
Privacy is Not an Option:
Attacking the IPv6 Privacy Extension

Johanna Ullrich �, Edgar Weippl

SBA Research, Vienna, Austria
Email: (firstletterfirstname)(lastname)@sba-research.org

Abstract. The IPv6 privacy extension introduces temporary addresses
to protect against address-based correlation, i. e., the attribution of dif-
ferent transactions to the same origin using addresses, and is considered
as state-of-the-art mechanism for privacy protection in IPv6. In this pa-
per, we scrutinize the extension’s capability for protection by analyzing
its algorithm for temporary address generation in detail. We develop an
attack that is based on two insights and shows that the notion of protec-
tion is false: First, randomization is scarce and future identifiers can be
predicted once the algorithm’s internal state is known. Second, a victim’s
temporary addresses form a side channel and allow an adversary to syn-
chronize to this internal state. Finally, we highlight mitigation strategies,
and recommend a revision of the extension’s specification.

1 Introduction

Snowden’s revelations on the National Security Agency’s surveillance program
startled the global public due to its sheer extent and sophistication. Practically
everbody’s Internet communication is collected. The gained data is filtered, an-
alyzed, measured and finally stored for the purpose of compounding a precise
picture of Internet users [1, 2]. But other actors are also after massive amounts
of user data: Western democracies, e. g., in the European Union or Australia,
often introduce telecommunication data retention. Commercial enterprises spy
on their customers on a massive scale to increase monetary revenue [3, 4], and
criminals may do so as well.

The power of such an approach lies in its capability of making sense from large
amounts of data that seem unrelated to each other by combing countless pieces
of information [5]. This means that a person’s different activities on the Internet
can be correlated to each other, and this condensed information typically exceeds
what people believe can be found out about their lives. Addresses play a sensitive
role in this: On the one hand, an address has to accurately identify the receiver
so that traffic reaches its intended destination. On the other hand, address-based
correlation enables the attribution of different transactions to the same origin
and allows to gain insights into others’ Internet behavior. General protection
strategies against correlation like an attribute’s removal or its encryption seem
inadequate for addresses as intermediate nodes require access for appropriate
data delivery.

Addressing, in turn, is heavily dependent on the protocol, and IPv6 intro-
duced new aspects in the matter of address-based correlation. Initially, all ad-
dresses of an interface were defined to include a globally unique identifier and
thus allowed simplest address correlation over an interface’s full lifetime [6]. In
response, temporary addresses that change by default every 24 hours were intro-
duced. This mechanism is known as the privacy extension [7], and is considered
as state-of-the-art privacy protection in IPv6 [8]. It is implemented in major
desktop and mobile operating systems.

In this paper, we scrutinize the IPv6 privacy extension’s capability of protect-
ing against address-based correlation, and therefore focus on the algorithm for
temporary address generation. We find that once the algorithm’s state is known
by an adversary, she is able to accurately predict a victim’s future addresses.
Beyond that, we develop a way that allows an adversary to synchronize to the
victim’s state by exploiting observed temporary addresses as a side channel,
and appraise the attacker’s effort to perform our attack with currently available
technology. Our results yield 3.3 years of hashing but advances in technology
are going to decrease this time period. We highlight mitigation strategies; how-
ever, our most important contribution may be the impetus for a revision of the
extension’s specification.

The remainder of the paper is structured as follows: Section 2 provides details
on addressing in IPv6 and the privacy extension. Section 3 summarizes related
work focusing on privacy implications of competing IPv6 addressing standards
as well as known vulnerabilities of the privacy extension. Section 4 describes the
assumed attack scenario and is followed by a security analysis of the extension’s
address generation algorithm that identifies four weaknesses in Section 5. Based
on these insights, the development of our attack is described in Section 6. Its
feasibility is discussed in Section 7, which is followed by an investigation of
current operating systems’ vulnerability in Section 8. Strategies for mitigation
are presented in Section 9, and Section 10 concludes the paper.

2 Background

This section provides background on IPv6 addressing in general: the address
structure, address assignment and their implications for address-based correla-
tion. In a second step, we focus on the IPv6 privacy extension and describe its
principal idea as well as its algorithm for temporary interface identifier genera-
tion.

IPv6 Addressing: IPv6 addresses have a length of 128 bit and are portioned
into two distinct parts of equal size as depicted in Figure 1. The first 64 bits form
the network prefix, and are dependent on a host’s location in the network. The
remaining 64 bits form the interface identifier (IID) that enables a subscriber’s
identification on the link. Address configuration for clients is done via stateless
address autoconfiguration [9] and does not require human intervention: Routers
advertise the network prefix on the network, and hosts form their global IPv6

addresses by combining the announced prefix with a self-generated interface
identifier.

Fig. 1: IPv6 addresses using interface identifiers in modified EUI-64 format

The interface identifier was initially intended to follow the modified EUI-
64 format [6] that infers an interface identifier from the 48 bit media access
control (MAC) address, see also Figure 1. The MAC address consists of a 24 bit
organizationally unique identifier, and a network interface card (NIC)-specific
part of equal size. A fixed pattern of two bytes is inserted between these parts
and a universal/local bit is set to one in order to form the identifier.

The MAC address is globally unique and typically remains stable over a
host’s lifetime1. Consequently, the interface identifier that is included in every
IPv6 address is globally unique and stable as well. All addresses of a certain host
have the same second half, while their network prefix changes according to the
visited location. An adversary is thus able to attribute various transactions to
the same origin based on the identifier and trace a host’s Internet behavior even
beyond a certain sub-network. The adversary is further able to retrace a host’s
movement in the network as the included network prefixes allow localization.

The IPv6 Privacy Extension: The privacy extension is presented as a solu-
tion that impedes correlation ”when different addresses used in different transac-
tions actually correspond to the same node” [7]. Its basic principle are interface
identifiers that change at a regular interval of typically 24 hours. Hosts form
temporary IPv6 addresses from the announced prefix in combination with the
current interface identifier, and change the IPv6 address with every newly gen-
erated identifier. An expired address is considered deprecated and not used for
new connections, but still serves already active transactions.

A host’s successive interface identifiers have to be chosen in a way that ap-
pears random to outsiders and hinders them in attributing different identifiers
to the same origin. Thus the IPv6 privacy extension defines an algorithm for

1 Technically speaking the MAC remains stable over the NIC’s lifetime, but we suppose
that personal computers, laptops, tablets and mobiles keep their NIC over their whole
lifetime.

Fig. 2: Interface identifier generation according to the privacy extension

a pseudo-random generation of these temporary identifiers as described in the
following and depicted in Figure 2:

1. A 64 bit history value is concatenated with the interface identifier in the
modified EUI-64 format.

2. An MD5 digest is calculated over the concatenation of the previous step to
gain a digest of 128 bit length.

3. The digest’s leftmost 64 bits are extracted and bit 6 is set to zero in order
to form the temporary interface identifier.

4. The digest’s rightmost 64 bits form the next iteration’s history value and are
stored.

5. In case the generated interface identifier is found to be used by other local
devices or reserved, the process is restarted to gain another identifier.

The very first history value is initialized with a random value the first time a
system boots. This algorithm is defined for systems with present stable storage,
which is necessary to keep the history value across system restarts. Devices like
stationary PCs, laptops, tablets and smart phones are typically considered to
have such storage. However, in its absence, it is allowed to randomly re-initialize
the history value after every system restart.

Temporary IPv6 addresses are assigned in addition to stable addresses in
modified EUI-64 format, and do not replace them in order to prevent negative
impacts on addressing. Temporary addresses are used in outgoing connections
to stay private, while stable addresses make it possible to stay reachable for
incoming requests.

3 Related Work

Our research has a two-pronged foundation: First, we discuss various IPv6 ad-
dress structures with respect to privacy, and highlight the IPv6 privacy exten-
sion’s outstanding positions due to its capability to protect against geographical
as well as temporal address-based correlation. This further emphasizes why the
extension’s secure standardization and implementation is an important aspect

of IPv6 privacy. Second, we summarize previously discovered vulnerabilities of
the privacy extension, and illustrate their minor importance in comparison to
the new attack that we present in this paper.

3.1 IPv6 Address Formats and Address Correlation

There are ways to form IPv6 interface identifiers for stateless address autoconfig-
uration beyond the modified EUI-64 format and the privacy extension: (1) man-
ually configured stable identifiers, (2) semantically opaque identifiers [10] and
(3) cryptographically generated addresses (CGAs) [11]. CGAs, however, require
authenticated messages as defined by Secure Neighbor Discovery (SeND) [12]
instead of plain Neighbor Discovery [13].

We discussed these alternatives with respect to an adversary’s capability for
address correlation, and consider two distinct aspects of address correlation:

– Temporal correlation refers to address-based correlation over multiple ses-
sions of a stationary host.

– Geographical correlation refers to address-based correlation over multiple
sessions of a mobile node.

The difference is the network prefix: A stationary host stays in the same
sub-network and includes the same network prefix in all its addresses. A mobile
node wanders and changes the network prefix when moving.

Addresses using the modified EUI-64 format include the globally unique MAC
address, and all of a host’s addresses are equivalent in their second part. This fact
allows the correlation of multiple sessions of a stationary or mobile node, i. e., this
type of address is vulnerable to both forms of address correlation and, beyond
that, also for active host tracking [14, 15]. Apart from global uniqueness, the
same is valid for (manually configured) interface identifiers that remain static.

Semantically opaque interface identifiers are generated by hashing the net-
work prefix and a secret key among other parameters. As the hash calculation
includes the address prefix, the interface identifier changes from subnet to subnet
and prevents geographical correlation. The identifier, however, remains stable in
a certain network, even when returning from another network, and allows tem-
poral correlation over long periods of time. Due to their recent standardization
their availability in current operating systems is limited.

Cryptographically generated addresses are generated by hashing the public
key and other parameters and are bound to certain hosts. Ownership is veri-
fied by signing messages that originate from this address with the corresponding
private key. The network prefix is included as a parameter into hashing, and a
node’s CGA changes from network to network, preventing geographical corre-
lation of traffic. However, their generation comes at high computational costs,
and prevents address changes as a means of protection against temporal corre-
lation in practise [16]. An approach to overcome the limitation with respect to
frequent address change has been proposed [17]. However, CGAs and SeND lack
acceptance and are neither widely implemented nor deployed.

M
o
d
ifi

ed
E

U
I-

64

S
ta

b
le

(M
an

u
al

)

S
em

.
O

p
aq

u
e

Id
.

C
G

A

P
ri

va
cy

E
x
te

n
si

on

Temporal Correlation - - - - X

Geographical Correlation - - X X X

Table 1: IPv6 address formats with respect to their capability of protecting
against different forms of address correlation

Mac OS X Yosemite X X - - X

Ubuntu 14.10 X X - - X

Windows 8.1 X X - - X

Table 2: IPv6 address formats with respect to their native availability in current
client operating systems

The discussion is summarized in Table 1, and is accompanied by the capa-
bilities’ native availability in the current client operating systems Mac OS X
Yosemite, Ubuntu 14.10 (Utopic Unicorn) and Windows 8.1, see Table 2. The
results emphasizes the unique position of the privacy extension: First, it is the
only mechanism using stateless address autoconfiguration that is currently de-
ployed at a larger scale that is intended to protect against traffic correlation.
Second, it is the only mechanism that considers protection against temporal as
well as geographical address correlation.

In this paper, we develop an attack that overcomes the belief that the privacy
extension provides adequate protection against address correlation. The attacks
leaves a gap that cannot be filled by another address mechanism, and highlights
the importance of revisiting the extension’s current definition.

3.2 Known Vulnerabilities of the Privacy Extension

Drawbacks of the IPv6 privacy extension were discussed before, and follow two
principal directions. First, its design does not impede active tracking, e. g., by
using ping. Temporary addresses are assigned in addition to stable ones, and an
adversary can still actively probe multiple subnets for a certain interface identi-
fier in order to trace a host’s movement. The respective specification, however,
explicitly states its intention to protect solely against passive eavesdroppers, and
not against active adversaries [7].

Second, shortcomings in the extension’s protection against address correla-
tion are known. A node does not have to change its interface identifier when
moving to a new network prefix. Thus, tracking a host’s movement remains fea-
sible within an identifier’s lifetime of typically 24 hours [14, 18]. For mitigation,

the inclusion of the network prefix into the interface identifier calculation was
proposed [18]. The respective specification also allows the change of an identifier
in such a situation [7]. Our attack supports the second direction, and highlights
that adversaries are able to perform address correlation even when the privacy
extension is used. In comparison to known attacks, our attack cannot be fully
mitigated within the specification’s limitations.

4 Attack Scenario

Fig. 3: Attack Scenario

Our attack scenario is depicted in Figure 3 and assumes full IPv6 deployment.
We assume three stakeholders named Alice, Bob and Eve. Alice loves coffee, and
regularly visits coffee shops. Then, she brings her laptop with her, and uses the
offered Internet access to read mails or to chat. Bob and Eve each run a coffee
shop, and provide Internet access to their guests. They deployed stateless address
autoconfiguration, and their routers advertise the respective IPv6 network prefix
so that customers are able to configure their global IPv6 addresses by connecting
the prefix with their self-generated interface identifiers. Bob’s router advertises
the prefix PBob, Eve’s router advertises PEve. Eve further runs a webserver to
advertise current offers. She records her coffee shop’s local traffic, and logs visits
to her webserver.

Alice visits Eve’s coffee shop for T successive days2, and connects her laptop
to the coffee shop’s local network. Eve’s router advertises PEve, and Alice’s
laptop configures a stable IPv6 address from this prefix and the stable interface
identifier. Alice has enabled the IPv6 privacy extension, and thus temporary

2 Although the T days do not necessarily have to be successive, we claim so here for
better readability. In case days are missing, e. g., due to weekends, one simply has
to consider these gaps when calculating the current state.

addresses are created in addition to the stable address by combining the prefix
with the interface identifier of the day. Alice’s temporary addresses are < PEve :
IID1 >,< PEve : IID2 >, ..., < PEve : IIDT > for day 1, 2, ..., T .

After T days, Alice stops going to Eve’s coffee shop. On an arbitrary day
t (t > T), Alice visits Eve’s competitor Bob. She connects her laptop to Bob’s
local network. Bob’s router announces the prefix PBob, and Alice’s laptop forms
a stable identifier from this prefix. In addition, the privacy extension generates
a temporary address < PBob : IIDt >. On this day, Alice visits Eve’s website to
check current offers and causes a respective log entry.

Eve is interested tracing her customers’ activities, and wants to find out
whether (1) Alice is still interested in her offers and visits the webserver, and
whether (2) Alice is drinking coffee at a competitor.

We refer to this scenario in the remainder of the paper for illustration of our
attack. This scenario was developed due to its representativeness for day-to-day
life, but we are sure that there are plenty of alternative scenarios. The precon-
ditions for an adversary are moderate: She has to gain a victim’s MAC address
and T successive interface identifiers that have been generated by the privacy
extension. The MAC address is gained from local traffic as in the presented sce-
nario, or inferred from the stable IPv6 address in case the latter is in modified
EUI-64 format. Interface identifiers are included in the temporary addresses, and
are inferred from there.

5 Security Analysis

In this section, we perform a manual security analysis of the privacy extension’s
algorithm for temporary interface identifier generation as defined in [7] and pre-
sented in Section 2. Our analysis revealed four striking characteristics that fa-
cilitate the prediction of future interface identifiers. While some of them might
seem minor in isolation, their combination forms a reasonable attack vector as
described in Section 6. In this section, we consider each characteristic separately:
First, we describe the characteristic and highlight the specification’s argumenta-
tion in its favor. Next, we infer implications on security. Figure 4 contrasts the
algorithm for temporary address generation with the discussed characteristics;
the depicted numbers are consistent with the following paragraphs.

(1) Concatenation of Successive Hashes: Interface identifiers are based
on MD5 digests that are chained with each other because an iteration’s result is
partly included into the next hash calculation. The RFC states that ”In theory,
generating successive randomized interface identifiers using a history scheme [...]
has no advantages over generating them at random,” [7] but claims an advantage
in case two hosts have the same flawed random number generators. Performing
duplicate address detection would make both hosts recognize their identical iden-
tifiers and trigger the generation of new identifiers. However, the flawed random
number generators would again provide identical numbers, leading to identical
identifiers. The presented algorithm is said to avoid this as the inclusion of the

Fig. 4: The privacy extension’s characteristics impacting its quality of protection

(globally unique) interface identifier in modified EUI-64 format leads to different
temporary interface identifiers in the next iteration.

It remains unclear why the inclusion of a globally unique identifier, e. g.,
in modified EUI-64 format, requires working with a history scheme, i. e., the
concatenation of successive hashes. We believe that inclusion of a globally unique
interface identifier and a random value into MD5 digest calculation is sufficient. It
seems unlikely that sequences of equivalent random numbers result in successive
collision in case a globally unique identifier is included into calculation.

The concatenation does not only appear dispensable with respect to the dis-
cussed aspect, but also negatively impacts the algorithm’s quality of protection.
Successive interface identifiers are dependent on each other, and today’s state
influences future identifiers. An adversary might exploit this to predict a victim’s
future identifiers.

(2) Cryptographic Hash Function: The privacy extension aims to create
random-appearing interface identifiers, but states that pseudo-randomness suf-
fices ”so long as the specific sequence cannot be determined by an outsider ex-
amining information that is readily available or easily determinable” [7]. For the
algorithm, MD5 with its adequate properties with respect to randomization has
been ”chosen for convenience” [7].

MD5 is considered broken, but a general dissolution would be an overshooting
reaction: MD5 turned out to be prone to collisions that can be found within sec-
onds on commodity hardware [19]. Pre-image attacks are still of high complexity
and remain practically infeasible. The privacy extension uses MD5 for random-
ization, and neither relies on collision resistance nor pre-image resistance. Taking
these considerations into account, the extension’s choice of MD5 is justifiable.

MD5 is, however, a comparably fast hash function and the more hashes per
second, the more feasible brute-force search becomes. This especially holds in
combination with a limited input range. In 2012, a cluster of four servers hosting
25 off-the-shelf graphics processing units (GPU) achieved 180 Gigahashes per
second [20], and time is usually in favor of the adversary as technology moves
forward.

(3) Scarce Randomization: The RFC claims that ”To make it difficult to
make educated guesses as to whether two different interface identifiers belong to
the same node, the algorithm for generating alternate identifiers must include
input that has an unpredictable component from the perspective of the outside
entities that are collecting information” [7].

Our analysis, however, identifies only scarce unpredictability in the algorithm
for temporary address generation. Every iteration includes 128 bits into MD5
digest calculation:

– 64 bit of the former iteration’s result, i. e., the remainder of the MD5 hash
that was not used for the temporary interface identifier, and

– the 64 bit interface identifier in modified EUI-64 format. This identifier is not
kept secret. An adversary might infer it from the stable IPv6 address that
is assigned in addition to temporary addresses or from the MAC address.
17 bit of this identifier are fixed and thus the same for all nodes anyway.

In conclusion, there is no entropy added per iteration and this fact makes
prediction of future identifiers easier as there are less possibilities. The only
unpredictable component of the presented algorithm is the very first history
value of 64 bit that should ”be generated using techniques that help ensure the
initial value is hard to guess” [7].

(4) Partial Disclosure of Digest: A temporary interface identifier is gen-
erated by taking ”the leftmost 64-bits of the MD5 digest and set bit 6 [...] to
zero” [7]. The gained interface identifier forms a temporary IPv6 address when
combined with the current network prefix. The address is present in packets’
address fields and accessible by others.

As a consequence, an eavesdropper gains 63 bit (one bit is overwritten with
zero as mentioned above) of the calculated MD5 digest. This eavesdropped part
does not present the algorithm’s internal state, i. e., the history value, but both
are part of the same MD5 digest. In conclusion, 63 bit of every iteration’s MD5
digest is readily available to outsiders without any further processing effort and
form a side channel of the algorithm’s internal state. The algorithm leaks infor-
mation but does not add entropy in an iteration.

6 Attack Design

We will now explain the steps of our attack in detail. We will include the charac-
teristics that have been found in the security analysis of Section 5. In a first step,

we will analyse the predictability of future addresses if the current state (history
value) is known. As this turns out to be promising, we investigate methods to
gain the current state. Finally, we summarize our full attack.

Predictability of Future Identifiers: For rather unambiguous prediction of
future temporary identifiers, two requirements have to be met. First, future
identifiers have to be dependent on the current state of the algorithm. Second,
the calculation of the next identifier should include little randomness. The less
random input, the better predictability.

We know from the previous section that both conditions apply to the IPv6
privacy extension: Interface identifiers are based on concatenated hashes. A part
of the digest is used for the identifier, the other is called the history value and
used as an input for the next calculation. An iteration’s input is twofold – the
mentioned history value and the interface identifier in modified EUI-64 format
that is inferred from the MAC address. This means that there are no unpre-
dictable components that are included. In conclusion, an adversary that is aware
of the victim’s history value and its MAC address is able to calculate the next
temporary interface identifier according to the following recipe:

1. Infer the interface identifier in modified EUI-64 format from the victim’s
MAC address. This requires the insertion of a fixed pattern of two byte, and
setting bit 6 as described in Section 2.

2. Concatenate the victim’s current history value with the interface identifier
in modified EUI-64 format generated in step 1.

3. Calculate the MD5 digest of the concatenation of step 2.
4. Extract the first 64 bits from the calculated digest and unset bit 6 to form

the next temporary interface identifier.
5. Extract the remaining 64 bits from the digest and form the next history

value.

This way an adversary is not only able to compute the next interface identi-
fier, but all future identifiers by repeating the described steps. As a consequence,
it seems worth developing methods to gain the algorithm’s internal state.

Synchronization to the Current State: The internal state could be leaked,
e. g., by means of malware, but this approach would imply an active adversary
that does not simply eavesdrop. In the following paragraphs, we show that eaves-
dropping over a number of consecutive days is sufficient to gain the internal state:
As described in Section 5, a temporary interface identifier that is included into
an IPv6 address inherently discloses 63 bit of an iteration’s MD5 digest. While
the disclosed part is not the internal state, it is nevertheless related to the latter
as both are clips of the same MD5 digest. The disclosed interface identifier can
be considered a side channel of the internal state.

Figure 5 depicts a situation like our attack scenario from Section 4. The
victim’s very first history value is randomly initialized at day 0 and determines
the history value and the temporary interface identifier of day 1; the history value

Fig. 5: Synchronization to current state

of day 1 in turn determines history value and temporary interface identifier of
day 2 and so on. The randomly assigned history value at day 0 determines one
of 264 deterministic sequences that the victim’s interface identifiers follow.

An adversary might probe all possible values for this history value at day 0,
and compare the first half of the MD5 digest with the interface identifier of day
1. If they are equal this value might represent an appropriate candidate. As it
is only possible to compare 63 bit of the MD5 digest, it is likely that numerous
candidates remain. The adversary thus extracts the second half of the digest
as a candidate for the history value at day 1, includes it in another iteration
containing an MD5 calculation, compares the result with the interface identifier
at day 2 and further shrinks the candidate set until a single candidate remains.
Then, the adversary has identified the internal state.

It is, however, unlikely that an adversary observes the very first temporary
addresses that a victim generates after its installation; an adversary rather ob-
serves an arbitrary sequence of T successive addresses starting at day t0 + 1
as indicated in Figure 5. Due to the algorithm’s structure, the adversary then
assumes the history value at day t0 to be randomly initialized without loss of
generality. The adversary does not have to know the number of temporary ad-
dresses that the victim has generated before being recorded. For this reason, we
added an relative time line for the attack in the figure for readability.

Composite Attack: Based on the attack scenario of Section 4, the gained
insights of the previous paragraphs and Figure 5, we summarize Eve’s steps
towards predicting Alice’s future identifiers.
On Alice’s first visit at Eve’s coffee shop on day 1, Eve has to perform the
following steps:

– Data Extraction from Traffic Records:
Eve records the local traffic in her coffee shop, and is thus able to read Alice’s

MAC address from Ethernet headers as well as her temporary IPv6 address.
From this temporary IPv6 address, Alice extracts the last 64 bits that are
the interface identifier for the first day IID1.

– Generation of Modified EUI-64 Interface Identifier:
Eve infers Alice’s interface identifier in modified EUI-64 Format from the
MAC address by inserting a fixed pattern of two bytes and setting bit 6 as
described in Section 2. Alternatively, she might read the identifier in modified
EUI-64 format directly from Alice’s stable IPv6 address.

– Reduction of Candidate Set:
Eve probes all possible values for the assumed initial history value at day 0,
concatenates the value with the stable identifier in modified EUI-64 format,
and calculates the MD5 digest. If the first part of the MD5 digest equals
Alice’s current temporary address3, the remainder of the digest forms a can-
didate for the next iteration’s history value and is added to the candidate
set of the first day C1. In this step, Eve reduces the initial candidate set C0

of 264 alternative sequences to a smaller set C1 that is stored for the next
day.

On every further visit of Alice at Eve’s on subsequent days t with 1 < t ≤ T ,
Eve performs:

– Data Extraction from Traffic Records:
Eve extracts today’s temporary interface identifier IIDt from Alice by read-
ing the traffic records.

– Further Reduction of Candidate Set:
Eve probes all values for the history value that are present in yesterday’s can-
didate set Ct−1, concatenates the values with the stable identifier in modified
EUI-64 format, and calculates the MD5 digest. If the first part of the MD5
digest equals Alice’s current temporary address IIDt, the remainder of the
digest forms a candidate for the next iteration’s history value and is added
to the candidate set Ct. In this step, Eve further reduces the number of
alternative sequences to a smaller set that is again stored for the next day.

This is performed whenever a new temporary address is available until a sin-
gle candidate remains. This single candidate represents the algorithm’s internal
state, the history value, and allows to predict future addresses from now on.
On every further day t with t > T , Eve is able to anticipate Alice’s temporary
interface identifier for this day:

– Anticipation of Current Temporary Address:
Eve concatenates the history value of day T with the stable identifier in
modified EUI-64 format and calculates the MD5 digest. She extracts the
history value, and repeats the calculation with the new history value. In
total, (t− T) MD5 digest calculation are performed.

3 The comparison is done on 63 different bits (0-5 and 7-63); bit 6 is always set to
zero in temporary addresses, see Section 2.

– Assemblage of the Interface Identifier:
Eve forms Alice’s interface identifier IIDt from the first part of the last MD5
digest by setting bit 6 to zero.

With this knowledge, Eve is able to search her web server’s logs for the
calculated temporary identifier and attributes certain visits to Alice. At the
same time, the prefix that the temporary identifier is concatenated with to form
an IPv6 address provides information on the sub-network that Alice resided at
the time of the page visit. If this is equivalent to Bob’s assigned prefix, Eve is
able to infer that Alice drank coffee at Bob’s coffee shop.

7 Feasibility

In the previous sections, we identified weaknesses of the IPv6 privacy extension
and developed an attack exploiting these characteristics. The question on the
attack’s practicability with respect to today’s technology remains, and is dis-
cussed in this section. Three aspects have to be considered: (1) the minimum
number of observed interface identifiers, i. e., the number of days that Alice has
to visit Eve’s coffee shop, (2) the expenditure of time for brute-forcing, and
(3) the storage capacity to save the candidate set for the next day. Finally, a
modified version of our attack for limited storage capabilities is presented.

Number of Address Observations: Alice has to visit Eve’s coffee shop so
often that Eve gains enough temporary identifiers for synchronization to the
internal state. We assume that Alice generates one temporary address per day
as recommended by the RFC [7], and an iteration of the attack corresponds to
a day.

On the first day, Eve probes 264 potential values for the history value and
compares their MD5 digest to the observed interface identifier of Alice. The
unequal ones are excluded, and the appropriate ones form the candidate set C1

of potential values for the next day. The size of the candidate set is dependent
on the ratio of candidates that Eve is able to reject per day. With p being this
ratio, the size of the candidate set Ct for day t is calculated as follows

|Ct| = 264 · (1− p)t (1)

Eve has to repeat the explained step until a single candidate remains, i. e.,
|Ct| = 1, and the minimum number of days Tmin is calculated as follows

Tmin = ceil
log(264)

log(p− 1)
(2)

The more candidates can be excluded per iteration, the less successive inter-
face identifiers have to be known by Eve. If Eve is able to reduce the candidate
set by only 50 % every day, the minimum number of days is 64. A reduction by
99 %, 99.99 %, 99.9999 % shortens this to 10, 5, 4 days.

Time Expenditure for Brute-forcing: Every iteration requires brute-forcing
the current candidate set Ct, and means an MD5 digest calculation for every
candidate. Assuming a hash rate r indicating the number of calculated hashes
per second, the total time TBrute for brute-forcing is calculated as follows

TBrute =
1

r

Tmin∑
i=0

|Ci| =
264

r

Tmin∑
i=0

(1− p)i (3)

Assuming 1 − p < 14, the equation is bounded as follows and allows an
estimation of the total time expenditure for MD5 brute-forcing

TBrute <
264

r

∞∑
i=0

(1− p)i =
264

r
· 1

p
(4)

A hash rate of 180 G/s with MD5 is feasible [20]. The more candidates can
be excluded, the less time is required. If Eve is able to reduce the candidate set
on average by only 50 % every day, the time for brute-forcing remains 6.5 years,
a reduction by 99 % shortens this to 3.3 years. Time expenditure appears high
at the first sight, but time plays for the adversary, and advances in technology
are likely to decrease this effort. It is likely that faster hashing is already feasible
today as the given hash rate was measured at a cluster of 25 consumer GPUs back
in the year 2012 and GPUs have recently experienced extensive advancement.

Storage of Candidate Set: Appropriate candidates for the history value have
to be stored for the next iteration. The history value size is 8 byte, and the
storage demand St is dependent on the size of the candidate set.

St = |Ct| · 8 byte = 264 · (1− p)t · 8 byte (5)

The following calculation considers the first iteration due to its worst case
character5: If Eve is able to reduce the candidate set on average by only 50 %
every day, the storage demand for the first iteration is 74 Exabyte, a reduc-
tion of 99 %, 99.99 %, 99.9999 % reduces the storage demand to 1.5 Exabyte,
15 Petabyte, 148 Terabyte.

This storage demand, however, can be circumvented by a modification of
the attack. In our initial design of Section 6, Eve synchronized to Alice’s state
simultaneously to her coffee shop visits, but Eve might alternatively perform the
attack retroactively. Therefore, she stores Alice’s successive interface identifiers
for Tmin days before starting the attack. Instead of storing an appropriate can-
didate after the first iteration, she performs the second, third, etc. iteration with
this candidate as long as it appears appropriate. Otherwise, it is rejected. This
way the storage demand is reduced to a few bytes for execution of the algorithm
for temporary interface identifier generation.

4 p is the portion of candidates that can be excluded per iteration.
5 The candidate set C0 does not have to be stored as it contains all 264 possible values.

8 Implementation in Operating Systems

In this section, we assess current operating systems that support the IPv6 pri-
vacy extension with respect to their individual vulnerability. We tested Mac OS
X Yosemite, Ubuntu 14.10 (Utopic Unicorn) and Windows 8.1 Enterprise as rep-
resentatives of the three major ecosystems on clients. In doing so, we faced the
challenge that we cannot access the respective sources of all operating systems,
and had to rely on the externally observable pattern of successively generated
interface identifiers. A machine running an operating systems that implemented
the privacy extension as described in the respective RFC has to generate the same
sequence of successive interface identifiers whenever originating from a defined
initial state. The sequence appears unchanged when faced with some external
factors, while changing in dependence of other factors. The specific influencing
factors are discussed later in this section.

For checking the stated premise, we created a setup of two virtual machines
running in VMWare Workstation 11 and Fusion Pro 7. The machines were vir-
tually connected for networking. One ran the tested operating system; we refer
to this machine as the testee. To save time, we decreased the preferred lifetime
on all operating systems and forced the generation of a new temporary address
at an interval of twelve minutes. We finally created a snapshot of the testee that
made it possible to return it to the initial state after every test. The testee gen-
erated temporary addresses after a router’s announcement of a network prefix.
The second virtual machine thus ran Ubuntu 14.10 simulating this router; to
send ICMPv6 Router Advertisements the tool fake router6 from the thc-ipv6
toolkit [21] was used. We recorded the temporary addresses of the testee by
means of local scripts.

Using the above premise, we tested the operating systems for five criteria.
First, repeating the test without any changes multiple times has to result in the
same sequence of successive interface identifiers due to the algorithm’s deter-
minism. If this holds, the sequence is checked for their dependence on various
influencing factors. The algorithm has to be invariant to time, the announced
prefix as well as system restarts and provide the same sequence of identifiers,
while it has to be variant to a change of the MAC address. These conditions are
inferred from the algorithm’s definition in the respective RFC: Neither the point
in time of address generation is included into the calculation nor the identifier’s
lifetime. Thus, a later repetition of the experiment or a change in the interval
may not have an impact on the identifiers. The same holds for the announced
network prefix. The algorithm has to be invariant to system restarts as the cur-
rent state has to be stored in stable storage; all the tested operating systems
require the availability of such a storage. In contrast, the MAC address is in-
cluded into the calculation, and its change should result in different identifiers.
These are necessary criteria, and are not sufficient criteria. The results of our
tests are shown in Table 3.

Ubuntu 14.10 does not generate deterministic sequences, and its temporary
interface identifiers appear to be assigned by a random number generator without

D
et

er
m

in
is

ti
c

S
eq

u
en

ce
T

im
e-

In
va

ri
an

ce
P

re
fi
x
-I

n
va

ri
an

ce
R

es
ta

rt
-I

n
va

ri
an

ce
M

A
C

-V
ar

ia
n
ce

Windows 8 3 3 3 7 3

Ubuntu 14.10 7

Mac OS 10.10 7

Table 3: Temporary Address Characteristics wrt to different Operating Systems

following the defined algorithm. A review of the source code6 supports this. Mac
OS X Yosemite showed the same behavior.

Windows 8.1 provides the same sequence whenever originating from the same
state, and further fulfills the conditions of time and prefix invariance as well as
MAC variance. Restarting the machine or the interface, however, influences the
sequence. Thus, we assume that Windows 8.1 implements the privacy extension’s
version for systems without presence of stable storage. In such a case, the first
history value after a restart is randomly assigned. This assumption coincides
with the fact that we could not find any appropriate history value in the Win-
dows Registry analysing Registry diffs. Further signs supporting our assumption
are the collaboration of Microsoft in the definition of the RFC, as well as the
algorithm’s description in older TechNet Library articles [22].

The gained insights lead to the following conclusion: While Ubuntu 14.10 and
Mac OS X Yosemite seem to be immune to our attack, Windows 8.1 appears to
be vulnerable – admittedly to a decreased extent as reinitialization of the history
value is performed with every restart. However, systems that are continuously
running for longer periods or using sleep mode remain vulnerable; and sleep
mode is widely used for laptops. For interest, the operating systems’ protection
to our attack is gained by disobeying the privacy extension’s standard. Ubuntu
and Mac OS seem to totally ignore the proposed generation algorithm, while
Windows 8.1 appears to implement the alternative for systems without stable
storage albeit it assumes such storage according to its system requirements.

9 Mitigation

In this section, we recommend changes to the address generation mechanism
for mitigation of our attack. We propose two kinds of strategy: The first aims
at impeding synchronization to the algorithm’s current state, while the other
removes the predictability of future identifiers in general.

Restraint of Synchronization: Our attack is based on the fact that an ad-
versary is able to learn a victim’s state by observating them over multiple days,

6 Kernel 3.16.0, /net/ipv6/addrconf.c, line 1898

and one might hamper an adversary’s synchronization to the algorithm’s inter-
nal state for mitigation. These strategies do not offer protection in case the state
is leaked. The following explanations are supported by Figure 6; the numbers in
the figure match those provided in the following paragraphs.

Fig. 6: Mitigation strategies for generation of temporary IIDs

(1) An increased history value would imply improved randomization and
increase the size of the initial candidate set C0, see Equation 1. As a consequence,
the adversary has to observe more successive identifiers according to Equation
2, and time expenditure for brute-forcing increases, see Equations 3 and 4. The
algorithm’s current design, however, does not allow an isolated increase of the
history value. The MD5 digest’s first half forms the temporary interface identifier
and its second the current history value. Beyond, there are no bits available that
could serve as additional bits for an increased history value. Thus, this strategy
would require the replacement of MD5 by another hash function.

(2) MD5 is considered insecure, and its replacement by a state-of-the-art
hash function seems tempting. MD5 is vulnerable to collision attacks, and in-
secure for applications that rely on collision resistance, e. g., as necessary for
certificates [23]. The IPv6 privacy extension, however, exploits a hash function’s
randomization, and replacing MD5 with the currently used SHA-265 would only
modestly increase brute-force effort [24].

Removal of Identifiers’ Predictability: Another precondition of our attack
is the dependency of future identifiers on the current state and predictable in-
puts only. The following mitigation approaches tackle this issue by removing the
predictability of future identifiers in different ways.

(3) Including a random value in every iteration makes the digest dependent
on more inputs, and adds unpredictability with every new interface identifier.
This is the major difference to an increased history value as mentioned above
that solely increases randomization at the algorithm’s initialization. Even if the

current state is leaked, it is impossible to accurately predict future interface
identifiers. Moreover, this measure does not require a dissolution of MD5.

(4) A removal of the concatenation would result in successive addresses that
are not related to each other; instead, the history value could be randomly ini-
tialized for every new address. A similar but more limited approach is defined by
the privacy extension’s standard, but only for devices without stable storage [7].
As such systems are not able to store the history value across system restarts,
they are allowed to randomly initialize the first history value after a reboot.
Their vulnerability is thus dependent on their typical restart intervals in com-
parison to the temporary addresses’ lifetime. Nevertheless, it seems curious that
an alternative algorithm for specific devices is more secure than the standard
algorithm.

Alternatively, temporary interface identifiers could be randomly assigned
without such a complex algorithm. A host’s vulnerability to address correla-
tion is then dependent on the quality of its random number generator. We see
advantages in this approach because high-quality random number generators are
necessary in modern operating systems on personal computers, laptops and mo-
biles anyway. The privacy extension would benefit from this quality and further
be updated automatically with every improvement of the number generator. For
systems without an appropriate random number generator, an alternative would
have to be available. This practice is opposed to today’s standard that defines
a rather complex algorithm ”to avoid the particular scenario where two nodes
generate the same randomized interface identifier, both detect the situation via
DAD, but then proceed to generate identical randomized interface identifiers via
the same (flawed) random number generation algorithm” [7] and lowers security
for all systems that implement the privacy extension.

Finally, we considered the question which mitigation strategies are in accor-
dance with the current specification, and have drawn the following conclusions:
(1) It is allowed to use another hash function instead of MD5. The brute-force
effort would, however, increase only modestly, and a replacement brings only
limited protection. (2) The history value is allowed to be randomly re-initialized
after every system restart, but this behavior is restricted to systems without
stable storage. However, a variety of systems that implement the privacy ex-
tension like personal computers, laptops, tablets or mobiles do not lack stable
storage, and have to follow the standard variety of the algorithm. (3) The pri-
vacy extension is considered more secure the shorter the temporary addresses’
lifetime. This inherent belief has to be revised with respect to the presented
attack because more addresses are provided to the adversary within the same
time interval, making synchronization to the current state easier.

10 Conclusions

The IPv6 privacy extension aims to protect privacy by regularly changing the ad-
dress, and defines an algorithm for the generation of interface identifiers that are
combined with the advertised network prefix to form temporary IPv6 addresses.

In this paper, we presented an attack that questions the extension’s capability of
protection: An adversary is able to predict future temporary interface identifiers
once the internal state is known, and is further able to synchronize to this inter-
nal state by observing the victim’s previous interface identifiers. In consequence,
an adversary knows interface identifiers belonging to the same host; in turn, she
is able to perform address-based correlation of different transactions and infer
(private) details about people’s Internet behavior. Moreover, an adversary might
even retrace a host’s movement in the network based on the network prefixes
that are included in the respective addresses.

The presented attack is worthwhile as it does not solely identify a privacy
vulnerability but questions a whole measure for privacy protection. The privacy
extension was developed with the intention to impede address-based correlation,
and our attack shows that it does not meet its goal. Nevertheless, we believe that
the general idea of temporary addresses is valuable, and recommend a revision
of the algorithm for interface identifier generation. We want to highlight the fact
that merely replacing MD5 does not solve the problem, as the vulnerability arises
from the concatenation of successive interface identifiers, scarce randomization
and information leakage via a side channel. MD5 just makes the attack easier
due to its fast nature. Proper mitigation within the current definition appears
impractical, and we want to stress the importance of strategies beyond today’s
specification.

Operating systems appeared less vulnerable than originally assumed. This
does not, however, oppose a revision, as their robustness is gained by silently
disobeying the standard and should not be held as a virtue. The standard in
its current form can tempt developers to implement a vulnerable version of the
privacy extension, and should be adapted soon. This utmost concern is further
emphasized by the fact that the privacy extension is the only widely deployed
IPv6 mechanism using stateless address autoconfiguration that is intended to
protect against temporal as well as geographical address correlation.

Acknowledgments

The authors thank Peter Wurzinger, Dimitris E. Simos, Georg Merzdovnik and
Adrian Dabrowski for many fruitful discussions. This research was funded by
P 842485 and COMET K1, both FFG - Austrian Research Promotion Agency.

References

1. S. Landau, “Making Sense from Snowden: What’s Significant in the NSA Surveil-
lance Relevations,” IEEE Security & Privacy Magazine, vol. 4, pp. 54–63, 2013.

2. ——, “Making Sense from Snowden, Part II: What’s Significant in the NSA Surveil-
lance Relevations,” IEEE Security & Privacy Magazine, vol. 1, pp. 62–64, 2014.

3. J. Leber, “Amazon Woos Advertisers with What It
Knows about Consumers,” January 2013. [Online]. Avail-
able: http://www.technologyreview.com/news/509471/amazon-woos-advertisers-
with-what-it-knows-about-consumers/

4. V. Blue, “Facebook turns user tracking ’bug’ into data
mining ’feature’ for advertisers,” June 2014. [Online]. Avail-
able: http://www.technologyreview.com/news/509471/amazon-woos-advertisers-
with-what-it-knows-about-consumers/

5. A. Cooper, H. Tschofenig, B. Aboba, J. Peterson, J. Morris, M. Hansen, and
R. Smith, “Privacy Considerations for Internet Protocols,” RFC 6973, July 2013.

6. R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,” RFC 4291,
February 2006.

7. T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for Stateless Address
Autoconfiguration in IPv6,” RFC 4941, September 2007.

8. J. Ullrich, K. Krombholz, H. Hobel, A. Dabrowski, and E. Weippl, “IPv6 Security:
Attacks and Countermeasures in a Nutshell,” in USENIX Workshop on Offensive
Technologies (WOOT), 2014.

9. S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address Autoconfigura-
tion,” RFC 4862, September 2007.

10. F. Gont, “A Method for Generating Semantically Opaque Interface Identifiers with
IPv6 Stateless Address Autoconfiguration (SLAAC),” RFC 7217, April 2014.

11. T. Aura, “Cryptographically Generated Addresses (CGA),” RFC 3972, March
2005.

12. J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor Discovery
(SEND),” RFC 3971, March 2005.

13. T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor Discovery for
IP version 6 (IPv6),” RFC 4861, September 2007.

14. M. Dunlop, S. Groat, R. Marchany, and J. Tront, “IPv6: Now You See Me, Now
You Don’t,” in International Conference on Networks (ICN), 2011, pp. 18–23.

15. S. Groat, M. Dunlop, R. Marchany, and J. Tront, “IPv6: Nowhere to Run, Nowhere
to Hide,” in Hawaii International Conference on System Sciences (HICSS), 2011.

16. A. Alsadeh, H. Rafiee, and C. Meinel, “Cryptographically Generated Addresses
(CGAs): Possible Attacks and Proposed Mitigation Approaches,” in IEEE Inter-
national Conference on Computer and Information Technology (CIT), 2012.

17. A. AlSadeh, H. Rafiee, and C. Meinel, “IPv6 Stateless Address Autoconfiguration:
Balancing between Security, Privacy and Usability,” in Foundations and Practice
of Security, 2013, pp. 149–161.

18. D. Barrera, G. Wurster, and P. C. Van Oorschot, “Back to the Future: Revisiting
IPv6 Privacy Extensions,” LOGIN: The USENIX Magazine, vol. 36, no. 1, pp.
16–26, 2011.

19. S. Turner and L. Chen, “Updated Security Consideration for the MD5 Message-
Digest and the HMAC-MD5 Algorithms,” RFC 6151, March 2011.

20. J. M. Gosney, “Password Cracking HPC,” in Passwords Security Conference, 2012.
21. M. Heuse, “thc-ipv6 toolkit v2.7,” April 2015. [Online]. Available:

https://www.thc.org/thc-ipv6/
22. TechNet, “IPv6 Addressing (Tech Ref),” April 2011. [Online]. Available:

https://technet.microsoft.com/en-us/library/dd392266%28v=ws.10%29.aspx
23. M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. Osvik, and

B. de Weger, “Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue
CA Certificate,” in Advances in Cryptology (CRYPTO), 2009.

24. “eBASH (ECRYPT Benchmarking of All Submitted Hashes,” March 2015.
[Online]. Available: http://bench.cr.yp.to/results-hash.html

