"The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-62522-1 11"

Defining Instance Spanning Constraint Patterns
for Business Processes Based on Proclets

Karolin Winter, Stefanie Rinderle-Ma

Faculty of Computer Science, University of Vienna, Vienna, Austria
{karolin.winter|stefanie.rinderle-ma}@univie.ac.at

Abstract. Instance Spanning Constraints (ISC) establish controls across
multiple instances of one or several business process types. Consider,
e.g., medical treatments during which drug-drug interactions might oc-
cur. Different treatments are likely to be modeled in separate processes,
but yet have to be coordinated in order to avoid harm for patients. ISC
typically stem from regulatory documents and must be integrated into
business processes. In order to facilitate ISC integration, we provide six
ISC patterns which are based on a real-world ISC collection as well as
a categorization of ISC. The presented ISC patterns are formalized us-
ing Proclets based on timed colored workflow nets. This formalization
choice results from an elaborated requirements analysis and enables the
synchronization of instances of one or several process types while em-
ploying well-known process modeling approaches. The ISC patterns are
evaluated through their application to i) selected business processes and
ii) existing approaches for batching and security in business processes.

Keywords: Patterns and Reuse, Business Process Modeling, Business Process
Compliance, Instance Spanning Constraints

1 Introduction

Today’s highly flexible and interconnected business environments require the
coordination of their business processes based on so called Instance Spanning
Constraints (ISC) which span multiple instances of one or several process types.
Figure [1| depicts a process model describing process type laboratory process.
During runtime, for each lab sample a corresponding process instance is cre-
ated and executed based on the process model. Assume that resource centrifuge
employed is limited. An ISC Wait until centrifuge is filled can be employed to
coordinate the efficient usage of the centrifuge. More precisely, if centrifuge of-
fers n slots, the ISC realizes a synchronization of n process instances in order to
execute the task centrifugation simultaneously.

ISC are present throughout many applications (e.g., security, batching, queue-
ing) and domains (e.g., manufacturing, medicine). Various aspects connected
with ISC, including modeling, enactment, and mining of ISC have been ad-
dressed by literature, e.g., [BI7IOT0T2/T9]. However, a “common ground” for

KWinter
"The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-62522-1_11"

documen-
resource=centrifuge tation

@ > examine » O > putin centrifu- put out of clean >
mixtures centrifuge > O > gation > O > centrifuge bin O

check
result

Fig. 1. Example of a laboratory process modeled as Petri net adapted from [18]

the different approaches, applications, and domains is still missing, though this
would foster the understanding, transparency, reuse, and sharing of ISC.

In business process management, patterns have already proven useful for cre-
ating “common ground”, including workflow patterns [I], change patterns [16],
compliance monitoring functionalities [6], and compliance patterns [I5]. In this
spirit, we think that a set of ISC patterns will be useful and support the usage,
transparency, and understandability of ISC across various approaches, applica-
tions, and domains. Hence, this work raises the following research questions:

1. Which ISC patterns are useful for establishing controls that span multiple
process instances of one or several process types?

2. How to formalize ISC patterns?

3. How to realize ISC patterns?

When addressing RQ1, RQ2, and RQ3, the paper follows the methodology
depicted in Fig. 2l The elicitation of ISC patterns is based on the ISC catego-
rization elaborated in [I9] which rests on the ISC collection presented in [3]. The
ISC categorization [19] comprises Category I: simultaneous execution of activi-
ties, Category LI: constrained activity execution, Category I1I: order of activities,
and Category IV: non-concurrent execution of activities accounting for around
85.9% of the examples from the 114 ISC examples in [3]. The remaining 14.1% of
the examples refer to ISC handling exceptions in process executions. This work
will elaborate on Categories I — IV for ISC pattern formalization. In particular,
the ISC patterns distinguish between ISC patterns for multiple instances of one
process type and ISC patterns for multiple instances of multiple process types.

Applications
of ISC Patterns
to Business
Processes

i Specification " S
Elicitation of i Selection of Formalization of
OB it 9|of Requirements | SSecit 0 B i Patterns [P

for ISC Patterns

Application of
Existing
Approaches
to ISC Patterns

Fig. 2. Methodology adapted from [6]

The ISC pattern formalization poses several challenges, for example, the rep-
resentation of an instance-spanning attribute such as the centrifuge in Fig.
Especially interesting is that ISC introduce virtual decision points between pro-
cess instances and/or process types as shown in [I8]. How can they be formalized,

but without allowing any undesired exchange of data between process instances
or types? This is a differentiation to approaches for modeling interorganizational
processes that are established based on the desired exchange of messages. Hence,
Sect. [2] states requirements on ISC pattern formalization and discusses timed col-
ored Workflow Nets and Proclets as formalization of choice. The formalized ISC
patterns are presented in Sect.[3] The evaluation focuses on ISC realization based
on the application to two business processes as well as to existing approaches
followed by a discussion (cf. Sect. . The application to existing approaches also
serves as related work discourse. The paper concludes in Sect.

2 Formalism Choice and Fundamentals

Overarchingly, the selection of a formalism for defining ISC patterns shall rest on
well established concepts in business process management. This facilitates the
understanding and sharing of ISC patterns for different business process scenar-
ios. In literature, there is a debate on how to treat compliance constraints and
business processes, i.e., keeping them separated as mostly the case for impera-
tive approaches or “mixing” them as mostly the case for declarative approaches.
With choosing an imperative formalism the definition of the ISC patterns be-
comes close to the business process definition (keeping the mental map) and
ISC patterns can be directly used within the processes. This way it becomes
transparent how the ISC are executed during runtime. Therefore, we opt for
an imperative approach. Further on, the formalism should have a well-defined
formal execution semantics in order to enable the smooth transformation into
executable process code. Finally, we aim at a formalism that enables the formal
analysis of ISC and related process types/instances.

Besides these general considerations, we postulate four requirements that
result from an analysis of the ISC categories from [19] based on ISC examples
from [3]. Let in the following, ISCg C ISC denote ISC that span one process
type and ISCp C ISC denote ISC that span multiple process types.

Category 1. ISC of this category refer to the simultaneous execution of events,
e.g., that Task centrifugation must be executed for five instances simulta-
neously. An example of an ISCp could be that When the centrifugation is
started a protocol must be created simultaneously. In this case the two tasks,
centrifugation and write protocol would be present in two separate pro-
cesses but must be coordinated and started simultaneously. Simultaneous exe-
cution of tasks is crucial for an ISC pattern formalism.

Category II. ISC of this category refer to the constrained execution of events
which can either refer to time or data constraints but also the absolute number
of executions of a task or process. An example for the first case is Loans may
only be approved as long as the amount is below $1M per day. This ISC depends
on the data element amount and the timespan day for a task approve loan. An
example for the latter is Two tasks B and B’ may only executed in sum 100 times
a day. Not only the absolute number but also the timespan day is of importance.
If B and B’ are located in different processes, this is an ISCp.

Category III. ISC of this category refer to the order of event executions and
only appear in the form of ISCp since for ISCg this would correspond to in-
tra instance constraints. Consider for example Before the centrifugation can
be started, the blood sample must have been taken. The corresponding tasks
centrifugation and take blood sample, though located in separate processes,
must be executed in a specific order.

Category IV. ISC of this category are also of type ISCp and describe the non-
concurrent execution of events, e.g., Tasks take blood sample and administer
inoculation may not be executed concurrently for one patient., whereas the two
tasks are present in different processes.

In order to cover Categories I — IV for multiple instances of one, but also
multiple process types, a formalism for defining ISC patterns should

— support instance correlation through an instance unique identifier (uid) in
case of multiple process types (— Rql).

— represent attributes shared by multiple instances/processes (e.g., centrifuge)
(— Rq2).

— support the synchronization of instances at well-defined points such as tasks
(— Rg3).

— support the simultaneous execution of tasks across multiple instances for one
or several process types (— Rq4).

Rql refers to instance correlation. Consider, e.g., a patient being subject
to multiple different treatment processes. If one examination has already been
carried out within one process, the other processes should skip this task. In order
to recognize for which instance, i.e., patient this task must be skipped, patient
instances must be identifiable via, e.g., a unique patient id (cf. [I9]). According
to [3], an ISC is linked to event attributes, so-called instance spanning attributes
which are time, resource and data. ISC can refer to multiple instance spanning
attributes at once. Consider, e.g., an ISC stating A user is not allowed to do event
approve loan if the total loan amount per day and clerk exceeds $1M. (cf. [18])
In this case, the ISC refers to three event attributes, i.e., the clerk (resource),
the same day (time) and the current loan amount (data). Therefore, instance
spanning attributes must be representable by an ISC pattern formalism (Rq2).
Moreover, instances must synchronize like in the centrifuge example where n — 1
instances have to wait before the centrifugation task until the n—th instance
has arrived (Rq3). Rq4 results from Category I. Note that Rql — Rq4 also
respect the requirements for a visual ISC modeling notation as stated in [4].

In summary, we are looking for a well-established, imperative design for-
malism with formal execution semantics and strong support of formal analysis.
Workflow nets (WF-nets) and suitable extensions are good candidates for an
initial selection. Table [1| evaluates this selection along requirements Rql — Rq4.

Colored WF-nets support the representation of event attributes and hence
meet Rql and Rq2. In order to enable the synchronization of instances of differ-
ent process types (Rq3) Proclets (cf. [14]), which allow for modeling interactions
of processes, were identified as potential formalism candidate. An alternative

Table 1. Assessment of WF-nets and suitable extensions

Formalism Rql Rq2 Rq3 Rqg4
WEF-net - e
Colored WF-net +\- 4+ - -
Timed WF-net - - +\- +
Proclets Based on timed colored WF-nets + + + +

+ fulfilled, - not fulfilled, +\- partly fulfilled

would be Workflow Modules which are often employed in process choreogra-
phy design (cf., e.g., [I7]) and exchange information via incoming and outgoing
places. In particular, exchange of instance specific information via colored tokens
is enabled which is not a desirable behaviour for ISC patterns since execution
of processes should just be coordinated without direct information exchange on
running instances. For satisfying Rq4 the formalism must be able to deal with
time aspects which is only the case for timed WF-nets. Consequently, just the
combination of timed colored WF-nets and Proclets fulfills all requirements. Pro-
clet instances relying on timed colored WF-nets have a state, support the notion
of a task and timed colored WF-nets are a graphical process notation providing
soundness which is a prerequisite for a Proclet [§]. Definitions and concepts of
the chosen formalism are described in the following.

Definition 1 (Petri/Workflow Net, [13]). A Petri net is a triplet (P,T, A)
where

— P is a finite set of places
— T is a finite set of transitions, such that PNT = ()
— AC(PxT)U(T x P) is a set of directed arcs.

A Petri net is called Workflow Net (WF-net) if and only if

— there is a dedicated source place where the process starts and that has no
incoming edge

— there is a dedicated sink place where the process ends and that has no outgoing
edge

— all nodes are on a path from the source place to the sink place.

The current state of a WF-net is determined by its markings.

Definition 2 (Marked Labeled WF-net, [13]). A marked WF-net is a pair
((P,T,A), M), where (P,T,A) is a WF-net and M € B(P) is a multiset over P
denoting the marking of the net.

Running example: Figure |3| de- o a, a, o a; a, o as 3 o
picts two processes in terms Pl s A }_> B, B S ¢ e
of marked labeled WF-nets. al @~ 3o]~ 3%

Based on Def. [2] process P1 P2 @"i A Fw B W‘ c }_@

depicted in Fig. [3] is then
given as ((Pp1,Tp1,Ap1),[s]) Fig. 3. Running Example, cf. [19]

with Ppy = {s,p1,p2,e},Tp1 = {A,B,C},Ap1 = {ai,as,...,a6}, whereas
ar = (SvA)7a2 = (A7p1)7a3 = (plvB)’a4 = (B,pg),a5 = (anC)aaﬁ = (Cae)'
The initial marking has one token in s. Process P2 is given analogously.

Since the requirements for ISC patterns demand the display of event at-
tributes as well as consumption times of tokens, we formalize the ISC patterns
through so called timed colored Workflow nets which are capable of dealing with
data- and time-related aspects [13].

Definition 3 ((Timed) Colored WF-net, [5/17]). A Colored WF-net is a
nine-tuple (P, T, A, X, V,C,G,E,I) with

(P, T, A) being a WF-net as described in Def.

— X is a finite set of nonempty types, called color sets

V:A— (PxT)U(T x P) is a node function that maps each arc identifier
to a pair (start node, end node) of the arc

— C': P — XY is a color function that associates each place with a color set

G: T — BooleanExpr is a guard function that maps each transition to a
predicate

E: A — Expr is an arc expression that evaluates to a multi-set over the
color set of the place

— I is an initial marking of the colored WF-net.

Timed colored WF-nets carry in addition to the token colors a non-negative
integer value called timestamp determining the time when the token can be con-
sumed by a transition [3]. Markings of places having timestamps correspond to
timed multisets and each colored WF-net also has a global clock which represents
model time [5].

For enabling the coordination across instances in the ISC pattern formalism,
Proclets based on timed colored WF-nets are used which are defined as follows.

Definition 4 (Proclet, Proclet Instance, Proclet System, [2/8/14]).

— A Proclet is a tuple Pr = (N, ports) consisting of a timed colored WF-net
N, a set of ports, ports C 2T x {in,out} x {?,1,*,+} x {?,1, *,+}E| where
each port pr = (Tpy, dirpy, cardy,, multy,)

o is associated to a set T,, C T of transitions, s.t. Vt1,ta € Ty holds:
I(t1) = I(t2)
o has a direction of communication diry, € {in,out}
o has a cardinality card,, € {?,1,*,+} specifying how many performatives
may or have to be sent or received upon an occurence of onet € Tp,
o has a multiplicity mult,, € {?,1,%,+} specifying how often all transi-
tions Ty, may occur together during the lifetime of an instance of Pr
e no two ports share a transition, Ty N Ty = 0, Ypr, pr’ € ports,pr # pr'.
and has a unique transition with no incoming arcs, and a unique transition
with no outgoing arcs. These transitions denote actions to create and finish
an instance of Pr respectively.

1?2 means 0 or 1, 1 exactly one, * arbitrary number, + at least one

— A Proclet instance corresponds to an instance of the process definition. Ports
exchange performatives, which have at least six attributes (time, channel,
sender, set of recipients, action and content) and are stored in the knowledge
base of a Proclet instance. The knowledge base can be queried by tasks and
contains public as well as private parts. The public part is identical for all
instances of the class, i.e. this part resides at the class level even though it
holds information about instances. The private part resides exclusively at the
instance level. A task may have a precondition based on the knowledge base.
A task is enabled if i) the corresponding transition in the WF-net is enabled,
it) the precondition evaluates to true, and i) each input port contains a
performative.

— A Proclet System consists of a finite set of Proclets together with a set of
channels via which a Proclet can interact with other Proclets. A naming
service keeps track of all Proclet instances.

3 Formalization of ISC Patterns

In the following, 6 ISC patterns are formalized, two for Cat. I and II, whereas

the distinction is made between one or multiple process types, and one for Cat.

IIT and IV. The ISC patterns are exemplary illustrated for two Proclets.
Figure [depicts the ba-

sic building blocks for ISC = Category |, I 5] Category Il

patterns which are similar, 2

in the case of Category I

and II for ISCg as well

as ISCp. These ISC pat- i 1 —

terns are just distinguish- — ‘@/,up """"" h g2

able based on the underly- ’ Timed colored WF-net

ing timed colored WF-net. Proclet

In case of Category III, the [5G | Ee caeden T

ISC pattern requires only Proclet i :

a onedirectional information Timed colored WF-net ||

exchange. Consider, e.g., B o O

must be executed before C’

Proclet

Proclet

’ Timed colored WF-net

1
Py

’ Timed colored WF-net

Proclet

Timed colored WF-net

pn PR Ph

ph<” “opn
(cf. Fig. [3)). The further ex- ’ Timed colored WF-net ‘ ‘
ecution of process P; con- P Timed colored WF-net
taining B is independent of AL
whether C’ has been exe-
cuted or not. Categories I Fig. 4. Building blocks for ISC patterns

and II in contrast require a
bidirectional information exchange. For Category IV two output ports and one
input port are necessary to formalize the ISC pattern.

Let N' = {N, }iz1,... n be aset of timed colored WF-nets with N; = (P;, T;, A;, X,
V;, Ci, Gi7 Ei,Ii) as defined in Def. With ﬂz Pz = ®7 mz Tz = ®7 mz Ai = @

— The set of ISC transitions is given as Trsc C |J, T;. ISC transitions are those
tasks affected by the ISC.

— The set of transitions preceding the ISC transition is given as Ty C |, T;.
For Category IV, the set of transitions succeeding the ISC transition is de-
fined analogously Tpost € U, Ts-

— The set containing all colors representing the instance spanning attributes
is denoted as Xrsc C U, i

Further, let PS be a Proclet system as defined in Def. [l For modeling ISC
the following must be at least fulfilled

— Each Proclet in PS consists of one element in A" and up to three ports. The
port connected to the ISC transition is always an input port, the others are
output ports. The output ports send performatives, holding information on
ISC colors in their content attributes. This enables to check ISC.

— If PS consists of more than one Proclet, YX;sc must, based on Rql, con-
tain at least one element. This element represents the corresponding in-
stance uid and is defined as type string, i.e., colset ID = string; Xisc =
{ID},var iscid : ID.

— Each Proclet instance, corresponding to a process instance, has a procg
which serves for identifying instances within the WF-net, i.e., there exists a
corresponding variable var proc;q : ID. Each X; is therefore not empty.

— The channel linking the Proclets based on the ISC is denoted as C'h. If the
ISC conditions are fulfilled, the corresponding proc;4(s) are handed to the
content attribute of a performative.

— Since the knowledge base keeps track of all performatives we know which
instances have already executed their ISC task(s). Instances that have done
so may not further be considered for checking the ISC condition.

Whether ISC transitions can fire depends on the tokens in the preceding
place and whether the input port contains a performative.

The ISC patterns are formalized and illustrated based on the timed colored
WF-nets depicted in the running example (cf. Fig. [3] Sect. . Note that the ISC
patterns can be extended to more than two processes as well.

3.1 Category I — Simultaneous Event Execution

For ISC of this category, no matter if one or several process types are considered,
it holds that, as long as the condition for the ISC is not fulfilled, all instances
have to wait before the ISC transition(s). As soon as the condition is fulfilled, all
tokens have to be consumed simultaneously by the ISC transition(s). Therefore,
all tokens have a suitable timestamp indicating that they need to be consumed
without delay. This timestamp corresponds to the timestamp of the global glock
when the transition preceding the ISC transition fires. By that, we ensure that
the timestamp is “old enough” such that the ISC transition can always fire.
Moreover, we demand that transitions fire as soon as the enablement conditions
according to Def. [f] are fulfilled. In the case of multiple process types, all global

clocks start with 0. We assign the timestamp to the color set representing the
Proc;q, i.e., this becomes a timed color set with initial timestamp 0.

Simultaneous ISC Pattern (one process type)

Description: As long as the ISC is not fulfilled, all instances have to wait before
the ISC transition. As soon as the ISC condition is fulfilled, all affected instances
must execute the ISC transition simultaneously.

Formalization: Let A € T,..,B € Tisc,pr = ({A},out,+,1) and pr’ =
({B},in,1,+). The guard function G for B must identify the correct tokens
based on the proc,q, i.e., transition B may only consume the tokens having the
correct proc;q. This information is encoded in the content attribute of the per-
formative received via pr’. All tokens must be consumed by B simultaneously.

Simultaneous ISC Pattern (multiple process types)

Description: Until the ISC condition is not fulfilled, all instances have to wait
before the ISC transitions. As soon as the ISC condition is fulfilled, all affected
instances must execute the ISC transitions simultaneously.

Formalization: Let A, A" € T,,.,B,B, € Trsc,pr1 = ({A},out,+,1),pro =
({A'}, out,+,1),pr] = ({B},in,1,+) and pry, = ({B'},in,1,+). The guard
functions G1, G for B, B’ must identify the correct tokens based on the proc;q,
i.e., transitions B, B’ may only consume the tokens having the correct proc;q.
This information is encoded in the content attribute of the performative received
via pri, prh. All tokens must be consumed by B and B’ simultaneously.

3.2 Category II — Constrained Event Execution

The ISC patterns for this category are based on the same building blocks as those
for Category I. However, there are two differences. First, simultaneous execution
is not of importance and second, according to the real-world ISC examples,
mostly ISC conditions correspond to thresholds, like, e.g., the amount in the
before mentioned example for Category II. This leads to the situation that, as
long as this threshold is not met, instances may be executed.

Constrained ISC Pattern (one process type)

Description: As long as the ISC threshold is not reached, all instances may
execute the ISC transition. As soon as the ISC threshold has been reached, all
affected instances must wait until the ISC threshold can be reset.
Formalization: Let A € T,,..,B € Tisc,pr = ({A},out,+,1) and pr’ =
({B},in,1,+). The guard function G for B must identify the correct tokens
based on the proc;q, i.e., transition B may only consume the tokens having
the correct proc;q. This information is encoded in the content attribute of the
performative received via pr'.

Constrained ISC Pattern (multiple process types)

Description: As long as the ISC threshold is not reached, all instances may
execute the ISC transitions. As soon as the ISC threshold is has been reached,
all affected instances must wait until the ISC threshold can be reset.

Formalization: Let A, A" € T,,.,B,B, € Tisc,pr1 = ({A},out,+,1),pro =
({A'},out,+,1),pry = ({B},in,1,+) and pry, = ({B’},in,1,4). The guard
functions G1, G for B, B’ must identify the correct tokens based on the proc;q,
i.e., transitions B, B’ may only consume the tokens having the correct proc;q.
This information is encoded in the content attribute of the performative received
via pri, prh.

3.3 Category III — Ordered Event Executions

ISC of this category span multiple process types. It holds that ISC transitions
may only consume tokens if the preceding place contains the associated token
and the preceding transition, that needs to be executed first and is present in a
different process, has already been executed.

Ordering ISC Pattern

Description: As long as the instance containing the transition which precedes
the ISC transition has not arrived at the synchronization point, the correspond-
ing instance, i.e., the one with the same instance uid, located in a different
process may not execute the ISC transition. As soon as the transition preceding
the ISC transition has been executed the associated instance may execute the
ISC transition.

Formalization: Let B € Ty, C’ € Trsc,pr1i = ({B},out,+,1) and pry =
({C’},in,1,4). The guard function G for C’ must identify the correct tokens
based on the proc;y. Transition C’ can only consume the token having the correct
proc;q. This information is encoded in the content attribute of the performative
received via prj.

3.4 Category IV — Non-concurrent Event Execution

For ISC of this category only one transition involved in the ISC is allowed to con-
sume a token, all other transitions have to wait until it is finished. Consider, e.g.,
that two tasks B and B’ may not be executed concurrently. In order to formalize
this ISC pattern, an additional set Tp,s C |J; T; containing the transitions suc-
ceeding an ISC transitions must be introduced. This allows for checking whether
one task has already finished since its succeeding transition was executed.

Non-concurrent ISC Pattern

Description: If an ISC transition has been started all other associated instances,
i.e., those having the same instance uid, have to wait until it is completed. Af-
terwards, only one other associated instance may start its ISC transition and
all remaining instances have to wait until it is finished. This continues until all
instances have executed their ISC transitions.

Formalization: Let A, A’ € Tp,e, B, B’ € T1sc,C,C" € Tpys and ports pry =
({A}, out, +,1),pro = ({A'}, out, +,1), pri = ({B},in,1,+),pry = ({B'},in,1,4+),
pry = ({C},out,+,1) and pry = ({C'}, out, +,1). The guard functions Gp, G
for B, B’ must identify the correct tokens based on the proc;q. Transitions B, B’
can only consume the token having the correct proc;q. This information is en-
coded in the content attribute of the performative received via pri, prs.

4 Evaluation of ISC Patterns

ISC patterns are evaluated through their application in processes in Sect. [£]]
and in existing approaches in Sect. followed by a discussion in Sect.

4.1 Application to Business Processes

Centrifuge Example. Figure [5| picks up the centrifuge example outlined in
the introduction with corresponding ISC Wait until centrifuge is filled. In order
to model the Simultaneous ISC pattern, a Proclet system is given by a timed
colored WF-net and ports = {pr,pr'}, pr = ((put in centrifuge),out,+,1),

pr’ = ((centrifugation),in,1,+) as well as one channel Ch.

Moreover, (put in centrifuge) € Tpre, (centrifugation) € Trsc, ¥ = {NUM,ID},
var procid : ID,var slots : NUM and Xrsc = {NUM} C X whereas ID is a
timed color set.

if number of instances in the knowledge base H
corresponds to number of centrifuge slots, send
performative viapr' :
else wait

! ISC: "Wait until centrifuge is filled." Pattern Instantiation:

E colset NUM = int; colset ID = string; (timed) @ global clock
var slots : NUM; var procid : ID; timestamp 0

examine put in centrifu-
O‘> mixtures }_>O_>centrlfuge}_>0_>{ gation

[documen-|
tation

put out of | clean .
Centrifuge| bin O finish

check
result

Fig. 5. Recap of laboratory process including the Simultaneous ISC Pattern (one pro-
cess type)

Printer Example. Figure |§| depicts three processes adapted from [19] whereas
P1 outlines the handling of flyer orders, P3 the handling of poster orders and
P2 the corresponding billing process for both flyer and poster orders. In [19],
six different ISC are outlined, but for illustration purposes, only one example
is depicted in this paper while the remaining ISC examples are provided as
supplementary materialﬂ The ISC states Flyers and posters as well as bills
and posters cannot be printed concurrently on one printer since they require
a different paper format which can be modeled using the Non-concurrent ISC
pattern. Each process is represented by a Proclet system PS; = (N;, ports;),i =
1,2,3 based on a timed colored WF-net Nj;, ports; = {pr;, pri, pr;}, with

pr1 = ((send draft to customer),out,+,1),pr; = ((print flyer),in,1,+),

pr; = ((deliver flyer),out,+,1) and the remaining ports defined analogously,
as well as one channel Ch. Moreover, (send draft to customer), (write bill),

2 http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=iscpatterns

http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=iscpatterns

(design poster) € Ty, (print flyer), (print bill), (print poster) € Trsc,
(deliver flyer), (deliver bill), (deliver poster) € Tpost, X = {ID? RES} and
Yi1sc = {ID? RES} with corresponding variables as depicted in Fig. @

“Flyers and posters as well as bills and posters if an instance of the flyer or bill process has not finished printing, i.e., fired its !

| 1sc:.comat b pried concrety o are e patter nstantation: {0210 ECSS0 I S LD AL R A e g g seme
since they require a different paper format." else all instances may continue

k[)Pﬁ {_4_)pr1 n
colset ID = string;
.(,wE print deliver finish colset RES = string;
7)2 . m . . o . var procid : ID;
var iscid : ID;
var printer : RES;
5

\I}Drz {_K\prz'

colset ID = string;
colset RES = string;
var procid : ID;

var iscid : ID;

var printer : RES;

colset ID = string;
colset RES = string;
rint deliver var procid : ID;
O— &5 O O misn | | Varcid . o;
var printer : RES;

Fig. 6. Printer example adapted from [I9] including the Non-concurrent ISC Pattern

4.2 Application to Existing Approaches and Related Work

Existing approaches in the context of ISC address the modeling, implementa-
tion, and execution of ISC in business processes [BI7] and the usage of ISC for
applications such as batching and security. How ISC patterns can be applied for
batching and security is discussed in the following.

Batching [10]. Batching can be either parallel, meaning that “instances for one
activity are executed simultaneously and get terminated before the next activity
is executed the same way” or sequential, i.e., “activities within a batch region are
executed for one process instance (case) before the next one can be started.” A
batching region is determined by four parameters, the i) groupingCharacteristic,
ii) activationRule, iii) maxBatchSize and iv) executionOrder. The identification
of instances based on instance spanning attributes and related instances via the
instance uid corresponds to i). The ISC, e.g., task centrifugation may only
be started if the centrifuge is filled corresponds to ii) activationRule whereas
iii) the maxBatchSize is determined by, e.g., the number of centrifuge slots. The
execution order in this case is parallel and the Simultaneous ISC pattern can
be applied. For sequential processing, the Non-concurrent ISC Pattern can be
applied. Since batching typically spans just one process type, the process must
be duplicated in order to be able to apply the Non-concurrent ISC Pattern.

Security [11]. Security constraints such as access control and separation of
duties within processes can be modeled using the Constrained ISC pattern, in
one or multiple process type form. Consider, e.g., two tasks grant loan present
in process P1 and check loan accommodations present in process P2. A user

u having granted a loan with uid = 123 may not check the accommodation of
the loan case with uid = 123. Based on token colors representing the user and
the uid the execution of task check loan accommodations by user u can be
prohibited for the case with uid = 123. Only a second user is allowed to execute
task check loan accommodations for the instance with wid = 123.

4.3 Discussion

The presented ISC patterns can be considered comprehensive w.r.t. the existing
ISC categorization [19] and collection of real-world ISC [3]. Still, new ISC exam-
ples might lead to additional ISC patterns. Besides, the current collection of ISC
patterns does not cover ISC for handling exceptions which might be quite diverse
since exceptions can be manifold. Existing workflow patterns for exception han-
dlingﬂ seem to be a useful starting point for modeling ISC exception handling
patterns. Moreover, processes and process instances might be subject to mul-
tiple ISC at once, i.e., ISC patterns must be combinable without interrupting
and influencing each other. Regarding the simplicity of the formalization choice:
Consider as an ISC example five tokens need to be consumed simultaneously by
transition B. This could simply be modeled by having capacity 5 for the arc
before task B and a timed WF-net without colors. So, for this simple ISC, Pro-
clets and colors are actually not required. However, as mentioned before, ISC can
have further conditions. Consider, e.g., task B must be executed for five instances
simultaneously by the same resource R1. In this case, we need to check whether
five instances have arrived before task B for R1, i.e., token colors are required
in order to model and consequently check the resource. Additionally, we need a
knowledge base that has stored all instances and corresponding data values and
can be queried whether enough instances have arrived for resource R1. Hence,
the expressiveness of Proclets based on timed colored WF-nets is mandatory.

5 Conclusion

This work presents 6 patterns for constraints spanning multiple process instances
of one or multiple process types. These ISC patterns are based on a collection
of real-world ISC examples and an existing ISC categorization. Several require-
ments imposed by ISC, like support of instance correlation or the need for rep-
resenting instance spanning attributes, led to selecting Proclets based on timed
colored Workflow nets for ISC pattern formalization. ISC patterns are evaluated
through an application to business processes as well as existing approaches such
as batching and security. The discussion outlines several links to future work in-
cluding the elicitation and formalization of ISC patterns for exception handling
as well as investigating how ISC patterns can be combined without introducing,
e.g., a blocking of the process execution. When implementing and executing ISC
at runtime, aspects such as scalability become subject for investigation well.

3 http://www.workflowpatterns.com/patterns/exception/

http://www.workflowpatterns.com/patterns/exception/

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and parallel databases 14(1), 5-51 (2003)

Fahland, D., de Leoni, M., van Dongen, B., van der Aalst, W.: Checking behavioral
conformance of artifacts. BPM Center Report BPM-11-08, BPMcenter. org (2011)
Fdhila, W.; Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and
formalization of instance-spanning constraints in process-driven applications. In:
Business Process Management. pp. 348-364 (2016)

Gall, M., Rinderle-Ma, S.: Visual modeling of instance-spanning constraints in
process-aware information systems. In: Advanced Information Systems Engineer-
ing. pp. 597611 (2017)

Jensen, K., Kristensen, L.M.: Coloured Petri nets: modelling and validation of
concurrent systems. Springer Science & Business Media (2009)

Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Com-
pliance monitoring in business processes: Functionalities, application, and tool-
support. Inf. Syst. 54, 209-234 (2015)

Mangler, J., Rinderle-Ma, S.: Rule-based synchronization of process activities. In:
Commerce and Enterprise Computing. pp. 121-128 (2011)

Mans, R., Russell, N.C., van der Aalst, W.M., Bakker, P.J., Moleman, A.J.,
Jaspers, M.W.: Proclets in healthcare. Journal of Biomedical Informatics 43(4),
632-649 (2010)

Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., Vanhoof, K.: Retrieving
batch organisation of work insights from event logs. Decis. Support Syst. 100, 119-
128 (2017)

Pufahl, L., Meyer, A., Weske, M.: Batch regions: Process instance synchronization
based on data. In: Enterprise Distrib. Object Comp. pp. 150-159 (2014)

dos Santos, D.R., Ranise, S.: On run-time enforcement of authorization constraints
in security-sensitive workflows. In: Software Engineering and Formal Methods. pp.
203-218 (2017)

Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay
prediction in multi-class service processes. Inf. Syst. 53, 278-295 (2015)

Van Der Aalst, W.: Process mining: discovery, conformance and enhancement of
business processes, vol. 2. Springer (2011)

Van Der Aalst, W.M., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A frame-
work for lightweight interacting workflow processes. International Journal of Co-
operative Information Systems 10(04), 443-481 (2001)

Voglhofer, T., Rinderle-Ma, S.: Collection and elicitation of business process com-
pliance patterns with focus on data aspects. Bus Inf Syst Eng (2019)

Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3), 438—466 (2008)

Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer (2007), https://doi.org/10.1007/978-3-540-73522-9

Winter, K., Rinderle-Ma, S.: Discovering instance-spanning constraints from pro-
cess execution logs based on classification techniques. In: Enterprise Distributed
Object Computing Conference. pp. 79-88 (2017)

Winter, K., Stertz, F., Rinderle-Ma, S.: Discovering instance and process spanning
constraints from process execution logs. Information Systems 89, 101484 (2020)

https://doi.org/10.1007/978-3-540-73522-9

	Defining Instance Spanning Constraint Patterns for Business Processes Based on Proclets

