
Assessing Architecture Conformance to
Coupling-Related Patterns and Practices in

Microservices

Evangelos Ntentos1, Uwe Zdun1, Konstantinos Plakidas1, Sebastian Meixner2, and
Sebastian Geiger2

1 University of Vienna, Faculty of Computer Science, Research Group Software Architecture,
Austria

firstname.lastname@univie.ac.at
2 Siemens Corporate Technology, Vienna, Austria
firstname.lastname@siemens.com

Abstract. Microservices are the go-to architectural style for building applica-
tions that are polyglot, support high scalability, independent development and
deployment, and are rapidly adaptable to changes. Among the core tenets for a
successful microservice architecture is high independence of the individual mi-
croservices, i.e. loose coupling. A number of patterns and best practices are well-
established in the literature, but most actual microservice-based systems do not,
as a whole or in part, conform to them. Assessing this conformance manually is
not realistically possible for large-scale systems. This study aims to provide the
foundations for an automated approach for assessing conformance to coupling-
related patterns and practices specific for microservice architectures. We propose
a model-based assessment based on generic, technology-independent metrics,
connected to typical design decisions encountered in microservice architectures.
We demonstrate and assess the validity and appropriateness of these metrics by
performing an assessment of the conformance of real-world systems to patterns
through statistical methods.

1 Introduction

Microservice architectures [15,22,14] describe an application as a collection of au-
tonomous and loosely coupled services, typically modeled around a domain. Key mi-
croservice tenets are development in independent teams, cloud-native technologies and
architectures, polyglot technology stacks including polyglot persistence, lightweight
containers, loosely coupled service dependencies, high releasability, and continuous de-
livery [22]. Many architectural patterns that reflect recommended “best practices” in a
microservices context have already been published in the literature [18,23,19]. The fact
that microservice-based systems are complex and polyglot means that an automatic or
semi-automatic assessment of their conformance to these patterns is difficult: real-world
systems feature combinations of these patterns, and different degrees of violations of
the same; and different technologies in different parts of the system implement the pat-
terns in different ways, making the automatic parsing of code and identification of the
patterns a haphazard process.

2 Authors Suppressed Due to Excessive Length

This work focuses on describing a method for assessing architecture conformance
to coupling-related patterns and practices in microservice architectures. Coupling be-
tween microservices is caused by existence of dependencies, e.g. whenever one service
calls another service to fulfill a request or share data. Loose coupling is an established
topic in service-oriented architectures [22] but the application to the specific context of
microservice architectures has not, to our knowledge, been examined so far.

Strong coupling is conflicting with some of the key microservice tenets mentioned
above. In particular, releasability, which is a highly desirable characteristic in modern
systems due to the emergence of DevOps practices, relies on the rapid and independent
release of individual microservices, and is compromised by strong dependencies be-
tween them. For the same reason, development in independent teams becomes more dif-
ficult, and independent deployment of individual microservices in lightweight contain-
ers is also impeded. This work covers three broad coupling aspects: Coupling through
Databases, resulting from reliance on commonly accessed data via shared databases;
Coupling through Synchronous Invocations, resulting from synchronous communica-
tion between individual services; and Coupling through Shared Services, which arises
through the dependence on common shared services (for details see Section 3).

In reality, of course, no microservice system can support all microservice tenets well
at the same time. Rather the architectural decisions for or against the use of specific
patterns and practices must reflect a trade-off between ensuring the desired tenets and
other important quality attributes [12,22]. From these considerations, this paper aims to
study the following research questions:

– RQ1 How can we automatically assess conformance to loose coupling-related pat-
terns and practices in the context of microservice architecture decision options?

– RQ2 How well do measures for assessing coupling-related decision options and
their associated tenets perform?

– RQ3 What is a set of minimal elements needed in a microservice architecture
model to compute such measures?

In pursuing of these questions, we surveyed the relevant literature (Section 2) and
gathered knowledge sources about established architecture practices and patterns, their
relations and tenets in form of a qualitative study on microservice architectures. This en-
abled us to create a meta-model for the description of microservice architectures, which
was verified and refined through iterative application in modelling a number of real-
world systems, as outlined in Section 4. We manually assessed all models and model
variants on whether each decision option is supported, thereby deriving an objective
ground truth (Section 5). As the basis for an automatic assessment, we defined a num-
ber of generic, technology-independent metrics to measure architecture conformance to
the decision options, i.e. at least one metric per major decision option (Section 6). These
metrics (and combinations thereof) were applied on the models and model variants to
derive a numeric assessment, and then compared to the ground truth assessment via an
ordinal regression analysis (Section 7). Section 8 discusses the results of our approach,
as well as its limitations and potential threats to validity. Finally, in Section 9 we draw
our conclusions and discuss options for future work.

Assessing Architecture Conformance 3

2 Related Work

Many studies focus on best practices for microservice architectures. Richardson [18]
has published a collection of microservice patterns related to major design and archi-
tectural practices. Patterns related to microservice APIs have been introduced by Zim-
mermann et al. [23], while Skowronski [19] collected best practices for event-driven
microservice architectures. Microservice fundamentals and best practices are also dis-
cussed by Fowler and Lewis [14], and are summarized in a mapping study by Pahl and
Jamshidi [16]. Taibi and Lenarduzzi [20] study microservice “bad smells”, i.e. practices
that should be avoided (which would correspond to violations in our work).

Many software metrics-related studies for evaluating the system architecture and
individual architectural components exist, but most of them are not specific to the mi-
croservices domain. Allen et al. [2,1] study component metrics for measuring a number
of quality attributes, e.g. size, coupling, cohesion, dependencies of components, and the
complexity of the architecture. Additional studies for assessing quality attributes related
to coupling and cohesion have been proposed and validated in the literature [6,3,11,4].
Furthermore, a small number of studies [17,21,5] propose metrics specifically for as-
sessing microservice-based software architectures. Although these works study various
aspects of architecture, design metrics, and architecture-relevant tenets such as coupling
and independent deployment, their approach is usually generic. None of the works cov-
ers all the related software aspects for measuring coupling in a microservice context:
the use of databases, system asynchronicity, and shared components. This is the over-
arching perspective of our work, and the chief contribution of this paper.

3 Decisions

In this section, we briefly introduce the three coupling-related decisions along with their
decision options (i.e. the relevant patterns and practices) which we study in this paper.
We also discuss the impact on relevant microservice tenets, which we later on use as an
argumentation for our manual ground truth assessment in Section 5.

Inter-Service Coupling through Databases. One important decision in microservice-
based systems is data persistence, which needs to take into account qualities such as
reliability and scalability, but also adhere to microservice-specific best practices, which
recommend that each microservice should be loosely coupled and thus able to be devel-
oped, deployed, and scaled independently [14]. At one extreme of the scale, one option
is No Persistent Data Storage, which is applicable only for services whose functions are
performed on transient data. Otherwise, the most recommended option is the Database
per Service pattern [18]: each service has its own database and manages its own data in-
dependently. Another option, which negatively affects loose coupling, is to use a Shared
Database [18]: a service writes its data in a common database and other services can
read these data when required. There are two different ways to implement this pattern:
in Data Shared via Shared Database multiple services share the same table, resulting
in a strongly coupled system, whereas in Databased Shared but no Data Sharing each
service writes to and reads from its own tables, which has a lesser impact on coupling.

4 Authors Suppressed Due to Excessive Length

Inter-Service Coupling through Synchronous Invocations. Service integration is an-
other core decision when building a microservice-based system. A theoretically optimal
system of independent microservices would feature no communication between them.
Of course, services need to communicate in reality, and so the question of integrating
them so as to not result in tight inter-service coupling becomes paramount. The recom-
mended practice is that communication between the microservices should be, as much
as possible, asynchronous. This can be achieved through several patterns which are
widely implemented in typical technology stacks: the Publish/Subscribe [13] pattern,
in which services can subscribe to a channel to which other services can publish; the use
of a Messaging [13] middleware, which decouples communication by using a queue to
store messages sent by the producer until they are received by the consumer; the Data
Polling [18] pattern, in which services periodically poll other services for data changes;
and the Event Sourcing [18] pattern, that ensures that all changes to application state
are stored as a sequence of events; Asynchronous Direct Invocation technique, in which
services communicate asynchronously via direct invocations. Applying these patterns
ensures loose coupling (to different degrees), and increases the system reliability.

Inter-Service Coupling through Shared Services. Many of the microservice patterns
focus on system structure, i.e. avoiding services sharing other services altogether, or at
least not in a strongly coupled way. An optimal system in terms of architecture quality
should not have any shared service. In reality, this is often not feasible, and in larger sys-
tems service sharing leads to chains of transitive dependencies between services. This
is problematic when a service is unaware of its transitive dependencies, and of course
for the shared service itself, where the needs of its dependents must always be taken
into account during its evolution. We define three cases: a Directly Shared Service is a
microservice which is directly linked to and required by more than one other service;
a Transitively Shared Service is a microservice which is linked to other services via at
least one intermediary service; and a Cyclic Dependency [10] which is formed when
there is a direct or transitive path that leads back to its origin, i.e. that allows a service
to be ultimately dependent on itself after a number of intermediary services. Cyclic
dependencies often emerge inadvertently through increasing complexity over the sys-
tem’s lifecycle, and require extensive refactoring to resolve. All three cases are inimical
to the principle of loose coupling as well as to system qualities such as performance,
modifiability, reusability, and scalability.

4 Research and Modeling Methods

In this section, we summarize the research and modeling methods applied in our study.
The code and models used in and produced as part of this study have been made avail-
able online for reproducibility 3.

4.1 Research Method

Figure 1 shows the research steps from initial data collection to final data analysis.
For the data collection phase we conducted a multi-vocal literature study using web re-

3 https://bit.ly/2WmFP3N

Assessing Architecture Conformance 5

sources, public repositories, and scientific papers as sources [9]. We then analyzed the
data collected using qualitative methods based on Grounded Theory [7] coding meth-
ods, such as open and axial coding, and extracted the three core architectural decisions
described in the previous section along with their corresponding decision drivers and
impacts. As data for our further research we used generated models taken from the
Model Generation process, described below. We defined a rating scheme for system-
atic assessment based on support or violation of core practices and tenets. From these
we derived a ground truth for our study (the ground truth and its calculation rules are
described in Section 5) as well as a set of metrics for automatically calculating confor-
mance to each individual pattern or practice per decision. We then used the ground truth
data to assess how well the hypothesized metrics can possibly predict the ground truth
data by performing an ordinal regression analysis. Ordinal regression is a widely used
method for modeling an ordinal response’s dependence on a set of independent predic-
tors, which is applicable in a variety of domains. For the ordinal regression analysis we
used the lrm function from the rms package in R [8].

Model Generation

Metrics Definition

Architectural Design DecisionsData Analysis

Extract Ontology (Data
Types) from best practices and

tenets

Determine Decision Impacts for
each option

Objective AssessmentStatistical Evaluation

Metrics Evaluation: Regression
analysis on ability of the metrics to
predict the ground truth assessment

Data Analysis: Qualitative study
based on Grounded Theory method

Define Metrics for quantifying
extent of support/violation of each

pattern/practice and tenet

Automatic Calculation of generated
metrics based on the system

component models

System Component
Model

Data Collection Phase

Repositories

Research Papers

Formulation of Core Decisions

Establish a Rating Scheme for
System Assessment: Ordinal scale

based on support or violation of
patterns/practices and tenets

Static Code Analysis

Ground Truth Definition: Manual
assessment of system model
according to rating scheme

Definition of Decision Options:
Patterns and practices

Extraction of Decision Drivers:
Quality attributes/Tenets

Model VisualisationCodeable Models
Generator

Web Resources

Fig. 1. Overview diagram of the research method followed in this study

6 Authors Suppressed Due to Excessive Length

4.2 Model Generation

We began by performing an iterative study of a variety of microservice-related knowl-
edge sources, and we gradually refined a meta-model which contains all the required
elements to help us reconstruct existing microservice-based systems. In order to investi-
gate the ontology, and to evaluate the meta-model’s efficiency, we gathered a number of
microservice-based systems, summarized in Table 1. Each is either a system published
by practitioners (on GitHub and/or practitioner blogs) or a system variant adapted from
a published example according to discussions in the relevant literature in order to ex-
plore the possible decision space. Apart from the specific variations described in Table 1
all other system aspects remained the same as in the base models.

The systems were taken from 9 independent sources in total. They were developed
by practitioners with microservice experience, and they are representative of the best
practices summarized in Section 3. We performed a fully manual static code analysis
for those models where the source code was available (7 of our 9 sources; two were
modeled from documentation published by the practitioners).

To create our models, we used our existing modeling tool CodeableModels4, a
Python implementation for the precise specification of meta-models, models, and model
instances in code. Based on CodeableModels, we specified meta-models for compo-
nents, connectors and relationships. We then manually created model instances for each
of the systems in Table 1. In addition, we realized automated constraint checkers and
PlantUML code generators to generate graphical visualizations of all meta-models and
models.

The result is a set of precisely modeled component models of the examined software
systems (modeled using the techniques described below). This resulted in a total of 27
models summarized in Table 1. We assume that our evaluation systems are, or reflect,
real-world practical examples of microservice architectures. As many of them are open
source systems with the purpose of demonstrating practices or technologies, they are at
most of medium size and modest complexity, though.

4.3 Methods for Modeling Microservice Component Architectures

From an abstract point of view, a microservice-based system is composed of compo-
nents and connectors, with a set of component types for each component and a set of
connector types for each connector. For modeling microservice architectures we fol-
lowed the method reported in our previous work [21].

5 Ground Truth Calculations

In this section, we present and describe the calculation of the ground truth assessment
for each of the decisions from Section 3. The results of those assessments are reported
in Table 2. The assessment begins with a manual evaluation by the authors on whether
each of the relevant patterns (decision options) is either Supported, Partially Supported,
or Not Supported (S, P, N in Table 2). Based on this and informed by the description

4 https://github.com/uzdun/CodeableModels

https://github.com/uzdun/CodeableModels

Assessing Architecture Conformance 7

Model ID Model Size Description / Source

BM1 10 components
14 connectors

Banking-related application based on CQRS and event sourcing (from https://
github.com/cer/event-sourcing-examples).

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely synchronous service invocations
instead of event-based communication.

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely asynchronous service invocations
instead of event-based communication.

CO1 8 components
9 connectors

The common component model E-shop application implemented as microservices
directly accessed by a Web frontend (from https://github.com/cocome-
community-case-study/cocome-cloud-jee-microservices-rest).

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service with a message broker.
Added support for Open Tracing. Added an API gateway.

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use inter-service communication, but
a shared database for accessing product and store data. Added support for Open Tracing.

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations, databases per service,
and an API gateway (from https://codeburst.io/build-a-nodejs-
cinema-api-gateway-and-deploying-it-to-docker-\part-4-
703c2b0dd269).

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API gateway.

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of the API gateway.

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the client and another sub-
system routing all traffic via the API gateway.

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing microservices and an API
gateway for service-based API (from https://microservices.io/patterns/
microservices.html).

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event sourcing internally.

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one service interactions.

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based interaction, a
middleware-triggered identity service, databases per service (4 SQL DBs, 1 Mongo
DB, and 1 Redis DB), and backends for frontends for two Web app types and
one mobile app type (from https://github.com/dotnet-architecture/
eShopOnContainers).

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-
based communication and one shared SQL DB for all 6 of the services using DBs. No
service interaction via the shared database occurs.

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of event-
based communication and one shared database for all 4 of the services using SQL DB in
ES1. However, no service interaction via the shared database occurs.

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly linked to
a Web UI (from https://github.com/jferrater/Tap-And-Eat-
MicroServices).

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API composition and asynchronous
interservice communication. Added Jaeger-based tracing per service.

FM3 13 components
15 connectors

Variant of FM1 which demonstrates a cyclic dependency case, uses the store service as
an API composition and asynchronous inter-service communication

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and OpenCensus moni-
toring & tracing for all but one services as well as on the gateway. (from https:
//github.com/GoogleCloudPlatform/microservices-demo).

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event sourcing, except for
one service, and realizes the tracing on all services.

RM1 11 components
18 connectors

Restaurant order management application based on SAGA messaging and domain
event interactions. Rudimentary tracing support (from https://github.com/
microservices-patterns/ftgo-application).

RM2 14 components
14 connectors

Variant of RM1 which contains transitively shared services, API Gateway for client ser-
vices communication, database per service and direct communication between service.

RM3 14 components
15 connectors

Variant of RM1 which demonstrates a cyclic dependency case, API Gateway for client
services communication, database per service and direct communication between service.

RS 18 components
29 connectors

Robot shop application with various kinds of service interconnections, data stores, and
Instana tracing on most services (from https://github.com/instana/robot-
shop).

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases per services from
(https://www.nginx.com/blog/introduction-to-microservices/).

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event sourcing for all but one
service interactions.

Table 1. Overview of modelled systems (size, details, and sources)

https://github.com/cer/event-sourcing-examples
https://github.com/cer/event-sourcing-examples
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-\part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-\part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-\part-4-703c2b0dd269
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/microservices-patterns/ftgo-application
https://github.com/microservices-patterns/ftgo-application
https://github.com/instana/robot-shop
https://github.com/instana/robot-shop
https://www.nginx.com/blog/introduction-to-microservices/

8 Authors Suppressed Due to Excessive Length

of the impacts of the various decision options in Section 3, we combined the outcome
of all decision options to derive an ordinal assessment on how well the decision as a
whole is supported in each model, using the ordinal scale: [++: very well supported,
+ : well supported, o : neutral, -: badly supported, --: very badly supported]. This was
done according to best practices documented in literature. For instance, following the
ordinal scale the assessment for the model BM1 is + : well supported, since a) option
Database per Service is not supported, b) some services have a shared database, but c)
they do not share data via the shared database.

For the Inter-Service Coupling through Databases decision, we derive the following
scoring scheme for our ground truth assessment:

• ++: All services (which require data persistence) have individual databases Database
per Service.
• +: Some services have Shared Databases and no Data Shared via the Shared Databases.
• o: All services have Shared Databases and no Data Shared via the Shared Databases.
• -: Some services have Shared Databases and Data Shared via the Shared Databases.
• --: All services have Shared Databases and Data Shared via the Shared Databases.

From the Inter-Service Coupling through Synchronous Invocations decision, we derive
the following scoring scheme for our ground truth assessment:

• ++: All services communicate asynchronously via Message Brokers or Publish/-
Subscribe or Stream Processing
• +: All services communicate asynchronously via API Gateway or HTTP Polling or

Direct Asynchronous calls, or (some) via Message Brokers or Publish/Subscribe or
Stream Processing.
• o: None or some services communicate asynchronously and all other services com-

municate asynchronously via Data Sharing (e.g. Shared DB).
• -: None or some services communicate asynchronously, none or some communicate

asynchronously via Data Sharing, some services communicate synchronously.
• --: All services communicate synchronously.

Finally, from the Inter-Service Coupling through Shared Services decision, we de-
rive the following scoring scheme for our ground truth assessment:

• ++: None of the services is a Directly Shared Service or Transitively Shared Service
and no Cyclic Dependencies exist.
• +: Some of the services are Transitively Shared Services , but none are Directly

Shared Services and no Cyclic Dependencies exist.
• o: Some or none of the services are Transitively Shared Services and some are

Directly Shared Services, but no Cyclic Dependencies exist.
• -: Some of the services are Transitively Shared Services and all other services are

Directly Shared Services, but no Cyclic Dependencies exist.
• --: There are Cyclic Dependencies or all the services are Transitively Shared Com-

ponents and all the services are Directly Shared Components.

Assessing Architecture Conformance 9

D
at

ab
as

e-
ba

se
d

In
te

r-
Se

rv
ic

e
C

ou
pl

in
g

BM1

BM2

BM3

CO1

CO2

CO3

CI1

CI2

CI3

CI4

EC1

EC2

EC3

ES1

ES2

ES3

FM1

FM2

FM3

HM1

HM2

RM1

RM2

RM3

RS

TH1

TH2

D
at

ab
as

e
pe

r
Se

rv
ic

e
N

S
S

S
S

P
S

S
S

S
S

S
N

S
N

P
S

S
S

S
S

N
S

S
N

S
S

Sh
ar

ed
D

at
ab

as
e

P
N

N
N

N
P

N
N

N
N

N
N

S
N

S
P

N
N

N
N

N
S

N
N

S
N

N
D

at
a

Sh
ar

ed
vi

a
Sh

ar
ed

D
B

N
N

N
N

N
P

N
N

N
N

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N
A

ss
es

sm
en

ts
+

++
++

++
++

-
++

++
++

++
++

++
--

++
o

+
++

++
++

++
++

o
++

++
o

++
++

In
te

r-
Se

rv
ic

e
C

ou
pl

in
g

th
ro

ug
h

Sy
nc

hr
on

ou
sI

nv
oc

at
io

ns

BM1

BM2

BM3

CO1

CO2

CO3

CI1

CI2

CI3

CI4

EC1

EC2

EC3

ES1

ES2

ES3

FM1

FM2

FM3

HM1

HM2

RM1

RM2

RM3

RS

TH1

TH2

A
sy

nc
hr

on
ou

s
D

ir
ec

tI
nt

er
co

nn
ec

tio
ns

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
S

S
P

P
N

N
N

P
N

N
P

ub
Su

b/
E

ve
nt

So
ur

ci
ng

In
te

rc
on

ne
ct

io
ns

S
N

N
N

N
N

N
N

N
N

N
S

N
P

N
N

N
N

N
N

S
P

N
N

N
N

P
A

sy
nc

h
In

te
r-

co
m

m
un

ic
at

io
n

vi
a

A
P

IG
W

N
N

S
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
Sh

ar
ed

D
at

ab
as

e
In

te
rc

on
ne

ct
io

ns
N

N
N

N
N

P
N

N
N

N
N

N
S

N
N

N
N

N
N

N
N

N
N

N
N

N
N

M
es

sa
gi

ng
In

te
rc

on
ne

ct
io

ns
N

N
N

N
S

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

P
N

N
P

N
N

A
ss

es
sm

en
ts

++
--

-
--

++
-

--
--

--
--

--
++

o
+

--
--

--
+

+
-

++
+

--
--

o
--

+

In
te

r-
Se

rv
ic

e
C

ou
pl

in
g

th
ro

ug
h

Sh
ar

ed
Se

rv
ic

es

BM1

BM2

BM3

CO1

CO2

CO3

CI1

CI2

CI3

CI4

EC1

EC2

EC3

ES1

ES2

ES3

FM1

FM2

FM3

HM1

HM2

RM1

RM2

RM3

RS

TH1

TH2

D
ir

ec
tS

er
vi

ce
Sh

ar
in

g
N

N
N

N
N

N
P

N
P

N
N

N
N

P
P

P
P

P
P

P
N

N
N

N
P

P
N

Tr
an

si
tiv

el
y

Sh
ar

ed
Se

rv
ic

es
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
P

N
N

N
S

N
N

N
N

C
yc

lic
D

ep
en

de
nc

ie
s

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

S
N

N
N

N
S

N
N

N
A

ss
es

sm
en

ts
++

++
++

++
++

++
o

++
o

++
++

++
++

o
o

o
o

o
--

o
++

++
o

--
o

o
++

Table 2. Ground truth assessment results

10 Authors Suppressed Due to Excessive Length

6 Metrics

In this section, we describe the metrics we have hypothesized for each of the decisions
described in Section 3. All metrics, unless otherwise noted, are a continuous value with
range from 0 to 1, with 1 representing the optimal case where a set of patterns is fully
supported, and 0 the worst-case scenario where it is completely absent.

6.1 Metrics for Inter-Service Coupling through Databases Decision

Database Type Utilization (DTU) metric. This metric returns the number of the con-
nectors from Services to Individual Databases in relation to the total number of Service–
to–Database connectors. This way, we can measure how many services are using indi-
vidual databases.

DTU =
Database per Service Links

Total Service-to-Database Links

Shared Database Interactions (SDBI) metric. Although a Shared Database is con-
sidered as an anti-pattern in microservices, there are many systems that make use of it
either partially or completely. To measure its presence in a system, we count the num-
ber of interconnections via a Shared Database compared to the total number of service
interconnections.

SDBI =
Service Interconnections with Shared Database

Total Service Interconnections

6.2 Metrics for Inter-Service Coupling through Synchronous Invocations
Decision

Service Interaction via Intermediary Component (SIC) metric. We defined this met-
ric to measure the proportion of service interconnections via asynchronous relay ar-
chitectures such as Message Brokers, Publish/Subscribe, or Stream Processing. These
represent the best current practices, and are not exhaustive; should any new architec-
tures emerge, these should be added to this list.

SIC =
Service Interconnections via [Message Brokers | Pub/Sub | Stream]

Total Service Interconnections

Asynchronous Communication Utilization (ACU) metric. This metric measures
the proportion of the sum of asynchronous service interconnections (via API Gateway /
HTTP Polling / Direct calls / Shared Database) to the total number of service intercon-
nections.

ACU =
Asynchronous Service Interconnections via [API | Polling | Direct Calls | Shared DB]

Total Service Interconnections

Assessing Architecture Conformance 11

6.3 Metrics for Inter-Service Coupling through Shared Services Decision

Direct Service Sharing (DSS) metric. For measuring DSS we count all the directly
shared services and set this number in relation to the total number of system services.
To this add all the shared services connectors in relation to the total number of services
interconnections. This gives us the proportion of the directly shared elements in the
system.

DSS =

Shared Services
Total Services

+
Shared Services Connectors

Total Service Interconnections
2

Transitively Shared Services (TSS) metric. For measuring TSS we count all the
transitively shared services and set this number in relation to the total number of system
services. To this we add all the transitively shared service connectors in relation to the
total number of service interconnections. This gives us the proportion of the transitively
shared elements in the system.

TSS =

Transitively Shared Services
Total Services

+
Transitively Shared Services Connectors

Total Service Interconnections
2

Cyclic Dependencies Detection (CDD) metric. Let SG = (S,C) be the service
graph, S the set of service nodes, and C the set of connector edges in a microservice
model. Based on the generic definition of closed paths, we define a closed service path
in SG as a sequence of services s1, s2, . . . , sn (each service ∈ S) such that (sn, sn+1)
∈ C is a directed connector between services for i = 1, 2, . . . , n and s1 = sn. A service
cycle is a closed service path in which no service node is repeated except the first and
last, and which contains at least two distinct service nodes. Let ServiceCycles() return
the set of all service cycles in a service graph. CDD returns 1 (True) if there is at least
one cyclic dependency in the model:

CDD =

{
1 : if |ServiceCycles(SG)| = 0

0 : otherwise

6.4 Metrics Calculation Results

We note that for the Inter-Service Coupling through Shared Services decision as well
as SDBI metric, our metrics scale is reversed in comparison to the other two decisions,
because here we detect the presence of an anti-pattern: the optimal result of our metrics
is 0, and 1 is the worst-case result.

The metrics results for each model per decision metric are presented in Table 3.

7 Ordinal Regression Analysis Results

The dependent outcome variables are the ground truth assessments for each decision, as
described in Section 5 and summarized in Table 2. The metrics defined in Section 6 and

12 Authors Suppressed Due to Excessive Length

Metrics BM1 BM2 BM3 CO1 CO2 CO3 CI1 CI2 CI3 CI4 EC1 EC2 EC3

Database-based Inter-Service Coupling

DTU 0.33 1.00 1.00 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.00

SDBI 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Inter-Service Coupling through Synchronous Invocations

SIC 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

ACU 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Inter-Service Coupling through Shared Services

DSS 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.38 0.00 0.00 0.00 0.00

TSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CDD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Metrics ES1 ES2 ES3 FM1 FM2 FM3 HM1 HM2 RM1 RM2 RM3 RS TH1 TH2

Database-based Inter-Service Coupling

DTU 1.00 0.00 0.33 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.66 1.00 1.00

SDBI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Inter-Service Coupling through Synchronous Invocations

SIC 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.80 1.00 0.00 0.00 0.11 0.00 0.60

ACU 0.00 0.00 0.00 0.00 1.00 0.08 0.50 0.20 0.00 0.00 0.00 0.11 0.00 0.00

Inter-Service Coupling through Shared Services

DSS 0.27 0.34 0.34 0.62 0.47 0.55 0.52 0.00 0.00 0.00 0.00 0.36 0.33 0.00

TSS 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.18 0.16 0.00 0.00 0.00

CDD 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Table 3. Metrics Calculation Results

summarized in Table 3 are used as the independent predictor variables. The ground truth
assessments are ordinal variables, while all the independent variables are measured on
a scale from 0.0 to 1.0. The objective of the analysis is to predict the likelihood of the
dependent outcome variable for each of the decisions by using the relevant metrics for
each decision.

Each resulting regression model consists of a baseline intercept and the independent
variables multiplied by coefficients. There are different intercepts for each of the value
transitions of the dependent variable (≥Badly Supported, ≥Neutral, ≥Well Supported,
≥Very Well Supported), while the coefficients reflect the impact of each independent
variable on the outcome. For example, a positive coefficient, such as +5, indicates a
corresponding five-fold increase in the dependent variable for each unit of increase in
the independent variable; conversely, a coefficient of -30 would indicate a thirty-fold
decrease.

The statistical significance of each regression model is assessed by the p-value; the
smaller the p-value, the stronger the model. A p-value smaller than 0.05 is generally
considered statistically significant. In Table 4, we report the p-values for the resulting
models, which in all cases are very low, indicating that the sets of metrics we have
defined are able to predict the ground truth assessment for each decision with a high
level of accuracy.

Assessing Architecture Conformance 13

Intercepts/Coefficients Value Model p-value
Database-based Inter-Service Coupling
Intercept (≥Badly Supported) 2.6572

1.706019e-06

Intercept (≥Neutral) 0.8789
Intercept (≥Well Supported) -1.3820
Intercept (≥Very Well Supported) -3.1260
Metric Coefficient (DTU) 6.4406
Metric Coefficient (SDBI) –3.7048
Inter-Service Coupling through Synchronous Invocations
Intercept (≥Badly Supported) -2.6973

6.705525e-11

Intercept (≥Neutral) -4.4087
Intercept (≥Well Supported) -5.8513
Intercept (≥Very Well Supported) -15.3677
Metric Coefficient (SIC) 17.3520
Metric Coefficient (ACU) 6.5520
Inter-Service Coupling through Shared Services
Intercept (≥Neutral) 59.4089

1.625730e-10
Intercept (≥Very Well Supported) 9.7177
Metric Coefficient (DSS) -82.4474
Metric Coefficient (TSS) -122.2583
Metric Coefficient (CDD) -57.4650

Table 4. Regression Analysis Results

8 Discussion

In this section, we first discuss what we have learned in our study that helps to answer
the research questions and then discuss potential threats to validity.

8.1 Discussion of Research Questions

To answer RQ1 and RQ2, we proposed a set of generic, technology-independent met-
rics for each coupling-related decision, and to each decision option corresponds at least
one metric. We objectively assessed for each model how well patterns and/or practices
are supported for establishing the ground truth, and extrapolated this to how well the
broader decision is supported. We formulated metrics to numerically assess a pattern’s
implementation in each model, and performed an ordinal regression analysis using these
metrics as independent variables to predict the ground truth assessment. Our results
show that every set of decision-related metrics can predict our objectively evaluated as-
sessment with high accuracy. This suggests that automatic metrics-based assessment of
a system’s conformance to the tenets embodied in each design decision is possible with
a high degree of confidence.

Here, we make the assumption that the source code of a system can be mapped to
the models used in our work. To enable this, we used rather simplistic modeling means,
which can rather easily be mapped from a specific source code to the system models.

14 Authors Suppressed Due to Excessive Length

However, it should be noted that full automation of this mapping is an additional effort
that needs to be considered and is the subject of ongoing work on our part.

Regarding RQ3, we consider that existing modeling practices can be easily mapped
to our microservice meta-model and there is no need for major extensions. More specif-
ically, for completing the modeling of our evaluation system set, we needed to introduce
25 component types and 38 connector types, ranging from general notions such as the
Service component type, to very technology-specific classes such as the RESTful HTTP
connector, which is a subclass of Service Connector. Our study shows that for each
pattern and practice embodied in each decision, and the proposed metrics, only a small
subset of the meta-model is required.

The decisions Inter-Service Coupling through Databases and Inter-Service Cou-
pling through Shared Services require to model at least the Service and the Database
component types and the technology-related connector types (e.g. Database Connec-
tor, RESTful HTTP and Asynchronous Connector) and the read/write process which ex-
plicitly modeled in the Database Connector type. The Inter-Service Coupling through
Synchronous Invocations decision requires a number of additional components (e.g.
Event Sourcing, Stream Processing, Messaging, PubSub) and the respective connectors
(e.g. Publisher, Subscriber, Message Consumer, Messages Producer, RESTful HTTP
and Asynchronous Connector) to be modeled.

8.2 Threats to Validity

We deliberately relied on third-party systems as the basis for our study to increase in-
ternal validity, thus avoiding bias in system composition and structure. It is possible
that our search procedures introduced some kind of unconscious exclusion of certain
sources; we mitigated this by assembling an author team with many years of experience
in the field (including substantial industry experiences), and performing very general
and broad searches. Given that our search was not exhaustive, and that most of the sys-
tems we found were made for demonstration purposes, i.e. relatively modestly sized,
this means that some potential architecture elements were not included in our meta-
model. In addition, this raises a possible threat to external validity of generalization to
other, and more complex, systems. We nevertheless feel confident that the systems doc-
umented are a representative cross-cut of current practices in the field, as the points of
variance between them were limited and well attested in the literature. Another poten-
tial threat is the fact that the variant systems were derived by the author team. However,
this was done according to best practices documented in literature. We carefully made
sure only to change specific aspects in a variant and keep all other aspects stable. That
is, while the variants do not represent actual systems, they are reasonable evolutions of
the original designs.

The modeling process is also considered as source of internal validity threat. The
models of the systems were repeatedly and independently cross-checked by the author
team that has considerable experience in similar methods, but the possibility of some
interpretative bias remains: other researchers might have coded or modeled differently,
leading to different models. As a mitigation, we also offer the whole models and the
code as open access artifacts for review. Since we aimed only to find one model that is
able to specify all observed phenomena, and this was achieved, we consider this threat

Assessing Architecture Conformance 15

not to be a major issue for our study. The ground truth assessment might also be subject
to different interpretations by different practitioners. For this purpose, we deliberately
chose only a three-step ordinal scale, and given that the ground truth evaluation for
each decision is fairly straightforward and based on best practices, we do not consider
our interpretation controversial. Likewise, the individual metrics used to evaluate the
presence of each pattern were deliberately kept as simple as possible, so as to avoid
false positives and enable a technology-independent assessment. As stated previously,
generalization to more complex systems might not be possible without modification.
But we consider that the basic approach taken when defining the metrics is validated by
the success of the regression models.

9 Conclusions and Future Work

Our approach considered that it is achievable to develop a method for automatically
assessing coupling related tenets in microservice decisions based on a microservice
system’s component model. We have shown that this is possible for microservice de-
cision models that contain patterns and practices as decision options. In this work, we
first modeled the key aspects of the decision options using a minimal set of component
model elements. These could be possibly automatically extracted from the source code.
Then we derived at least one metric per decision option and used a small reference
model set as a ground truth. We then used ordinal regression analysis for deriving a pre-
dictor model for the ordinal variable. The statistical analysis shows that each decision
related metrics are quite close to the manual, pattern-based assessment.

There are many studies related on metrics for component model and other archi-
tectures so far, but specifically for microservice architectures and their coupling related
tenets have not been studied. Based on our discussion in Section 2, assessing microser-
vice architectures using general metrics it is not very helpful. Our approach is one of the
first that studies a metrics-based assessment of coupling-related tenets in the microser-
vices domain. We aim to a continuous assessment, i.e. we envision an impact on con-
tinuous delivery practices, in which the metrics are assessed with each delivery pipeline
run, indicating improvement, stability, or deterioration in microservice architecture con-
formance. With small changes, our approach could also be applied, for instance, during
early architecture assessment. As future work, we plan to study more decisions, tenets,
and related metrics. We also plan to create a larger data set, thus better supporting tasks
such as early architecture assessment in a project.

Acknowledgments This work was supported by: FFG (Austrian Research Promotion
Agency) project DECO, no. 864707; FWF (Austrian Science Fund) project API-ACE:
I 4268.

References

1. Allen, E.B., Gottipati, S., Govindarajan, R.: Measuring size, complexity, and coupling of hy-
pergraph abstractions of software: An information-theory approach. Software Quality Jour-
nal (2), 179–212. https://doi.org/10.1007/s11219-006-9010-3

16 Authors Suppressed Due to Excessive Length

2. Allen, E.B., Gottipati, S., Govindarajan, R.: Measuring size, complexity, and coupling of hy-
pergraph abstractions of software: An information-theory approach. Software Quality Jour-
nal 15, 179–212 (2006)

3. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality assessment.
IEEE Transactions on Software Engineering 28(1), 4–17 (2002)

4. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering 22(10), 751–761 (1996)

5. Bogner, J., Wagner, S., Zimmermann, A.: Towards a practical maintainability quality model
for service-and microservice-based systems. pp. 195–198 (09 2017)

6. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Transac-
tions on Software Engineering 20(6), 476–493 (1994)

7. Corbin, J., Strauss, A.L.: Grounded theory research: Procedures, canons, and evaluative cri-
teria. Qualitative Sociology 13, 3–20 (1990)

8. Frank E. Harrell, J.: Regression Modeling Strategies: With Applications to Linear Models,
Logistic and Ordinal Regression, and Survival Analysis. Springer, 2nd edn.

9. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including the grey literature and
conducting multivocal literature reviews in software engineering. CoRR

10. Goldstein, M., Moshkovich, D.: Improving software through automatic untangling of cyclic
dependencies. Association for Computing Machinery, New York, NY, USA (2014)

11. Harrison, R., Counsell, S.J., Nithi, R.V.: An evaluation of the mood set of object-oriented
software metrics. IEEE Transactions on Software Engineering 24(6), 491–496 (1998)

12. Haselböck, S., Weinreich, R., Buchgeher, G.: Decision models for microservices: Design
areas, stakeholders, use cases, and requirements. In: Software Architecture. ECSA 2017. pp.
155–170. Lecture Notes in Computer Science, vol 10475, Springer International Publishing
(2017)

13. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley (2003)
14. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term. http:

//martinfowler.com/articles/microservices.html (Mar 2004)
15. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly (2015)
16. Pahl, C., Jamshidi, P.: Microservices: A systematic mapping study. In: 6th International Con-

ference on Cloud Computing and Services Science. pp. 137–146 (2016)
17. Pautasso, C., Wilde, E.: Why is the web loosely coupled?: a multi-faceted metric for service

design. In: 18th Int. Conf. on World wide web. pp. 911–920. ACM (2009)
18. Richardson, C.: A pattern language for microservices. http://microservices.io/

patterns/index.html (2017)
19. Skowronski, J.: Best practices for event-driven microservice architecture.

https://hackernoon.com/best-practices-for-event-driven-
microservice-architecture-e034p21lk (2019)

20. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Software 35(3),
56–62 (2018)

21. Zdun, U., Navarro, E., Leymann, F.: Ensuring and assessing architecture conformance to
microservice decomposition patterns. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M.
(eds.) Service-Oriented Computing. pp. 411–429. Springer International Publishing, Cham
(2017)

22. Zimmermann, O.: Microservices tenets. Computer Science - Research and Development
32(3), 301–310 (Jul 2017)

23. Zimmermann, O., Stocker, M., Zdun, U., Luebke, D., Pautasso, C.: Microservice API pat-
terns. https://microservice-api-patterns.org (2019)

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://microservice-api-patterns.org

	Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices
	Introduction
	Related Work
	Decisions
	Research and Modeling Methods
	Research Method
	Model Generation
	Methods for Modeling Microservice Component Architectures

	Ground Truth Calculations
	Metrics
	Metrics for Inter-Service Coupling through Databases Decision
	Metrics for Inter-Service Coupling through Synchronous Invocations Decision
	Metrics for Inter-Service Coupling through Shared Services Decision
	Metrics Calculation Results

	Ordinal Regression Analysis Results
	Discussion
	Discussion of Research Questions
	Threats to Validity

	Conclusions and Future Work

