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Abstract. Graphical Granger models are popular models for causal in-
ference among time series. In this paper we focus on the Poisson graphical
Granger model where the time series follow Poisson distribution. We use
minimum message length principle for determination of causal connec-
tions in the model. Based on the dispersion coefficient of each time series
and on the initial maximum likelihood estimates of the regression coef-
ficients, we propose a minimum message length criterion to select the
subset of causally connected time series with each target time series. We
propose a genetic-type algorithm to find this set. To our best knowledge,
this is the first work on applying the minimum message length princi-
ple to the Poisson graphical Granger model. Common graphical Granger
models are usually applied in scenarios when the number of time ob-
servations is much greater than the number of time series, normally by
several orders of magnitude. In the opposite case of ”short” time se-
ries, these methods often suffer from overestimation. We demonstrate
in the experiments with synthetic Poisson and point process time series
that our method is for short time series superior in precision to the com-
pared causal inference methods, i.e. the heterogeneous Granger causality
method, the Bayesian causal inference method using structural equation
models LINGAM and the point process Granger causality.

Keywords: Granger causality · Poisson graphical Granger model · min-
imum message length · ridge regression for GLM

1 Introduction

Granger causality is a popular method for causality analysis in time series due
to its computational simplicity. Its application to time series with non-Gaussian
distribution can be however misleading. Recently, Behzadi et al. in [2] proposed
the heterogeneous graphical Granger Model (HGGM) for detecting causal rela-
tions among time series having a distribution from the exponential family, which
includes a wider class of common distributions. HGGM employs regression in
generalized linear models (GLM) with adaptive Lasso as a variable selection
method and applies it to time series with a given lag. The approach allows to
apply causal inference among time series with discrete values. Poisson graphical
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Granger model (PGGM) is a special case of HGGM for detecting Granger-causal
relationships among p ≥ 3 Poisson processes. Each process in the model, rep-
resented by time series, is a count. A count process can be e.g. a process of
events such as the arrival of a telephone call at a call centre in a time interval.
Poisson processes can serve as models of point process data, including neural
spike trains, [4]. Poisson graphical Granger model may be appropriate when in-
vestigating temporal interactions among processes as e.g. the number of transit
passengers of an airport within a time period or in criminology, when temporal
relationships among various crimes in some time interval are investigated.

In this paper we approach the inference in the Poisson graphical Granger
model by the principle of minimum message length (MML).

– We use minimum message length principle for determination of causal con-
nections in the Poisson graphical Granger model.

– For the highly collinear design matrix of the model we define a corrected
form of the Fisher information matrix using the ridge penalty.

– Based on the dispersion coefficient of each time series and on the initial
maximum likelihood estimates of the regression coefficients, we propose a
minimum message length criterion to select the subset of causally connected
time series with each target time series.

– We propose a genetic-type algorithm to find this set.
– To our best knowledge, this is the first work on applying the minimum

message length principle to the Poisson graphical Granger model.
– We demonstrate experimentally that our method is superior in precision

to the compared causal inference methods, i. e. the heterogeneous Granger
causality method, the Bayesian causal inference method using structural
equation models LINGAM [23] and the point process Granger causality in
the case of short data, i.e. when the number of time observations is approx-
imately of the same order as the number of time series.

The paper is organized as follows. Section 2 presents preliminaries, concretely
Granger causality and the Poisson graphical Granger model. Section 3 presents
the PGGM as an instance of multiple Poisson regression. The MML code for
PGGM is computed and the main theorem is stated in Section 4. The algorithm
to compute the MML code for PGGM and the genetic algorithm for variable
selection in PGGM are explained in Section 5. Related work is discussed in
Section 6. Our experiments are in Section 7. Section 8 is devoted to conclusions
and the derivation of the criterion can be found in Appendix.

2 Preliminaries

Relevance of Granger Causality Since its introduction, there has been lead
a criticism of Granger causality, since it e.g. does not take into account counter-
factuals, [12], [17]. As its name implies, Granger causality is not necessarily true
causality. In defense of his method, Granger in [6] wrote: ”Possible causation is
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not considered for any arbitrarily selected group of variables, but only for vari-
ables for which the researcher has some prior belief that causation is, in some
sense, likely.” In other words, drawing conclusions about the existence of a causal
relation between time series and about its direction is possible only if theoretical
knowledge of mechanisms connecting the time series is accessible. Nevertheless
as confirmed by a recent Nature publication [16], if the theoretical background of
investigated processes is insufficient, methods to infer causal relations from data
rather than knowledge of mechanisms (Granger causality including) are helpful.
These methods can also make possible to perform credible analyses with large
amount of observational time data, e.g. in social networks [11], since they are
less costly than common epidemiological or marketing research approaches.

Graphical Granger model The (Gaussian) graphical Granger model extend
the autoregressive concept of Granger causality to p ≥ 2 time series and time
lag d ≥ 1 [1]. Let xt1, . . . , x

t
p be p time series, t = 1, . . . , n. Consider the vector

autoregressive (VAR) models with lag d for i = 1, . . . , p

xti = XLag
t,d β′i + εti (1)

where XLag
t,d = (xt−d1 , . . . , xt−11 , . . . , xt−dp , . . . , xt−1p ) and βi be a matrix of the

regression coefficients and εti be white noise. One can easily show that XLag
t,d β′i =∑p

j=1

∑d
l=1 x

t−l
j βlj . One says the time series xj Granger–causes the time series

xi for the given lag d, denote xj → xi for i, j = 1, . . . , p if and only if at least
one of the d coefficients in j − th row of βi in (1) is non-zero.

Poisson graphical Granger model The Poisson graphical Granger model
has the form

xti ≈ λti = exp(XLag
t,d β′i) = exp(

p∑
j=1

d∑
l=1

xt−lj βlj) (2)

for xti, i = 1, . . . , p, t = d + 1, . . . , n having a Poisson distribution. Applying
the HGGM approach to the case, when the link function for each process xi is
function exp, problem (2) can be solved as

β̂i = arg min
βi

n∑
t=d+1

(xti − exp(XLag
t,d β′i))

2 + ρiR(βi) (3)

for a given lag d > 0 and all t = d+ 1, . . . , n with R(βi) adaptive Lasso penalty
function. (The sign ′ denotes a transpose of a matrix). One says, the time series
xj Granger–causes the time series xi for the given lag d, denote xj → xi for

i, j = 1, . . . , p if and only if at least one of the d coefficients in j − th row of β̂i
of the solution of (3) is non-zero [2].



4 Hlaváčková-Schindler and Plant

3 Poisson Graphical Granger Model as Multiple Poisson
Regression

In this section we will derive the Poisson Granger model (2) with a fixed lag d as
an instance of a multiple Poisson regression with a fixed design matrix. Consider
the full model for p Poisson variables xti and (integer) lag d ≥ 1 corresponding to
the optimization problem (2). To be able to use the maximum likelihood (ML)
estimation over the regression parameters, we reformulate the matrix of lagged
time series XLag

t,d from (1) into a fixed design matrix form. Assume n − d > pd

and denote xi = (xd+1
i , xd+2

i , . . . , xni ). We construct the (n− d)× (d× p) design
matrix

X =


xd1 . . . x11 . . . xdp . . . x1p
xd+1
1 . . . x21 . . . xd+1

p . . . x2p
...

...
...

...
...

...
...

xn−11 . . . xn−d+1
1 . . . xn−1p . . . xn−d+1

p

 (4)

and a 1×(d×p) vector βi = (β1
1 , . . . , β

d
1 , . . . , β

1
p , . . . , β

d
p). We can see that problem

x′i ≈ λi = exp(Xβ′i) (5)

is equivalent to problem (2) in the matrix form where we mean by exp a function
operating on each coordinate i = d+ 1, . . . , n and λi = (λd+1

i , . . . , λd+1
i ).

Denote now by γi ⊂ Γ = {1, . . . , p} the subset of indices of regressor’s
variables and ki := |γi| its cardinality. Let βi := βi(γi) ∈ R1×(d×ki) be the vector
of unknown regression coefficients with a fixed ordering within the γi subset. For
illustration purposes and without lack of generality we can assume that the first
ki indices out of p vectors belong into γi. Considering only the columns from
matrix X in (4) corresponding to γi, we define the (n− d)× (d× ki) matrix of
lagged vectors with indices from γi as

Xi := X(γi) =


xd1 . . . x11 . . . xdki xd−1ki

. . . x1ki
xd+1
1 . . . x21 . . . xd+1

ki
xdki . . . x2ki

xd+2
1 . . . x31 . . . xd+2

ki
xd+1
ki

. . . x3ki
...

...
...

...
...

...
...

...

xn−11 . . . xn−d+1
1 . . . xn−1ki

xn−2ki
. . . xn−d+1

ki

 (6)

The problem (5) for explanatory variables with indices from γi is expressed as

x′i ≈ λi = E(x′i|Xi) = exp(Xiβ
′
i) (7)

or alternatively

log(x′i) ≈ log(λi) = log(E(x′i|Xi)) = Xiβ
′
i (8)

with βi := βi(γi) to be a 1 × (dki) matrix of unknown coefficients and log
operates on each coordinate. Wherever it it clear from context, we will simplify
the notation βi instead of βi(γi) and Xi instead of X(γi).
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4 Minimum Message Length for Poisson Granger Model

Denote Γ the set of all subsets of covariates xi, i = 1, . . . , p. Assume now a fixed
set γi ∈ Γ of covariates with size ki ≤ p and the corresponding design matrix Xi

from (6). It is well known that the Poisson regression model can be still used in
over- or underdispersed settings. (However the standard error for Poisson would
not be correct for the overdispersed situation.) In the Poisson graphical Granger
model, it is the case when for the dispersion of at least one time series holds
φi 6= 1. So using the Poisson regression model, we assume that the likelihood
function for xi in PGGM does not depend on φi. It is usual to assume that
the targets xi are independent random variables, conditioned on the features
given by Xi, so that the likelihood function can be factorized into the product
p(xi|βi, Xi, γi) =

∏n−d
t=1 p(x

t
i|βi, Xi, γi). The log-likelihood function has then the

form

Li := log p(xi|βi, Xi, γi) =

n−d∑
t=1

log p(xti|βi, Xi, γi). (9)

Since Xi is highly collinear, to make the ill-posed problem for coefficients βi a
well-posed one, one can use regularization by the ridge regression for GLM (see
e.g. [22]). Ridge regression requires an initial estimate of βi which can be as
the maximum likelihood estimator of (7) obtained by the iteratively reweighted
least square algorithm (IRLS). For a fixed ρi > 0, for the ridge estimates of

coefficients β̂i,ρi holds

β̂i,ρi = arg min
βi∈R+

{−Li + ρiβ
′
iΣiβi}. (10)

In our paper however, we will not use the GLM ridge regression in form (10).
Instead, we will apply the principle of minimum description length. Ridge re-
gression in the minimum description length framework is equivalent to allowing
the prior distribution to depend on a hyperparameter (= ridge regularization
parameter). To compute the message length using the MML87 approximation
proposed in [20], we need the negative log-likelihood function, prior distribution
over the parameters and an appropriate Fisher information matrix. [20] proposed
the corrected form of Fisher information matrix for a GLM regression with ridge
penalty. In our work, we will use this form of ridge regression and apply it to the
Poisson graphical Granger model. In the following, we will construct the MML
code for every subset of covariates in PGGM. The derivation of the criterion can
be found in Appendix.

The MML criterion for PGGM For each d ≥ 1 assume xi, i = 1, . . . , p, t =
1, . . . , n and the estimate of the dispersion parameter φ̂i be given. Assume β̂i be
an initial solution of (7) achieved as the maximum likelihood estimate.

(i) The causal graph of the Poisson Granger problem (7) can be inferred from
the solutions of p variable selection problems, where for each i = 1, . . . , p,
the set γ̂i of Granger-causal variables to xi is found.
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(ii) For the estimated set γ̂i holds

γ̂i = arg min
γi∈Γ
{I(xi, β̂i, φ̂i, ρ̂i, Xi, γi) + I(γi)} where (11)

I(xi, β̂i, φ̂i, ρ̂i, Xi, γi) = minρi∈R+{MML(xi, β̂i, φ̂i, ρi, Xi, γi)} where

MML(xi, β̂i, φ̂i, ρi, Xi, γi) is the minimum message length code of the set γi
and can be expressed as

MML(xi, β̂i, φ̂i, ρi, Xi, γi) = −Li+
1

2
log |X ′iWiXi+ρiΣi|−

1

2
log |Σi| (12)

+ki
2 log( 2π

ρi
) +( ρi

2φ̂i
)β̂′iΣiβ̂i + 1

2 log(n− d) −ki+1
2 log(2π) + 1

2 log((ki + 1)π)

where |γ̂i| = ki, Σi is the unity matrix of size dki × dki, Wi is a diagonal

matrix with entries Wi(t) = λti = exp(Xiβ̂
′
i)
t, t = 1, . . . , n−d for Poisson xi

and Wi(t) = λti = [xd+ti − exp (Xiβ̂
′
i)]

2 for over- or underdispersed Poisson

xi, Li = log(p(xi|β̂i, Xi, γi)) =
∑n
t=d+1 x

t
i[Xiβ̂

′
i]
t − exp ([Xiβ̂

′
i]
t) − log(xti!)

and I(γi) = log
(
p
ki

)
+ log(p+ 1).

Remark: Schmidt and Makalic in [21] compared AICc criterion with MML code
for generalized linear models. We constructed the AICc criterion also for PGGM.
However this criterion requires pseudoinverse of a matrix multiplication which
includes matrices Xi. Since Xis are highly collinear, these matrix multiplications
had in our experiments very high condition numbers. This consequently lead the
AICc criterion for PPGM to spurious results and therefore we do not report
them in our paper.

5 Variable Selection in Poisson Graphical Granger Model

For both Poisson and overdispersed Poisson cases we consider the family of mod-
elsM(γi) := {p(xi|βi, Xi, γi), γi ∈ Γ} defined by Poisson densities p(xi|βi, Xi, γi).
First, we present the procedure in Algorithm 1 which for each xi computes the
MML code for a set γi ⊂ Γ . Then we present Algorithm 2 for computation of
γ̂i.
In general, the selection of the best structure γi amounts to evaluate values
of MML(γi) for all γi ⊂ Γ , i.e. for all 2p possible subsets and then to pick
the subset with which the minimum of the function was achieved. To avoid the
exhaustive search approach, we find γi with minimum MML by the proposed
genetic algorithm type procedure called MMLGA. The idea of MMLGA is as
follows. Consider an arbitrary γi ⊂ Γ with size ki for a fixed i and d ≥ 1.
Define a Boolean vector Qi of length p corresponding to a given γi in so that
it has ones in the positions of the indices of covariates from γi, otherwise zeros.
Define I(Qi) := I(γi) where I(γi) is from (11). Genetic algorithm MMLGA
executes genetic operations on populations of Qi. In the first step a population
of size m (m be an even integer), is generated randomly in the set of all 2p

binary strings (individuals) of length p. Then we select m/2 individuals in the
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Algorithm 1 MML Code for γi

Input: γi ∈ Γ, d ≥ 1, series is the matrix of xti, φ̂i dispersion parameter,
i = 1, . . . , p, t = 1, . . . , n− d, Σi, H a set of positive numbers;
Output: For each i minimum I(xi, β̂i, ρ̂i, Xi, γi) over H is found;
for all xi do

// Construct the d-lagged matrix Xi with time series with indices from γi.
//Compute matrix Wi.
for all ρi ∈ H do

// Compute Li from (9).
// Find the initial estimates of β̂i.
//Compute MML(xi, β̂i, ρi, Xi, γi) from (12).

end for// to ρi
// Compute I(xi, β̂i, ρ̂i, Xi, γi) = minρi∈R+ MML(xi, β̂i, ρi, Xi, γi).

end for// to xi
return I(xi, β̂i, ρ̂i, Xi, γi) for each i.

current population with the lowest value of (11) as the elite subpopulation of
parents of the next population. For a predefined number of generated populations
ng, the crossover operation of parents and the mutation operation of a single
parent are executed on the elite to create the rest of the new population. A
mutation corresponds to a random change in Qi and a crossover combines the
vector entries of a pair of parents. After each run of these two operations on
a current population, the current population is replaced with the children with
the lowest value of (11) to form the next generation. The algorithm stops after
the number of population generations ng is achieved. The algorithm MMLGA
is summarized in Algorithm 2. Our code in Matlab is publicly available at:
https://t1p.de/b3gf.

5.1 Computational Complexity of MMLGA

For computation of I(xi, β̂i, ρ̂i, Xi, γi) we used Matlab function fminsearch. It is
well-known that the upper bound of the computational complexity of a genetic
algorithm is of order of the product of the size of an individual, of the size of each
population, of the number of generated populations and of the complexity of the
function to be minimized. Therefore an upper bound of the computational com-
plexity of MMLGA for p time series, size p of an individual, m the population size
and ng the number of population generations is O(pmng) × O(fminsearch) × p
where O(fminsearch) can be also estimated. The highest complexity in fmin-
search has the computation of the Hessian matrix, which is the same as for the
Fisher information matrix (our matrix Wi) or the computation of the determi-
nant. The computational complexity of Hessian for i fixed for (n− d)× (n− d)

matrix isO( (n−d)(n−d+1)
2 ). An upper bound on complexity of determinant in (12)

is O((pd)3). As before we assume n−d ≥ pd. Denote M = max{pd, (n−d+ 1)}.
Then holds also M3 ≥ (M−1)M

2 . Since we have p optimization functions, our up-
per bound on the computational complexity of MMLGA is then O(p2mngM

3).

https://t1p.de/b3gf
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Algorithm 2 MMLGA

Input: Γ , d ≥ 1, p, ng,m an even integer, z ≤ p position for off-spring;
series is the matrix of xti, i = 1, . . . , p, t = 1, . . . , n− d;
Output: Adj := adjacency matrix of the output causal graph;
// For every xi Qi with minimum of (11) is found;
for all xi do

Create initial population {Qji , j = 1, . . . ,m} at random;

Compute I(Qji ) := I(xi, β̂i, ρ̂i, Xi, Q
j
i ) +

( p
k
j
i

)
+ log(p + 1) for each j = 1, . . . ,m

where kji is the number of ones in Qji ; v:=1;
while v ≤ ng do

u:=1;
while u ≤ m do

Sort I(Qji ) ascendingly and create the elite population; By crossover of Qji
and Qri , r 6= j create children and add them to elite; Compute I(Qji ) for each
j; Mutate a single parent Qji at a random position; Compute I(Qji ) for each
j; Add the children with minimum I(Qji ) until the new population not filled;
u:=u+1;

end while// to u
v:=v+1;

end while// to v
end for// to xi
The i− th row of Adj: Adji := Qi with min of (11)
return (Adj)

6 Related Work

The minimum message length (MML) is an information theoretic principle based
on the statistical inference and data compression. The key idea is, if a statistical
model compresses data, then the model has (with a high probability) captured
regularities in the data. The MML principle selects the model which most com-
presses the data (i.e. the one with the ”shortest message length”) as the most
descriptive for the data. To be able to decompress this representation of the
data, the details of the statistical model used to encode the data must also be
part of the compressed data string. The calculation of the exact message is an
NP hard problem, however the most widely used less computationally intensive
is the Wallace-Freeman approximation called MML87 [25].

Compression schemes for Poisson regression have been already studied in
the framework of generalized linear models (GLM). Hansen and Yu 2003 in [7]
derived objective functions for one-dimensional GLM regression by the minimum
description principle. Schmidt and Makalic in [21] used MML87 to derive the
MML code of a multivariate GLM ridge regression. The mentioned codes cannot
be however directly used for a Granger model due to the lag in the time series
and the highly collinear matrix of covariates. To our best knowledge, compression
criteria for Poisson graphical Granger model has not been published yet. Other
papers inferring Granger causality by MDL are [13], [3], [14]. The inference in
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this papers is however done for the bivariate Granger causality and the extension
to graphical Granger methods is not straightforward.

Kim et al. in [10] proposed the statistical framework Granger causality (SFGC)
that can operate on point processes, including neural-spike trains. The proposed
framework uses multiple statistical hypothesis testing for each pair of involved
neurons. A pair-wise hypothesis test was used for each pair of possible connec-
tions among all time series and the false discovery rate (FDR) applied.

For a fair comparison with our method we selected causal inference methods
which are designed for p ≥ 3 non-Gaussian processes. In our experiments, we
used SFGC as a comparison method and the publicly available point process
time series provided by the authors. As another comparison method we selected
the method LINGAM from Shimizu et al. [23] which estimates a causal structure
in Bayesian networks among non-Gaussian time series using structural equation
models and independent component analysis. The experiments reported in the
papers with comparison methods were done only in scenarios when the number
of time observations is by several orders of magnitude greater than the number
of time series.

7 Experiments

We performed experiments with MMLGA on synthetically generated Poisson
processes and on neural spike train data from [10]. We used the method HGGM
[2], the method LINGAM [23] and the point process Granger causality SFGC
[10] for comparison. To assess similarity between the target and output causal
graphs by all methods, we used the commonly applied F -measure, which takes
both precision and recall into account.

7.1 Implementation and Parameter Setting

The comparison method HGGM uses Matlab package penalized from [18] with
adaptive Lasso penalty. The algorithm in this package employs the Fisher scoring
algorithm to estimate the coefficients of regressions. As recommended by the
author of penalized in [18] and employed in [2] we used adaptive Lasso with
λmax = 5, applying cross validation and taking the best result with respect to F
measure from the interval (0, λmax]. We also followed the recommendation of the
authors of LINGAM in [23] and used threshold=0.05 and number of boots n/2,
where n is the length of the time series. In method SFGC we used the setting
recommended by the authors, the significance level 0.05 of FDR. The method
SFGC is designed for binomial time series so as expected, using the generated
Poisson time series as input of this method gave very low or zero F-measure,
so we do not report these values in our results. For a fair comparison to MML,
HGGM and LINGAM, we will examine the performance of SFGC with input
binomial time series in Section 7.3.
In MMLGA, the initial estimates of βi were achieved by the iteratively re-
weighted least square procedure implemented in Matlab function glmfit, in the
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same function we obtained also the estimates of the dispersion parameters of
time series. (Considering initial estimates of βi by the IRLS procedure using
function penalized with ridge gave poor results in the experiments.) The min-
imization over ρi was done by function fminsearch which defined set H from
Algorithm 1 as positive numbers greater or equal to 0.1.

7.2 Synthetically Generated Poisson Processes

To be able to evaluate the performance of MMLGA and to compare it to other
methods, the ground truth, i.e. the target causal graph in the experiments should
be known. In this series of experiments we examined randomly generated Poisson
processes together with the correspondingly generated target causal graphs. The
performance of MML, HGGM and LINGAM depends on various parameters
including the number of time series (features), the number of causal relations in
Granger causal graph (dependencies), the length of time series and finally the
lag parameter. We examined causal graphs with p = 5 and with p = 9 time
series. The length of generated time series was ’short’, varying from 100 to 1000.
We generated Poisson time series randomly. Concerning the calculation of an
appropriate lag for each time series, theoretically it can be done by AIC or BIC.
However, the calculation of AIC and BIC assumes that the degrees of freedom
are equal to the number of nonzero parameters, which is only known to be true
for the Lasso penalty [29] but not known for adaptive Lasso. In our experiments
we followed the recommendation of [2] how to select the lag of time series. They
observed that varying the lag parameter from 3 to 50 did not influence either
the performance of HGGM nor SFGC significantly. Based on that we considered
lags 3 and 4 in our experiments. For the causal graphs with p = 5 and with
p = 9 we tested the performance of algorithms for number of dependencies from
6 to 9. The results of our experiments on causal graphs with 5 features (p = 5)
are presented in Table 1. Each value in Table 1 represents the mean value of all
F -measures over 20 random generations of causal graphs for length n and lag d.

Table 1: p = 5, average F -measure for each method, MMLGA, with ng = 10,
m = 50, HGGM with λmax = 5, LINGAM with n/2 boots.

d = 3, n = 50 100 200 300 500 1000

MMLGA 0.8 0.82 0.83 0.77 0.77 0.73
HGGM 0.67 0.73 0.73 0.73 0.71 0.8

LINGAM 0.71 0.71 0.7 0.69 0.65 0.65

d = 4, n = 50 100 200 300 500 1000

MMLGA 0.75 0.77 0.77 0.8 0.8 0.67
HGGM 0.66 0.73 0.71 0.73 0.73 0.8

LINGAM 0.64 0.65 0.64 0.63 0.65 0.64
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One can see from Table 1 that MMLGA gave significantly higher precision in
terms of F-measure than both comparison methods for n up to 500. On the
other hand, HGGM gave the highest F-measure for n = 1000 which can be for
p = 5 considered as a scenario of a large data set. The results of our experiments
with causal graphs with p = 9 are presented in Table 2. Each value in Table
2 represents the mean value of all F -measures over 20 random generations of
causal graphs for length n and lag d.

Table 2: p = 9, average F -measure for each method, MMLGA, with ng = 10,
m = 50, HGGM with λmax = 5, LINGAM with n/2 boots.

d = 3, n = 50 100 200 300 500 1000

MMLGA 0.67 0.62 0.69 0.69 0.69 0.67
HGGM 0.6 0.48 0.5 0.62 0.65 0.82

LINGAM 0.4 0.28 0.29 0.33 0.35 0.36

d = 4, n = 50 100 200 300 500 1000

MMLGA 0.62 0.61 0.67 0.64 0.64 0.63
HGGM 0.5 0.51 0.54 0.54 0.55 0.8

LINGAM 0.4 0.39 0.39 0.4 0.37 0.38

Similarly as in the experiments with p = 5, one can see in Table 2 for p = 9 that
MMLGA gave significantly higher F-measure than for both comparison methods
for n up to 500. HGGM gave higher F-measure than MMLGA for n = 1000 which
can be for p = 5 considered as a scenario of a large data set. In both networks
with p = 5 and p = 9 time series, method LINGAM had the lowest F-measures
for all investigated n.

7.3 Neural Spike Train Data

In this section we examine the performance of MMLGA, SFGC, HGGM and
LINGAM on time series representing the spike train data. We used the nine-
neuron network with the spike train data from [10] and the corresponding target
network in Figure 1-B of the paper. Based on the experimental settings described
in [10], the authors generated 100,000 samples for each neuron, and the total
number of spikes for each neuron ranged from 2176 through 2911, i.e. three
orders of magnitude more than the number of time series. The target network
corresponds thus to the long time series. For fair comparison of all methods, we
compared their precision on short time series in terms of F-measure to the target
network from Figure 1-B of the paper.

Spike train data is a special case of a temporal point process. A temporal
point process is a stochastic time series of binary events that occur in continuous
time. It can only take on two values at each point in time, indicating whether
or not an event has actually occurred. When considering the data set of size
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n, the point process model of a spike train for neuron i can be defined as a
counting process, which can be denoted as {N(t), 1 ≤ t ≤ n}. A counting process
represents the total number of occurrences or events that have happened up to
and including time t. It is a Poisson process. We used the point process time
series from [10] as input of SFGC and their Poisson representation as described
above as input of methods MMLGA, HGGM and LINGAM. We experimented
with short time series with n from 100 up to 1000. Table 3 gives the F-measures
of the methods. Rephrasing the F-measures into percent, one can see that for
n = 500 method MMLGA is able to reconstruct 59 % of the target causal
network, while the best reconstruction results are for SFGC 12 % (achieved
for n = 900 and n = 1000), for HGGM 45 % (achieved for n = 300) and for
LINGAM 19 % (achieved for n = 900). One can see that MMLGA outperformed
significantly the other three methods in precision measured by F-measure for
almost all investigated n.

Table 3: p = 9, F -measure for each method, MMLGA with d = 3,ng = 30,
m = 50, HGGM with λmax = 5, LINGAM with n/2 boots.

d = 3, n = 100 200 300 400 500 600 700 800 900 1000

MMLGA 0.27 0.43 0.45 0.51 0.59 0.55 0.47 0.46 0.47 0.46
SFGC 0 0.06 0 0 0 0 0.06 0 0.12 0.12
HGGM 0.34 0.44 0.45 0.41 0.44 0.38 0.39 0.38 0.41 0.39

LINGAM 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.33 0.42 0.39

7.4 Analysis of Chicago Violence Crime Dataset

Chicago’s violent crime rate is substantially higher than the US average. Al-
though national crime rates in the US have stayed near historic lows, Chicago
had nearly half of 2016’s increase in crimes in the US [15]. Thus any research on
possible causes of the increased number of crimes is valuable for the law enforce
agencies. We used the data set of 5 most frequent crimes in Chicago from [15],
i.e. battery, narcotics consumption, criminal damage (= violation of property
rights), theft and other offense (e.g. harassment by telephone, a weapon viola-
tion). These are yearly measurements from 2001 to 2017. Due to the small data
size, this is rather a toy example. We investigated temporal interactions of these
time series. No target graph was given. Our goal was to find out whether the
resulting causal graphs for each test method support empirical evidence. Sta-
tistical distribution fitting test confirmed Poisson distribution of all time series.
We investigated causal graphs for lags 1 to 3 (to keep the condition n− d ≥ pd
as discussed above). Method HGGM gave for each lag a different causal graph,
for d = 1 it gave the complete graph. So we excluded it from further analysis.
Methods LINGAM and MMLGA gave only one causal graph as output for all
considered lags and the causal graphs can be found (for ng = 10 and m = 30)
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in Figure 1. Focusing on crime narcotic consumptions, MMLGA outputs other
offenses as causal to narcotics and narcotics causal to crime battery. Both claims
support the empirical evidence, in the second case it is known that drug con-
sumption increases the effects generating violence, as stated in the reports of the
Bureau of Justice Statistics, US Department of Justice, e.g. [24]. On the other
hand, LINGAM outputs battery as a cause of narcotics, which seems unrealistic.
So the output of MMLGA gave a more realistic causal graph than LINGAM.

Fig. 1: Results of causal interactions among 5 most frequent crimes in Chicago
for LINGAM and MMLGA.

8 Conclusions

Common graphical Granger models are usually applied in scenarios when the
number of time observations is by several orders of magnitude greater than the
number of time series. In the opposite case of short time series, these meth-
ods often suffer from overestimation. In this paper we used minimum message
length principle for determination of causal connections in the Poisson graphical
Granger model. Based on the dispersion coefficient of each time series and on the
initial maximum likelihood estimates of the regression coefficients, we proposed
a minimum message length criterion to select the subset of time series causal to
each target time series. We used a genetic-type algorithm MMLGA to find this
set. We demonstrated in the experiments on synthetic Poisson time series and
on point process time series that our method is on short time series superior
in precision to the compared causal inference methods, i. e. the heterogeneous
Granger causality method, the Bayesian causal inference method using struc-
tural equation models LINGAM and the point process Granger causality. Both
MMLGA and HGGM use penalization, MMLGA uses ridge, HGGM adaptive
Lasso. The superiority of MMLGA with respect to HGGM for short time series
can be explained by using the dispersion of the time series in the criterion as
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additional information with respect to HGGM. To our best knowledge, this is
the first work on applying the minimum message length principle to the Poisson
graphical Granger model. In our future work we would like to investigate other
utilization of the minimum message principle for PGGM, for example for the
dispersion parameter of the involved time series.
Acknowledgement: This work was supported by the Czech Science Founda-
tion, project GA19− 16066S.
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2. Behzadi, S., Hlaváčková-Schindler, K., Plant, C.: Granger Causality for Heteroge-
neous Processes, PAKDD 2019.

3. Budhathoki, K., Vreeken, J.: Origo: causal inference by compression, Knowledge
and Information Systems, 56, 2, 285–307 (2018).

4. Brown E.N.: Theory of point processes for neural systems. In: Chow C, et al. Meth-
ods and models in neurophysics. Paris: Elsevier, 691–726 (2005).

5. Granger, C.: Investigating causal relations by econometric models and cross-spectral
methods. Econometrica 424–438 (1969).

6. Granger, C.W.: Some recent development in a concept of causality. Journal of econo-
metrics 39(1-2):199–211 (1988).

7. Hansen, M.H., and Yu, B.: Minimum description length model selection criteria for
generalized linear models. Lecture Notes-Monograph Series 145–163 (2003).

8. Hansen, P.C.: Truncated singular value decomposition solutions to discrete ill-posed
problems with ill-determined numerical rank. SIAM Journal on Scien. and Stat.
Computing 11(3):503–518 (1990).

9. Huber, P. J.: The behavior of maximum likelihood estimates under nonstandard
conditions. In Proceedings of the fifth Berkeley symposium on mathematical statis-
tics and probability, volume 1, 221–233. University of California Press (1967).

10. Kim, S. Putrino, D., Ghosh, S., Brown, E.N.: A Granger causality measure for point
process models of ensemble neural spiking activity, PLOS Computational Biology,
1–13 (2011).

11. Kwak, H., Lee, C. Park, H., Moon, S.: What is twitter, a social network or a news
media? In Proceedings of the 19th international conference on World wide web, 591–
600. ACM (2010).

12. Mannino, M., Bressler, S.L.: Foundational perspectives on causality in large-scale
brain networks. Physics of life reviews 15:107–123 (2015).

13. Marx, A. and Vreeken, J.: Telling cause from effect using MDL-based local and
global regression, IEEE ICDM,307–316 (2017).

14. Marx, A. and Vreeken, J.: Causal Inference on Multivariate and Mixed-Type Data,
ECML PKDD 2018, 655–671 (2018).

15. Mangipudi, V.: Analysis of crimes in Chicago 2001-
2017. https://rstudio-pubs-static.s3.amazonaws.com/

294927b602318d06b74e4cb2e6be336522e94e.html Accessed Feb 21,2020.
16. Marinescu, I.E., Lawlor, P.N., Kording, K.P.: Quasi-experimental causality in neu-

roscience and behavioural research. Nature Human Behaviour 1 (2018).
17. Maziarz, M.: A review of the granger-causality fallacy. The journal of philosophical

economics: Reflections on economic and social issues 8(2):86–105 (2015).

 https://rstudio-pubs-static.s3.amazonaws. com/294927 b602318d06b74e4cb2e6be336522e94e.html
 https://rstudio-pubs-static.s3.amazonaws. com/294927 b602318d06b74e4cb2e6be336522e94e.html


Poisson Graphical Granger Causality by Minimum Message Length 15

18. McIlhagga, W. H.: penalized: A MATLAB toolbox for fitting generalized linear
models with penalties. Journal of Statistical Software. 72(6) (2016).

19. Peterson, L.E.: PIRLS: Poisson iteratively reweighted least squares computer pro-
gram for additive, multiplicative, power, and non-linear models. J Stat Software, 2,
1-28 (1997).

20. Schmidt, D.F., Makalic, E.: MML invariant linear regression. In Advances in Ar-
tificial Intelligence, 312–321 (2009).

21. Schmidt, D.F., Makalic, E.: Minimum Message Length Ridge Regression for Gen-
eralized Linear Models. In Australasian Joint Conference on Artificial Intelligence,
pp. 408-420, Springer, Cham (2013).

22. Segerstedt, B.: On ordinary ridge regression in generalized linear models. Commu-
nications in Statistics-Theory and Methods, 21(8), 2227-2246 (1992).

23. Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T.,
Hoyer, P.O., Bollen, K.: DirectLiNGAM: A direct method for learning a linear non-
Gaussian structural equation model. Journal of Machine Learning Research, 12:
1225–1248 (2011).

24. U.S. Department of Justice, Office of Justice Programs, Bureau of Justice Statis-
tics. https://www.bjs.gov/content/pub/pdf/DRRC.PDF

25. Wallace, C.S., Freeman, P.R: Estimation and inference by compact coding, Journal
of the Royal Statistical Society: Series B, 49(3), 240–252, Wiley Online Library
(1987).

26. Wong, C.K., Makalic, E., Schmidt, D.F.: Minimum message length inference of
the Poisson and geometric models using heavy-tailed prior distributions. Journal of
Mathematical Psychology 83:1–11 (2018).

27. Zhou, D., Xiao, Y., Zhang, Y., Xu, Z., Cai, D.: Granger causality network recon-
struction of conductance-based integrate-and-fire neuronal systems. PloS one, 9(2)
(2004).

28. Zou, H.: The adaptive lasso and its oracle property. Journal of the American Sta-
tistical Association 1418–1429 (2008).

29. Zou, H., Hastie, T., Tibshirani, R.: On the “degrees of freedom” of the lasso. The
Annals of Statistics, 35(5), 2173-2192 (2007).

9 Appendix

Derivation of the MML Criterion for PGGM

Assume p independent Poisson random variables expressed by time series with
lag d > 0 xti, t = d + 1, . . . , n, and the problem (7). Assume the estimate

φ̂i is given. We consider now γi fixed, so for simplicity of writing we omit it
from the list of variables of the functions. First we need to express the log-
likelihood function in terms of parameters βi. Since we use Poisson model for
xi having the Poisson distribution or overdispersed Poisson, we omit φi from
the list of parameters which condition function p. For a given set of parameters
βi, the probability of attaining xd+1

i , . . . , xn is given by p(xd+1
i , . . . , xni |Xi, βi)

=
∏n
t=d+1

(λt
i)

xt
i exp (−λt

i)
(xt

i)!
=
∏n
t=d+1

exp ([Xiβ
′
i]

t)x
t
i exp (− exp ([Xiβ

′
i]

t))
xt
i!

where [Xiβ
′
i]
t

denotes the t-th coordinate of the vector Xiβ
′
i. The log-likelihood in terms of βi is

Li = ll(βi|xi, Xi) = log p(βi|xi, Xi) =
∑n
t=d+1 x

t
i[Xiβ

′
i]
t−exp ([Xiβ

′
i]
t)−log(xti!).

https://www.bjs.gov/content/pub/pdf/DRRC.PDF
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Having function Li, we can now compute an initial estimate of β̂i from (7) which
is the solution to the system of score equations. Since −ll(βi|xi, Xi) is a convex
function, one can use standard convex optimization techniques (e.g. Newton-
Raphson method) to solve these equations numerically. (In our code, we use the
Matlab implementation of an iteratively reweighted least squares (IRLS) algo-
rithm of the Newton-Raphson method). Assume now we have an initial solution

β̂i from (7).
1. Now we derive matrix Wi for xi with Poisson distribution:
The Fisher information matrix Ji = J(βi) = −Eβi

(∇2ll(βi|xi, Xi)) may be ob-
tained by computing the second order partial derivatives of ll for r, s = 1, . . . , ki.
This gives
δ2ll(βi|xi,Xi)

δ2βr
i β

s
i

= δll
δβs

i

∑n
t=d+1[xti

∑d
l=1 x

t−l
r − exp (

∑ki
j=1

∑d
l=1 x

t−l
j βlj)

∑d
l=1 x

t−l
r ] =

= −
∑n
t=d+1 exp (

∑ki
j=1

∑d
l=1 x

t−l
j βlj)(

∑d
l=1 x

t−l
s )(

∑d
l=1 x

t−l
r ). If we denote

Wi := diag(exp (
∑ki
j=1

∑d
l=1 x

d+1−l
j βlj), . . . , exp (

∑ki
j=1

∑d
l=1 x

n−l
j βlj)) then we

have Fisher information matrix J(βi) = (Xi)
′WiXi.

2. Derivation of matrix Wi for xi with overdispersed Poisson distribution:
Assume now the dispersion parameter φi > 0, 6= 1. The variance of the overdis-
persed Poisson distribution is φiλi. We know that the Poisson regression model
can be still used in overdispersed settings and the function ll is the same as
ll(βi) derived above. We use the robust sandwich estimate of covariance of β̂i,
proposed in [9] for a general Poisson regression. The Fisher information matrix
of overdispersed problem is Ji = J(βi) = (Xi)

′WiXi where Wi is constructed
for PGGM based on [9] and has the form Wi =

diag([xd+1
i − exp (

∑ki
j=1

∑d
l=1 x

d+1−l
j βlj)]

2, . . . , [xni − exp (
∑ki
j=1

∑d
l=1 x

n−l
j βlj)]

2).

Having parameters β̂i, φ̂i, Σi Wi and ρi, we still need to construct the function
MML(γi).
Construction of function MML(γi):
Having these parameters, we use for each i = 1, . . . , p and regression (7) formula
(18) from [21] i.e. for the case when in α := 0 and β := βi and X := Xi, y := xi,

n := n − d, k := ki, θ := β̂i, λ := ρ̂i, φ := φi, S = Σi is the unity matrix of
dimension dki, the corrected Fisher information matrix for the parameters βi is
then J(βi|φi, ρi) = ( 1

φi
)X ′iWiXi + ρiΣi where λi = exp(Xiβi). Function c(m)

for m := ki + 1 is then c(ki + 1) = −ki+1
2 log(2π) + 1

2 log((ki + 1)π) − 0.5772
and the constants independent of ki we omitted from MML code, since the
optimization over γi is of them independent. Among all subsets γi ∈ Γ , there
are

(
p
ki

)
subsets of size ki. If nothing is known a priori about the likelihood of

any covariate xi being included in the final model, a prior that treats all subset
sizes equally likely π(|γi|) = 1/(p + 1) is appropriate [21]. This gives the code
length I(γi) = log

(
p
ki

)
+ log(p+ 1) as in (11).
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