
The Beauty or The Beast?
Attacking Rate Limits of the Xen Hypervisor

Johanna Ullrich �, Edgar Weippl

SBA Research, Vienna, Austria
Email: (firstletterfirstname)(lastname)@sba-research.org

Abstract. Rate limits, i. e., throttling network bandwidth, are consid-
ered to be means of protection; and guarantee fair bandwidth distribu-
tion among virtual machines that reside on the same Xen hypervisor.
In the absence of rate limits, a single virtual machine would be able
to (unintentionally or maliciously) exhaust all resources, and cause a
denial-of-service for its neighbors.
In this paper, we show that rate limits snap back and become attack vec-
tors themselves. Our analysis highlights that Xen’s rate limiting throttles
only outbound traffic, and is further prone to burst transmissions making
virtual machines that are rate limited vulnerable to externally-launched
attacks. In particular, we propose two attacks: Our side channel allows to
infer all configuration parameters that are related to rate limiting func-
tionality; while our denial-of-service attack causes up to 88.3 percent
packet drops, or up to 13.8 seconds of packet delay.

1 Introduction

Cloud computing is here to stay; and has become an all-embracing solution for
numerous challenges in information technology: Defending against cyber attacks,
countries back up their “digital monuments” in clouds [1]; clouds support cen-
sorship evasion [2]; clouds accommodate power-restrained mobile devices with
computing [3]; automotive clouds connect a vehicle’s sensors and actuators with
other vehicles or external control entities for safer and more comfortable driv-
ing [4]; and also healthcare applications are hosted in the cloud [5]. Its total
market is worth more than 100 billion US dollars [6]; and recently, even the
conservative banking sector is jumping on the bandwagon [7, 8].

A key technology in cloud computing is virtualization as provided by the
Xen hypervisor [18] that enables multiple virtual instances to share a physical
server [9]; but at the same time, resource sharing provides opportunity for ad-
versarial virtual machines to launch attacks against its neighbors. For example,
side channels exploiting shared hard disks [10] or network capabilities [15] allow
to check for co-residency of two virtual machines; data might be leaked from
one virtual instance to another via covert channels exploiting CPU load [11] or
cache misses [12]; an instance might free up resources for itself when tricking
the neighbor into another resource’s limit [14]; and shared network interfaces
allow to infer a neighbor’s networking behavior [16, 17]. Mitigation follows two

principal directions: On the one hand, dedicated hardware eliminates mutual
dependencies and thus the threat of co-residency, but contradicts cloud com-
puting’s premise of resource sharing. On the other hand, isolation reduces the
impact of a virtual machine’s behavior on its neighbors despite resource sharing.
With respect to networking, rate limits are introduced as means of isolation in
order to throttle a virtual machine’s maximum amount of traffic per time in-
terval. This approach is considered to guarantee fair distribution of bandwidth
among virtual instances and mitigates denial-of-service of neighbors in case a
single instance (accidentally or maliciously) requests all bandwidth. The Xen
hypervisor provides such a rate limiting functionality [22].

The introduction of a countermeasure should raise the question whether it
does not form a new attack vector itself. Throttling network traffic however
seems to be such a universal approach that its implementation into the Xen
hypervisor is barely scrutinized. Solely, [19] investigates rate limiting’s quality
of isolation; [48] analyzes rate limiting with respect to bandwidth utilization.
The paper at hand overcomes this gap and examines the impact of Xen’s rate
limiting functionality on security. Our analysis reveals that rate limits might
protect from co-residency threats, but allow (yet unknown) attacks that are
directed against the rate limited virtual machine itself. In particular, we propose
a side channel and a denial-of-service attack. The side channel reveals Xen’s
configuration parameters that are related to the rate limiting functionality, while
the denial-of-service attack causes up to 88.3 percent of packet loss or up to
13.8 seconds of delay in benign connections. Our results emphasize that Xen’s
rate limiting snaps back, and revision should be considered.

The remainder of the paper is structured as follows: Section 2 provides de-
tails on Xen’s networking in general and its rate limit functionality in particular,
whereas Section 3 analyzes this mechanism with respect to security. Section 4
presents our side channel revealing configuration parameters and respective mea-
surement results; Section 5 presents three flavors of our denial-of-service attacks
and discusses them with respect to their impact on benign connections. It is
followed by related work in Section 6. Overall results are discussed Section 7.
Section 8 concludes.

2 Background

This section first provides a general overview on Xen’s networking architecture.
Its rate limiting functionality however throttles only a virtual machine’s out-
bound traffic; thus, we describe a virtual machine’s outbound traffic path in a
second step. Finally, we focus on the credit-based algorithm eventually throttling
a machine’s traffic.

General Networking Architecture: The Xen hypervisor follows the approach
of paravirtualization; it provides device abstractions to its virtual machines – in
terms of Xen virtual machines are called domains – so that all sensitive instruc-
tion like those for device I/O are redirected over the hypervisor. Paravirtualizing

hypervisors do not need specific hardware capabilities; but require modifications
of the operating systems running in the virtual machines [18]. With respect to
Xen, the hypervisor in the narrower sense is responsible for CPU scheduling,
memory management and interrupt forwarding. The remainder tasks are dele-
gated to domain0 – a privileged virtual machine with the right to access physical
I/O devices and to interact with other (non-privileged) domains. Abstract net-
working devices consist of two distinct parts: (1) netfront devices are provided to
non-privileged domains replacing classic network interfaces; (2) its counterpart
netback resides in domain0, multiplexes packets from multiple netfront devices
and forwards them to the physical network interface card as in standard Linux
operating systems [19,20].

netbacknetfront

Rate Limiting
Ring Buffer

Domain0DomainN

......

TX Driver QueueTX netif Queue

Fig. 1: Xen’s Outbound Traffic Path

Outbound Traffic Path: Packets originating from non-privileged virtual ma-
chines (domainN) have to pass domain0 on their way to the physical network;
the respective handover path is depicted in Figure 1. Therefore, Xen provides
descriptor rings, i. e., ring buffers, as central points of communication. The ring
does not directly contain data; this data is rather stored in buffers that are indi-
rectly referenced via the ring descriptors. Packets pass this path in the following
manner. First, packets are enqueued in the virtual machine’s network interface
TX queue. Then, netfront forwards these packets from the TX queue to the ring
buffer, and notifies netback. Netback – being within domain0 and thus having
access to physical drivers – hands them over to the physical network interface
card’s driver queue and removes them from the ring buffer. Beyond, netback is
the place of rate limiting. If a respective virtual machine exceeds its assigned
bandwidth quota, netback refrains from taking further packets from the ring
buffer and discontinues forwarding for some time. As items are not removed
from the ring anymore, the buffer becomes full. As soon as a virtual machine’s
netfront detects this, it signalizes this fact to the upper networking layers by

means of a flag. Packets pending in the ring buffer have to wait for further
processing until the next bandwidth quota is received.

Rate Limiting: Rate limiting throttles a virtual machine’s bandwidth – how-
ever, it confines outbound traffic only – and is configured by means of two
parameters [22]. The parameter rate defines the respective bandwidth limit in
MB/s, while time window defines the replenish interval of the rate limiting al-
gorithm. Its default value is 50 ms. Looking behind the scenes, the algorithm is
credit-based1. With every packet forwarded from the ring buffer, the respective
packet size is subtracted from the remaining credit. In case of lacking credits, two
alternatives remain: (1) immediate replenishment of credits and continuation of
transmission, or (2) discontinuation and waiting for replenishment of credits at
a later point in time. Immediate replenishment is only possible if the last re-
plenishment happened at least the time defined by the parameter time window
ago. In the alternative case, a timer is set to the time of next replenishment,
and packet transmission is rescheduled as soon as credits are regained. Accord-
ing to the parameters rate r and time window t, the credit bytes per interval
c calculates to c = r · t, and the total amount of available credit is limited to
this number. This implies that accumulating unused credits for later transmis-
sion is impossible. There is a single exception if c remains below 128 kB, i. e.,
rates of less than 2.5 MB/s at the default time window, as then jumbo packets
might seize up the interface. In such a case, credit accumulation up to 128 kB is
allowed.

3 Security Analysis

In this section, we perform a manual security analysis of the Xen’s rate limit
functionality. This analysis reveals distinct characteristics that may serve as
attack surface; we describe these characteristics, highlight their implication on
security and discuss them with respect to cloud computing. Finally, we provide
a high-level overview of our attacks that exploit the found characteristics.

(1) Unidirectional Bandwidth Limits: Xen allows to restrict a virtual ma-
chine’s outbound bandwidth, but inbound remains unlimited without any chance
for change. In consequence, the transmission paths are asymmetric. In principle,
asymmetry in bandwidth is a known phenomena, e. g., Asymmetric digital sub-
scriber line (ADSL), but Xen’s asymmetry appears to contradict its application
in cloud services as highlighted by the following analogy. ADSL’s asymmetry is
concordant with its application in consumer broad-band connections. Consumers
typically request more downstream than upstream bandwidth, and thus favoring
the first direction (at the expense of the latter) is reasonable. Cloud instances
predominantly require higher outbound than inbound bandwidth, e. g., when

1 Kernel 3.16.0, /net/xen-netback/netback.c

used as application, web or streaming servers. Xen however performs precisely
the opposite and limit’s the more utilized outbound direction2.

Bandwidth is not only unequally distributed, but also differs by magnitudes
as in consequence inbound traffic is only limited by the underlying hardware.
Outbound bandwidth in public clouds starts from 12.5 MB/s for small cloud
instances; assuming a 10-Gigabit physical network in the data center, maximum
inbound outperforms maximum outbound bandwidth by a factor up to 100.

(2) Susceptibility to Burst Transmissions: Xen’s algorithm is prone to
burst transmissions. A virtual machine transmitting high amounts of traffic
shoots its wad at the begin of a time slot, and has to wait for new credits then. At
the time of replenishment, further packets might already wait for transmission
and cause another burst consuming all credits. In consequence, packets experi-
ence latencies when pausing for the next slot; however, these latencies are only
experienced by outbound traffic due to the unidirectional bandwidth limitation.
In case the outbound traffic exceeds the configured bandwidth for a longer pe-
riod of time, packets might even be dropped: Packets remain in the ring buffer
as a result of credit shortage. As a consequence, netfront cannot forward pack-
ets to the ring descriptor anymore and causes a growing backlog in the virtual
machines TX queue. If the number of packets becomes larger than this queue’s
size, packets are dropped. By default, time window is set to 50 ms; according to
the documentation “a good balance between latency and throughput and in most
cases will not require changing” [22]. This implies that the credit-based algo-
rithm is rather coarse-grained as time slots in the virtual machine’s traffic are of
the same order of magnitude as round trip times, and the bursts are externally
observable.

Attacks Exploiting Rate Limiting: We found two attacks exploiting these
characteristics – a side channel revealing Xen configuration parameters that
are related to its rate limit functionality, and a denial-of-service attack causing
significant delays and packets drops in benign connections to third parties. We
provide a high-level overview on these attacks, before addressing them in more
detail in Sections 4 and 5.

1. Side Channel: Pushing a virtual machine into its outbound traffic limits,
leads to burst transmissions that can be observed. By measuring time be-
tween two bursts, it is possible to infer the parameter time window t; by
summing up the bytes of a burst, an adversary is able to infer the amount
of credits c per interval, and subsequently also calculate the rate r.

2. Denial-of-Service Attack: An adversary might force a virtual machine to
spend all its credits; in consequence, a virtual machine has not enough credits
left in order to serve benign requests. Respective responses are significantly
delayed as they have to wait for credit replenishment, or dropped due to full

2 Cloud providers like Rackspace (see https://www.rackspace.com/cloud/servers) or
Amazon EC2 (see https://aws.amazon.com/en/ec2/pricing/) typically do not even
charge inbound traffic.

buffers. This denial-of-service attack is insofar remarkably as it exhausts out-
bound bandwidth in comparison to ordinary bandwidth exhaustion attacks
exhausting inbound bandwidth.

4 Side Channel

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9Adversary Virtual
Machine

Requests

Replies

Time Window t

<

Credit Rate c

...

...

Fig. 2: Side Channel Attack Scenario

If a virtual machine requires more bandwidth than assigned, its traffic be-
comes bursty due to Xen’s credit-based rate limit algorithm. An adversary might
exploit this behavior to determine a virtual machine’s configuration parameters
time window t and rate r by means of the following side channel. The adversary
sends a high number of legitimate requests to the virtual machine. The latter
replies according to the chosen protocol; however, the sum of all replies exceeds
the assigned bandwidth and outbound traffic becomes bursty as depicted in Fig-
ure 2. The time interval between two bursts is equivalent to the configured time
window t, as the virtual machine receives credits for further transmission imme-
diately after the timer expires. Summing up the size of all packets within a burst
allows to determine the victim’s credit rate c. Finally, the adversary is able to
calculate the victim’s assigned bandwidth (parameter rate) r = c/t. The side
channel is advantageously protocol independent. The only stringent objective is
that the virtual machine reliably replies; thus, a wide variety of protocols are
worth considering, e. g., ICMP, DNS, etc. The more outbound traffic, the better;
the larger the amplification between outbound and inbound traffic, the better;
both facilitate to reach the assigned rate limit for outbound traffic.

We evaluated this side channel in our experiments3. The virtual machine
was limited to 5 MB/s at the default time window of 50 ms. Checking the con-

3 For our experiments, we use Xen version 4.4.1 (on Debian 8.2) on an Intel i5-750.
On the hypervisor, two virtual machines run Debian 7.9; each guest is pinned to a
separate CPU, domain0 runs on the remaining two CPUs. The two virtual instances
were rate limited and bridged via the hypervisor. The adversary ran Debian 8.2 on
an Lenovo X200 laptop. The hypervisor and the adversary’s laptop were connected
via a 1 Gbit/s network switch.

figuration with iperf 4, we measured 4.7 MB/s from the virtual machine to the
adversary (throttled outbound traffic), and 117.3 MB/s in the other direction
(unthrottled inbound traffic). Attacking the virtual machine, the adversary sent
16 ICMP Echo Request of 1458 bytes, waiting a millisecond before sending the
next 16 ICMP Echo Requests causing up to 22.2 MB/s of inbound traffic for the
virtual machine. In total, the attack runs for 1000 of such cycles sending in total
16000 Echo Requests. Repeating this attack ten times, we inferred the configu-
ration parameter from the measurements according to the following approaches:

– Time Window: The begin of a time window is indicated by a packet fol-
lowing a (larger than usual) pause. Thus, we extracted all packets following
a pause of at least 5 ms, and measured the time window between these first
packets of subsequent bursts. Rounding off to whole milliseconds, we took
the most frequent candidate of all test runs.

– Credit Rate: In the previous step, the first packets of bursts have already
been determined; the credit rate is now calculated by summing up the size
of all packets from this first packet of the burst to the last one. The last
packet of the burst is the one right before the first packet of the next burst.
Again, the most frequent candidate is taken from all candidates.

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

 0 5 10 15 20 25 30 35 40 45 50

w
in

d
o
w

 t
im

e
 s

lo
t

time in ms

Echo Request Echo Reply

Fig. 3: Side Channel Measurement Results using ICMP

This way, we inferred a time window t of 52 ms, and a credit rate c of 249,318
bytes; the resulting bandwidth r is thus 4.8 MB/s. Figure 3 depicts a network
trace of the side channel from the adversary’s point of view; for reasons of sim-
plicity, the graph is already slotted in time intervals of 52 ms. While the adversary
sends requests in regular intervals, the virtual machines replies predominantly
at the begin of a time slot. Afterwards, it remains silent due to lacking further
credits. One can also see in the figure that the number of sent replies is high

4 https://iperf.fr/

at the begin of a time slot; this is an indicator that all waiting replies are sent
at once immediately after credit replenishment. The side channel was measured
with different configurations of the virtual machine. First, we altered the band-
width keeping the time window at the default configuration of 50 ms; results are
provided in Table 1. Then, we modified the time window at a fixed bandwidth
of 5 MB/s; results are provided in Table 2. The first line of Table 1, and the
second line of Table 2 represents the results of the measurement that has been
described above.

Xen Configuration Attack Parameters Side Channel

Configured
Bandwidth

iperf
(Outbound)

Requests
per Cycle

Inbound
Bandwidth

Credit
Rate c

(Measured)

Time
Window t

(Measured)

Rate r
(Calculated)

MB/s MB/s MB/s B ms MB/s

5 4.7 16 23.3 249318 52 4.8

10 9.4 32 46.7 498636 52 9.6

20 18.9 32 46.7 998730 52 19.2

30 27.8 48 70.0 1498824 56 26.8

40 37.0 60 87.5 1998918 52 38.4

Table 1: Bandwidth Measurements with Fixed Time Window of 50 ms

Xen Configuration Attack Parameters Side Channel

Configured
Time

Window

iperf
(Outbound)

Requests
per Cycle

Inbound
Bandwidth

Credit
Rate c

(Measured)

Time
Window t

(Measured)

Rate r
(Calculated)

ms MB/s MB/s B ms MB/s

70 4.8 16 23.3 349920 72 4.8

50 4.7 16 23.3 249318 52 4.8

30 4.6 16 23.3 148716 32 4.6

20 4.9 16 23.3 100602 24 4.2

10 4.1 16 23.3 49572 8 6.2

Table 2: Time Window Measurements with Fixed Bandwidth of 5 MB/s

Our results show that the measured time window is slightly longer than
the configured time window. Taking a look into Xen’s source code, the time
window is strictly speaking the time period for the timer; this additional time
of mostly 2 ms might be caused by credit replenishment, packet forwarding, etc.

that is necessary after the timer expires. Actual bandwidth appears to be below
the configuration parameter; however, our side channel appears to reflect iperf
measurements well. Measurements for 30 MB/s at 50 ms of Table 1 shows an
increased time window; however, evaluation shows two almost equally frequent
candidates – 56 ms and 48 ms – both equally distant from the expected 52 ms.
Similarly, measurements for 5MB/s at 20 ms (peaks at 16 ms and 24 ms) as well
as 5MB/s at 10 ms (peaks at 8 ms and 16 ms) of Table 2 show two such peaks.
For the latter however the lower peaks has slightly more candidates. The reason
for less quality of the latter two results might be the rather small time window
t. Pauses before first packets of a burst become shorter with decreasing time
windows; thus, our algorithm looking for 5 ms pauses might struggle to detect
begin packets at such low time windows accurately. This might be overcome by
looking for shorter pauses.

5 Denial-Of-Service

Victim

Benign Connection
(ICMP)

Adversary

Virtual
Machine

Attack Connection
(ICMP, UDP or TCP)

Fig. 4: Denial-of-Service Attack Scenario

Traffic exceeding the rate limit has to wait for a free time slot in the future;
beyond, if the backlog of waiting packets becomes too much, buffers become full
and packets are dropped. Deliberately filling the buffers, an adversary might
exploit this behavior in order to perform a denial-of-service attack causing sig-
nificant packet delays or even drops of benign traffic.

For evaluation, we extended the measurement setup by an additional host
representing the victim5 as depicted in Figure 4. The victim had a benign con-
nection to the virtual machine; we decided to probe the virtual machine with
ICMP Echo Requests at an interval of 10 ms. In total, these requests (and po-
tentially received replies) require a maximum bandwidth of 19.6 kB/s which is
negligible in comparison to the attack traffic. For the adversary, we tested three

5 The victim ran Ubuntu 14.4 LTS on a Lenovo X60 laptop. The virtual machines
were rate limited to 5 MB/s at the default window time of 50 ms.

alternatives for causing the backlog – by means of ICMP Echo Requests, UDP-
based traffic amplification and TCP acceleration as described in the following
paragraphs.

ICMP Echo Requests: As with the side channel, the adversary sends multi-
ple Echo Requests and pauses afterwards for 1 ms repeating both actions in a
loop. Echo Requests however bear the drawback of being non-amplifying, i. e.,
the virtual machine’s (maximum) outbound traffic is of the same amount as the
inbound traffic from the adversary.

UDP-Based Traffic Amplification: A virtual machine might host a service
that answers with replies that exceed the requests in size and thus amplifies
inbound traffic. An adversary sending numerous such requests is able to trigger
more outbound traffic than with ICMP. Susceptible protocols are predominantly
UDP-based, e. g., NTP, DNS, SSDP or BitTorrent, and bandwidth amplification
factors reach up to 4670.0 [23]6. For our evaluation, we scripted a simple UDP
server that responded with a bandwidth amplification factor of 100. The server
ran on the virtual machine; our adversary sent respective UDP requests in the
same manner as the ICMP Requests – sending a certain number of UDP requests
before pausing for 1 ms repeating both actions in a loop.

TCP Acceleration: TCP connections, e. g., when serving a HTTP request,
are frequently asymmetric with respect to transmitted payload; a server is send-
ing amounts of data while the client almost exclusively acknowledges receipt
with a couple of bytes. TCP is a reliable protocol, adjust its speed according to
given network capabilities and thus does not automatically lead into a denial-of-
service attack; but an adversary might intentionally accelerate a TCP connection
by means of optimistic acknowledgments [25]. Such optimistic acknowledgments
are sent prior the receipt of the respective segment, lead the server to believe in
higher available bandwidth and make the server send at a higher speed than nor-
mally. For our evaluation, we installed an Apache7 server on the virtual machine
providing a 100 MB file for download. For the adversary, we re-implemented this
attack with respect to current TCP implementations as congestion control has
significantly changed over the last decade and ran the attack when downloading
the previously mentioned file.

Results for ICMP and UDP-Based Attacks: Results for the ICMP-based
attacks are found in Table 3; results for the UDP-based attack with traffic am-

6 [23] investigated amplifying protocols with respect to reflective denial-of-service.
Such attacks require source address spoofing in order to redirect replies to the vic-
tim – a prerequisite that is not necessary for our denial-of-service attack. This implies
that (1) there are even more protocols than described in this paper that are suscep-
tible to our attack and (2) ingress filtering does not prevent our attack.

7 https://httpd.apache.org/

Adversary Victim

ID
Requests
per Cycle

Inbound
Bandwidth

Potential
Outbound
Bandwidth

Average
Delay

Maximum
Delay

Dropped
Replies

MB/s MB/s ms ms %

noattack 0.221 0.491 0

icmp16 16 23.3 23.3 14.3 65.7 67.5

icmp32 32 46.7 46.7 23.6 49.3 85.6

icmp48 48 70.0 70.0 21.8 51.5 83.6

icmp60 60 87.5 87.5 16.7 52.8 88.3

Table 3: Denial-of-Service Attack with ICMP Echo Requests

Adversary Victim

ID
Requests
per Cycle

Inbound
Bandwidth

Potential
Outbound
Bandwidth

Average
Delay

Maximum
Delay

Dropped
Replies

MB/s MB/s ms ms %

noattack 0.221 0.491 0

udp4 4 0.2 23.2 23.0 53.3 0

udp8 8 0.5 46.4 22.9 53.5 0

udp12 12 0.7 69.6 22.7 53.4 0

udp15 15 0.9 87.0 23.6 53.7 0

Table 4: Denial-of-Service Attack with UDP-Based Traffic Amplification

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5 1 1.5 2

R
T
T
 i
n
 m

s

Send Time of Echo Request in s

Attack Time

Received Echo Replies
Dropped Echo Replies

Fig. 5: Impact on the Victim (icmp16)

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5 1 1.5 2

R
T
T
 i
n
 m

s

Send Time of Echo Request in s

Attack Time

Received Echo Replies

Fig. 6: Impact on the Victim (udp4)

plification in Table 48. Inbound bandwidth refers to the traffic that is sent from
the adversary to the virtual machine, while the potential outbound bandwidth
refers to the bandwidth that would be caused in the reverse direction in the
absence of rate limits. The remaining three columns show the average delay of
replies to the victim’s Echo Requests, the observed maximum delay as well as
the relative amount of dropped replies. In both tables, the first line represents
the latter values in the absence of an attack for reasons of comparison.

The results highlight the following: (1) All attacks significantly increase the
delays by two orders of magnitudes. (2) The higher the ICMP bandwidth, the
more packet drops. The average delay however appears to decrease at higher at-
tack bandwidths; and might be an artifact of increased drop rates as less replies
were received by the victim and were taken into account for average delay calcu-
lation. The maximum delay of icmp16 might be higher than the remainder for
the same reason. (3) UDP-based attacks do not cause any packets drops; average
and maximum delay are higher than in the ICMP-based attacks, and appear to
be independent of the attack bandwidth. The reason might be that the virtual
machine favors ICMP traffic over UDP, and thus drops attack traffic rather than
the victim’s. However, amplification allows the adversary to reduce the amount
of sent traffic in order to gain the same potential outbound bandwidth at the vir-
tual machine; for example, attack icmp16 leads to the same potential outbound
bandwidth as udp4. Figure 5 depicts a test run of the ICMP-based attack, Fig-
ure 6 of the UDP-based attack. Both figures show the increased round-trip times
of the victim; the first figure further shows packet drops.

Results for TCP-Based Attack: The results of our TCP attack are found
in Table 5. In comparison to ICMP- or UDP-based attacks, delays are much
higher. The average delay is 1625.8 ms, the maximum delay even 13791 ms, i. e.,
almost 14 seconds. Packet drops are however below the ICMP-based attack: 33.2
percent.

Figure 7 shows the sequence numbers of sent TCP acknowledgments and
received TCP payload from the adversary’s perspective. While the first increases
exponentially to maximize the virtual machine’s congestion window, the latter
increases only in a linear manner. This linear increase is caused by the rate limit
of 5 MB/s, and provides a first evidence that the virtual machine operates at its
networking limits. Moreover, enlarged sections of this figure would clearly depict
the bursty transmission and the underlying 50 ms intervals (but were omitted
due to space constraints). Figure 8 shows the attack’s impact on the victim’s
round-trip times: Right at the start, round-trip times are as expected less than
a millisecond; then, round-trip times start to increase. The maximum recorded
delay is 13,791.6 ms. In a third phase, the buffers are full and Echo Replies are
dropped at a large-scale. As numerous packets are dropped, the buffer is released
and round-trip times decrease back to normal.

8 As in the side channel, the results are based on ten test runs each.

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18

R
e
la

ti
v
e
 T

C
P
 S

e
q

u
e
n
ce

 N
u
m

b
e
r

in
 M

B

Time in s

Attack Time

TCP Acknowledgments
TCP Data

Fig. 7: Relative Sequence Numbers (tcp)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16 18

R
T
T
 i
n
 m

s

Send Time of Echo Request in ms

Attack Time

Received Echo Replies
Dropped Echo Replies

Fig. 8: Impact on the Victim (tcp)

Adversary Victim

ID
Requests
per Cycle

Inbound
Bandwidth

Potential
Outbound
Bandwidth

Average
Delay

Maximum
Delay

Dropped
Replies

MB/s MB/s ms ms %

noattack 0.221 0.491 0

tcp 0.01 65.8 1625.8 13791.6 33.2

Table 5: Denial-of-Service Attack with TCP

6 Related Work

Our research is based on three foundations. First, we summarize related work
on Xen’s network rate limits in general. Then, we discuss known side channels
as well as denial-of-service attacks in cloud computing; by now, no approach
exploited a hypervisor’s rate limit functionality.

Rate Limit Functionality: Related work on Xen’s rate limit for networking
is rather scarce, and must not be mistaken for (the more frequently discussed)
rate limits with respect to CPU scheduling, e. g., [45–47].

Adamczyk et al. [19] investigate rate limits’ quality of isolation, i. e., protec-
tion against malicious neighbor virtual machines. The authors infer that per-
formance isolation is moderate in case of applied rate limits. Nevertheless, the
authors propose round robin for more fairness among co-resident tenants. Mei et
al. [48] analyze rate limits with respect to bandwidth utilization, and considers
Xen’s rate limiting to be static as a virtual machine cannot provide spare tokens
to neighbors. The authors propose a new bandwidth allocation algorithm that
dynamically provides bandwidth based on current and past bandwidth consump-
tion. While this algorithm definitely increases bandwidth allocation, an actively
networking virtual machine would increase its assigned bandwidth with time,
and lead to starving neighbors. Summarizing, the impact of rate limits on secu-
rity of the throttled virtual machine themselves has never been raised.

Side Channels: Numerous side channels in cloud computing exploit network
timing. Bowers et al. [33] measure file access times to extract data’s hardware
spread in order to check a cloud provider’s hardware redundancy, Benson et
al. [34] measure file access times in order to determine the geographic location
of files. Multiple side channels check for co-residency, i. e., whether two virtual
machines reside on the same physical server: Ristenpart et al. [10] exploit round-
trip times, Bates et al. [16, 17] packet arrival rates and Herzberg et al. [15]
latencies when downloading a file.

Beyond, side channels enabling to spy on neighbors are available. Kadloor
et al. [35, 36] measure round-trip times in order to infer a neighbor’s traffic
amount. Bates et al. [16,17] observe a distinct TCP throughput ratio therefore.
Herzberg et al. [15] propose address deanomyization, i. e., discovery of private
IP addresses, by exploiting again latencies in file downloads, and further infer
the number of intermediate hops by finding the minimal TTL in order to gain a
successful connection.

Denial-of-Service Attacks: Alarifi et al. [37] present an attack that forces a
virtual instance to migrate to another physical host. This behavior is triggered
by co-resident virtual machines riding a workload wave. Ficco et al. [38] propose
an attack that stealthily increases resource use (by means of XML-based denial-
of-service attack) in order to remain undetected. The authors aim to harm the
victim economically as the increased resource use is charged by the provider.
Liu et al. [39] discuss under-provision of network links in data centers, e. g., that
uplink capacity remains typically smaller than the total subnet bandwidth. An
adversary might spot such bottlenecks in clouds and strike it in a concerted
action of multiple virtual machines.

Shea et al. [40,41] analyze the impact of TCP SYN floods on virtualized envi-
ronments and infer that virtualization overhead negatively impacts a host’s vul-
nerability to denial-of-service attacks. Ferriman et al. [42] analyze the impact of
denial-of-service attacks on Google App Engine and saw an increased rendering
time for a test application. Chonka et al. [43] perform XML-based attacks in or-
der to evaluate their service-oriented traceback architecture. Beyond, distributed
denial-of-service attacks striking software-defined networks are known [44].

Our attacks differ with respect to three attributes from the available ap-
proaches: (1) Our side channel does not only reveal a victim’s network band-
width, but rather extracts the (more accurate) parameters credit rate and time
window of the applied rate limiting. (2) Both – our side channels as well as the
denial-of-service attack – are the very first that exploit the asymmetric behavior
of Xen’s rate limiting and its susceptibility to burst transmissions in order to
gain information about the victim or negatively impact the latter’s availability.
(3) In contrast to side channels from related work measuring network bandwidth,
the adversary neither has to control the measured virtual instance nor be co-
resident to the victim instance; the latter holds for the denial-of-service attack,
too.

7 Discussion

Throttling network bandwidth hinders a virtual machine from claiming all avail-
able resources and cutting off supply to neighbor machines. Such rate limits have
always been considered as means of security against denial-of-service attacks, but
not as an attack vector themselves. Notwithstanding, our work conveys by the
example of the popular Xen hypervisor that (1) configuration parameters of rate
limits are easily gained through a side channel and that (2) novel denial-of-service
attacks exploiting (allegedly protective) rate limits are feasible. In comparison to
traditional bandwidth consumption attacks, our denial-of-service attack shows
a peculiarity with respect to the point of consumption. A traditional denial-of-
service attack jams the virtual machine’s inbound link, exploiting rate limiting
functionality as shown in the paper at hand causes jam on the outbound link. In
the first case, a virtual machine would not receive any further traffic and might
suspect irregularities on the network. In the latter case, it would still obtain re-
quests and would be (mostly) unaware that responses are stuck in the hypervisor.
Digging its own grave, it would even answer incoming requests strengthening the
attack. Xen’s unilateral bandwidth limits (not throttling inbound traffic) is an
additional blessing as requests from the adversary are reliably forwarded to the
victim. This means that there is in principle no need for traffic amplification;
but admittedly, the attack is more likely to succeed with some sort of traffic
amplification, e. g., when striking over the Internet with much lower bandwidth.

Our side channel allows to infer all configuration parameters of Xen’s rate
limits – the rate and the window time. These parameters are sensitive insofar
as they allow a more detailed look on network characteristics than conventional
means of bandwidth measuring, and serve various attacks. On the one hand, this
enables an adversary to plan an attack, e. g., our denial-of-service-attack, more
accurately. Further, an adversary once knowing these parameters of a virtual
machine would be able to glean the latter’s networking behavior; but also benign
customers might use the side channel to check compliance of the configuration
with their service contract. On the other hand, the side channel may also serve
as a way to identify the underlying hypervisor of a virtual machine as Xen.
By now, however, it remains unclear whether burst transmissions are just an
issue of Xen, or also applicable to other hypervisors and container solutions. In
dependence on the outcome, burst transmissions themselves would imply the use
of Xen; otherwise, fingerprinting would have to focus on more subtle differences
in bursts among different hypervisors; we plan respective investigations for future
work. Beyond, the side channel has potential to be developed further into a covert
channel. A limitation is however given by network jitter as an adversary depends
on clear distinction between subsequent time slots. This limitation however is
only valid for the side channel, not for the denial-of-service attack.

Our denial-of-service attack causes latencies of almost 14 seconds, and packet
drops of up to 88.3 percent. Service degradation is generally undesired, for exam-
ple, it decreases interactivity [26]; but there are also scenarios beyond the obvious
that we would like to highlight. First, virtual machines are remotely synchro-
nized by means of a synchronization protocol like Network Time Protocol (NTP)

for purposes of time measurements [27, 28]. However, the synchronization algo-
rithm easily looses its stability in case of variable path delays [29], and these
delays are heavily increased for a certain period before going back to normal by
our attack; further, synchronization is prone to path asymmetry [29], and this
asymmetry is also exacerbated by our attack. Synchronization errors are already
in the milliseconds in presence of moderate CPU load [28], and will become sig-
nificantly worse in presence of our attack making accurate time measurements
in the clouds a nightmare. Second, temporal lensing was lately introduced as a
way of attacking [30]; thereby an adversary performs a reflective denial-of-service
attack that concentrates into a single (short, but high-bandwidth) pulse striking
the victim. This is achieved by using reflectors with different attack path laten-
cies, i. e., requesting reflectors with long paths before those with shorter ones,
with the goal that all replies reach the victim simultaneously. The more reflectors
with higher latencies are found, the more the adversary is able to funnel. The
longest path latency found by the authors was 800 ms. In case such a reflector
resided on a virtual machine, its responses could be delayed up to almost 14 sec-
onds by hitting this virtual machine with our TCP attack. This approach would
significantly increase temporal lensing’s power of impact by providing seamlessly
controllable reflectors.

Finally, our results provide a further explanation to cloud phenomena: [31]
measured TCP and UDP performance in the Amazon EC2 cloud that is known
to use the Xen hypervisor, and identified regular bandwidth drops9. They seem
to occur roughly every 50 ms, and might be a consequence of rate limits. This
observation might further be an indicator that rate limits were (and possibly
still are) deployed at this major cloud provider; but Rackspace – another public
cloud provider also using Xen – might also throttle virtual machines this way as
they claim that only outbound traffic is limited [32]. Parenthetically, public cloud
providers charge only outbound traffic while inbound remains free. This implies
that our denial-of-service attack does not only impact a virtual machine’s avail-
ability, but also costs the owner actual money and could be used to economically
harm somebody.

In consequence, mitigation is of utter importance; however, none of the fol-
lowing suggestions fully prevents our attacks. (1) Throttling inbound traffic as
well would only prevent non-amplifying attacks, but might negatively impact
a host’s availability. However, providers could choose to apply such limits only
in the presence of an attack – provided that adequate detection mechanisms
are prevalent. (2) A modification of the credit-based scheduler enabling short
spikes (by spending previously saved credits) would increase the effort to over-
whelm rate limits and buffers for the adversary. (3) Decreasing the time window
t makes our side channel more prone to jitter (and thus prevent it) as the time
slots cannot be clearly distinguished anymore, but would have a negative impact
on performance. Alternatively, the algorithm might be modified in order to be
less deterministic, e. g., by randomizing the time window.

9 See Figure 5 in [31]

8 Conclusion

Rate limits are known to guarantee fair bandwidth distribution and to prevent
denial-of-service attacks among virtual machines on the same Xen hypervisor;
but our work shows that rate limits themselves become a vector for externally-
launched attacks. The underlying reasons are Xens unidirectional rate limits
throttling outbound traffic only, and its susceptibility to burst transmissions. In
the paper at hand, we propose two distinct attacks exploiting rate limits. Our
side channel reveals configuration parameters that are related to rate limit func-
tionality; our denial-of-service attack causes up to 13.8 seconds of packet delay
or up to 88.3 percent packet drops. Beyond ordinary service degradation, these
latencies may heavily destabilize time synchronization in clouds due to increased
path asymmetry and path variability; but may also strengthen temporal lensing
attacks due to providing reflectors with controllable path latency. There is in-
dication that popular cloud providers like Amazon EC2 or Rackspace are using
Xen’s rate limits; thus, a large number of hosts remains conceivably vulnerable.

Acknowledgments

The authors thank Peter Wurzinger, and Adrian Dabrowski for many fruitful
discussions; Rob Sherwood for sharing the original implementation of optimistic
acknowledging and David Lobmaier for reimplementing it with respect to current
TCP implementations. Further, the authors are grateful to our reviewers for their
comments, especially on the aspect of mitigation.

This research was funded by P 842485 and COMET K1, both FFG - Austrian
Research Promotion Agency.

References

1. “With an eye on Russia, Estonia seeks security in cloud computing,”
December 2015. [Online]. Available: http://www.firstpost.com/business/with-an-
eye-on-russia-estonia-seeks-security-in-cloud-computing-2535650.html

2. E. Dou and A. Barr, “U.S. Cloud Providers Face Backlash From China’s
Censors,” March 2015. [Online]. Available: http://www.wsj.com/articles/u-s-
cloud-providers-face-backlash-from-chinas-censors-1426541126

3. A. Khan, M. Othman, S. Madani, and S. Khan, “A survey of mobile cloud comput-
ing application models,” Communications Surveys Tutorials, IEEE, vol. 16, no. 1,
pp. 393–413, 2014.

4. Ericsson, “Connected Vehicle Cloud Under The Hood.”
5. L. Gilpin, “How The Cloud Is Revolutionizing Healthcare,” December 2015.

[Online]. Available: http://www.forbes.com/sites/lyndseygilpin/2015/12/01/how-
the-cloud-is-revolutionizing-healthcare/

6. Departement of Commerce, “2015 Top Markets Report Cloud Computing - A
Market Assessment Tool for U.S. Exporterts,” 2015.

7. “FCA paves the way for cloud computing in UK financial services,” November 2015.
[Online]. Available: http://www.out-law.com/en/articles/2015/november/fca-
paves-the-way-for-cloud-computing-in-uk-financial-services/

8. M. Finnegan, “How Tesco Bank has adopted AWS cloud as ’busi-
ness as usual’ in eight months,” November 2015. [Online]. Avail-
able: http://www.computerworlduk.com/cloud-computing/how-tesco-bank-has-
adopted-aws-cloud-as-business-as-usual-in-eight-months-3629767/

9. T. Mather, S. Kumaraswamy, and S. Latif, Cloud security and privacy: an enter-
prise perspective on risks and compliance. ” O’Reilly Media, Inc.”, 2009.

10. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my
cloud: Exploring information leakage in third-party compute clouds,” in 16th ACM
Conference on Computer and Communications Security, 2009, pp. 199–212.

11. K. Okamura and Y. Oyama, “Load-based covert channels between xen virtual
machines,” in Proceedings of the 2010 ACM Symposium on Applied Computing,
2010, pp. 173–180.

12. Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting, “An
exploration of l2 cache covert channels in virtualized environments,” in Proceedings
of the 2011 ACM Workshop on Cloud Computing Security Workshop, 2011, pp. 29–
40.

13. M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl, “Dark
clouds on the horizon: Using cloud storage as attack vector and online slack space,”
in USENIX Security, 8 2011.

14. V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,
“Resource-freeing attacks: Improve your cloud performance (at your neighbor’s
expense),” in ACM Conference on Computer and Communications Security, 2012,
pp. 281–292.

15. A. Herzberg, H. Shulman, J. Ullrich, and E. Weippl, “Cloudoscopy: Services discov-
ery and topology mapping,” in ACM Cloud Computing Security Workshop, 2013,
pp. 113–122.

16. A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler, “Detecting
co-residency with active traffic analysis techniques,” in ACM Cloud Computing
Security Workshop, 2012, pp. 1–12.

17. ——, “On detecting co-resident cloud instances using network flow watermarking
techniques,” International Journal of Information Security, vol. 13, no. 2, pp. 171–
189, 2014.

18. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, ser. SOSP ’03,
2003, pp. 164–177.

19. B. Adamczyk and A. Chydzinski, “On the performance isolation across virtual
network adapters in xen,” in Proc. 2nd Int. Conf. Cloud Comput. GRIDs Virtual.
CLOUD COMPUTING 2011, 2011, pp. 222–227.

20. C. Li, S. Xi, C. Lu, C. D. Gill, and R. Guerin, “Prioritizing soft real-time network
traffic in virtualized hosts based on xen,” in 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, April 2015, pp. 145–156.

21. X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Franciosi, and W. Knottenbelt,
“Cloudscope: Diagnosing and managing performance interference in multi-tenant
clouds,” in Modeling, Analysis and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), 2015 IEEE 23rd International Symposium on, 2015,
pp. 164–173.

22. redhat, “33.10.Limit network bandwidth for a Xen guest,” 2016.
23. C. Rossow, “Amplification hell: Revisiting network protocols for ddos abuse.” in

Network and Distributed System Security Symposium (NDSS), 2014.

24. M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a handshake: Abus-
ing tcp for reflective amplification ddos attacks,” in 8th USENIX Workshop on
Offensive Technologies (WOOT 14), Aug. 2014.

25. R. Sherwood, B. Bhattacharjee, and R. Braud, “Misbehaving tcp receivers can
cause internet-wide congestion collapse,” in Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security (CCS), 2005, pp. 383–392.

26. Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile cloud
computing: Taxonomy and open challenges,” IEEE Communications Surveys Tu-
torials, vol. 16, no. 1, pp. 369–392, First 2014.

27. U. Lampe, M. Kieselmann, A. Miede, S. Zöller, and R. Steinmetz, Service-Oriented
and Cloud Computing: Second European Conference, ESOCC 2013, Málaga, Spain,
September 11-13, 2013. Proceedings, 2013, ch. A Tale of Millis and Nanos: Time
Measurements in Virtual and Physical Machines, pp. 172–179.

28. T. Broomhead, L. Cremean, J. Ridoux, and D. Veitch, “Virtualize everything but
time.” in USENIX Symposium on Operating Systems Design and Implementation
(OSDI 10), 2010.

29. M. Ullmann and M. Vgeler, “Delay attacks: Implication on ntp and ptp time
synchronization,” in 2009 International Symposium on Precision Clock Synchro-
nization for Measurement, Control and Communication, Oct 2009.

30. R. Rasti, M. Murthy, N. Weaver, and V. Paxson, “Temporal lensing and its appli-
cation in pulsing denial-of-service attacks,” in 2015 IEEE Symposium on Security
and Privacy, May 2015, pp. 187–198.

31. G. Wang and T. S. E. Ng, “The impact of virtualization on network performance
of amazon ec2 data center,” in INFOCOM, 2010 Proceedings IEEE, March 2010,
pp. 1–9.

32. Rackspace, “Pricing,” 2016.
33. K. D. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest, “How to tell

if your cloud files are vulnerable to drive crashes,” in 18th ACM Conference on
Computer and Communications Security, 2011, pp. 501–514.

34. K. Benson, R. Dowsley, and H. Shacham, “Do you know where your cloud files
are?” in 3rd ACM Cloud Computing Security Workshop, 2011, pp. 73–82.

35. S. Kadloor, X. Gong, N. Kiyavash, T. Tezcan, and N. Borisov, “Low-cost side
channel remote traffic analysis attack in packet networks,” in IEEE International
Conference on Communications (ICC), May 2010, pp. 1–5.

36. S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam, “Mitigating timing based
information leakage in shared schedulers,” in IEEE INFOCOM, 2012, pp. 1044–
1052.

37. S. Alarifi and S. D. Wolthusen, “Robust coordination of cloud-internal denial of
service attacks,” in Cloud and Green Computing (CGC), 2013 Third International
Conference on, Sept 2013, pp. 135–142.

38. M. Ficco and M. Rak, “Stealthy denial of service strategy in cloud computing,”
IEEE Transactions on Cloud Computing, vol. 3, no. 1, pp. 80–94, Jan 2015.

39. H. Liu, “A new form of dos attack in a cloud and its avoidance mechanism,” in
Proceedings of the 2010 ACM Workshop on Cloud Computing Security Workshop,
ser. CCSW ’10, 2010, pp. 65–76.

40. R. Shea and J. Liu, “Understanding the impact of denial of service attacks on
virtual machines,” in Proceedings of the 2012 IEEE 20th International Workshop
on Quality of Service, ser. IWQoS ’12, 2012, pp. 27:1–27:9.

41. ——, “Performance of virtual machines under networked denial of service attacks:
Experiments and analysis,” IEEE Systems Journal, vol. 7, no. 2, pp. 335–345, June
2013.

42. B. Ferriman, T. Hamed, and Q. H. Mahmoud, “Storming the cloud: A look at
denial of service in the google app engine,” in Computing, Networking and Com-
munications (ICNC), 2015 International Conference on, Feb 2015, pp. 363–368.

43. “Cloud security defence to protect cloud computing against http-dos and xml-dos
attacks,” Journal of Network and Computer Applications, vol. 34, no. 4, pp. 1097
– 1107, 2011.

44. Q. Yan and F. R. Yu, “Distributed denial of service attacks in software-defined net-
working with cloud computing,” IEEE Communications Magazine, vol. 53, no. 4,
pp. 52–59, April 2015.

45. Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding long tails in
the cloud,” in Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), 2013, pp. 329–341.

46. Y. Xu, M. Bailey, B. Noble, and F. Jahanian, “Small is better: Avoiding latency
traps in virtualized data centers,” in Proceedings of the 4th Annual Symposium on
Cloud Computing, ser. SOCC ’13, 2013.

47. V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-based defenses against
cross-vm side-channels,” in 23rd USENIX Security Symposium (USENIX Security
14), Aug. 2014, pp. 687–702.

48. L. Mei and X. Lv, “Optimization of network bandwidth allocation in xen,” in
High Performance Computing and Communications (HPCC), 2015 IEEE 7th In-
ternational Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th
International Conferen on Embedded Software and Systems (ICESS), 2015 IEEE
17th International Conference on, Aug 2015, pp. 1558–1566.

