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ABSTRACT
Suppose you buy a new laptop and, simply because you like
it so much, you recommend it to friends, encouraging them
to purchase it as well. What would be an adequate price for
the vendor of the laptop to pay for your recommendation?

Personal recommendations like this are of considerable
commercial interest, but unlike in sponsored search auctions
there can be no truthful prices. Despite this “lack of truth-
fulness” the vendor of the product might still decide to pay
you for recommendation e.g. because she wants to (i) pro-
vide you with an additional incentive to actually recommend
her or to (ii) increase your satisfaction and/or brand loyalty.
This leads us to investigate a pricing scheme based on the
Shapley value [5] that satisfies certain “axioms of fairness”.
We find that it is vulnerable to manipulations and show
how to overcome these difficulties using the anonymity-proof
Shapley value of [4].
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1. INTRODUCTION & RELATED WORK
Personal recommendation, or “word-of-mouth”, is recog-

nized as a highly effective marketing tool [2]. But despite
its relevance the problem of determining the worth of a rec-
ommendation, and hence a “right” price for it has not been
tackled yet. We present a simple model and show that (i)
there can be no truthful pricing scheme unless the prices are
all zero. We then (ii) use the Shapley value [5] to compute
provably “fair” prices, but also find that (iii) these prices are
vulnerable to manipulations unless we base our computa-
tions on the anonymity-proof Shapley value [4].

The work that is most closely related to our paper is [1].
There the authors study the sales price of an object as part
of a viral marketing campaign, but they do not consider
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the problem of how the recommendation itself should be re-
warded. In fact, they mention the problem of finding opti-
mal “cashbacks” in settings where the nodes behave strategi-
cally as an open problem. It should be clear that we are not
addressing the problem of what to recommend, a problem
typically encountered by stores such as Amazon and usually
solved using “collaborative filtering” techniques [3].

2. A CLASSIFICATION SCHEME
To highlight the differences between different advertising

schemes we present a simple classification scheme:
• Addressing: Personal vs. general.
• Trust: High vs. low.
• Intention: Altruistic vs. commercial.
To demonstrate the general applicability of this scheme,

we use it to classify a number of different advertising sce-
narios: A (1) billboard campaign, e.g. for a chain of pizza
restaurants, is not targeted, has low trust, and a commer-
cial background. A web search engine showing (2) sponsored
search results along with “organic” search results uses per-
sonal addressing, has low trust, and commercial intentions.
If you write a (3) testimonial on Amazon to convince other
customers to buy a book that you liked, then the addressing
is general, the trust is high, and the intention is altruistic.
If a friend asks you for advice on which laptop to buy and
you (4) recommend the model which you believe is best for
her, then this is personal, highly trusted, and altruistic.

Figure 1: Recommendations are the most success-

ful advertising medium as they dominate all other

schemes in all dimensions.

3. THE COOPERATIVE MODEL
We model the pricing problem as a coalitional game with

transferable payoff 〈N, v〉, where N is a finite set (the set of
players) and v is a function that associates with every non-
empty subset S of N (a coalition) a real number v(S) (the
worth of S). We use s to denote the seller, who is paying for



recommendations, and ri to denote the i-th recommender.
There is exactly one product for sale, and a single buyer.
We assume that neither the product nor the buyer belong
to the set N , but we implicitly model the buyer’s influence
on the worth of a coalition by the purchase probability. For
each coalition S the number v(S) is the total payoff that
is available for division among the members of S. We use
δ ≥ 0 to denote the seller’s margin or gain from selling the
product, i.e. the sales price minus the production cost. We
distinguish two scenarios for v:

• Linear. Without any recommendation the product is sold
with probability p ∈ [0, 1]. The recommendation of the i-
th recommender increases this probability by qi ∈ [0, 1 −
P

j 6=i
qj ]. If the recommenders R ⊆ {r1, .., rn} recommend

the product, then the probability is p+
P

i:ri∈R
qi.

• Threshold. If less than k recommenders recommend the
product, then the product is sold with probability p ∈
[0, 1]. If at least k recommenders recommend the product,
then it is sold with probability p+ q where q ∈ [0, 1 − p].

We refer to these scenarios as 〈N, v〉 (Linear) and 〈N, v〉
(Threshold). Our goal is to find a “fair” payoff vector x =
(xs, xr1

, . . . xrn
), where xs denotes the expected payoff to

the seller and xri
denotes the expected payoff to the i-th

recommender, i.e. the amount she is paid by the seller.
Since such a payoff vector gives only expected payoffs, it
can be translated into a pricing scheme in two ways:

1. Pay-per-Recommendation: The recommender gets paid
by the seller for every recommendation; successful or not.
That is, on every recommendation the seller s pays the
i-th recommender ri the money equivalent of xri

.
2. Pay-per-Sale: The recommender gets paid by the seller

for successful recommendations only. That is, on every
successful recommendation the seller s pays the i-th rec-
ommender ri the money equivalent of xri

/(p+f({s}∪R)),
where R is the set of recommenders.

In practice, the Pay-per-Sale approach might be preferable
as, on a successful recommendation, one could reasonably
assume p + f({s} ∪ R) = 1, sidestepping the problem of
estimating f({s} ∪R) with very little or no data. Note that
the prior probability p is easier to estimate using the seller’s
sales record and click-through or conversion-rates.

4. TRUTHFULNESS & FAIR PRICES
A payoff vector x is truthful w.r.t. the seller s, who holds

the private information on p, f , and δ, if it gives her the
incentive to reveal her information truthfully. Our first result
is that any truthful payoff vector must have

P

i
xri

= 0,
i.e., none of the recommenders gets paid. Intuitively, this is
because the seller can always pretend to have benefited less
from the recommendations then she actually did.

Theorem 1. There can be no truthful payoff vector x =
(xs, xr1

, . . . , xrn
) that has

P

i
xri

6= 0.

To ensure high market share and long-term revenue it might
still be beneficial for the seller to pay a “fair” price. The
Shapley value is the unique value satisfying a certain number
of “axioms of fairness” [5]. It is defined as follows: φi(v) =
P

S⊆N\{i}(|S|!(|N | − 1 − |S|)!)/(|N |!) · (v(S ∪ {i}) − v(S)).
Applying it to our model yields our second result.

Theorem 2. The Shapley value for the games (a) 〈N, v〉
(Linear) and (b) 〈N, v〉 (Threshold) is given by

(a) φs(v) = pδ + 1
2

P

i
qiδ and φri

(v) = 1
2
qiδ, and

(b) φs(v) = pδ+
“

1 − nk!(n−k)!
(n+1)!

”

qδ and φri
(v) = k!(n−k)!

(n+1)!
qδ.

Thus, according to the Shapley value, each individual rec-
ommender in the game 〈N, v〉 (Linear) should receive a share
of exactly one half of her contribution to the expected“extra
profit”of the recommender . In the game 〈N, v〉 (Threshold)
the fraction k!(n−k)!/(n+1)! is exactly the fraction of times
where this recommender’s recommendation “makes a differ-
ence”. These payoffs are fair in the sense that the payoff
to each recommender is proportional to the recommender’s
contribution to the “extra profit” the seller can expect.

5. AN ISSUE & A WAY OUT
What would be a “fair” payoff vector if each recommen-

dation was a collection of arguments? A straightforward
approach would be to compute the Shapley value on the
basis of arguments and to redeem recommender ri with
P

a∈Si
φa(v), where a is an argument from the set of argu-

ments A and Si is the set of arguments that recommender
ri possesses. The problem with this approach, however, is
that it might be beneficial for a recommender to withhold
some of her arguments:

• Example 1. Let A = {a, b, c}, v({a, b}) = v({a, c}) =
v({a, b, c}) = 1, and v({a}) = v({b}) = v({c}) = v({b, c}) =
0. Let S1 = {a} and S2 = {b, c}. Then r1 gets φa(v) = 1

2

and r2 gets φb(v) + φc(v) = 1
6

+ 1
6

= 1
3
.

• Example 2. Let A′ = {a, b}, v({a, b}) = 1, and v({a}) =
v({b}) = 0. Let S1 = {a} and S2 = {b}. Then r1 gets
φa(v) = 1

2
, r2 gets φb(v) = 1

2
, and r2 would be better off.

The anonymity-proof Shapley value [4] cannot be “tricked”
in this way. It is defined as follows: For any set A′ ⊆ A
of declared arguments the anonymity-proof Shapley value
ψa(v) for a ∈ A′ is: ψa(v) = (φa(v))/(

P

a′∈A′ φa′(v))v(A′).
And so it would be better to (i) compute the value ψa(v)
for each argument a ∈ A′ and to (ii) give each recommender
P

a∈Si
ψa(v). With this approach r1 and r2 would get ψa =

3/5 and ψb(v) + ψc(v) = 2/5 in Example 1 and ψa = 3/4
and ψb(v) = 1/4 < 2/5 in Example 2.

6. FUTURE WORK
An interesting direction for future work would be to an-

alyze the effect of pricing mechanisms - such as the ones
discussed here - on the strategic behavior of recommenders.

7. REFERENCES
[1] D. Arthur, R. Motwani, A. Sharma, and Y. Xu. Pricing

strategies for viral marketing on social networks. In
WINE’09, pages 101–112, 2009.

[2] J. J. Brown and P. H. Reingen. Social ties and word-of-
mouth referral behavior. Journal of Consumer
Research, 14(3):350–62, 1987.

[3] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl. Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems,
22(1):5–53, 2004.

[4] N. Ohta, V. Conitzer, Y. Satoh, A. Iwasaki, and
M. Yokoo. Anonymity-proof shapley value. Autonomous
Agents and Multiagent Systems, pages 927–934, 2008.

[5] L. S. Shapley. Contributions to the Theory of Games II,
chapter A Value for n-Person Games, pages 307–317.
Princeton University Press, 1953.


