
Metrics for Assessing Architecture Conformance to
Microservice Architecture Patterns and Practices

Evangelos Ntentos1, Uwe Zdun1, Konstantinos Plakidas1, Sebastian Meixner2, and
Sebastian Geiger2

1 University of Vienna, Faculty of Computer Science, Research Group Software Architecture,
Austria

firstname.lastname@univie.ac.at
2 Siemens Corporate Technology, Vienna, Austria
firstname.lastname@siemens.com

Abstract. Many contemporary service-based systems follow the microservice
approach, particularly in DevOps or continuous delivery contexts. They share a
set of important tenets such as independent development and deployment, high
releasability, polyglot technology support, and loose coupling. A number of best
practices for microservice architectures have been codified as patterns, which em-
body those tenets. However, no real-world microservices system can support all
patterns and practices well, but rather architectural decisions making trade-offs
among them are needed. Conformance to the patterns and practices selected in
such decisions is hard to ensure and assess automatically, especially in large-
scale, complex, and evolving systems. In this work, we propose a model-based
approach based on generic, technology-independent metrics, tied to typical ar-
chitectural design decisions in the microservice domain. With this approach we
can measure conformance to the patterns and related tenets. We demonstrate and
assess the validity and appropriateness of these metrics in performing an assess-
ment of a system’s conformance to patterns through statistical methods.

1 Introduction

Microservices architectures [10,19] structure an application as a collection of autonomous
services, modeled around a domain. They share a set of important tenets such as de-
velopment in independent teams, cloud-native technologies and architectures, polyglot
technology stacks including polyglot persistence, lightweight containers, loosely cou-
pled service dependencies, high releasability, end-to-end tracing and monitoring, and
continuous delivery [19,9,10]. This work examines ways to ensure architecture confor-
mance to these microservice tenets while applying established patterns and practices.
That is, many architectural patterns that reflect recommended “best practices” in a mi-
croservices context have already been published in the literature [14,20,15]. Confor-
mance to these patterns impacts how far a microservice system supports the desired
microservices tenets.

Unfortunately, as real-world, industrial microservice-based systems are usually highly
complex, often highly polyglot, and rapidly changed and released (see, e.g. [8,2]), an
automatic or semi-automatic assessment of their pattern conformance is difficult: real-
world systems feature various combinations of these patterns and different degrees of



2 Authors Suppressed Due to Excessive Length

violations of the same. Different technologies in various parts of the system implement
the patterns in different ways, and these implementations are continuously changing at
a high pace. Making matters even more challenging, a high level of automation is re-
quired for complex systems. While for small-scale systems of a few services, a manual
assessment by an expert is probably as quick and as accurate as an automated one, that
is not true for industrial-scale systems of several hundred or more services, which are
being developed by different teams or companies, evolving at different paces. In that
case, manual assessment is laborious and inaccurate, and a more automated method
would vastly improve cost-effectiveness. Another major challenge is that no microser-
vice system can support all microservice tenets well at once. Rather the architectural
decisions for or against a set of related patterns and practices need to make a trade-
off among the desired tenets and important other quality attributes [6,19]. Under these
considerations, this paper aims to study the following research questions:

– RQ1 How can conformance to the tenets embodied in microservice architecture
decision options (i.e. patterns and practices) be automatically assessed?

– RQ2 How well do measures for assessing decision options and their associated
tenets perform?

– RQ3 What is a set of minimal elements needed in a microservice architecture
model to compute such measures?

Our approach to address these challenges is to define a set of metrics for each mi-
croservice decision associated to the decision’s options, i.e. at least one metric per ma-
jor decision option. Based on a manual assessment of a small set of models and model
variants that is representative for the possible decision options and option combinations
of the studied decisions, we derive a ground truth. The ground truth is established by
objectively assessing whether each decision option is supported. By combining the out-
come of all options of a decision, we can then derive an ordinal assessment of how well
the decision is supported in each model. We then use the ground truth data to assess how
well the hypothesized metrics can possibly predict the ground truth data by performing
an ordinal regression analysis. In this paper, we propose an architectural component
model based approach which uses only modeling elements that can be derived from the
system’s source code. For this reason, it is important to be able to work with a minimal
set of modeling elements, else it might be difficult to continuously parse them from the
source code.

To study the research questions we selected and modeled three major decisions,
which represent important aspects in architecting microservices. To illustrate our ap-
proach we selected by purpose very different aspects of microservices architecture, in
particular: the decision for an external API, message persistence, and end-to-end trac-
ing. For each of these we hypothesized a number of generic, technology-independent
metrics to measure conformance to the respective decisions. For the evaluation of these
metrics, we modeled 24 architecture models taken from the practitioner literature and
assessed each of them manually regarding its support of the patterns and practices con-
tained in each decision. We then compared the results in depth and statistically over
the whole evaluation model set. The results show that a subset of each decision related
metrics are quite close to the manual, pattern-based assessment.



Assessing Architecture Conformance 3

This paper is structured as follows: Section 2 compares to related work. In Section 3
we explain the decisions considered in this paper and the related patterns/practices.
Next, we describe the research methods and the tools we have applied in our study in
Section 4. In Section 5 we report how the ground truth data for each decision is cal-
culated. Section 6 introduces our hypothesized metrics. Section 7 describes the metrics
calculations results for our models and the results of the ordinal regression analysis.
Section 8 discusses the RQs regarding the evaluation results and analyses the threats to
validity. Finally, in Section 9 we draw cocnclusions and discuss future work.

2 Related Work

Much research has been conducted in collecting and systematizing microservice pat-
terns. For instance, Richardson [14] collected microservice patterns related to major
design and architectural practices. Zimmermann et al. [20] introduce microservice API
related patterns. Skowronski [15] collected best practices for event-driven microser-
vice architectures. Microservice fundamentals and best practices are also discussed by
Fowler and Lewis [9], and are summarized in a mapping study by Pahl and Jamshidi [11].
Taibi and Lenarduzzi [16] study microservice bad smells, i.e. practices that should be
avoided (which would correspond to metrics violations in our work).

Many of the works on service metrics today are focused on runtime properties (see
e.g. [13]). A number of studies has used metrics to assess microservice-based software
architectures, e.g. [12,18,1], but each is focused on narrow sets of architecture-relevant
tenets (e.g. loose coupling), and no general approach for an assessment across differ-
ent microservice tenets exists. Pautasso and Wilde [12] propose a composite, facet-
based metric for the assessment of loose coupling in service-oriented systems. Zdun
et al. [18] study the independent deployment of microservices by defining metrics to
assess architecture conformance to microservice patterns, focused on two aspects: in-
dependent deployment and shared dependencies of services. Bogner et al. [1] propose
a maintainability quality model which combines eleven easily extracted code metrics
into a broader quality assessment. Engel et al. [3] also propose a method of using real-
time system communication traces to extract metrics on conformance to recommended
microservice design principles such as loose coupling and small service size.

These studies focus on treating microservice architectures as a question of compo-
nents and connectors, factoring in the technologies used, and producing assessments
that combine different assessment parameters (i.e. metrics). Such metrics, if automat-
ically collected, can be utilized as part of larger assessment models/frameworks dur-
ing design and development time. Our work broadly follows the same approach, but
extends it to different architecture tenets relevant to microservice-specific design de-
cisions. Once metrics can be checked automatically, our approach can be classified as
a metrics-based, microservice-specific approach for software architecture conformance
checking. In general, approaches for architecture conformance checking are often based
on automated extraction techniques [5,17]. Techniques that are based on a broad set of
microservice-related metrics to cover multiple microservice tenets do not yet exist.



4 Authors Suppressed Due to Excessive Length

3 Background

External API Decision. One central decision in microservice-based systems is how
the external API is offered to clients. This is tightly coupled to the loose coupling,
releasability, independent development and deployment, and continuous delivery tenets,
as it determines the coupling between client and internal system concerns. In some
service-based systems, the clients can call into system services directly, meaning high
coupling and thus difficulties in releasing, developing, and deploying the clients and
system services independently of each other. A better decoupling level might be reached
through an API Gateway [14], a pattern that describes a common entry point for the
system through which all requests are routed. It is a specialized variant of a Reverse
Proxy, which covers only the routing aspects of an API Gateway but not further API
abstractions such as authentication, rate limiting, and so on (see [20]). A variant of API
Gateway for servicing different types of clients (e.g., mobile and desktop clients) is the
Backends for Frontends pattern [14], which offers a fine-grained API for each specific
type of client. A variant where clients can call into system services directly, but are still
decoupled is API Composition [14], i.e. a service which can invoke other microservices
and provides an API for the connected services.

Inter-Service Message Persistence Decision. In many business-critical microservice
systems, an important concern is that no messages get lost. This concern directly influ-
ences the communication between services, and, depending on which option is chosen,
the coupling between services, their releasability, their independent development and
deployment, as well as their continuous delivery are impacted. Many systems choose
communication means that offer no inter-service message persistence. Some patterns
better support the related aspects of the microservice tenets: The Messaging pattern [7]
describes service communication, in which persistent message queuing is used to store
a producer’s messages until the consumer receives them. Many Stream Processing [15]
components (e.g. Apache Kafka) offer a very similar message persistence level. These
solutions offer optimal inter-service message persistence, in the sense that the tech-
nology is designed for providing support for it. Some other solutions applied in the
microservice field can be used (or adapted) to support it: Interaction through a Shared
Database, even though frowned upon with regard to other microservice tenet aspects,
supports some level of message persistence as well, but not the automated support of
Messaging. A more microservice-style technique that supports this level of database-
based persistence is the combination of the Outbox and the Transaction Log Tailing
patterns [14] in which each service that sends messages has an outbox database table.
As part of the database transaction, the service sends messages by inserting them into
the outbox table. A message relay component reads the outbox table and publishes the
messages to a message broker. Using the Event Sourcing pattern [14] every change to
the state of the system should be contained in an event object and stored sequentially in
order to be accessible over time. The events are persisted in an event store. This way at
least a temporary message persistence is achieved.

End-to-end Tracing Decision. Logging and monitoring are standard practices for cre-
ating observability of microservices. As microservice architectures are used for highly



Assessing Architecture Conformance 5

distributed and polyglot systems with complex interactions, many of them go one step
further and realize end-to-end tracing. It supports tracing and monitoring tenets directly,
as well as understandability concerns during independent development and deployment,
mastering complexity of highly decoupled services, and thus indirectly releasability
and continuous delivery. Like in the other decisions, one option is to offer No Tracing
Support. In contrast, Distributed Tracing [14] is a method used to profile and monitor
applications through recording traces on the distributed components. It can either be
supported on the microservices of a system, on the gateways of a system, or on both. If
both support Distributed Tracing, this is optimal, as all relevant traces in ingress, egress,
and inter-service communication can be recorded. If it is not supported, a lower level of
tracing and monitoring can be reached by routing the service communication through
a central component, such as a Publish/Subscribe or Message Broker component [7].
This can also be achieved if all internal inter-service communication is routed through
the API Gateway, or if Event Sourcing or Event Logging [14,15] are used, which store
all events temporarily. None of the later techniques has the same level of support as
Distributed Tracing, but all of them can – with some programming or manual effort –
be used to reconstruct traces.

4 Research and Modeling Methods

4.1 Model Selection Methods

This study focuses on architecture conformance to microservice patterns and prac-
tices. To be able to study this, we first performed an iterative study of a variety of
microservice-related knowledge sources, and we refined a meta-model which contains
all the required elements to help us reconstruct existing microservice-based systems.
For problem investigation and as an evaluation model set for eventually creating a
ground truth for our study, we have gathered a number of microservice-based systems,
summarized in Table 1. Each of them is either taken directly from a system published
by practitioners (on GitHub and/or practitioner blogs) or a system variant adapted ac-
cording to discussions in the relevant literature. The systems were taken from 9 inde-
pendent sources. They were developed by practitioners with microservice experience,
and they provide a good representation of the microservices best practices summarized
in Section 3. We performed a fully manual static code analysis for those models where
the source code was available (i.e. 7 of our 9 sources; two were modeled based on
documentation created by the practitioners). The result is a set of precisely modeled
component models of the software systems (modeled using the techniques described
below). Variations were modeled to cover the complete design space of our three de-
cisions described in Section 3, according to the referenced practitioner sources. Apart
from the variations described in Table 1 all other system aspects remained the same as
in the base models. This resulted in a total of 24 models summarized in Table 1. We
assume that our evaluation models are close to models used in practice and real-world
practical needs for microservices. As many of them are open source systems with the
purpose of demonstrating practices, they are at most of medium size, though.



6 Authors Suppressed Due to Excessive Length

Model ID Model Size Description / Source

BM1 10 components
14 connectors

Banking-related application based on CQRS and event sourcing (from https:
//github.com/cer/event-sourcing-examples).

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely synchronous service invo-
cations instead of event-based communication.

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely asynchronous service in-
vocations instead of event-based communication.

CO1 8 components
9 connectors

The common component model E-shop application implemented as microservices
directly accessed by a Web frontend (from https://github.com/cocome-
community-case-study/cocome-cloud-jee-microservices-
rest).

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service with a message
broker. Added support for Open Tracing. Added an API gateway.

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use inter-service communica-
tion, but a shared database for accessing product and store data. Added support
for Open Tracing.

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations, databases per
service, and an API gateway (from https://codeburst.io/build-
a-nodejs-cinema-api-gateway-and-deploying-it-to-
docker\-part-4-703c2b0dd269).

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API gateway.

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of the API gateway.

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the client and an-
other subsystem routing all traffic via the API gateway.

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing microservices and an
API gateway for service-based API (from https://microservices.io/
patterns/microservices.html).

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event sourcing internally.

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one service interac-
tions.

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based interaction,
a middleware-triggered identity service, databases per service (4 SQL DBs, 1
Mongo DB, and 1 Redis DB), and backends for frontends for two Web app
types and one mobile app type (from https://github.com/dotnet-
architecture/eShopOnContainers).

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of
event-based communication and one shared SQL DB for all 6 of the services using
DBs. However, no service interaction via the shared database occurs.

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of
event-based communication and one shared database for all 4 of the services using
SQL DB in ES1. However, no service interaction via the shared database occurs.

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly linked to
a Web UI (from https://github.com/jferrater/Tap-And-Eat-
MicroServices).

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API composition and asyn-
chronous interservice communication. Added Jaeger-based tracing per service.

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and Open-
Census monitoring & tracing for all but one services as well as on
the gateway. (from https://github.com/GoogleCloudPlatform/
microservices-demo).

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event sourcing, except
for one service, and realizes the tracing on all services.

RM 11 components
18 connectors

Restaurant order management application based on SAGA messaging and domain
event interactions. Rudimentary tracing support (from https://github.
com/microservices-patterns/ftgo-application).

RS 18 components
29 connectors

Robot shop application with various kinds of service interconnections, data
stores, and Instana tracing on most services (from https://github.com/
instana/robot-shop).

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases per ser-
vices from (https://www.nginx.com/blog/introduction-to-
microservices/).

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event sourcing for all
but one service interactions.

Table 1. Selected Models: Size, Details, and Sources

https://github.com/cer/event-sourcing-examples
https://github.com/cer/event-sourcing-examples
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker\-part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker\-part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker\-part-4-703c2b0dd269
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/microservices-patterns/ftgo-application
https://github.com/microservices-patterns/ftgo-application
https://github.com/instana/robot-shop
https://github.com/instana/robot-shop
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/


Assessing Architecture Conformance 7

4.2 Metrics Definition, Ground Truth Calculation, and Statistical Evaluation
Methods

To measure conformance to the respective patterns and practices in the design decisions
from Section 3, we defined a set of metrics for each microservice decision associated
to the decision’s options, i.e. at least one metric per major decision option. Based on
the manual assessment of the models from Table 1, we derived a ground truth for our
study (the ground truth and its calculation rules are described in Section 5). The ground
truth is established by objectively assessing whether each decision option is supported,
partially supported, or not supported. By combining the outcome of all options of a
decision, we then derived an ordinal assessment on how well the decision is supported in
each model, using the scale: [++: very well supported, +: well supported, o: neutral,−:
badly supported,−−: very badly supported]. Our scale does not assume equal distances
(i.e. it is not a Likert scale), but it assumes the given order. We then used the ground
truth data to assess how well the hypothesized metrics can possibly predict the ground
truth data by performing an ordinal regression analysis.

Ordinal regression is a widely used method for modeling an ordinal response’s de-
pendence on a set of independent predictors. For the ordinal regression analysis we used
the lrm function from the rms package in R [4].

4.3 Methods for Modeling Microservice Component Architectures

From an abstract point of view, a microservice-based system is composed of compo-
nents and connectors with a set of component types and a set of connector types. Our
paper has the goal to automate metrics calculation and assessment based on the compo-
nent model of a microservice system. That is, if the system is manually modeled or the
model can be derived automatically from the source code, our approach is applicable.
For modeling microservice architectures we followed the method reported in our previ-
ous work [18]. All the code and models used in and produced as part of this study have
been made available online for reproducibility 3

5 Ground Truth Calculations for the Study

In this section, we report for each of the decisions from Section 3 how the ground truth
data is calculated based on manual assessment whether each of the relevant patterns is
either Supported (S in Table 2), Partially Supported (P in Table 2), or Not-Supported
(N in Table 2). The ordinal results of those assessments are then reported in the Assess-
ments rows of Table 2.

Following the argumentation, which decision option explained in Section 3 has
which impact on the External API Decision related tenets, we can derive the follow-
ing scoring scheme for our ground truth assessment of this decision:

– ++: All client traffic is routed through an API Gateway or Backends for Frontends.

3 https://doi.org/10.5281/zenodo.3999477



8 Authors Suppressed Due to Excessive Length

External API

B
M

1

B
M

2

B
M

3

C
O

1

C
O

2

C
O

3

C
I1

C
I2

C
I3

C
I4

E
C

1

E
C

2

E
C

3

E
S1

E
S2

E
S3

FM
1

FM
2

H
M

1

H
M

2

R
M

R
S

T
H

1

T
H

2

Reverse Proxy S S S N S N S S N P P P P S S S N N N N S S P P
API Gateway S S S N S N S S N P P P P S S S N N N N S S P P
Backends for Frontends N N N N N N N N N N N N N S S S N N N N N N N N
API Composition N N N N N N N N P P N N N N N N N S S S N N P P
Assessments ++ ++ ++ -- ++ -- ++ ++ - o o o o ++ ++ ++ -- + + + ++ ++ o o
Persistent Messaging for Inter-Service Communication

B
M

1

B
M

2

B
M

3

C
O

1

C
O

2

C
O

3

C
I1

C
I2

C
I3

C
I4

E
C

1

E
C

2

E
C

3

E
S1

E
S2

E
S3

FM
1

FM
2

H
M

1

H
M

2

R
M

R
S

T
H

1

T
H

2

Messaging or Persistent PubSub N N N N S N N N N N N N N N N N N N N N S P N N
Shared Database Interaction N N N N N S N N N N N N S N N N N N N N N N N N
Outbox and Trans. Log Tailing N N N N N N N N N N N N N N N N N N N N N N N N
Event Sourcing S N N N N N N N N N N S N N N N N N N P N N N P
All Service Comm. Persistent S N N N S S N N N N N S N N N N N N N N S N N P
Assessments + -- -- -- ++ + -- -- -- -- -- + - -- -- -- -- -- -- - ++ o -- o
End-to-End Tracing

B
M

1

B
M

2

B
M

3

C
O

1

C
O

2

C
O

3

C
I1

C
I2

C
I3

C
I4

E
C

1

E
C

2

E
C

3

E
S1

E
S2

E
S3

FM
1

FM
2

H
M

1

H
M

2

R
M

R
S

T
H

1

T
H

2

Distributed Tracing on Services N N N N S S N N N N N N N N N N N S P S P P N N
Distributed Tracing on Gatew. N N N N S N N N N N N N N N N N N N S S N N N N
Pub/Sub, Messaging S N N N S N N N N N N S N P N N N N N P S P N S
Inter-service comm. via Gatew. N S S N N N P S N P S N N N P P N N N N N N N N
Event Sourcing/Logging S N N N N N N N N N N S N N N N N N N P S N N S
Assessments o - - -- ++ ++ -- - -- -- - o -- -- -- -- -- + + ++ o o -- o

Table 2. Ground Truth Data

– +: All client-connected services provide API Composition or only Reverse Proxy
capabilities.

– o: Some client traffic is routed through API Gateway or Backends for Frontends.
– -: Some client-connected services provide API Composition or only Reverse Proxy

capabilities.
– --: All client traffic is directly connected to backend services and no API Composi-

tion happens.

From the argumentation for the Inter-service Message Persistence Decision, we can
derive the following scoring scheme for our ground truth assessment:

– ++: Message Brokers or a persistent Publish/Subscribe or Stream Processing com-
ponent are used for all inter-service communication.

– +: All interservice communication is persisted by some combination of partial Mes-
sage Brokers, persistent Publish/Subscribe, or persistent Stream Processing or par-
tial or full coverage with Shared Database, Event Sourcing, Outbox/Transaction
Log Tailing.

– o: A part of the interservice communication is persisted by partial coverage with
Message Brokers, persistent Publish/Subscribe, or persistent Stream Processing.

– -: A part of the interservice communication is persisted by partial coverage with
Shared Database, Event Sourcing, Outbox/Transaction Log Tailing.

– --: None of the above is supported.

Finally, from the argumentation for theEnd-to-end Tracing Decision, we can derive
the following scoring scheme for our ground truth assessment:

– ++: Distributed Tracing is fully supported on all services and gateways.



Assessing Architecture Conformance 9

– +: Distributed Tracing is fully supported on either the services or the gateways.
– o: Distributed Tracing is partially supported or Event Sourcing/Event Logging are

fully supported.
– -: Publish/Subscribe, Message Broker, or Invocations Routed Via API Gateway are

fully supported for service interactions or those patterns are partially supported and
at the same time Event Sourcing/Event Logging are supported.

– --: None of the above is supported.

6 Metrics

All metrics, unless otherwise noted, are a continuous value with range from 0 to 1, with
1 representing the optimal case where a set of patterns is fully supported, and 0 the
worst-case scenario where it is completely absent. For instance, in EC1 client traffic
is partially routed through API Gateway resulting CCF = 0.25. The metrics results for
each model per decision metric are presented in Table 3.

6.1 Metrics for the External API Decisions

Client-side Communication via Facade utilization metric (CCF). This metric returns
the number of the connectors from Clients to Facade components set in relation to the
total number of unique Client connectors. This way, we can measure how many unique
client links are using the External API used by one of the Facade components (i.e.
offered through patterns such as API Gateway, Reverse Proxy, Backends for Frontends).

CCF =
Number of Client to Facade Links

Number of Unique Client Links

In this metric (and in other metrics below), the number of unique client links is
defined as follows:

Number of Unique Client Links =

max{Number of Facades Linked to Clients,

Number of Clients Linked to Facades}
+Number of Client to Non-Facade/Non-Client Links

As a result, the only decision option remaining is API Composition, for which we
formulated the APIC metric.

API Composition utilization metric (APIC). In cases that a client is directly con-
nected to services, it is possible that these services offer an External API shielding the
interfaces of other services that are connected to them. That is, a client can have access
to a system service via other services. To detect such cases, we count the routes from
the client to system services via other services and set this number in relation to the total
number of system services. That gives us the proportion of services that are accessible



10 Authors Suppressed Due to Excessive Length

by clients via other services. We then divide this number with the unique client links to
estimate the proportion of clients connected services which are possibly composing an
External API using API Composition.

APIC =

Number of Client to Services via other Services Routes
Total Number of Services

Number of Unique Client Links

6.2 Metrics for Persistent Messaging for Inter-Service Communication Decision

Service Messaging Persistence utilization metric (SMP). One important aspect in
services interconnections is the persistence of the exchanged messages. We defined
this metric to measure the proportion of the services interconnections that are made
persistent through supporting technology (i.e. Messaging or Stream Processing).

SMP =
Service Interconnections with Messaging or Stream Processing

Number of Service Interconnections

Shared DataBase utilization metric (SDB). Although a Shared Database is con-
sidered as an anti-pattern in microservices, there are many systems that use it either
partially or completely. The pattern might be beneficial for persistent messaging, but
definitely is not the optimal option. To measure its presence in a system, we count the
number of interconnections via a Shared Database compared to the total number of in-
terconnections. We note that for this metric, our metrics scale is reversed in comparison
to the other metrics, because here we detect the presence of an anti-pattern: the optimal
result of our metrics is 0, and 1 is the worst-case result.

SDB =
Service Interconnections with SharedDB

Number of Service Interconnections

Outbox/Event Sourcing utilization metric (OES). Outbox and Event Souring can
ensure temporary message persistence. Our metric measures the proportion of the in-
terconnections with Outbox/Event Sourcing to the total number of interconnections.

OES =
Service Interconnection with Outbox or Event Sourcing

Number of Service Interconnections

6.3 Metrics for End-to-End Tracing Decision

SFT =
Services and Facades Support Distributed Tracing

Number of Services and Facades

Service Interaction via Central Component utilization metric (SICC) and Ser-
vice Interaction with Event Sourcing utilization metric (SIES). Distributed Tracing



Assessing Architecture Conformance 11

Table 3. Metrics Calculation Results

Metrics BM1 BM2 BM3 CO1 CO2 CO3 CI1 CI2 CI3 CI4 EC1 EC2

External API

CCF 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.50 0.25 0.25

APIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.10 0.00 0.00

Persistent Messaging for Inter-Service Communication

SMP 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SDB 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

OES 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

End-to-End Tracing

SFT 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

SICC 0.00 1.00 1.00 0.00 1.00 1.00 0.14 1.00 0.00 0.60 1.00 0.00

SIES 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Metrics EC3 ES1 ES2 ES3 FM1 FM2 HM1 HM2 RM RS TH1 TH2

External API

CCF 0.25 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.25 0.25

APIC 0.00 0.00 0.00 0.00 0.25 0.50 0.70 0.70 0.00 0.00 0.12 0.04

Persistent Messaging for Inter-Service Communication

SMP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.11 0.00 0.00

SDB 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.66

End-to-End Tracing

SFT 0.00 0.00 0.00 0.00 0.00 1.00 0.90 0.90 0.14 0.62 0.00 0.00

SICC 0.00 0.60 0.45 0.45 0.00 0.00 0.00 0.00 1.00 0.11 0.00 0.00

SIES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.66

can be supported by routing the inter-service communication via a central component
(e.g. Publish/Subscribe, Message Broker and API Gateway). Since Event Sourcing also
enables tracing by tracking the messages, we distinguish between systems that support
Event Sourcing (SIES), and systems that do not (SICC).

SICC =
Service Interaction via Central Component w/o Event Sourcing

Number of Service Interconnections

SIES =
Service Interaction via Central Component with Event Sourcing

Number of Service Interconnections

7 Ordinal Regression Analysis Results

The metrics calculations for each model per each decision metric are presented in Ta-
ble 3. The dependent outcome variables are the ground truth assessments for each de-
cision, as described in Section 5 and summarized in Table 2. The metrics defined in



12 Authors Suppressed Due to Excessive Length

Table 4. Regression Analysis Results

Intercepts/Coefficients Value Model p-value
External API
Intercept (≥Badly Supported) -3.5690

4.423828e-11

Intercept (≥Neutral) -4.5042
Intercept (≥Well Supported) -10.2692
Intercept (≥Very Well Supported) -15.7271
Metric Coefficient (CCF) 20.3552
Metric Coefficient (APIC) 18.1419
Persistent Messaging for Inter-Service Communication
Intercept (≥Badly Supported) -5.6344

2.002198e-09

Intercept (≥Neutral) -9.5937
Intercept (≥Well Supported) -11.2074
Intercept (≥Very Well Supported) -21.0398
Metric Coefficient (SMP) 94.5503
Metric Coefficient (SDB) 10.4199
Metric Coefficient (OES) 13.3840
End-to-End Tracing
Intercept (≥Badly Supported) -35.4940

4.440892e-15

Intercept (≥Neutral) -53.7947
Intercept (≥Well Supported) -103.6085
Intercept (≥Very Well Supported) -135.5906
Metric Coefficient (SFT) 44.6971
Metric Coefficient (SICC) 94.1809
Metric Coefficient (SIES) 125.5634

Section 6 are used as the independent predictor variables. The ground truth assessments
are ordinal variables, while all the independent variables are measured on a scale from
0.0 to 1.0. The aim of the analysis is to predict the likelihood of the dependent outcome
variable for each of the decisions by using the relevant metrics.

Each resulting regression model consists of a baseline intercept and the independent
variables multiplied by coefficients. There are different intercepts for each of the value
transitions of the dependent variable (≥Badly Supported, ≥Neutral, ≥Well Supported,
≥Very Well Supported), while the coefficients reflect the impact of each independent
variable on the outcome. For example, a positive coefficient, such as +5, indicates a
corresponding five-fold increase in the dependent variable for each unit of increase in
the independent variable; conversely, a coefficient of -30 would indicate a thirty-fold
decrease.

In Table 4, we report the p-values for the resulting models, which in all cases are
very low, indicating that the sets of metrics we have defined are able to predict the
ground truth assessment for each decision with a high level of accuracy.



Assessing Architecture Conformance 13

8 Discussion

8.1 Discussion of Research Questions

For answering RQ1 and RQ2, we suggested a set of generic, technology-independent
metrics for each microservice decision, and we associated at least one metric to each
major decision option. The ground truth is established by objectively assessing how
well a pattern and/or practice is supported in each model, and extrapolating this to how
well the broader decision is supported. We formulated metrics to assess a pattern’s im-
plementation in each model, and performed an ordinal regression analysis using these
metrics as independent variables to predict the ground truth assessment. Our results
show that every set of decision-related metrics can predict with high accuracy our ob-
jectively evaluated assessment. This suggests that automatic metrics-based assessment
of a system’s conformance to the tenets embodied in each design decision is possible
with a high degree of confidence.

Regarding RQ3, we can assess that our microservice meta-model has no need for
major extensions and is easy to map to existing modeling practices. More specifically,
in order to fully model our evaluation model set, we needed to introduce 25 component
types and 38 connector types, ranging from general notions such as the Service com-
ponent type, to very technology-specific classes such as the RESTful HTTP connector,
which is a subclass of Service Connector. Our study shows that for each pattern and
practice embodied in each decision and the proposed metrics, only a small subset of
the meta-model is required. The decision External API requires to model at least the
Service, Client, and the Facade component types and the technology-related connec-
tor types (e.g. RESTful HTTP, Synchronous Connector, HTTP, HTTPS). The Persistent
Messaging for Inter-Service Communication and End-to-End Tracing decisions need a
number of additional components (e.g. Event Sourcing, Stream Processing, Messaging,
PubSub) and the respective connectors (e.g. Publisher, Subscriber, Message Consumer
and Messages Producer) to be modeled.

8.2 Threats to Validity

We deliberately relied on third-party systems as the basis for our study to increase in-
ternal validity, thus avoiding bias in system composition and structure. It is possible
that our search procedures introduced some kind of unconscious exclusion of certain
sources; we mitigated this by assembling an author team with many years of experience
in the field, and performing very general and broad searches. Given that our search was
not exhaustive, and that most of the systems we found were made for demonstration
purposes, i.e. relatively modestly sized, this means that some potential architecture ele-
ments were not included in our meta-model. In addition, this raises a possible threat to
external validity of generalization to other, and more complex, systems. We neverthe-
less feel confident that the systems documented are a representative cross-cut of current
practices in the field, as the points of variance between them were limited and well at-
tested in the literature. Another potential threat is the fact that the variant systems were
derived by the author team. However, this was done according to best practices docu-
mented in literature. We made sure only to change specific aspects in a variant and keep
all other aspects stable.



14 Authors Suppressed Due to Excessive Length

Another potential source of internal validity threat is the modeling process itself.
The author team has considerable experience in similar methods, and the models of the
systems were repeatedly and independently cross-checked, but the possibility of some
interpretative bias remains: other researchers might have coded or modeled differently,
leading to different models. As our goal was only to find one model that is able to
specify all observed phenomena, and this was achieved, we consider this threat not
to be a major issue for our study. The ground truth assessment might also be subject
to different interpretations by different practitioners. For this purpose, we deliberately
chose only a three-step ordinal scale, and given that the ground truth evaluation for
each decision is fairly straightforward and based on best practices, we do not consider
our interpretation controversial. Likewise, the individual metrics used to evaluate the
presence of each pattern were deliberately kept as simple as possible, so as to avoid
false positives and enable a technology-independent assessment. As stated previously,
generalization to more complex systems might not be possible without modification.
But we consider that the basic approach taken when defining the metrics is validated by
the success of the regression models.

9 Conclusions and Future Work

In this work we have hypothesized that it is possible to develop a method to automat-
ically assess microservices tenets in microservice decisions based on a microservice
system’s component model. We have shown that this is possible for microservice deci-
sion models comprising patterns and practices as decision options. Our approach first
modeled the key aspects of the decision options using a minimal set of component
model elements (which could be automatically extracted from the source code). Then
we derived at least one metric per decision option and used a small reference model
set as a ground truth. We then used ordinal regression analysis for deriving a predictor
model for the ordinal variable. Our statistical analysis shows a high level of accuracy.

While so far many studies on metrics for component model and other architectures
exist, the specifics of microservice architectures and their particular tenets have not
been studied. As discussed in Section 2, only using general metrics does not help much
in assessing microservice architectures. Our approach is one of the first that studies a
metrics-based assessment of multiple, very different microservice tenets. Our main goal
is a continuous assessment, i.e. we envision an impact on continuous delivery practices,
in which the metrics are assessed with each delivery pipeline run, indicating improve-
ments, stability, or deteriorations in microservice architecture conformance. With small
changes, our approach could also be applied, during early architecture assessment.

As future work, we plan to study more decisions, tenets, and related metrics. We also
plan to create a larger data set, thus better supporting tasks such as early architecture
assessment in a project.

Acknowledgments This work was supported by: FFG (Austrian Research Promotion
Agency) project DECO, no. 864707; FWF (Austrian Science Fund) project API-ACE:
I 4268.



Assessing Architecture Conformance 15

References
1. Bogner, J., Wagner, S., Zimmermann, A.: Towards a practical maintainability qual-

ity model for service-and microservice-based systems. pp. 195–198 (09 2017).
https://doi.org/10.1145/3129790.3129816

2. Chen, L.: Microservices: Architecting for continuous delivery and devops. In: 2018 IEEE
International Conference on Software Architecture (ICSA). pp. 39–397 (April 2018).
https://doi.org/10.1109/ICSA.2018.00013

3. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice architec-
tures: A metric and tool-based approach. In: Mendling, J., Mouratidis, H. (eds.) Information
Systems in the Big Data Era. pp. 74–89. Springer International Publishing, Cham (2018)

4. Frank E. Harrell, J.: Regression Modeling Strategies: With Applications to Linear Mod-
els, Logistic and Ordinal Regression, and Survival Analysis. Springer, 2nd edn. (2015).
https://doi.org/10.1007/978-3-319-19425-7

5. Guo, G.Y., Atlee, J.M., Kazman, R.: A software architecture reconstruction method. In: Soft-
ware Architecture, pp. 15–33. Springer (1999)

6. Haselböck, S., Weinreich, R., Buchgeher, G.: Decision models for microservices: Design
areas, stakeholders, use cases, and requirements. In: Software Architecture. ECSA 2017. pp.
155–170. Lecture Notes in Computer Science, vol 10475, Springer International Publishing

7. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley (2003)
8. Knoche, H., Hasselbring, W.: Drivers and barriers for microservice adoption – a survey

among professionals in germany. Enterprise Modelling and Information Systems Archi-
tectures (EMISAJ) – International Journal of Conceptual Modeling 14(1), 1–35 (2019).
https://doi.org/10.18417/emisa.14.1

9. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term. http:
//martinfowler.com/articles/microservices.html (Mar 2004)

10. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly (2015)
11. Pahl, C., Jamshidi, P.: Microservices: A systematic mapping study. In: 6th International Con-

ference on Cloud Computing and Services Science. pp. 137–146 (2016)
12. Pautasso, C., Wilde, E.: Why is the web loosely coupled?: a multi-faceted metric for service

design. In: 18th Int. Conf. on World wide web. pp. 911–920. ACM (2009)
13. Pietrantuono, R., Russo, S., Guerriero, A.: Run-time reliability estimation of microservice

architectures. In: 2018 IEEE 29th International Symposium on Software Reliability Engi-
neering (ISSRE). pp. 25–35 (Oct 2018). https://doi.org/10.1109/ISSRE.2018.00014

14. Richardson, C.: A pattern language for microservices. http://microservices.io/
patterns/index.html (2017)

15. Skowronski, J.: Best practices for event-driven microservice architecture.
https://hackernoon.com/best-practices-for-event-driven-
microservice-architecture-e034p21lk (2019)

16. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Software 35(3),
56–62 (May 2018). https://doi.org/10.1109/MS.2018.2141031

17. Van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.: Symphony: View-
driven software architecture reconstruction. In: 4th Working IEEE/IFIP Conf. on Software
Architecturen(WICSA 2004). pp. 122–132. IEEE (2004)

18. Zdun, U., Navarro, E., Leymann, F.: Ensuring and assessing architecture conformance to mi-
croservice decomposition patterns. In: Service-Oriented Computing. pp. 411–429. Springer
International Publishing, Cham (2017)

19. Zimmermann, O.: Microservices tenets. Computer Science - Research and Development
32(3), 301–310 (Jul 2017)

20. Zimmermann, O., Stocker, M., Zdun, U., Luebke, D., Pautasso, C.: Microservice API pat-
terns. https://microservice-api-patterns.org (2019)

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html
https://hackernoon.com/best- practices-for-event-driven-microservice-architecture-e034p21lk
https://hackernoon.com/best- practices-for-event-driven-microservice-architecture-e034p21lk
https://microservice-api-patterns.org

	Metrics for Assessing Architecture Conformance to Microservice Architecture Patterns and Practices
	Introduction
	Related Work
	Background
	Research and Modeling Methods
	Model Selection Methods
	Metrics Definition, Ground Truth Calculation, and Statistical Evaluation Methods
	Methods for Modeling Microservice Component Architectures

	Ground Truth Calculations for the Study
	Metrics
	Metrics for the External API Decisions
	Metrics for Persistent Messaging for Inter-Service Communication Decision
	Metrics for End-to-End Tracing Decision

	Ordinal Regression Analysis Results
	Discussion
	Discussion of Research Questions
	Threats to Validity

	Conclusions and Future Work


