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Abstract—Conformance checking takes a process model and
a process log as input and quantifies the degree of confor-
mance between both. This allows a comparison between the
intended behavior represented by the model and the actual
behavior captured by the log and is useful for many applications
such as auditing. Existing approaches calculate conformance
as follows: each deviation between model and log is corrected
by an alignment, e.g., inserting a missing event to the log,
that has a standard per-deviation cost of 1. While deviations
in the model can be handled this way, there is no way to
differentiate between intended (e.g., ad-hoc repair of instances)
and unintended (e.g., security breaches) deviations. Hence this
work proposes an advanced cost function, that allows for per-
deviation adjustments of the per-deviation costs. By inspecting
how the data elements of subsequent tasks are affected, it
becomes possible to automatically increase or decrease the per-
deviation costs of 1, thus allowing for an automatic classification
of deviation causes. The proposed approach works offline and
online (i.e., at runtime) and is evaluated based on a real-world
dataset from the manufacturing domain.

Index Terms—Process mining and business analytics, Online
Conformance Checking, Logging Errors, Data-driven Alignment
Costs

I. INTRODUCTION

In the field of process mining, conformance checking (CC)
is designed to determine if the logged process execution of
a business process correctly represents the desired execution
specified by a process model [8]. For this, CC takes a
process model and a process log as input and calculates the
conformance between model and log. A conformance of 1
means that the behavior described by the model is perfectly
reflected in the log and vice versa. A conformance < 1
indicates deviations in the behavior described by the model
and reflected by the log. Then a conformance deviation (CD)
has occurred. It is crucial to detect such CD and to investigate
their reasons in detail in order to, for example, be able to
distinguish intended deviations and undesired ones. The latter
might hint to security breaches or ad-hoc changes in process
instances due to problems during process execution.

Different types of CC can affect different artefacts, as
depicted in Fig. 1. More precisely, CC can detect deviations
that occur due to structural and semantic aspects. While
structural CC deals with missing/additional events or data,
semantic CC deals with deviations in timing, data or resources
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Fig. 1. Conformance Checking Types and Affected Artefacts

(i.e. irregularities regarding machines, humans or computing
resources that are used while enacting process activities).
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Fig. 2. Scenarios for Conformance Deviations (PM: Process Model)

Figure 2 shows resons and causes which might lead to
CD. An automatic differentiation between those causes as
well as the quantification of individual deviations is the main
motivation for this paper.

Process models can be descriptive, i.e., described by a rule
set consisting of rules defining the order of tasks for example,
allowing execution of more infrequent cases, since the rule set
typically is not covering every option possible. On the other
hand, process models can be normative, where the order of
the events is strict and each execution sequence not following
the process model is not correct.

In a scenario with a descriptive process model, Information
Systems (IS) with hard coded process logic contribute to an
event log. These IS may contain logic for infrequent cases,
that are not yet fully described by the process model. These
IS may furthermore contain bugs (erroneous code), or they
may be still under development introducing new behaviors.
Lastly the underlying IS may be compromised, leading to
security violations, or tampering. With CC it is possible to
point out deviations which may then be attributed to one of
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the aforementioned reasons.
A scenario with a normative process model on the other

hand is much less fuzzy. It can be assumed that the process
model is actively enacted by some kind of process engine,
thus most of the time the log will always be perfectly aligned
with the PM. It can be furthermore assumed that PM changes
only occur in line with CC changes. Thus the causes for CDs
can typically be attributed to either problems with resources
or security violations (tampering).

While previous publications (e.g. [20]) concentrated on
semantic aspects, this paper will concentrate strictly on miss-
ing/additional events (see in Fig. 1). The following
research questions have been defined:
RQ1: How can conformance deviations be quantified and

classified based on data elements?
RQ2: What observable properties exist that can be used to

adjust how severe the presence/absence of an event is?
RQ3: Can the quantification of a conformance deviation be

used for automatic classification of possible causes?
This paper proposes a novel approach to quantify the

overall conformance deviation cost of a single process
execution for a given PM and a given log, based on per-
deviation cost values assigned to missing / additional events
occurring in a process log. These per-deviation cost values can
then be automatically adjusted based on causes shown in Fig.
2. While ad-hoc repair typically is conducted in a way that
it does not affect any subsequent events, tampering can lead
to observable effects in the log. Thus, based on a set of well-
defined effects observable in the process log, the cost values
may be either decreased on increased. The per-deviation costs
contribute to advanced cost function which yields a CD cost
value. The CD cost value can then be utilized for automatic
classification of causes as depicted through in Fig. 2. In
addition, this approach can be applied on an event stream as
well, instead of a process log, to detect tampering as soon
as possible, therefore help the user repair the process more
efficiently.

While the proposed approach is valid for both, descriptive
and normative PMs, the evaluation has been conducted based
on a normative PM and a process log produced by a process
engine. For the evaluation an artifical dataset (1), as well as
a real-world dataset from the manufacturing domain (2) have
been used.

In Sec. II the required fundamentals on process mining and
conformance checking are established. Section III introduces
the advanced cost function and a possible implementation of a
algorithm incorporating it. The contribution is then evaluated
and discussed in Sec. IV. Related work in this field is presented
in Sec. V while Sec. VI presents conclusions and future work.

II. FUNDAMENTALS

In this section, selected fundamentals of process mining
(cf. [3]) necessary for the subsequent conceptual contributions

1http://gruppe.wst.univie.ac.at/data/edoc.xes
2http://gruppe.wst.univie.ac.at/data/timesequence.zip

are presented, i.e., event logs, process models, conformance
checking using alignments, and event streams. We illustrate the
fundamentals based on an example from the medical domain.

Figure 3 shows a process model of typical tasks that have
to be done for a patient in a hospital on a daily basis. At
first, the patient is asked about his or her general state of
health. Afterwards blood pressure and heart rate are measured
in parallel. At the end drugs are administered according to the
patient’s treatment plan3.

Event Log: An event log in process mining is typically
defined in the XES format [1]. Every time a task is executed,
it is logged, usually containing information on the patient as
the trace id, the actor, the time, the event name, and other data
elements, like the blood pressure or heart rate. A trace is a
sequence of all events relating to the same trace id, so in our
example all events for one patient on one day are a trace. An
event log is a sequence of traces.

Conformance Checking: Conformance checking controls
if a trace of an event log was correctly executed when
compared to a given process model. Based on the process
model depicted in Fig. 3, the following two traces can
be produced: (Administer Drugs, Check Blood
Pressure, Check Heart Rate, Check General
State of Health) and (Administer Drugs, Check
Heart Rate, Check Blood Pressure, Administer
Drugs, Check General State of Health). Figure
4 shows two traces t1 and t2 of a given log. While t1 is
already perfectly aligned to one of the possible sequences of
the model, t2 is not as the two events Check Heart Rate
and Administer Drugs) appear in the wrong order. Two
possible alignment for t2 are shown in Fig. 4.

Administer
Drugs

Check General
State of Health

Check Blood
Pressure

Check Heart
Rate

+

+

Fig. 3. Process Model for Patient Treatment in The Medical Domain

A row in Fig. 4 represents moves from one column to the
next one. If the same event is present in both rows, it is called

3Process aware treatment plans are elaborated in [11]
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a synchronous move. If there is an event in the aligned trace
but a skip symbol (�) in the model, it is called a log move.
On the other hand, if there is an event in the model and � in
the aligned trace, it is called a model move [2].

As can be seen in Fig. 4 with t2, there is sometimes
more than one possible alignment for one sequence. Check
General State of Health and Check Heart
Rate appear in the wrong order. This trace can be aligned
by either using a model move, i.e., � in the trace, followed
by a log move, i.e., � in the model or by using a log move
at first, followed by a model move. Since there could be
a plethora of possible alignments for a given trace and a
process model, a distinction has to be made to find the best
alignment. It could be viable to just count the number of
asynchronous moves, but often times log and model moves
have a different impact on the compliance of a trace. It may
be more severe to execute an event twice than to not execute
it at all. Therefore a standard cost function is introduced,
where a cost for every move is assigned in the alignment [8].
In our approach we are using a simple cost function, that
assigns the per-deviation cost of 0 for synchronous moves, 1
for non synchronous moves.

Cost: 0

Model   : (Drugs , Blood , Heart , Check,    >>   )  

t2          : (Drugs , Blood,  Check , Heart)

t2          : (Drugs , Blood , >>,     Check ,   Heart) Cost: 2

Model   : (Drugs , Blood ,    >>  , Heart,  Check)

t2          : (Drugs , Blood , Check,  Heart ,   >>  ) Cost: 2

 

Fig. 4. Possible Alignments for Two Traces

Event Stream: An event log contains traces, which
consist of a sequence of events. All the information on the
execution of a specific trace is available since the execution
is typically already finished (offline approach). Event streams,
by contrast, create an event immediately, after an event has
been executed. [22], [6] perform conformance checking on an
event stream rather than on an event log (online approach).
The main difference in working with an event stream, is that
the execution of a trace is ongoing and events can still be
appended to a sequence [21]. The approach presented in this
paper can be applied in an online and offline manner.

This work exploits process histories [19] to discover process
models. A process history HP :=< M0,M1, ..,Mn, .. >
contains a list of viable process models Mi, i = 0, 1, ..
that reflect the natural evolution of a business process P .
In addition to the models, the process history enriches a
process model with the expected data values for the data
elements attached to an event [20], e.g., the expected blood
pressure for a patient on a daily routine or even a sequence of
measurements stored as a time sequence [21], where a time
sequence is defined as a sequence of time-stamped data [10].

III. CONTRIBUTION

In this section the main contribution is explained in detail,
i.e., the definition of the advanced cost function and how to
gather the relevant data out of a process execution log.

A. Advanced Cost Function

Conformance checking aims to align a sequence of events of
a process log to a possible event sequence of a process model.
For every deviation, i.e., an unexpected event in a sequence,
a cost for the deviation is assigned. The alignment cost of a
event sequence of a process log consists of the sum of all
deviation costs. Currently, the cost for a deviation equals 1,
whereas correctly fitting events have a cost of zero assigned
[8].

While this cost function is generic, it does not use any
information on data elements of events at all, an event simply
is visible in a process execution log or not. We are introducing
a new generic advanced cost function that aims to use all of
the available information of the events in a process execution
log and improve the results of conformance checking.

This approach is focusing on deviations, i.e., a missing
or additional event in the process execution log to align to
a possible sequence of a process model. To achieve this,
acceptable values are gathered during the discovery of the
process model. Acceptable values are, values for data elements
that are compliant to the current process model. At the end
of the section, the finding of acceptable values depending on
the type of the data element is explained. When deviation
is detected in an alignment, the data elements of the event
after the deviation using a synchronous move are taken into
consideration. If the values of the data elements result in
correct values, even though an event is missing, the per-
deviation cost of the preceding deviation should be reduced,
since it indicates an error in logging if an event is missing
in the log, or a successful repair of the process instance if
an event is added to the log. Thus we define the following
advanced cost function:

Since the advanced cost function is applied on a deviation
using the data elements of the succeeding event, the standard
cost function is used before and the per-deviation cost of the
alignment is then altered using the advanced cost function. bm
represents the base cost for a deviation, often 1. Since more
than one data element can be attached to an event, the effect
of specific data elements can be controlled. D contains sets
of all acceptable values for each data element attached to an
event. The sets of acceptable values for each data element is
calculated using a process execution log as a test set or while
discovering the process model from an event stream, which
is explained in detail at the end of this section. The function
χ is the indicator function and checks if the value for a data
element, is correct by checking if the value is in a set of
acceptable values D. The indicator function returns 1 if the
value is present and 0 if not. The result is then multiplied by
a weight, ω. This weight allows user to distribute the impact
of data elements. The value of a weight is defined between
[0, 1] and the sum of all weights must be 1.



Definition 1:

advanced cost function(x) =

{
0, if no deviation
bm −

∑len(data elements)
n=0 (ωn ∗ bm ∗ χDn

(data elementsn)), otherwise

Let bm be the base cost per deviation and data elements, a set of selected data elements attached to an event. D is a set of
acceptable values for the data elements for this event, ω any number between 0 and 1, and χ the indicator function. This
function returns the altered cost for a preceding deviation.

The base assumption here is the usage of a process exe-
cution engine, which does not allow unwanted events to be
executed. If a deviation is still being detected, then there are
2 potential reasons for this deviation. Either, (a), an event is
missing in the log. This could be the due to an error in the log
or, worse, an attack on the process execution engine, skipping
events. On the other hand, if (b), an additional event is found
in the process execution log, it represents a repair event or an
attack as well. If the data elements of the succeeding event
contain acceptable values, an error in the log or a successful
repair attempt is assumed and the conformance deviation cost
of the alignment reduced. If the data elements do not contain
acceptable values, an attack or unsuccessful repair attempt is
assumed and the cost of the alignment is not reduced. Since
more than one data element can be linked to an event, each
of this data elements is inspected on its own.

B. Implementation

Input: M : Process Model with information on
acceptable values for data elements

T : A Trace, containing events of a process execution
κ: maximum of consecutive deviations, ≥ 1
Result: C: Cost for the alignment of T with M .

1 alignment = conformance checking(T)
2 deviations = [ ]
3 for move in alignment do
4 // iterate over every move in the alignment
5 if move.type == Deviation then
6 deviations.append(move)
7 if len(deviations) ¿ κ then
8 deviations.shift
9 if move.type != Deviation then

10 advanced cost =
advanced cost function(move.event) // the
event of the move

11 for m in deviations do
12 m.cost = advanced cost
13 deviations = [ ]
14 C = 0
15 for m in alignment do
16 C += m.cost
17 return C

Algorithm 1: Finding Cost of Alignment

Algorithm 1, shows a possible implementation of the elab-
orated approach. As parameters a process model, a trace and

κ are needed. The parameter κ is needed to define, how
many none synchronous moves in a row can be affected by
the advanced cost function, since depending on the process
and the process domain it may not seem feasible to reduce
the per-deviation costs for lots of deviations caused by data
elements of the event of the next synchronous move. At first
an alignment is calculated using a standard cost function. Af-
terwards a loop iterates through every move of the alignment
and collects κ deviation in a row. If a synchronous move is
found, the advanced cost function is applied to every collected
deviation and then the list is emptied, lines 12 and 13. After
the loop, the cost of this alignment is calculated, through a
loop collecting the cost for each move, and returned. Note
that, this algorithm can be applied in an online and offline
setting. For the offline setting, the alignment cost can be
generated for the complete trace. In an online setting, standard
online conformance checking is used [22], which is calculated
incrementally. Algorithm 1 is applied every time a new event
is detected on the trace the event relates to.

C. Data Element Acquisition

To use data elements of an event in a process execution log,
a distinction of the types of the data elements has to be made,
since not every data element type can be used.

Numerical Data: Numerical data elements provide a nu-
merical value which is continuous, can be compared to other
numerical values and has an ordering. In the process model,
for a numerical data element, an interval can be stored to check
if the data element in a trace is within a certain range. This
interval can be calculated for example using the interquartile
range (IQR), which equals the difference between the third
and first quartile. The lower bound usually then equals the
first quartile minus 1.5 times the IQR, while the upper bound
equals the third quartile plus 1.5 times the IQR.

In Fig. 5, a small example can be seen for numerical values
impacting the moving costs in an alignment. The process
model shows the only possible sequence is (A,B,C). Trace t
shows a possible alignment, where a deviation is seen in the
log, since event B is missing. We are using 1 for a our basic
per-deviation cost penalty, allow one missing event and weigh
each data element equally. Since 2 out of 3 data elements
at event C yield acceptable values and only one deviation is
used in this alignment before a synchronous move, it seems
plausible that event B has taken place and a potential error has
occurred while logging. Therefore the cost of this alignment
drops to 0.33 instead of 1.
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Model Trace

Data elements
x: [10,20]
y: [5,7]
Z: [30,40]

Data elements
x: 14
y: 6
Z: 35

Data elements
x: [20,30]
y: [9,15]
Z: [10,20]

Data elements
x: [56,80]
y: [2,5]
Z: [15,30]

Data elements
x: 40
y: 3
Z: 20

Fig. 5. Example for Numerical Values. A range classifying acceptable values

Categorical Data: This data element type represents data
elements with a fixed number of possible values, i.e., day of
the week. The XES format allows to relate a data element
to a specific extension, like lifecycle4, thus enabling us
to distinguish between categorical data elements and arbitrary
data elements. To see if a categorical data element contains a
correct value, a set of possible values for this data element, is
added to an event in the process model. The possible values
are values that occurred as value for this data element a certain
amount of times, e.g, 30%.

In Fig. 6, again a process model with only one possible
sequence, (A,B,C), is shown, but with a different set of relevant
data elements attached to event C, one of them categorical and
two numerical. Trace t features a possible alignment with a
deviation for event B. Again, we assume a basic per-deviation
cost of 1, allowing one missing event and weighing each data
element equally. Both numerical data elements are not within
the corresponding interval, but the categorical data element
is one of the 3 possible values, therefore the alignment cost
drops to 0.66 instead of 1.

Time Sequence Data: In [9] by Dunkl et al., 3 approaches
to relate a time sequnce of a sensor event stream to a process
model instance are introduced. The first one recording the
sensor event stream separately and matching them with the
process execution log afterwards. The second one, storing the
time sequence in a data element and the third one splitting the
sensor event stream into recurring events with a single value
into the process execution log. Since we are interested in the
time sequence of a data element from one specific event to
another, we are using the first approach and slice the time
sequence between two specific events for the conformance
checking.

In Fig. 7, the process model is enriched with the average
time sequences between two events. To compare the time
sequence of a process model and the time sequence of a trace
between two events, the corresponding time sequences are con-

4http://www.xes-standard.org/lifecycle.xesext
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Model Trace

Data elements
x: [10,20]
y: [5,7]
z: {start,begin}

Data elements
x: 14
y: 6
z: begin

Data elements
x: [20,30]
y: [9,15]
z: {intermediate}

Data elements
x: [56,80]
y: [2,5]
z: {complete}

Data elements
x: 40
y: 1
z: complete

Fig. 6. Example for Categorical Values

catenated together, i.e., for the sequence (A,B,C), the average
time sequences between A and B and, B and C are concatenated
and compared to the time sequence from the trace. To compare
time sequences, Dynamic Time Warping (DTW) is used
[5]. DTW can cope with time sequences of different lenghts
and calculates an alignment between both time sequences and
the cost for this alignment. If the costs are below a user specific
threshold, the costs for a deviation are reduced. To find the
average time sequence is calculated using DTW Barycenter
Averaging (DBA) [14]. The example in Fig. 7, using a
basic per-deviation cost of 1, allowing one missing event and
weighing each data element equally, shows that in event C,
both numerical data elements are within the interval of the
model and that the distance between the time sequence of data
element x from the process model and the time sequence of
data element x from the trace equals 1.73, which is below the
threshold of 5, therefore reducing the cost of this alignment
to 0.

Other data element types, e.g., arbitrary strings, are currently
not supported for this method, since no relation between the
data element values is known. Data element types represent-
ing a hierarchical structure, like an organizational chart, are
currently being assessed and are marked for future work.

Offline and Online:
A process history allows us to discover process models

online, so at runtime. The information for all relevant data
element types can be gathered at runtime, while time se-
quences from a sensor event stream can be stored online as
well. Therefore the information for the advanced cost function
differs, that only the currently available and processed data
from already executed events out of the event stream can be
taken into account. Calculating the alignment of a trace to
a process model online uses prefix alignments [22], which
are explained in Sec. V. The offline approach gathers the
information on data element intervals, sequences and sets
usually from a training set out of a process execution log
without the need for a process history.

In Sect. IV, the conformance checking method is evaluated

http://www.xes-standard.org/lifecycle.xesext
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Data elements
x: [1,1,1,1,1,1,1], th: 5
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z: [3,10]
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x: [1,2,1,2,1,1]
y: 6
z: 5

Data elements
x: [7,7,9,8,9,9,7] th: 5
y: [9,15]
z: [7,20]

Data elements
x: [5,6,7,8,8,7,5], th: 5
y: [2-5]
z: [3,10]

Data elements
x: [5,8,7,8,9,7,5]
y: 3
z: 8

Fig. 7. Example for Time Sequence Values. The average time sequence and
the maximal allowed distance to it are stored

using a real word data set from the manufacturing domain and
an artificial data set to cover every possible data element type.

IV. EVALUATION

The function and algorithm, elaborated in Sect. III are pro-
totypically implemented and evaluated based on an artificial
and real-world log from the manufacturing domain. At the end
of the section, the results are discussed.

The evaluation is twofold. The artificial example covers
numeric and categorical data elements, while the real-world
log is providing time sequence data for one data element.

A. Artificial Example

A test set5 consisting of 100 traces has been generated
following the process model in Fig. 3 and data elements.
The complete process model with information on the accepted
values for the data elements can be seen in Fig. 8. For
the heart rate and blood pressure, an interval is
presented, while for the status a set of acceptable values is
given.

As mentioned earlier, there are only two combinations
for a trace that corresponds perfectly to the process model,
i.e., either (Check General State of Health,
Administer Drugs, Check Blood Pressure,
Check Heart Rate) or (Check General State
of Health, Administer Drugs Check Heart
Rate, Check Blood Pressure). From the data set the
following acceptable values have been gathered.

• A set consisting of NOK for status in Check General
State of Health.

• A set consisting of NOK for status and the values ranging
from 61 to 101 for measurement in Check Heart
Rate.

5http://gruppe.wst.univie.ac.at/data/cc/dataset.zip

• A set consisting of NOK for status and the values ranging
from 85.375 to 134.375 for measurement in Check
Blood Pressure.

• A set consisting of NOK for status in Administer
Drugs.

Figure 8 shows the result of Alg. 1 using the process model,
κ equaling 1 and the sequences shown in the figure. Each event
only contains acceptable values.

Administer
Drugs

Check General
State of Health

Check Blood
Pressure

Check Heart
Rate

+

+
value: [85.375,134.375]
status: NOK

value: [61,101]
status: NOK

status: NOK

status: NOK

(a) 

Model: Drugs, Heart, Blood, Check

Trace :  >>    , Heart, Blood, Check

Cost: 1 Advanced Cost: 0

Advanced Cost: 0

(b) 

Model: Drugs, Heart, Blood, Check

Trace : Drugs,   >>  ,    >>  , Check

Cost: 2

Advanced Cost: 0

(c) 

Model: Drugs, Heart, Blood, Check

Trace : Drugs, Heart,   >>  , Check

Cost: 1

Movecost: 1 κ: 1

Movecost: 1 κ: 2

Movecost: 1 κ: 1

All tasks containing 
acceptable values 

Fig. 8. Artificial Example

Sequence a, (Check Heart Rate, Check Blood
Pressure, Check General State of Health), fea-
tures a deviation, since Administer Drugs is not present
in the sequence. Using the standard cost function the cost
of the alignment would be 1, but since all the values are
acceptable for the following event, the cost is reduced to 0
and an error in the logging is likely, since the heart rate and
blood pressure show correct values.

Sequence b, (Administer Drugs, Check General
State of Health), features a sequence with 2 deviations
in succession. With κ set to 1, the first missing event,
Administer Drugs, is not altered by the advanced cost
function. This can be considered by changing the κ to 2, which
reduces the cost of the alignment to 0.

Sequence c, (Administer Drugs, Check Heart
Rate, Check General State of Health), features
an interesting case, since again, the cost of the alignment can
be reduced from 1 to 0, since all values of Administer
Drugs are acceptable, but since the data element is usually
constant over the first 2 events of this process, it can be argued,
that this is not caused by an error in the log and the event
indeed, never has been executed. This shows that the selection

http://gruppe.wst.univie.ac.at/data/cc/dataset.zip


of relevant data elements is important and has a great impact
on the results.

B. Real World Example

s

s

s

s

s

Scan First Tray QR a7 1min

data.num > 0 && data.trays.any? 21x

Get Machine State a9 0.03min

exclusive

data.state == 'Cancelled' 100%

Spawn Production a8 0.01min

MT45 Start a1 0.29min

Wait For Machining End a4 4min

MT45 Take Out a10 1.3min

Next Position on Tray a17

IRB2600 Measure and Put on Tray a11 0.01min

Next QR a14

0%

s

s

Correct Queue a2

Fetch a1 4min

x

x

1

2

3

a

Fig. 9. Manufacturing Example. The ’S’ in the modeled tasks, shows that
a script is executed by the process execution engine after a task has been
completed.

The example shown in Fig. 9 is from the manufacturing
domain. The process model described in BPMN6 is depicted
without labels. The labels and decision conditions can be seen
in the second column, followed by the task IDs in the third
column, and the estimated times (and loop iterations) in the
last column.

Fig. 10. Shop Floor: Robot, Lathe, Micrometer, Stock

The whole process is executed using the cloud process
execution engine (CPEE) [13] on the shop floor (see Fig. 10)

6http://www.bpmn.org/

of a company specialized on prototyping and small production
batches.

Fig. 11. GV12 Part [21]

The process deals with the machining of a part for a
gas turbine (see Fig. 11), and models the interplay of three
machines and a stock area. MT45 is a lathe by the company
EMCO with produces the parts, IRB2600 is a robot by ABB
which extracts the machined parts from the lathe, moves it
through a high-speed 2D optical micrometer by Keyence in
order to get some production quality data. Afterwards the
IRB2600 puts each part onto an individual trays (see Fig. 12)
in the stocking area. Each tray is labeled with a QR code, it is
assumed that the trays are lined up sequentially in the stocking
area, so that only the first tray has to be scanned, the QR code
for each subsequent tray can then be calculated.

Fig. 12. Trays in Stock Area [21]

The process consists mostly of sub-processes which encap-
sulate the details of dealing with heterogeneous machine inter-
faces and operational safety (i.e. while the robot operates, no
humans are allowed in the vicinity of the robot). The process is
subject to frequent ad-hoc repair actions, as humans frequently
stroll into the safety area protected by Pilz light barriers.
Whenever that happens, the robot goes into an emergency stop
state, that has to be acknowledged by a human. Sometimes
the robot is in a position the requires manual position change
by an operator in order to avoid damaging equipment, which
means some steps in the process model have to be skipped or
repeated.

The second process shown in Fig. 9 is part of “MT45 Start”,
and deals with collecting a stream of data from 14 different
sensors in the lathe while the part is produced.

When looking at the loop a in Fig. 9, out of 21 it-
erations, 19 had only synchronous moves. The alignments
of the other 2 traces are shown in Tab. I and II. κ is set
to 1 and the base deviation cost is 1. The first alignment
features the swap of two events, 1 , while the other one

http://www.bpmn.org/


Model Get Spawn MT45 Start Wait Next Take out >> IRB2600 QR
Trace Get Spawn MT45 Start Wait >> Take out Next IRB2600 QR

TABLE I
ALIGNMENT OF THE FIRST DEVIATION

the missing of an event, 2 . The deviation cost for the first
alignment is 2, but in GV12 MT45 Take Out and Next
Position on Tray the data element tray positions
is present. The range for all 3 values for tray_positions
equals to [-362.87,437.13], [-382,21,417.79], [220,220]. The
values of the trace are in the range of [-112.87,-187.13], [-
182.21,217.79],[220,220], which are acceptable. For GV12
IRB2600 Measure and Put on Tray, the second de-
viation, features similar acceptable values, [-212.87, 187.13],
[-382.21, 417.79], [220.0, 220.0] are the acceptable values for
the data element value. The values of the trace -112.87,
-182.21 and 220 are acceptable, hence the conformance devi-
ation cost is reduced to 0.

For 2 , only one deviation is witnessed. The acceptable
values for Next QR are [-362.87, 437.13], [-382.21, 417.79]
and [220.0, 220.0]. Since the values for the deviated trace are
in between [-112.87,187.13],[-182.21,217,79] and [220, 220],
the conformance deviation cost is reduced to 0.

In Fig 13 the average time sequence for one sensor can be
seen as a red line, 3 . The measurements are done in the
event Fetch, which is done in a loop. The data set was split
into a training set consisting of 10 out of the 19 traces that
featured traces with a correct outcome, i.e., the part has been
correctly built.

A sensor provides time sequence data, so the alignment cost
can be reduced if the distance between the time sequence of the
model and of the deviated trace is below a certain threshold,
here 29.12. This threshold was set by a domain expert.
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Distance: 19.72

Alignment: >> , Fetch                           Cost: 0

Fig. 13. Time Sequences of Manufacturing Example. Red line is the average
time sequence, dashed from one trace. The cost is reduced because the distance
is below the threshold of 29.12

Because all traces out of the data set comply to the process
model, the first event of the process Correct Queue has
been randomly removed out of 20 traces.

Figure 13 shows the result of one trace 7 using the advanced
cost function. The cost of the alignment can be reduced to
0, because the distance between both time sequences is 19.72

779917b2a-5bac-4074-8690-4e4e5cdf0b8f

below the threshold of 29.12. This threshold is set by a domain
expert.

The 17 traces without missing events, have been aligned
perfectly with an alignment cost of 0. Out of the 20 traces, 8
traces resulted in an accepted outcome of the process, while
the other 12 traces yielded faulty parts. Out of the 8 traces,
the alignment cost of 4 traces has been correctly reduced to
0, since even though the Fetch event is missing, the time
sequence is below the threshold and the part is correct.

Out of the 12 traces with faulty parts, no alignment costs
have been reduced at all, since the time sequence difference
was to big. This leads to believe that the error is in the
execution and not in the logging, therefore the alignment cost
using the standard function is correct.

C. Discussion

The results of the artificial and the real world example
showed interesting results. The best results are achieved using
data elements that always yield the same values in every
process instance. For example, in the manufacturing domain,
the dimensions of the produced part are always the same, thus
the interval for this data elements can be calculated easily.
The same can be observed while using time sequence data
elements. Since the time sequences are fairly similar of all
process instances. On the other hand, i.e., if the values for the
data elements vary and do not follow a pattern, the advanced
cost function cannot be applied. For example in the finance
domain in a loan approval process, the amount of the loan can
vary greatly and the different instances are not related.

This leads to an important aspect of the advanced cost
function, the selection of relevant data elements of the events.
This can be seen in the artificial example.

As mentioned before, data element that vary greatly are
problematic, since acceptable values would contain a great
range. This would result in a reduced alignment cost, since
almost all values are acceptable for such a data element even
though it is faulty. Therefore experts have to select viable data
elements to apply the advanced cost function onto.

The value of a data element at a certain amount of time,
always leaves some room for interpretation. Time sequence on
the other hand shows the full history of a data element. For
example, the blood pressure of a patient should be elevated
for a certain time span instead of one measurement. It can be
seen that the advanced cost function on the real world data
set assigns lower alignment cost values for good parts and
does not reduce the alignment cost for faulty parts for 50%
of the traces. This leads to the assumption, that the costs be
calculated best using time sequence data.



Model Get Spawn MT45 Start Wait Take out Next IRB2600 QR
Trace Get Spawn MT45 Start Wait Take out Next >> QR

TABLE II
ALIGNMENT OF THE SECOND DEVIATION

Trace with Correct Parts Trace with Faulty Part
Traces with

reduced costs 50% 0%

Traces with
no reduced costs 50% 100%

TABLE III
RESULTS ALG. 1

V. RELATED WORK

Several algorithms for offline process conformance checking
exist [3]. In the beginning, process conformance checking
was performed doing a replay of process model using tokens,
typically a Petri Net. After the replay the fitness of a process
instance was then calculated using the missing and remaining
tokens that were still in the Petri net [17], [2]. Nowadays
alignments [4] are used to calculate the fitness of a process
instance by assigning a cost to missing or additional events
in the event log and or the process model. Calculating these
alignments is an immense computational task, since lots of
variations have to be considered finding the best alignment.
To tackle this problem, an approximation of the conformance
value is introduced by [18].

Usually this methods are done offline, i.e., ex-post. There-
fore the complete process has been already executed before
any results are yielded. There currently promising approaches
that aim at eliminating this drawback and perform confor-
mance checking at run-time using an event stream [7] instead
of an event log. In such an online approach [22], prefix align-
ments are calculated incrementally, since the future execution
path of a process instance is not available all the time.

These approaches usually are always focused on the control
flow of a process instance. To match an event of a process
instance to a process model, an identifier is needed. Most of the
currently available process mining techniques therefore match
events with their labels, which is a potential source of errors
[15].

To negate this, [16], are not using an event log at all, but
monitor the data elements related to a process instance. The
change of data elements are logged as a sequence of mea-
surements, a time series. A workflow net is then enriched by
these time sequences. Their approach aims at the differences
between this workflow net and the log of time sequences. In
comparison to presented work, the information of an event
log is not used anymore. The differences between the time
sequences is also not calculated on the time sequence as a
whole, like the difference between two time sequences, i.e.,
using Dynamic Time Warping [5], but instead detects if the
data elements are within certain intervals and increase or
decrease at the right time and ist done ex-post.

Another interesting aspect of current techniques in con-
formance checking is that usually the likelihood of ob-
served events is not taken into consideration. Stochastic
Conformance Checking [12] tackles this question. It
translates event logs into a stochastic language and stochastic
petri nets, which contains for probability of a specific transi-
tion firing. Stochastic Conformance Checking then calculates
the conformance of an event log by analyzing the distribution
of the stochastic petri net and the event log using the Earth
Movers’ Distance. This distance represents the cost for trans-
forming a pile of earth,i.e. a distribution, to another one. This
approach is not considering data elements attached to an event
and is done ex-post.

VI. CONCLUSION

We introduced a novel approach to calculate the deviation
cost in an alignment for conformance checking in an online
and offline way. The approach features an advanced cost
function to alter the deviation costs after an alignment using
the standard cost function is calculated. The data elements
that are attached to events are used to distinguish errors in the
logging and security breaches, giving a more detailed view on
the results of standard conformance checking.

The required data to make this distinction is gathered from
an process execution log. The approach is evaluated on an
artificial and a real world example. The results are promising.
For future work, working with hierarchical data elements, like
an organizational chart, is planned.
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