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Abstract. Causal inference by a graphical Granger model (GGM)
among p variables is typically solved by p penalized linear regres-
sion problems in time series with a given lag. In practice however,
the estimates of a penalized linear regression after a finite num-
ber of steps can be still far from the optimum. Furthermore, the
selection of the regularization parameter, influencing the precision
of the model is not trivial, especially when the corresponding de-
sign matrix is super-collinear. In this paper, for the first time we
concept a graphical Granger model as an instance of combinato-
rial optimization. Computing maximum likelihood (ML) estimates
of the regression coefficients and of the variance for each of p vari-
ables we propose an information-theoretic graphical Granger model
(ITGGM). In the sense of information theory, the criterion to be min-
imized is the complexity of the class of the selected models together
with the complexity of the data set. Following this idea, we propose
four various information-theoretic (IT) objective functions based on
stochastic complexity, on minimum message length, on Akaike and
on Bayesian information criterion. To find their minima we propose
a genetic algorithm operating with populations of subsets of regres-
sor variables. The feature selection by the ITGGM with any of the
functions is parameter-free in the sense that beside the ML estimates
which are for each and within the model constant, no adjustable pa-
rameter is added into these objective functions. We further provide a
theoretical analysis of the convergence properties of the GGM with
the proposed IT functions. We test the performance of the functions
in terms ofF1 measure with respect to two common penalized GGMs
on synthetic and real data. The experiments demonstrate the signifi-
cant superiority of the IT criteria in terms of F1 measure over the two
alternatives of the penalized GGM for Granger causal inference.

1 INTRODUCTION
Granger causality is a popular method for causal inference in time
series due to its computational simplicity. The assumption of this
approach is that knowing a cause helps to predict its effects in the
future. Over the last decade, graphical Granger models, i.e. the mul-
tivariate Granger causality based on vector autoregressive regression
(VAR) extended the Granger concept for more than two time series.
Due to the high number of involved variables, the corresponding op-
timization problems are ill-posed and a penalization criterion can be
enforced, e.g. in [2] and [18]. The solutions of the corresponding
penalized problem ideally converge to the solution of the original
constrained problem. This is however not guaranteed since the Lasso
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variable selection by the Gaussian regression can be without addi-
tional condition inconsistent [41]. Consequently, there may be mul-
tiple solutions that minimize the Lasso loss function. Another issue
is the selection of the regularization parameter.
Instead of searching for an optimum in an infinite continuous search
space with additional penalties, in this paper we present the graphical
Granger problem as an instance of the combinatorial optimization in
a finite search space. In the sense of information theory, the criterion
to be minimized is the complexity of the class of the selected mod-
els together with the complexity of the data set. By means of ML
inference, we compute the estimates of the variance and of the re-
gression coefficients of the GGM for each of p variables. Based on
this pair of statistics we propose the IT criteria for GGM. The key
idea of the IT criteria is that if a statistical model compresses data,
then the model captures (with high probability) the regularities in the
data. Due to the bias-variance tradeoff problem, a similar tradeoff
applies to the selection of an appropriate criterion for a data set for
the graphical Granger model with assumptions on a model. Conse-
quently, one cannot set one IT objective function as a universal one.
The main contributions of the paper are as follows:

Y For the first time, we concept the feature selection problem by a
graphical Granger model as a problem of combinatorial optimiza-
tion.

Y We convert the matrix of lagged time series in GGM into a fixed
design matrix form for each of p variables. By maximum likeli-
hood we computed a pair of statistics describing each of p vari-
ables in the GGM with the super-collinear design matrix.

Y We propose four IT objective functions for GGM with these statis-
tics.

Y We provide a theoretical analysis of convergence properties of the
GGM with the proposed IT functions.

Y We design the information-theoretic genetic algorithm ITGA, op-
erating with populations of subsets of regressor variables.

Y Our results on causal inference with synthetic and real data
demonstrate the significant superiority of the IT criteria based on
stochastic complexity, on minimum message length, on Akaike
and on Bayesian information criterion, in terms of F1 measure
over two common penalized GGMs for Granger causal inference.

The paper is organized as follows. Section 2 presents the necessary
background. Related work and research gaps are discussed in Section
3. Section 4 brings the problem of graphical Granger model into the
form suitable for the IT criteria, further the derivation of the IT crite-
ria for GGM as well as theoretical analysis of convergence properties
of the GGM with the IT criteria. Our optimization procedure ITGA
is proposed in Section 5. Experiments on synthetic and real data are
in Section 6. Section 7 is devoted to conclusions.



2 PRELIMINARIES
2.1 Granger causality
Granger causality [9], has been for decades a popular tool to discover
temporal relationships among variables. Assume two stationary time
series x � �xtSt � 1, . . . , n� and y � �ytSt � 1, . . . , n�. Let the fol-
lowing two models represent two autoregressive models correspond-
ing to time series y with and without the past observations of x taken
into consideration:

yt � α1y
1
� � � � � αt�1y

t�1
� β1x

1
� . . . (1)

� βt�1x
t�1

� εt

yt � α1y
1
� � � � � αt�1y

t�1
� εt. (2)

Following the principle of Granger causality, x Granger-causes y if
the model (1) significantly improves the predictability of y compar-
ing to the model (2). This concept can be extended to p A 2 time
series and time lag d C 1. The corresponding model to this is called
graphical Granger model. For simplicity, the lag d is assumed for all
time series the same. Let xt1, . . . , x

t
p be p time series up to time n.

The vector-autoregressive (VAR) model is for i � 1, . . . , p given by:

xti �X
Lag
t,d β�i � ε

t
i (3)

where XLag
t,d � �xt�d1 , . . . , xt�11 , . . . , xt�dp , . . . , xt�1p � and β�i is the

transpose of the matrix of the regression coefficients and εti is white
noise. The time series xj Granger–causes the time series xi for the
given lag d, denote xj � xi for i, j � 1, . . . , p if and only if at least
one of the d coefficients in j � th row of βi in (3) is non-zero [2].

2.2 Causal inference by penalization
Since (3) is in general an ill-posed problem, it is for each i � 1, . . . , p
reformulated for numerical treatment by adding a penalty, serving
as a variable selection method estimating the effects of variables on
each other, i.e.

β̂i � arg min
βi

n

Q
t�d�1

�xti �XLag
t,d β�i�2 � λP �βi� (4)

for a given d and all t � d � 1, . . . , n and i � 1, . . . , p and a penalty
P �βi� and λ a regularization parameter. Granger model assumes the
same lag d for each i which we also consider. Similarly, the time se-
ries xj Granger–causes the time series xi for the given lag d, denote
xj � xi for i, j � 1, . . . , p if and only if at least one of the d coeffi-
cients in the j � th row of β̂i of the solution of (4) is non-zero. Most
papers use Lasso or elastic net penalty, e.g. [2],[18].

3 RELATED WORK
Granger causality based on vector autoregression with Lasso penalty
was introduced by Arnold et al. in [2] under the name Temporal
causal modeling with Lasso penalty (TCML). During the last decade,
other penalty constraints have been employed, e.g. elastic net and
adaptive Lasso in [18] or truncated Lasso in [38]. As Lasso penalty
together with linear regression is in general inconsistent, these meth-
ods do not have to provide a high precision in terms of common
evaluation measures (e.g. F1, precision or recall). Furthermore, the
precision of the penalized GGM depends on the selection of λ pa-
rameter. For λ close to zero, the Lasso regression estimate is close to
the maximum likelihood estimate, whereas for large λ, the penalty
term can worsen the fitting of the least squares. Therefore choices of

λ should compromise between those two extremes and it is usually
done iteratively. By adding one variable at a time, an early choice
of one variable may influence when other variables correlated to it
enter later in the relaxation process. The penalty parameter should
compromise the above extremes and is in practice chosen by K-fold
cross-validation. However even this does not guarantee that the opti-
mal solution for coefficients βi will be found. Zou in [41] gave exam-
ples when (a general) Lasso regression is inconsistent and derived the
so called oracle properties as a necessary condition under which it is
consistent. The adaptive lasso, which he introduced, fulfills the ora-
cle properties. It uses adaptive weights for penalizing different coef-
ficients in the l1 penalty. The graphical Granger model with adaptive
Lasso (we denote it ADTCML) is under the oracle conditions consis-
tent. Although the number of iterations in which Lasso and adaptive
Lasso optimization algorithm achieve a solution satisfactorily close
to the optimum can be estimated under some conditions (e.g. in [25],
[41]), for a general objective function it is still an open problem.
Therefore in practice, after a finite number of steps, the achieved
estimators can be still far from the optimum in both methods. Our
experiments in this paper with TCML and ADTCML demonstrated
this scenario.

There are papers dealing with causality detection by information-
theoretic criteria. Among them, compression-based algorithms apply
the Kolmogorov complexity and define so called causal indicators
by mean of the minimum description length (MDL) for numeric data
[23], [5] and for mixed data types (i.e. numeric or discrete) in [24].
However, the algorithms in [23] and [24] do not use time series. The
algorithm in [5] uses event sequences, however from a discrete space
of observations. The Granger causality here is not defined by a VAR
model but by prediction probabilities of the event sequences. More-
over, all these methods are designed to infer the pairwise causal rela-
tions. A direct application of them for discovery in causal networks
can lead to the decrease in precision, especially when the number
of processes increases. Our paper deals with VAR-based graphical
Granger causality. Peters et al. [28] introduces the method TiMINo
testing causal inference on time series using restricted structural
equation models. Since TiMINo is not a VAR based causality we did
not use it for comparison in our experiments. In our preliminary re-
sults comparing our criteria experimentally with Bayesian networks
(BN) by IT from [17] we observed that our criteria outperform BN
in precision for ’long’ time series, and vice versa.

Criteria AIC or BIC have been used already in connection with
Granger causality, however only to determine the lag d, e.g in [40],
which was done by the pairwise causal testing. To our best knowl-
edge, we are not aware of any application of compression schemes
on causality for multiple time series by a graphical Granger method.
By deriving the IT criteria for a graphical Granger method as in the
following sections, our paper fills this research gap.

3.1 Relevance of Granger causality

Since its introduction, there has been lead a criticism of Granger
causality, since it e.g. does not take into account of counterfactuals,
[21], [26]. As its name implies, Granger causality is not necessarily
true causality. In defense of his method, Granger in [10] wrote: ”Pos-
sible causation is not considered for any arbitrarily selected group of
variables, but only for variables for which the researcher has some
prior belief that causation is, in some sense, likely.” In other words,
drawing conclusions whether a causal relation exists between time
series and about its direction is possible only if theoretical knowl-
edge of mechanisms connecting the time series is accessible. Never-



theless, as confirmed by a recent Nature publication [22], if the theo-
retical background of investigated processes is insufficient, methods
to infer causal relations from data rather than knowledge of mecha-
nisms (Granger causality including) are helpful. These methods can
also make possible to perform credible analyses with large amount
of observational time data, e.g. in social networks [14], since they
are much less costly than common epidemiological or marketing re-
search approaches.

3.2 Variable selection in the general Gaussian
regression by information-theoretic criteria

Rissanen in [30] proposed to use normalized maximum likelihood
(NML) as a variable selection method for linear regression (i.e. no
time series and no lag was considered). The normalized maximum
likelihood formulation of stochastic complexity contains two compo-
nents, the maximized log likelihood and the component called para-
metric complexity of the model. The stochastic complexity for the
data, relative to a suggested model, serves as a criterion for model
selection. The calculation of the stochastic complexity can be under-
stood as an implementation of the minimum description length prin-
ciple (MDL) [32]. To obtain an NML based model selection crite-
rion for the Gaussian linear regression, [31] defines appropriate con-
straints on the data space.

The idea of using an IT criterion as a variable selection method for
linear regression is to choose a subset of the regressor variables with
indices from γ which is a subset of the indices of all regressors and
in this way to eliminate the regression variables that are not relevant
for the expression of the independent variable [29]. Based on the
probability distribution of data matrixXγ corresponding to model γ,
maximum likelihood estimates θ̂γ � �β̂γ , σ̂2

γ� are computed, where
βγ is the vector of regression coefficients and σ2

γ is the variance of
the model. The goal is to pick the model γ with least NML costs.
Two the most well-known IT criteria for model selection applying
maximum likelihood principle are AIC [1] and BIC [35]. Other IT
based criterion for variable selections uses minimum message length
principle and is from in [34]. All these criteria assume the design
matrix of a full column rank (which is not the case of GGM).

4 GRAPHICAL GRANGER MODEL AS p
MULTIPLE LINEAR REGRESSIONS

In this paper we present the graphical Granger model problem among
p variables as a combinatorial optimization problem in a finite search
space of an exponential size for each of p variables. The criterion to
be minimized is the complexity of the class of selected models and
of the data for each of p variables. Corresponding to (3) we propose
several objective functions as information-theoretic functionals and
compare their performance on synthetic and real data. The IT criteria
mentioned above cannot be applied to graphical Granger model (3)
directly due to that they are designed for designed matrices with a full
column rank and they do not consider a vector-autoregressive process
of a given lag parameter. In the following we convert problem (3) into
an appropriate form so that we can then use these criteria.

Consider the full model for p variables xti and (integer) lag
d C 1 corresponding to the optimization problem (3) with �xti, i �
1, . . . , p, t � 1, . . . , n�. We put the time series into the p � n ma-
trix X . Let εti be Gaussian distributed errors with zero-mean and
βi > R1��p�d� for all t � 1, . . . , n, i � 1, . . . , p; For fixed d C 1 can

(3) be rewritten as

xti �
p

Q
j�1

d

Q
l�1

xt�lj βlj � ε
t
i (5)

for t � d�1, . . . , n and εi is a �n�d� dimensional vector of Gaussian
noise with zero mean and unit variance. To be able to use the ML
estimation, in the following we convert the matrix of lagged time
series in (3) into a fixed design matrix form of the multiple vector
regression. Denote xi � �xd�1i , xd�2i , . . . , xni �. Assume n � d A pd.
We construct the �n � d� � �d � p� design matrix X �

<@@@@@@@>

xd1 ... x11 ... xdp ... x1p
xd�11 ... x21 ... xd�1p ... x2p
� � � � � � �

xn�11 ... xn�d�11 ... xn�1p ... xn�d�1p

=AAAAAAA?
(6)

and a 1 � �d � p� vector βi � �β1
1 , . . . , β

d
1 , . . . , β

1
p , . . . , β

d
p� and εi �

�ε1i , . . . , εn�di �. We can see that

x�i �Xβ
�

i � ε
�

i (7)

is the (design) matrix form expressing the problem (5). Denote now
by γi ` �1, . . . , p� the subset of indices of regressor variables to infer
xi and ki �� SγiS its cardinality. Let βi�γi� > R1��d�ki� be the vec-
tor of unknown regression coefficients with a fixed ordering within
the γi subset. Assume for illustration purposes and without lack of
generality that the first ki indices out of p vectors belong into γi.
Considering only the columns from the matrix X in (6) correspond-
ing to γi, we define the �n � d� � ki matrix of lagged vectors with
indices from γi as X�γi� ��

<@@@@@@@@@@>

xd1 ... x11 ... xdki ... x1ki
xd�11 ... x21 ... xd�1ki

... x2ki
xd�21 ... x31 ... xd�2ki

... x3ki
� � � � � � �

xn�11 ... xn�d�11 ... xn�1ki
... xn�d�1ki

=AAAAAAAAAA?

(8)

The problem (7) for regressor variables with indices from γi is ex-
pressed as

x�i �X�γi�β�i�γi� � ε�i�γi�, (9)

with βi�γi� to be a 1 � �d � ki� matrix of unknown coefficients and
εi�γi� is a �n�d�-dimensional Gaussian noise vector with zero mean
and unit variance. Wherever it will be clear from context, we write
βi instead βi�γi�, Xi instead of X�γi� and σ2

i instead of σ2
i �γi�.

4.1 The normalized maximum likelihood criterion
for graphical Granger model

4.1.1 Derivation of the ML estimates

We assume that in model (9) each xi follows Gaussian distribution
with the density function f�xi, γi, βi, σ2

i � �
1

�2πσ2
i ��n�d�~2

exp �� 1

2σ2
i

n

Q
t�d�1

�xti �Xiβtj�2�. (10)

ML estimates of the parameters of model (9) are then

β̂i � �X �

iXi��1X �

ix
�

i and σ̂2
i �

Yx�i �Xiβ̂�iY2
�n � d � ki� (11)

where ki � SγiS is the number of elements of γi, i.e. the number
of regressors in Xi, each with lag d and of length n � d. Denote
θ̂i �� �β̂i, σ̂2

i �. This pair is a sufficient statistic for estimating θi �
�βi, σ2

i �.



4.1.2 Selection by stochastic complexity

The MDL principle for a model selection is based on the idea to
capture regular features in data by constructing a model in a certain
class which allows the shortest description of the data and the model
itself. For each xi satisfying (5) we consider the family of models
Mi �� M�γi� � �f�xi, θi�, γi > Γ� defined by densities in (10)
where Γ is the set of all subsets of �1, . . . , p�. Denote the ML esti-
mate θ̂i of θi such that f�xi, θ̂i� � maxθi f�xi, θi�.

By constructing the SC based objective function, we use the struc-
ture of the normalized maximum likelihood (NML) density function,
which was introduced in [31] for a Gaussian linear regression. We
apply this construction for each GGM with i � 1, . . . , p and get

f̂�xi, θ̂i� � f�xi, θ̂i�
C�γi� , C�γi� � S f�xi, θ̂i�dxi (12)

where f̂�xi, θ̂i� is a density function provided that C�γi� is
bounded. The NML density function provides a general technique
to apply the MDL minimum description length (MDL) principle for
statistical model selection. Thus the derivation of the NML density
of the model γi and C�γi� is crucial for practical implementation of
the MDL principle. Applying logarithm on both sides of (12) we get
the expression

� log f̂�xi, γi� � � log f�xi, θ̂i� � logC�γi� (13)

whereC�γi� is a normalizing term. This is the ”shortest code length”
for xi that can be obtained by γi and is called stochastic complexity
of xi given γi. We denote it by SC�xi, γi�. [31] suggested for a
general linear regression to constrain the data space, since C can be
infinite, Applying these constraints appropriately for GGM we get
the NML density function

f̂�xi, γi� � f�xi, γi; β̂i, σ̂i2�
RP �Ri,si�

f�xi, γi; β̂i, σ̂i2�dxi
with constraints

P �Ri, si� �� P �xi, γi,Ri, si� � �xi; YXiβ̂�iY2 B �n�d�Ri; σ̂i2 C si�
(14)

where Ri A 0 and si A 0 are positive constants. The NML density
under the constraints (14) is

f̂�xi,Ri, si� � f�xi, θ̂i�~C�si,Ri� (15)

where the normalizing constant C�si,Ri� depends on two hyperpa-
rameters Ri and si, similarly as in [31]. To get rid of the two hyper-
parameters in C�si,Ri�, we maximize (15) with respect to si,Ri
and get the ML estimates of the mean and variance of the GGM cor-

responding to (9) as R̂i �
YXiβ̂

�

iY
2

n�d
and ŝ � σ̂2

i . If we substitute them
into (15), we get the maximized NML function (mNML). In the sec-
ond stage, the normalization of the data space is constrained such
that P �xi� �

�xi; �n � d�Ri,1 B YXiβ̂�iY2 B �n � d�Ri,2; s1i B σ̂
2
i B s

2
i � (16)

where 0 B Ri,1 B Ri,2, 0 B s1i B s
2
i are given positive constants. By

normalizing function f̂�xi, ŝi, R̂i� we get the normalized mNML
function f̂�xi�. The stochastic complexity (13) has then the form

SC�xi, γi� � n � d � ki
2

log σ̂2
i �

ki
2

log R̂i

� log Γ�n � d � ki
2

� � log Γ�ki
2
� � c,

(17)

where Γ�.� is the gamma function. Since c is a constant for all models
γi, we can omit c from minimization of SC.

4.2 Other information-theoretic criteria for GGM

Due to the bias-variance tradeoff problem, selecting an appropriate
criterion for a data set for the GGM with assumptions on a model
brings a similar tradeoff. Consequently, one cannot set one crite-
rion as a universal one. In this paper we are inspired by IT criteria
that were derived for a general linear regression problem with dif-
ferent additional assumptions, concretely Bayesian information cri-
terion (BIC) in [35], Akaike information criterion (AIC) in [36], the
minimum message length criterion (MML) in [34], and with three
criteria SCi proposed for collinear design matrices in [15], [8]. By
plugging the above derived statistic θ̂i � �β̂i, σ̂2

i � into these criteria
appropriately enables us to propose the following criteria for each
variable xi, i � 1, . . . , p in model (9): The BIC, AIC and MML cri-
terion for GGM, respectively have for θ̂i the form

BIC�xi, γi� � n � d
2

log σ̂2
i �

ki
2

log�n � d�. (18)

AIC�xi, γi� � n � d
2

ln σ̂2
i �

�ki � 1��n � d � ki � 2�
�n � d � ki � 2� �

ki
n � d � ki

(19)

MML�xi, γi� � n�d�ki
2

ln�2π� � n�d�ki
2

�ln� �n�d�σ̂2
i

n�d�ki
� � 1�

�
ki
2

ln�πxix�i� � ln Γ�ki
2
� 1� � 1

2
ln�ki � 1�. (20)

For (9) and statistic θ̂i we consider for GGM IT functions penalizing
the collinear design matrix

SC1�xi, γi� � �n � d� ln σ̂2
i � ki ln

YX�γi�β̂iY2
ki�n � d� � (21)

� ln�ki�n � d � ki��,

SC2�xi, γi� � n � d � ki
2

ln
σ̂2
i

n � d � ki
�
ki
2

ln
Yβ̂iY2

ki�n � d�
� ln�ki�n � d � ki�� � ln SXiX �

i S, (22)

SC3�xi, γi� � n � d � ki
2

ln
σ̂2
i

n � d � ki
�
ki
2

ln
YXiβ̂iY2
ki�n � d�

� ln�ki�n � d � ki�� � ln SXiX �

i S. (23)

4.3 Convergence properties of the objective
functions

As our design matrixXi is constructed, its column vectors are highly
correlated, i.e. Xi is super-collinear, or in other words its condition
number is high. In the following we address the convergence ques-
tions of the considered estimators.

4.3.1 Penalized GGM under super-collinearity

Lasso regression is known to yield a sparse solution, in which many
regression coefficients are equal to zero. Since the predictors xi
and their lagged version are highly correlated in Xi, the estimator
achieved by TCML or ADTCM β̂i�λ� may contain ”too many” ze-
roes. This is problematic if the true GGM model is not sparse.



4.3.2 IT GGM under super-collinearity

The ML estimates of β̂i and of τ̂i in (11) are identical to the least-
squares (LS) estimators, thus β̂i and τ̂i are consistent estimators un-
der the condition that xi is a stationary, stable Gaussian VAR pro-
cess of order d and

º
n�β̂i �βi� and

º
n�τ̂i � τi� are asymptotically

normally distributed. It follows from more general results, see e.g.
[20], Chapter 3.4. A general ML estimate is efficient, i.e. it achieves
the Cramér–Rao lower bound when the sample size tends to infinity.
This means that no consistent estimator has lower asymptotic mean
squared error than the ML estimate (or other estimators attaining this
bound). For a general linear regression with a regular design matrix
it was shown for SC in [8], for BIC in [11] and for AIC in [37] that if
the true model is finite-dimensional and is included in the set of can-
didates, then the probability that this model is selected goes to one
as the sample size increases. However, if the true model is not finite-
dimensional, then SC is asymptotically efficient in the sense that
it selects the candidate model which minimizes the one-step mean
squared error of prediction. The same property for AIC was proven
in [37]. We explain the above statements in terms of condition num-
bers of the design matrices and iterative processes. A regular design
matrix has condition number equal one. It is commonly known that
an algorithm, which introduces no errors of its own, can in a finite
number of iterations find an approximation of the solution of the re-
gression with the design matrix with condition number exactly one,
whose precision is no worse than that of the data. Our design matrices
Xi have high condition numbers. In this case, fitting of the linear re-
gression model to the data brings a large error of the estimates of the
regression parameters corresponding to the collinear covariates. For
a design matrix with a high condition number, including the smallest
singular values in the inversion merely adds numerical noise to the
solution. This can be cured with the truncated SVD approach [12],
which explicitly sets all singular values below a certain threshold to
zero. In this way the truncated SVD computes more stable and exact
estimates of the regression coefficients for all considered IT criteria.
The truncated SVD approach does not theoretically guarantee the
convergence of the IT functions in a finite number of steps, however,
in a sense the truncated SVD version of Xi is the closest approx-
imation to Xi that can be achieved by a matrix of rank�Xi� (the
last follows from [7]). As we will demonstrate in the experiments,
the SVD approximation of Xi gives for the IT criteria considerably
better solutions in F1 measure as by the rival penalization methods.

5 OPTIMIZATION OF THE
INFORMATION-THEORETIC FUNCTIONS

Denote S�γi� as a representative of any of the proposed IT objective
functions. The selection of the best structure γi amounts to evaluate
values of S�γi� for all γi ` �1, . . . , p�. i.e. for all 2p possible subsets
and then to pick the subset under which the minimum of the function
was achieved. Since precision is a more important issue than speed
in Granger causality inference, in the following we propose a genetic
algorithm type procedure to find a minimum of S�γi�.

5.1 Information-theoretic genetic algorithm
(ITGA)

For a fixed i and d C 1, for a γi ` �1, . . . , p�, SγiS � ki we define a
Boolean vector Qi of length p corresponding to γi such that it has
ones in the positions of the indices from γi, otherwise zeros. Genetic
algorithm ITGA executes genetic operations on populations of Qi.

The procedure is summarized in Algorithm 1. In the first step a pop-
ulation of sizem (m be an even integer), is generated randomly in the
set of all 2p binary strings of length p. Then we select m~2 individu-
als in the current population with lowest S�Qi� as the elite subpop-
ulation of parents of the next population. For a predefined number
of generated populations np, the crossover operation of parents and
the mutation operation of a single parent are executed on the elite
to create the rest of the new population. Mutation corresponds to a
random change in Qi and crossover combines the vector entries of a
pair of parents. After each run of these two operations on a current
population, the current population is replaced with the children with
the lowest S�Qi� to form the next generation. The algorithm stops
when the predefined number of generations ng is achieved.

Algorithm 1 ITGA
Input: series, d, np,ng,m, z
m an even integer, z position for off-spring;
series �� matrix of xti, i � 1, . . . , p, t � 1, . . . , n � d;
Output: Adj := adj. matrix of the output causal graph;
// for every xi find Qi with minimum S�Qi�
for all xi do

Create initial population �Qji , j � 1, . . . ,m� at
random; Compute S�Qji � for each j � 1, . . . ,m;
v:=1;
while v B ng do

u:=1;
while u B np do

Sort S�Qji � ascendingly and create the elite population;
By crossover of Qji and Qri , r x j create children and
add them to elite; Compute S�Qji � for each j; Mutate a
single parent Qji at a random position; Compute S�Qji �
for each j; Add the children with minimum S�Qji � until
the new population not filled;

u:=u+1;
end while// to u
v:=v+1;

end while// to v
end for// to xi
The i � th row of Adj: Adji �� Qi with min S�Qi�
return �Adj�

6 EXPERIMENTS
To assess the similarity between the target and output causal graph
by ITGA for a corresponding IT function we use the commonly de-
fined F1-measure. We executed experiments on four synthetic and
three real-valued data sets. Based on [4], given sufficient number of
observations n, a graphical Granger model is for n

d
A p � 1 con-

sistent, otherwise inconsistent. For insufficiently long time series we
also observed lower F1 in our experiments. Among the many meth-
ods mentioned in Section Related Work, for a fair comparison we use
only the VAR based Granger causal methods since they are designed
for Gaussian time series, similarly as our criteria. Our code in Matlab
including the data sets and supplementary material (SM) are publicly
available at: http://tinyurl.com/yxvkv7ae.

6.1 Synthetic experiments
For all seven IT objective functions we did experiments with syn-
thetic causal networks. As comparison penalization methods we



used VAR based methods TCML and ADTCML and Matlab pack-
age penalized [27]. Based on the strategy in [27], for TCML and
ADTCML we varied the variable penalization parameter λ from in-
terval �0, λmax� and took the best result with respect to F1 measure.
The other algorithms mentioned in Related Work do not use a VAR
model, therefore we did not apply them as comparison methods.

6.1.1 Two causal networks with five units

The first causal network among five processes is given by Figure
2a and corresponding equations in paper [3] with d � 3; The sec-
ond causal network among five processes is from [33] with d � 4.
These equations in both cases generate five processes with random
noise � N�0,1�. In the first series of experiments we examined the
search space of all seven constructed functions with statistic θ̂i for
each process xi and for variable n in the graphical Granger model.
The goal was to find for which of the functions these statistics θ̂i
are sufficiently descriptive, i.e. whether the global minimum of each
function described by these statistics corresponds to the global min-
imum with the biggest F1 measure. We explored the search spaces
for n � 50, . . . ,2000. We found by exhaustive search for each ob-
jective function a subset γi for each i � 1, . . . ,5 for which this ob-
jective function achieved a minimum and compared it to the ground
truth. In all examined cases the objective function SC had the highest
F1 value (0.98), in most cases followed by MML, BIC, AIC. As a
comparison method we used TCML, where in procedure penalized
we set λmax � 5, taking the best result with respect to F1 from
the interval �0,5�. Interestingly, although designed to penalize the
collinearity of Xi matrices, SC1, SC2 and SC3 had for all investi-
gated d and n F1 values smaller than those by TCML. Therefore we
excluded these three objective functions from further experiments.
Table 1 shows some results of these experiments with equations from
[3] with np � 50 each averaging over 50 random generations of time
series. It demonstrates that the IT functions give significantly better
F1 than TCML. Similar results were achieved also in experiments
with [33] and can be found in SM.

Table 1. F1 values for each method, variable n, ng � 50 random
generations of series, TCML: λmax � 5, equations from [3].

d=3, n= 50 100 500 1600 1800 2000

SC 0.73 0.86 0.92 0.98 0.98 0.98
MML 0.72 0.85 0.95 0.97 0.98 0.98
BIC 0.73 0.86 0.94 0.97 0.97 0.97
AIC 0.71 0.83 0.71 0.71 0.70 0.72

TCML 0.53 0.53 0.54 0.57 0.58 0.59

In the second series of experiments with five processes from Fig-
ure 2a from [3] we evaluated the performance of F1 for d � 3,
and n ranging with values from 50 to 2000 (selected values) using
ITGA. We considered m � 30 as the size of of a genetic population
and the number of generated populations np � 30 or 50, by TCML
and ADTCML λmax � 5 and considered their highest F1 measures
over interval �0, λmax�. Table 2 demonstrates the superiority of all
IT methods in terms of F1 values. A similar F1 superiority of IT
methods for the second causal network with 5 units, d � 4 from
[33] is demonstrated in SM. Figure 1 shows the superior behavior of
F1 of the IT methods for variable n from 100 to 500 and for both
networks with five processes comparing to TCML and ADTCML.
Similar experiments for n from 1200 to 2000 for both networks with

5 units can be found in SM. The best precision in F1 for both causal

Table 2. F1 for each method, np � 50, m � 30, ng � 20, TCML and
ADTCML with λmax � 5, equations from [3].

d=3, n= 100 500 1400 1600 1800 2000

SC 0.79 0.92 0.93 0.93 0.91 0.90
MML 0.80 0.91 0.92 0.91 0.91 0.90
BIC 0.78 0.90 0.92 0.91 0.91 0.90
AIC 0.65 0.70 0.71 0.70 0.70 0.68

TCML 0.53 0.61 0.64 0.66 0.66 0.68
ADTCML 0.35 0.40 0.40 0.40 0.40 0.40

networks with 5 units is achieved in most cases of n by SC, BIC
and MML (without order); Criteria AIC and TCML and ADTCML
had however considerably lower F1. The figures of the trajectories
of F1 for all six objective functions with respect to n for both cases
of 5 unit networks can be found in SM. The runtime of TCML and
ADTCML with λmax � 5 in Matlab and on HP notebook with Intel
Core i5-7200U processor was e.g. in the first network for n � 1400
0.75 seconds and 5.8 seconds, respectively. The optimization of any
IT method was slower (genetic algorithm), e.g. for n � 1400, with
ng � 50, np � 30, SC method took 55 seconds, MML 57 seconds,
BIC 58 seconds and AIC 61 seconds.

6.1.2 A causal network with ten units

The best precision in F1 for the causal network with ten units (see
SM for the equations) are given by SC, BIC and MML (in this order)
in most cases of values n. The experiments for the lag d � 4, ng �

10, np � 30 and m � 30 for variable n for methods SC, BIC, AIC,
MML, TCML and ADTCML with λmax � 5 can be found in Table
3. We can conclude that in all our synthetic experiments, the highest
F1 measure was achieved by SC, MML and BIC objective functions
and AIC, TCML and ADTCML had considerably lower F1.

Table 3. F1 values for each method, 10 series, d � 4, np � 30, m � 30,
ng � 10, TCML and ADTCML: λmax � 5

d=4,n= 100 500 1400 1600 1800 2000

SC 0.59 0.69 0.71 0.70 0.70 0.71
MML 0.59 0.70 0.72 0.72 0.72 0.72
BIC 0.61 0.70 0.73 0.71 0.73 0.73
AIC 0.54 0.56 0.56 0.57 0.57 0.57

TCML 0.45 0.48 0.44 0.46 0.45 0.43
ADTCML 0.35 0.30 0.30 0.30 0.28 0.29

6.1.3 A causal network with twenty units

The best F1 for the causal network with twenty units (see SM for
the equations) were achieved in most cases of n � 500, . . . ,4000 by
MML and BIC (F1 � 0.64), followed by SC (F1 � 0.63) and then
by TCML and ADTCML (F1 � 0.55). Table 4 demonstrates the su-
periority of the IT methods over TCML and ADTCML. To conclude
for all considered networks, one can see that F1 of the IT methods is
decreasing with the number of units, however this happens also for
TCML and ADTCM, with even lower F1. This is due to the fact that
with increasing p, the condition number of matricesXi is increasing.
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Figure 1. Experiment with 5 series, ng � 20, np � 50, m � 30 for n � 100,200,300,400,500; TCML, AD=ADTCML with λmax � 5, left: network from
[3] and d � 3; right: network from [33] with d � 4.

Table 4. F1 values for each method, network with 20 units, equations in
SM with lag d � 2, variable data set size n, ng � 10, m � 30, TCML and

ADTCML with λmax � 5.

d=2,n= 500 1000 2000 3000 4000 5000

SC 0.63 0.63 0.63 0.63 0.63 0.62
MML 0.64 0.63 0.64 0.63 0.63 0.63
BIC 0.64 0.64 0.64 0.64 0.63 0.63
AIC 0.61 0.61 0.63 0.61 0.61 0.61

TCML 0.50 0.49 0.50 0.51 0.54 0.55
ADTCML 0.51 0.54 0.55 0.55 0.55 0.55

6.2 Experiments with real data

6.2.1 Gene expression time series

In most real-data applications, the ground truth causal network is
not known, so only an external knowledge (e.g. a biological experi-
ment) can be used for assessing the performance. For real biological
datasets, the number of genes p is usually far more than the number
of time points n. As mentioned in the theory above and also ob-
served in the synthetic experiments, short time series are limiting for
the precision of a graphical Granger model. Therefore, one cannot
expect very high F1-values with time series created by biological
experiments. We used the gene expressions time series from [39].
These are selected 19 genes (with their names in SM) that are ac-
tive in human cancer cell lines, each with 47 time observations. By
statistical fitting, these time series follow a normal distribution. The
corresponding gene regulatory network was reconstructed based on
the biological experiments by Li et al. and its figure (benchmark) can
be found in [18]. The results of our experiments for d � 3 are in the
first row of Table 5. The IT methods are again superior over the rival
methods in terms of F1.

Table 5. F1 for each method, m � 20, np � 30, λmax � 5; 19G � 19
genes, 7PF � 7 portfolios, 12C � 12 climatic

data set, n SC MML BIC AIC TCML ADTCML

19G, 47 0.58 0.57 0.63 0.61 S 0.35 0.11
7PF, 1400 0.56 0.62 0.65 0.55 S 0.44 0.09
12C, 500 0.74 0.78 0.80 0.80 S 0.53 0.78
12C, 1500 0.80 0.80 0.80 0.80 S 0.53 0.78

6.2.2 Portfolio time series

The portfolio data set and the causal graph as a benchmark are from
[13]. The seven time series with n � 1400 are daily values of the
portfolio returns, i.e. values of gain or loss realized by an investment
portfolio in time. By statistical testing we confirmed the normal dis-
tribution of each time series. The lag d � 1,2 was considered and
the best performance of F1 was achieved for n � 1400 with d � 2
and is in the first row of Table 5. Figure 2 shows comparison of the
external knowledge with BIC and TCML method. One can see that
portfolios 1,4 and 5 have for the BIC method more similar results to
the external knowledge as by TCML to the external knowledge. The
superiority of all IT methods in terms of F1 over the rival methods
for variable n from 1300 to 2500 is shown in SM.

Figure 2. 7 portfolios, a) extern. knowledge, b) BIC with m � 30,
np � 30, c) TCML with λmax � 5, both d � 1.

6.2.3 Climatic data

The data set and external knowledge come from spatio-temporal
causal modeling on climatic data from North America as described
in [19]. The goal of the study was to find the variables attributing
the changes in temperature (undirected dependencies). The monthly
observations in high resolution from [16] were considered for 12
variables, namely methane (CH4), carbon-dioxide (CO2), hydrogen
(H2), carbon-monoxide (CO), UV (AER), temperature (TMP), pre-
cipitation (PRE), vapor (VAP), cloud cover (CLD), wet days (WET),
frost days (FRS), global horizontal (SOL). Figure 6d in [19] was
taken as a benchmark network. It is an undirected subgraph of ad-
jacent variables to the variable temperature (TEMP). In this task
we assigned to the resulting output subgraph of each method its
symmetrized version, since the benchmark graph was the graph
of undirected dependencies. We did testing with n � 500,1500,



m � 20, np � 3, d � 3. The significant superiority of all IT meth-
ods over the rival methods in terms of F1 is demonstrated in the last
two rows of Table 5.

7 CONCLUSIONS

In this paper, for the first time we proposed an information-theoretic
graphical Granger model (ITGGM) together with a genetic algorithm
procedure ITGA operating with subsets of possible regressors of the
GGM. ITGA is scalable for both the number of time series and their
length; There is no obstacle for its parallelisation. We proposed four
information-theoretic criteria for GGM and discussed their conver-
gence properties. The comparison of ITGGM with the proposed IT
criteria on synthetic examples and real data demonstrated the signif-
icant superiority of the IT criteria based on stochastic complexity,
on minimum message length, on Akaike and on Bayesian informa-
tion criterion, in precision by F1 over the two penalized graphical
Granger models TCML and ADTCML. The idea of using IT criteria
for causal inference among non-Gaussian time series is a topic of our
future research. For comparison of our IT functions on multiple data
sets we also intend to apply non-parametric tests for statistical com-
parisons of classifiers, e.g. the Wilcoxon signed ranks test for com-
parison of two classifiers or the Friedman test with the corresponding
post-hoc tests for comparison of more classifiers over multiple data
sets, e.g. [6].
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