open-source framework that couples consumer-grade record-
ing hardware with an easy-to-use application for the unsuper-
vised evaluation of BCI control strategies. Subjects are guided 
through experiment selection, hardware fitting, recording, and 
data upload in order to self-administer multi-day studies that 
include neurophysiological recordings and questionnaires at 
home. As a use case, thirty subjects evaluated two BCI control 
strategies (“Positive memories” and “Music imagery”) by us-
ing a four-channel electroencephalogram (EEG) with MYND. 
Neural activity in both control strategies could be decoded 
with an average offline accuracy of 68.5% and 64.0% across 
all days. 

Author Keywords 
Unsupervised study; Self-supervised study; 
Electroencephalography; EEG; Smartphone Application; 
Brain-Computer Interface; BCI 

CCS Concepts 
•Human-centered computing → Graphical user inter-
faces; User studies; Empirical studies in HCI; Field studies; 

INTRODUCTION 
Neurophysiological research is typically bound to laboratory 
environments. Investigating the basics of neural communica-
tion requires complex and expensive setups, shielded as much 
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as possible from environmental influences. It also requires 
the presence of an expert to supervise the equipment and the 
experimental procedure. While neurophysiological studies 
have advanced our understanding of the human brain over the 
past decades, the controlled and expensive nature of laboratory 
research makes this track of research less suitable to capture 
contextual influences that would only occur in daily life [43]. 
The validation of findings in a broader, more diverse popula-
tion is often logistically infeasible [7]. Laboratory studies are 
often constraint to immediate geographical surroundings, and 
access to equipment may be temporally restricted, which fur-
ther complicates longitudinal research. These limitations are 
particularly profound in research on brain-computer interfaces 
(BCIs), which aims to translate cortical signals into computer 
commands for everyday communication, control, or treatment. 

Many BCIs rely on a control strategy: A set of two or more 
tasks that induce differences in neural activity. Those tasks 
could be executed as a proxy to say, for example, “yes” or “no” 
with a BCI system. Controlled and expensive research with 
laboratory equipment may allow for investigating the induced 
cortical effects in detail, but it is less suitable for investigating 
self-supervised, long-term usage. The deployment of BCIs on 
affordable hardware in unsupervised scenarios is the ultimate 
goal of this field, and both researchers and users need novel 
ways to evaluate conceptual systems under realistic conditions. 

This paper introduces MYND: An open-source framework that 
couples a consumer-grade electroencephalogram (EEG) with 
an easy-to-use application for the unsupervised evaluation of 
BCI control strategies. For researchers, MYND provides the 
option to add ecological validity and scalability to traditional 
lab-based BCI studies. For participants, MYND enables at-
home participation in BCI studies without the assistance of 
an expert. The application combines an easy-to-use interface 
with a real-time feedback algorithm to guide the fitting of a 
consumer-grade EEG. It allows for an immediate transfer of 
both neurophysiological data and questionnaire data to the 
researcher. In multi-day studies, it enables subjects to choose 
recording times and the number of sessions to record on a 
given day within certain experimental constraints. 
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Figure 1. The user-interface flow of participating in a study with MYND. (A) After boarding and consent review, subjects can select a scenario, inform 
themselves about the scenario’s tasks, prepare the hardware, and fit a suitable location with the electromagnetic (EM) noise check. (B) A scenario is 
broken up into several blocks of trials. After each block, subjects can review their progress and choose to proceed to the next block with an intermediate 
assessment of the hardware’s fit, or end the recording session and upload the recorded data. (C) An exemplary screen of a questionnaire scenario. 
Multiple-choice, short text answers, and date selection are supported. 

The current study 
MYND was developed to evaluate BCI control strategies in 
a realistic scenario on consumer-grade hardware. In the cur-
rent study, we present results for the two strategies “Positive 
memories” [20] and “Music imagery” [16]. Single-session 
laboratory studies showed that both strategies feature two tasks 
that modulate neural oscillations in broad areas of the pari-
etal and prefrontal cortex. These broad spatial effects could 
make them particularly suitable for use on a consumer-grade, 
headband-like EEG with few sensors. 

Previously, we piloted a prototype of MYND at our institute 
[21]. Results showed that eighteen subjects were able to use 
the application without direct supervision. Subjects recorded 
neurophysiological activity with visible differences between 
both tasks of the “Positive memories” strategy. Now, we report 
the results of the first at-home study with 30 subjects that used 
MYND over seven days. We make the following contributions: 

• We introduce MYND, an open-source framework for unsu-
pervised evaluation of BCI control strategies on consumer 
hardware. 

• In terms of usability, we show that subjects self-
administered the EEG headset with the implemented fitting 
procedure over several days, and they retained a high signal 
quality during tasks. 

• Regarding the unsupervised, daily use of both control strate-
gies with the framework, we measured differentiable neural 
activity in both “Positive memories” and “Music imagery” 
across days. 

• In terms of findings that are relevant for the employment in 
everyday BCI control, we found that repeated execution of 
the same strategy affected decoding accuracy. We discuss 
how feedback could enable subjects to switch between con-
trol strategies or devise new strategies with future version 
of the framework. 



The source code of this project was made available in [22], 
including an updated iOS version and an earlier version for 
Android. Documentation and guidance for most likely adapta-
tions, for example, the addition of new recording hardware or 
experimental scenarios, were added to help interested scien-
tists with incorporating the framework into their research. 

Related work 
BCI development is an area of research that is concerned with 
utilizing self-induced modulations in neural activity for com-
munication, control, or treatment [48]. Until recently, work 
in this field was mainly driven by clinical applications with 
medical-grade equipment: The most prominent example is 
the prospect of developing a communication system for peo-
ple that have complete paralysis through amyotrophic lateral 
sclerosis, which has yet to be realized reliably [34, 44]. Ac-
tive, non-invasive BCIs translate the user’s cortical signals, 
typically recorded with medical-grade EEG hardware, into 
control signals through machine learning, and forward them 
to an assistive application that can be used for communica-
tion or control of external appliances. Users are instructed to 
modulate neural activity such that it can be differentiated and 
mapped onto digital commands. We evaluate “asynchronous” 
control strategies with MYND. Here, users are instructed to 
produce specific thoughts without reacting to external stimuli. 
BCI strategies that have been explored in this context include 
motor imagery [38], spatial navigation, and mental calculation 
[14], music imagery [16], and daydreaming [19]. 

BCIs have been explored as augmentation of existing interac-
tion paradigms in human-computer interaction research. In 
passive BCIs, background EEG recordings are used to adapt 
existing interfaces to workload or emotional correlates [50, 5]. 
Previous work in this area includes the dynamic adjustment of 
difficulty [1], the improvement of user engagement in educa-
tional settings [45, 2, 23], and classification of cognitive load 
while driving [42]. More recent work also explored crowd-
sourced visual recognition with BCIs [8], and BCIs as a tool 
for artistic expression [40, 46, 37]. 

Compared to passive BCIs, the development of active BCIs 
for communication and control has been limited in human-
computer interaction research, and work often remains rooted 
in traditional laboratory paradigms. Research on active BCIs 
often employs expensive biomedical research equipment as 
recording hardware and software, which can rarely be afforded 
or used by consumers and requires expert knowledge and 
laboratory environments. The lack of hardware and software 
for end-users constitute a notable barrier [24, 3], and user-
centred development is often neglected [31]. 

Several attempts have been made to tackle this limitation: 
OpenBCI1 offers Bluetooth-enabled amplifiers, electrodes, 
and customizable headwear to create low-cost EEG systems. 
Laboratory studies have employed this technology (e.g., [49]), 
and it could be used as a basis for open and easy-to-use tech-
nology for at-home studies and BCI development. Others have 
proposed the merging of consumer hardware and research 
hardware [9], the development of smaller electrodes that can 

1https://www.openbci.com 

be attached behind the ear [10], or in-ear solutions [15]. How-
ever, these attempts are still in early stages of development, 
and, at the time of this study, lacked ergonomic properties and 
software support that would make them suitable for unsuper-
vised at-home recordings across several sessions. 

Apart from more developer-oriented approaches, several 
“direct-to-consumer” EEGs emerged recently. These systems 
are typically accompanied by smartphone software that is de-
signed for meditation assistance and self-quantification [25]. 
The Muse EEG2, which is used for the current study, pro-
vides a smartphone application that assists users with guided 
meditation and feedback on attention and relaxation levels. 
Similary, the Neurosky Mindwave3 is bundled with wellness 
and entertainment applications, however, it only features a 
single channel on the forehead. The Dreem EEG4, a headset 
that is specifically designed to be worn at night, offers an ap-
plication that analyses and classifies sleep patterns through an 
online service. Headsets by Emotiv5 feature between five and 
fourteen channels and are bundled with software subscriptions 
for private or business use. These devices are designed for 
self-administration and longer recording sessions. 

Through custom software, several of them have been used 
in laboratory studies on active BCIs: In [30] the Muse EEG 
was successfully used for a spelling system, noting its ease-of-
use and sufficient data quality for a BCI application. Emotiv 
headsets have been used in several BCI studies as well [11, 
32]. The Dreem EEG and its bundled proprietary sleep clas-
sification platform are promoted as a research tool for sleep 
studies by the developer [6]. However, the bundled closed-
source applications are not intended for BCI research and do 
not expose processing or data storage interfaces. The custom 
tools that are developed by researchers to interface with these 
consumer-grade systems are typically not meant for use by 
non-experts outside of the laboratory. 

The gap between consumer- and research-technology moti-
vated the development of MYND: Several promising tools for 
BCI evaluation in realistic scenarios exist, but they are in early 
stages of development and geared towards developers and re-
searchers. On the other hand, consumer-grade EEG systems 
are optimized for usability, but they are bundled with smart-
phone applications that are specifically designed for private 
use and self-quantification. With the MYND framework, we 
aim to complement laboratory BCI research with aspects of 
human-computer interaction, including subjective experience, 
different environments, and longitudinal BCI use, which can 
hardly be captured with traditional paradigms. 

SYSTEM DESIGN AND IMPLEMENTATION 
We devised our initial requirements for MYND based on our 
experience with laboratory-based BCI research: The platform 
needs to assist with the self-administered fitting of the record-
ing hardware. Consent and questionnaire forms should be 
digitally implemented on the device. All recorded data should 

2InteraXon, Canada, https://choosemuse.com 
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be transmitted in an encrypted format. However, study pro-
gression and processing should never be dependent on internet 
access in order to guarantee participation from wherever sub-
jects are located. We also implemented multi-language and 
multi-day support, as well as an electromagnetic noise de-
tection to assist subjects with finding favorable locations for 
recordings. 

Participating in a neurophysiological study on MYND features 
six steps: (1) the initial boarding and consent review, (2) the se-
lection of an experimental scenario, (3) hardware preparation, 
(4) hardware fitting, (5) recording data, and, when a scenario 
was completed, (6) storage and upload of the recorded data. 
In this section, we will describe the implementational details 
of each step. MYND is written in Swift 4.2 for iOS. Figure 1 
illustrates the following steps. 

Boarding a study 
First, subjects board a study by reviewing the consent form. 
We utilized ResearchKit6 to display the various consent sec-
tions and obtain a hand-written signature from participants. 
The consent is transmitted as a PDF. For accessibility, subjects 
can choose to enable text-to-speech (TTS) for all instructions 
and questionnaires. TTS ensures that subject groups with im-
paired vision can operate the application, and it allows subjects 
to perform tasks in a comfortable position without looking at 
the screen. Lastly, they can set up Internet connectivity and 
enable reminders for when to start the next day of the study. 
Once the subject consented and adjusted their preferences, the 
application transitions to the home screen. 

Selection of an experimental scenario 
An experimental scenario can either contain a questionnaire 
or a neurophysiological recording. Questionnaire and neuro-
physiological recording scenarios that should be completed on 
the current day of the study are shown. Numbers represent the 
remaining minutes of scenarios, and circles represent progress. 
Inactive scenarios are greyed-out, to give subjects a quick 
overview over completed and remaining scenarios without 
distracting them from the current scenarios. Only the current 
scenario displays the “Start Session” button, which initiates 
the recording procedure. For announcements and technical 
support, text messages can be downloaded from a server in the 
background and displayed before the recording commences. 

To facilitate the addition of scenarios, a hirarchical model 
of study components was implemented: Studies consist of 
several scenarios, which contain a collection of randomzied 
trials that are composed of sequential phases. Each hirarchical 
component can be independently extended, and properties 
such as visual or acoustic stimuli could be added to facilitate 
the adaptation to different study protocols. 

User-initiated time-outs 
Different from lab-based studies, recording times may be scat-
tered during a day. There may also be days where no recording 
can be performed due to other obligations. In order to main-
tain control over recording times while still allowing for the 
flexibility to integrate recording sessions into daily life, we 
6Apple Inc., CA, USA, http://researchkit.org 

implemented a user-initiated time-out. A timer starts with the 
first recording that is performed on a day. Subjects are asked 
to perform all recordings for a given day within a twelve-hour 
timeframe. If a subject finishes all recordings, the applica-
tion is locked until the timer expires, only presenting the total 
amount of recorded data so far and the remaining wait time. 
When the timer expires, the application loads the next set of 
sessions and sends an optional notification. 

In the beginning, every scenario features a short description, 
an image, and information about the duration of the remaining 
blocks to be completed. The duration is estimated based on the 
number of questions or neurophysiological tasks in a scenario 
and a fixed estimate of the required preparation time. 

Preparation 
Neurophysiological recording sessions begin with the initial 
preparation of the hardware. A short video complements the 
instruction in each step on top of the screen. Subjects are 
first asked to prepare their head for the headset by tying back 
hair and removing glasses. Subjects are also asked to sprinkle 
water onto the parts of the head that the headset will rest on, 
as we discovered during pilot testing that this improves sensor 
conductivity. Then, subjects are asked to turn on the headset, 
pull out the side arms, place it loosely on their head, and push 
the side arms back in to make it fit tightly. 

In general, all steps are self-paced. Subjects proceed to the 
next step by pressing the single blue button on the bottom 
of the screen. However, several steps include a mandatory 
condition that needs to be fulfilled in order to proceed. In 
these steps, the button is greyed out until the condition is met. 
The “turn on the device” step uses this feature to ensure that 
the EEG headset was found, and a Bluetooth connection was 
established before the subject proceeds. It is also used later in 
the fitting procedure to ensure that subjects met the required 
signal quality threshold before the recording starts. When the 
condition is met, short acoustic feedback is given, and the 
button turns blue to indicate that the subject can proceed. 

As an additional measure to prevent data loss, the application 
monitors the battery of the EEG headset. Subjects can only 
proceed when more than 10% of the headset battery is remain-
ing. If the headset was not found, the battery of the headset 
is too low, or the headset disconnected due to other reasons, 
the current block is aborted with a message that describes the 
issue. The current block is also aborted, and the headset is dis-
connected when the application enters the background. This 
constraint was implemented to ensure that subjects look at a 
controlled view when recording data, and to prevent potential 
battery saving processes from disconnecting the headset or 
from impairing processing. 

Environmental quality 
In the pilot study in [21], subjects sometimes placed them-
selves in the proximity of a power outlet or other appliances 
which induced electromagnetic (EM) noise that impaired the 
fitting procedure. To assist subjects with finding a location 
that is least exposed to EM noise, we implemented a noise 
detection step. Progress rings around a stylized head represent 
the respective electrodes of the recording hardware. Rings fill 

http://researchkit.org


Figure 2. The signal processing pipeline for hardware fitting. 1. An 
incoming data point of the raw EEG signal is filtered and appended to 
a buffer. Filtering occurs by a weighted average with the previous data 
point of the filtered signal. 2. When the buffer of the filtered signal is 
filled, the variance is computed and compared to a fixed quality criterion. 
3. The resulting signal quality estimate is then again buffered. 4. The 
average is used both for weighting the next incoming data points and the 
user-interface. Italic values in boxes represent example values. 

up with less EM noise. The application uses real-time signal 
processing to map the 50 Hz component of the incoming EEG 
time-series onto an environmental quality estimate between 
0% and 100%. 50 Hz is the AC frequency of electronic de-
vices in Europe. Based on a visual inspection of recordings in 
different proximity to EM noise inducing appliances, we set 
a log-band-power of −1 µV 2 to equal 100% environmental 
quality. The noise detection step is non-blocking, as subjects 
may not find a location at home that is sufficiently free of EM 
noise. 

Fitting 
After a sufficiently noise-free environment was found, the 
application assists users with fitting the recording hardware 
properly. Instructions are first given on the frontal sensors, 
as those typically already achieve a good fit with the general 
adjustments of the headset. Then instructions are given on the 
rear sensors. Similar to the noise-detection screen, progress 
rings represent the signal quality at each sensor. Real-time 
signal processing maps the incoming EEG time-series onto a 
signal quality estimate between 0% and 100%. Subjects are 
required to reach 100% signal quality before the recording 
commences. During pilot testing, we noticed that subjects 
would become frustrated after trying to fit the headset for 
more than three minutes. We drop the target signal quality to 
75% after three minutes of hardware fitting to keep subjects 
motivated and to allow them to proceed if a perfect fit cannot 
be achieved due to environmental or physiological constraints. 

We did not implement a maximum fitting time, so we could 
evaluate how long subjects would try to fit the headset without 
constraints. 

The fitting algorithm uses the variance of the EEG signal to 
estimate its quality. As electromagnetic noise and movement 
artifacts are likely to induce more variation in the signal than 
cortical signals, a smaller total variance indicates fewer ar-
tifactual influences. This method has been proposed before 
in a laboratory setting [30], where experts inspected the raw 
EEG data and the variance computed over one-second time-
windows to determine when signal quality was sufficient. A 
variance threshold of 150 µV 2 or less was reported to reflect a 
sufficient signal quality. However, apart from headset fit, the 
EEG signal is strongly affected by eye-blinks and other invol-
untary movements. While experts can ignore these artifacts 
when investigating the raw EEG signal, the variance computa-
tion is strongly affected. During early development, we found 
that merely relating the variance to a threshold would result 
in noisy feedback, as involuntary movements could suddenly 
increase variation. Additionally, a time-window of one second 
was too long, and the delay between adjusting the headset and 
an update of signal quality was frustrating to subjects. 

Therefore, the algorithm filters the raw EEG signal by adap-
tively weighting it with the previous mean. The variance of 
the filtered signal is computed every 500 ms and afterward 
compared to the variance threshold. Figure 2 illustrates the 
procedure with example values. The signal quality algorithm 
meets three criteria: 

• It does not rely on pre-processed information of the record-
ing hardware: The algorithm relies on the variance of the 
raw signal, and a threshold that is determined a priori. 

• It is lenient at the beginning of the procedure to motivate 
subjects: The algorithm employs a moving average to filter 
the raw EEG time-series, weighted by the previous signal 
quality estimate. A drop in signal quality will reduce the 
influence of the next EEG sample, and priority will be 
given to the previously computed average. This reduces the 
negative effects of sudden movements or an overall bad fit 
of the recording hardware without freezing at 0% to keep 
subjects motivated. At higher signal quality, the next EEG 
sample will be weighted more than the previous average. 
The variance computation will more accurately reflect the 
variance of the raw EEG signal. The procedure becomes 
less lenient to ensure that subjects can only finish fitting if 
the headset has been carefully adjusted, and the variance of 
the unfiltered EEG signal stays below the set threshold for 
several computation cycles. 

• The computation is sufficiently fast to be performed on the 
device alongside any other parallel processes. In the pilot 
study, the battery life of the iOS device remained sufficient 
for approximately three hours of recording while running 
this algorithm in the background and showing real-time 
feedback. 

Apart from determining a device-specific variance threshold 
that resembles sufficient signal quality, the fitting-algorithm is 
agnostic to the employed biosignal recording hardware. The 



fitting time itself is likely to be dependent on the complexity 
of the employed recording hardware and on the assumption 
that a lower variances resembles a better fit. 

Recording 
After the EEG headset is fitted properly, the recording session 
starts. Instructions are visually and verbally presented to the 
subjects in fixed periods with short breaks in between. The 
EEG time-series is recorded in the background, and phases 
are marked in the dataset. 

A scenario is split up into smaller blocks of approximately six 
minutes. After each block, subjects can review their progress, 
and choose to continue with the next block or end the recording 
session. The fitting screen is presented again before subjects 
can continue with the next block to ensure good signal quality. 
As subjects keep the headset on their head and the quality 
of all sensors is presented simultaneously, the check-up is 
typically fast: Previous results from [21] show that the average 
check-up was completed in 21 seconds, while the initial fitting 
required 68 seconds. 

Questionnaire data 
Questionnaire support was implemented by utilising Re-
searchKit. Questionnaires can include multiple-choice ques-
tions, short text answers, and rating scales. All items are 
defined in one JSON file per questionnaire and supported lan-
guage. During the scenario, each question is presented on the 
screen with an optional TTS until all questions are answered. 
For questionnaire scenarios, hardware preparation and fitting 
steps are skipped. 

Storage, upload and completion 
If the subject chooses to end recordings, or if all sessions for 
the day are completed, data is stored and marked for upload. 
If an internet connection is available, the upload procedure is 
initiated with a visual representation. The current recording 
is uploaded together with any previous recording that had not 
been transmitted. Afterward, the subject is taken back to the 
home screen. 

EEG recordings are stored in the widely-used HDF5 standard, 
and questionnaire results are stored in a JSON file. Both in-
clude timestamps, locale, and other meta-information, like 
fitting time or sensor locations of EEG recordings. As the 
recorded data is sensitive, we employed asymmetric encryp-
tion of all data that is recorded by the application. A public 
key is stored on the device for encrypting files before upload. 
Only the experimenter owns the private key to decrypt the 
data. Additionally, all data is labeled with a unique ID that is 
randomly generated when the participant signed the consent 
form. The real name of the participant is only stored on the de-
vice and on the consent form. The dataset itself is anonymized. 
Storage and transmission are compliant with the General Data 
Protection Regulation (GDPR). 

In order to facilitate the addition of recording hardware, the 
device-interface, signal processing, and storage functionalities 
were abstracted through signal-observer streams. New device-
interfaces or signal processing pipelines can be configured 
to pass and recieve values to and from these streams without 

changing other parts of the application. The application also 
features a generic oscillator that can be used for hardware-
independent testing purposes. 

EVALUATION 
We first motivate the choice of the two BCI control strategies 
and the recording hardware. Then, we outline the experimental 
procedure. Afterward, we present the analysis of the usability 
of the MYND platform and the BCI control strategy evaluation. 

Choice of laboratory-based BCI control strategies 
We utilized a set of stimulus-free two-task BCI control strate-
gies that were previously evaluated in laboratory experiments 
with healthy subjects. It was shown that both BCI control 
strategies could be used in a laboratory study to induce signifi-
cant differences in neural activity [20, 19, 27, 16]. Now, we 
complement the laboratory results with MYND to investigate 
whether these strategies can be executed in an uncontrolled, 
realistic environment, by utilizing a consumer-grade EEG, and 
if repeated execution affects performance. 

We chose this set of control strategies for two reasons: First, 
the strategies have shown to be immediately executable by 
subjects without the need for prior training, and they are unre-
lated to motor processes, which limits accidental movement 
artifacts. Second, neural activity in broad areas of the parietal 
and prefrontal cortex are modulated by these strategies, which 
could make them particularly suitable for use with consumer-
grade EEG equipment with few sensors at distant ends of the 
scalp. 

In the “Positive memories” strategy, subjects are asked to 
switch between thinking about a positive memory of their 
past or consecutively subtract a small number from a larger 
number [20, 19, 27]. Changing between daydreaming and a 
task that requires attention modulates activity in the “default 
mode network,” a large-scale network that is involved in self-
referential processes [13, 39]. It was found that thinking about 
positive memories increases activity in the alpha-band, while 
mental calculations decrease activity. Similarly, the “Music 
imagery” strategy instructs subjects to switch between playing 
their favorite song in their head or consecutively subtract a 
small number from a larger number, which has also been found 
to modulate parietal alpha-activity [41, 16]. Self-referential 
thoughts have shown to modulate activity in the theta- (3– 
7 Hz) alpha- (8–13 Hz) and beta-bands (17–30 Hz) of the 
human EEG [12, 36]. Further, it was found that the dominant 
frequency of the EEG spectrum, the “alpha peak frequency,” is 
modulated by these strategies as well [27]. In figure 3, we used 
the laboratory data from previous studies [20, 16] to illustrate 
the induced band-power modulations parietal and prefrontal 
cortex with the two BCI control strategies. We computed the 
coefficient of determination (R2) per subject and channel to 
visualize the average induced differences in normalized theta-
alpha- and beta-bands, as well as the dominant frequency 
of the EEG spectrum. Lab recordings used a 128-channel 
“BrainAmp” EEG system (Brain Products GmbH, Germany) 
with wet electrodes in a single-day recording. Eleven partici-
pants completed 40 trials of “Positive memories” [20], and 10 
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Figure 3. Average cortical R2-maps of the BCI control strategies “Posi-
tive memories” (A) and “Music imagery” (B), based on laboratory data 
from [19] and [16]. White circles represent the sensor locations of the 
employed consumer-grade EEG headset in the current study. 

different participants completed 20 trials of “Music imagery” 
[16]. 

Choice of consumer-grade recording hardware 
We chose the Muse EEG headset (2016) by InteraXon as 
recording hardware for four reasons: First, despite possible 
improvements in future sensor technology, the headband-like 
shape of the Muse may approximate the overall design future 
consumer-grade EEGs well with respect to a potential integra-
tion into glasses or headphones, instead of extensive sensor 
placements across the cortex. Second, the Muse EEG was de-
signed to be worn for everyday meditation assistance, and the 
software library allows for communication with the headset 
via Bluetooth LE to access to the raw data in real-time. Third, 
the Muse EEG was previously used in a laboratory BCI speller 
system in [30] , where it was noted that the headset could mea-
sure ERP components reliably, requiring only few participants 
and minimal setup time. Lastly, the headset features sensors 
in parietal and prefrontal areas of the cortex which are likely 
to be modulated by the employed control strategy. Sensors are 
placed at AF7, AF8, TP9 and TP10 of the International 10–20 
system [28], and signals are recorded with a 256 Hz sampling 
rate. Figure 3 illustrates the sensor locations with respect to 
the induced modulations by the employed control strategy. 

Apparatus and participants 
We conducted an evaluation study with 32 subjects who used 
MYND over seven days at home. Subjects were recruited via 
social media from both local and remote communities within 
Germany. Local subjects were able to pick up the equipment 
at the institute, while a return-shipment of the equipment was 
provided for remote subjects. Of the 32 participants, two 
subjects dropped out of the study before reaching the final day 
of recordings due to time constraints and the inability to fit the 
headset to their head, respectively. This left 30 subjects for the 
analysis (age 32.5 ± 9.0 years, 19 female). Nineteen subjects 
chose the English version of the application. The MYND iOS 
app was installed on 30 iPad (2018) devices, running iOS 12.1, 
and bundled with 30 Muse EEG headsets. 

Experimental procedure 
A package consisting of an iPad with MYND installed, a Muse 
EEG headset, respective chargers, and a small printed man-
ual explaining general usage of the iPad were handed out or 
shipped to 32 subjects. Subjects were free to start the seven-
day study at any time by completing the boarding procedure. 
Afterward, subjects were asked to complete the respective sce-
narios for every day, constrained by the time-limit as described 
in the implementation section. After the last day, subjects were 
asked to return the equipment in person or via postal service 
and fill out an online survey about their experience. Based 
on institutional guidelines, subjects were reimbursed with 12 
Euro per hour of system usage, and, similar to the laboratory 
study, no additional feedback on performance was given. 

Subjects were asked to complete 42 60-second trials of the 
“Resting-state” strategy, 126 30-second trials of the “Positive 
memories” strategy (on days 1,2,4,5, and 6), and 54 30-second 
trials of the “Music imagery” strategy (on days 3, 5, and 7) 
during the course of the at-home study. All strategies were 
split into blocks: one trial per task for “Resting-state,” and 
three randomized trials per task for “Positive memories” and 
“Music imagery.” We altered control strategies and the number 
of trials that subjects were asked to perform on each day to vary 
between days of lower and higher workload. The schedule 
also allowed us to observe potential effects of repeated usage, 
breaks, or simultaneous scheduling of both strategies. Subjects 
were asked to perform all tasks with closed eyes to prevent 
eye-blink artifacts. At the beginning of each day, subjects 
would rate their motivation to record the given sessions on 
a 5-point Likert scale (“How motivated are you to complete 
today’s sessions?”). Meditation experience was recorded on 
the first day of the study on a 3-point scale. 

Analysis 
All analyses were performed offline in Matlab 2019b (The 
MathWorks Inc., MA, USA). 

Platform usability 
Concerning the usability of the system, we first analyzed the 
time that subjects required to fit the headset at the beginning 
of every recording session. We reconstructed the retained sig-
nal quality during trial execution with the same processing 
pipeline as described earlier, and we plotted the “Resting-state” 
EEG spectrum, averaged over both parietal channels, for a 
visual inspection of the recorded data. During the “Resting-
state,” subjects are asked to either open or close their eyes 
and let their mind wander. Alpha-band-power increases vis-
ibly during closed-eyes resting. Therefore this strategy is 
often used as a benchmark for EEG recording setups (e.g., 
[17]). Concerning the subjects’ satisfaction with the system, 
we present the post-experiment ratings of the application in 
an online survey, to which 25 subjects responded. We report 
the dimensions “perceived ease-of-use”, “perceived enjoy-
ment”, and “perceived external control” of the Technology 
Acceptance Model [47, TAM], as well as “temporal demand”, 
“frustration”, and “effort” of the NASA Task Load Index [18, 
TLX], and a 10-point total satisfaction score, as proposed in 
[31] for BCI development. We further summarize feedback 
from the open comment section of the questionnaire. 



Figure 4. (A) Fitting time of the EEG headset by day. The dotted line represents the three-minute mark, after which the fitting criterion was lowered. 
Black bars indicate the median, dashed lines indicate the mean. Boxes extend between the 25th and 75th percentile, and whiskers extend to ±1.5 IQR. 
Circles represent outliers. Data was square-root transformed for this visualization to improve the distribution symmetry. (B) Histogram of the retained 
average signal quality per trial across all subjects, days, and scenarios. The black vertical line indicates the median. (C) The parietal resting-state EEG 
spectrum, averaged over all subjects and trials. Solid lines represent the mean; shaded areas represent the average standard deviation. 

Control strategy evaluation 
With this study, we aim to evaluate how well the BCI control 
strategies can be performed in an uncontrolled, realistic setting 
and consumer-grade hardware, outside of the laboratory. This 
also poses new challenges for the employed decoding mod-
els: The small amount of trials scheduled per day (18 to 36), 
recorded with a consumer-grade EEG, limits interpretabiliy of 
daily classification accuracies. To compensate for few daily 
trials, device biases, and a lower signal-to-noise ratio, we 
leveraged the information obtained from previous laboratory 
trials with a transfer-learning approach ([26], toolbox available 
online7, additional details in [19]). Here, a linear regression 
model for each subject in the at-home study is learned while 
regularizing the regression weights with a Gaussian prior that 
is learned on existing laboratory data. The three-step imple-
mentation, which we describe below, also resembles a possible 
procedure for daily on-device feedback that would be immedi-
ately accessible to subjects in future studies. 

First, we performed the following EEG preprocessing steps 
per subject, day, and strategy, to obtain the feature space for 
pattern classification: We windowed the EEG time-series at 
every channel with a Hann window and computed the log-
band-power for every trial for both laboratory studies and the 
at-home study. Muscular artifacts in the laboratory studies 
were removed from the data with an independent component 
analysis (ICA) before band-power computations, as described 
in [19]. We extracted four features: theta- (3–7 Hz) alpha-
(8–13 Hz) and beta-log-band-power (17–30 Hz), as well as 
the dominant frequency of the EEG spectrum as described in 
[27]. Then, we used mean and standard-deviation to normalize 
band-powers and the dominant frequency for every subject 
across the whole session in the laboratory study, and within 
each day in the at-home study. We extracted theta-, alpha-, and 
beta-band-power, and the dominant frequency at the electrode 
locations of the consumer-grade headset (TP8, TP10, AF1, 

7https://github.com/vinay-jayaram/MTlearning 

and AF2, see figure 3 for illustration), resulting in a total of 
sixteen features per trial and control strategy. 

Second, we learned a Gaussian prior over all subjects of the 
laboratory dataset. This laboratory prior is updated in two 
steps: First, its covariance is kept constant, and regression 
weights are computed for a given subject. Second, the covari-
ance of the prior is updated with the weights of the learned 
model. We used the “convex multi-task feature learning” algo-
rithm as update method [4], and iterated the procedure 10,000 
times. 

Third, we learned decoding models per subject, day, and con-
trol strategy in the at-home study in a leave-one-trial-out cross-
validation procedure. For n trials per subject, day, and control 
strategy, we fit a linear regression model on n − 1 trials, reg-
ularized by the previously obtained prior. Then, we used the 
learned model to predict the task label of the n-th trial, re-
sulting in one classification accuracy per subject, day, and 
strategy. To further quantify differences between laboratory 
and at-home recordings, we used the same method within each 
laboratory dataset and report average accuracies. 

We related the obtained accuracies to four potential mediators 
of decoding performance: Average signal quality during trials, 
the day of the study, meditation experience, indicated at the 
beginning of the study, and daily self-reported motivation. 

Results 
Concerning the usability of the system, figure 4 (A) shows the 
average fitting time of the EEG headset across all subjects for 
each day. The median fitting time across all days and subjects 
was 25.9 seconds. 16.2% of all fitting procedures required 
more than three minutes, after which the required signal qual-
ity dropped to 75%, as described in the implementation section. 
Figure 4 (B) shows a histogram of retained signal quality in all 
trials, with a median signal quality of 90.2%. In (C), we show 
the average resting-state EEG spectrum across all subjects and 
the average standard deviation. The dominant frequency be-
tween 8 and 13 Hz is visible during the eyes-closed condition. 

https://7https://github.com/vinay-jayaram/MTlearning
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Figure 5. Results of the at-home evaluation of the BCI control strategies. “Positive memories” is colored red, “Music imagery” is colored blue. (A) 
Mean classification accuracies and signal quality achieved in both strategies. Black lines indicate the mean accuracy. Grey circles indicate accuracies 
per day. (B) Daily classification accuracy by achieved signal quality and strategy. (C) Classification accuracy by day and strategy. Dashed colored lines 
indicate the mean for each strategy. Boxes extend between the 25th and 75th percentile, and whiskers extend to ±1.5 IQR. Circles represent outliers. 
Gray lines indicate chance-level of 50%. 

The spectrum also shows a peak at 50 Hz, likely caused by 
electromagnetic influence. 

Regarding the overall satisfaction with the platform, 25 sub-
jects participated in a post-experiment online survey. On the 
Technology Acceptance Model dimensions [47, TAM], sub-
jects rated perceived ease-of-use with a median score of 5.8/7, 
perceived enjoyment with a score of 5.6/7, and perceived con-
trol over the application with a 6.3/7. On the NASA Task Load 
Index dimensions [18, TLX], ratings for frustration, temporal 
demand, and required effort were low with a median score 
of 5/21, 8/21, and 7/21. Subjects rated their median overall 
satisfaction with an 8/10. Several subjects used the optional 
open comment section of the survey to suggest improvements. 
In terms of hardware, two subjects commented that the head-
set became uncomfortable to wear after prolonged use, two 
noted that it could not be used in combination with glasses, 
and seven subjects reported on connectivity or fitting issues. 
Software suggestions included a more accuracte calculation 
of the remaining session time, a more pleasant TTS voice, 
more flexible progression, skipping sensor check-ups between 
blocks if signal quality remained stable, and more exciting 
tasks. Five subjects reported that they experienced a bug after 
a system update that could affect data storage. This bug was 
fixed in a later version. Five subjects used the comment section 
to note that the application was easy to use and instructions 
were easy to follow. 

Figure 5 shows the results of the unsupervised, daily use 
of both control strategies on consumer-grade hardware. In 
(A), we show the average classification accuracies for both 

strategies in the at-home study, with an overall average accu-
racy of 68.5% for “Positive memories” and 64.0% for “Mu-
sic imagery.” Grey circles indicate the achieved accuracies 
per day, where we observe within-subject differences with 
an average standard deviation of 20.3%. We find a small 
negative trend between mean accuracy and standard devia-
tion (Pearson’s r(58) = −.25, p = .0505). In (B), we relate 
these accuracies to the signal quality during trials. We find 
a small positive trend between daily signal quality and daily 
accuracies (r(224) = .13, p = .06). We relate accuracies to 
the day of study in (C). In general, we find a small nega-
tive correlation between the day of study and performance 
(r(224) = −.18, p = .006). “Positive memories” shows a me-
dian accuracy of 72.2% on day 1, and then exhibits a drop 
in median accuracy to 63.3% during repeated execution from 
day 1 to day 2. After not executing the strategy on day 3, we 
observe an increase to 77.8% on day 4, and a subsequent drop 
to 72.2% and 55.6% on days 5 and 6, respectively. Thirty-
six “Positive memories” trials were scheduled on days 2 and 
6, which is the highest daily amount in this study. In “Mu-
sic imagery”, we find a median accuracy of 72.2% on day 3, 
where it was introduced as the only scheduled strategy. Then, 
we find a decrease to 59.7% on day 5, where both strategies 
were scheduled, and a subsequent increase to 66.6% on day 
7, where only “Music imagery” was scheduled. Within the 
single-session laboratory datasets, we obtained classification 
accuracies of 83.0 ± 15.3% for “Positive memories”, and 84.0 
± 14.6% for “Music imagery.” 

With respect to the two potential mediators meditation experi-
ence and daily self-reported motivation, we found that medita-



tion experience is unrelated to accuracies (M = 1.80/3,SD = 
0.56,r(224) = .03, p = .65). Motivation correlates positively 
with accuracy in this study (M = 3.98/5,SD = 0.92, r(224) = 
.18, p = .006). Subjects recorded 70.4 hours of EEG data. 
Median trial completion was 91.0% ± 9.0 median absolute de-
viation, and the median time window between the first and the 
last recording was 7.8 days ± 1.7 median absolute deviation. 

DISCUSSION 
We developed MYND as an open-source framework to evaluate 
laboratory-based BCI control strategies in an unsupervised, 
realistic scenario. Thirty subjects used the application over 
seven days at home and executed the two control strategies 
“Positive memories” and “Music imagery.” In terms of plat-
form usability, subjects retained a high signal quality after 
self-administered fitting with a median of 90.2%. They re-
quired below one minute on all days for average preparation 
time. Post-experiment survey results indicate that subjects 
were overall satisfied with the application. Concerning the two 
BCI control strategies “Positive memories” and “Music im-
agery,” induced differences in neural activity could be decoded 
with an average accuracy of 68.5% and 64.0% across days, 
respectively. Our results indicate that combining a consumer-
grade EEG with guided self-administration through MYND 
could be a promising basis to evaluate laboratory-based BCI 
control strategies for unsupervised, daily use. Apart from the 
general evaluation of both strategies in this context, MYND 
allowed us to investigate how signal quality and the repeated 
execution of both strategies across days may have mediated 
performance. 

Interestingly, maintaining a high signal quality, i.e., a low sig-
nal variance, after self-supervised fitting did not necessarily 
lead to high task performance in this study. On the other hand, 
we found a high variation of daily accuracies within subjects, 
and a relative decrease in performance compared to laboratory 
results. The consumer-grade EEG and our fitting algorithm al-
lowed subjects to record neural data quickly, but the hardware 
may also pose new challenges for the BCI user: Even when 
perfectly fitted, the dry sensors at distant ends of the scalp 
may require users to induce strong, consistent modulations in 
neural activity in order to be reliably detected. Ergonomics 
and usability may also play a role: several subjects reported 
that they experienced difficulties with the employed headset. 
During earlier explorations of other headsets, we found that 
a 3D-printed OpenBCI EEG headset lacked ergonomic prop-
erties for use beyond several minutes of recordingm and the 
EMOTIV Epoc required regular maintenance due to dispos-
able parts. These qualitative observations highlight that more 
efforts on ergonomic, open-source hardware are needed to 
create better low-cost EEGs for longitudinal home-use. With 
MYND, the evaluation of such hardware prototypes may extend 
beyond traditional signal quality metrics to include ergonomic 
properties and ease of maintenance during home-use. 

As one potential mediator, meditation experience may affect 
the ability to maintain focus in unsupervised environments 
[33]. However, in a post-hoc analysis, we found that self-
reported meditation experience is unrelated to accuracies in 
this study. On the other hand, daily motivational scores corre-

late positively with accuracy in this study. Therefore, using the 
MYND platform to combine easily accessible control strate-
gies with motivating, daily feedback could further improve 
performance and help with more consistent execution. This 
feedback will need to be robust to the lower signal-to-noise 
ratio and higher susceptibility to involuntary head-muscle ar-
tifacts around the ears and the forehead, where the sensors 
are located. As one promising approach to implement ro-
bust feedback, concurrent work in [29] explored an adaptive 
signal-filtering method that relies on signal-variation, similar 
to the fitting algorithm presented here. Providing immediately 
accessible daily decoding scores could be implemented on 
the device by utilizing prior information from higher quality 
laboratory data via transfer-learning, as shown in this offline 
analysis. Incorporating subject-specific information from a 
daily resting-state recording could further improve model per-
formance. 

Both control strategies were immediately executable on the 
day of introduction, with a median decoding accuracy of 72.2% 
each. While an accuracy of ≥ 70% is typically considered suf-
ficient for BCI control, the study with MYND also revealed 
potential challenges for the reliable, every-day use of the two 
strategies in future BCIs: Apart from within-subject variation, 
our at-home results indicate that repeated task execution across 
days may have had a negative effect on decoding accuracy. 
Conversely, we found an increase in accuracy after not exe-
cuting one strategy on day 3, and the effectiveness of the two 
strategies differs in several cases, for example, in subjects 18, 
23, and 25. Longer, more complex study protocols may be 
needed to detail the interactions between BCI control strate-
gies, subjects, and time. However, these first observations 
may already have implications for future work with MYND on 
enabling reliable, long-term BCI control: Self-devised strat-
egy schedules and daily feedback could enable subjects to 
switch between control strategies and devise new strategies 
that work particularly well for them. This may reduce the ef-
fects of repeated execution of a single strategy and potentially 
reduce within-subject variation as well. Subjects could indi-
cate if their use of memories in the “Positive memory” strategy 
differed across sessions, or if their ability to focus changed 
throughout training. They could also report if their strategy 
choice was influenced by external factors, if they switch strate-
gies after repeated use, or if they stop using concrete strategies 
altogether after repeated training. Participants could take on a 
more active role when investigating the efficacy of BCI con-
trol strategies by reporting personal strategies, use means of 
continuous self-evaluation, and share experiences with other 
subjects, all of which may positively affect performance by 
adding potential sources of intrinsic motivation [35]. 

Using consumer-grade hardware and the MYND application, 
adding a set of strategies as a starting point for everyone, and 
using feedback and personal schedules to improve the ability 
to elicit neural modulations may be a viable basis for research 
on accessible, reliable, long-term BCI usage in daily life. A 
careful assessment of the questions that can be asked with this 
recording method is as critical as a careful design of crowd-
sourcing systems to deal with the lack of supervision, limited 
data quality, and the compliance and capabilities of the tar-



get population. Self-supervised physiological research may 
also pose new ethical and practical challenges, like the use of 
direct-to-consumer neurotechnology in neuromarketing [25]. 
Laboratory environments and medical-grade equipment are 
always needed to ask basic neuroscientific questions and de-
velop novel concepts for BCIs. The presented open-source 
framework provides a way to complement laboratory BCI re-
search with aspects of human-computer interaction, including 
subjective experience, different environments, longitudinal 
use, and realistic use-cases, which can hardly be captured with 
traditional paradigms. Using consumer technology to build in-
terfaces that are familiar and easy to use may lower the barrier 
for consistent self-supervised participation in neurophysiolog-
ical research on a larger scale, and it could be the basis for 
more accessible and affordable BCIs in the future. 
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