
Interface Responsibility Patterns: Processing Resources and
Operation Responsibilities

Olaf Zimmermann
University of Applied Sciences of
Eastern Switzerland, Rapperswil,

Switzerland

Daniel Lübke
iQuest GmbH, Hanover, Germany

Uwe Zdun
University of Vienna, Faculty of
Computer Science, Software

Architecture Research Group, Vienna,
Austria

Cesare Pautasso
Software Institute, Faculty of

Informatics, USI Lugano, Switzerland

Mirko Stocker
University of Applied Sciences of
Eastern Switzerland, Rapperswil,

Switzerland

ABSTRACT
Remote Application Programming Interfaces (APIs), as for instance
offered in microservices architectures, are used in almost any dis-
tributed system today and are thus enablers for many digitalization
efforts. It is hard to design such APIs so that they are easy and ef-
fective to use; maintaining their runtime qualities while preserving
backward compatibility is equally challenging. Finding well suited
granularities in terms of the architectural capabilities of endpoints
and the read-write semantics of their operations are particularly im-
portant design concerns. Existing pattern languages have dealt with
local APIs in object-oriented programming, with remote objects,
with queue-based messaging and with service-oriented computing
platforms. However, patterns or equivalent guidances for the ar-
chitectural design of API endpoints, operations and their request
and response message structures are still missing. In this paper, we
extend our microservice API pattern language (MAP) and intro-
duce endpoint role and operation responsibility patterns, namely
Processing Resource, Computation Function, State Creation Operation,
Retrieval Operation, and State Transition Operation. Known uses
and examples of the patterns are drawn from public Web APIs, as
well as application development and system integration projects
the authors have been involved in.

CCS CONCEPTS
• Software and its engineering → Patterns; Designing software;

ACM Reference Format:
Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko
Stocker. 2020. Interface Responsibility Patterns: Processing Resources and
Operation Responsibilities. In European Conference on Pattern Languages of
Programs 2020 (EuroPLoP ’20), July 1–4, 2020, Virtual Event, Germany. ACM,
New York, NY, USA, 24 pages. https://doi.org/10.1145/3424771.3424822

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7769-0/20/07. . . $15.00
https://doi.org/10.1145/3424771.3424822

1 INTRODUCTION
Microservices architectures have evolved from previous incarna-
tions of Service-Oriented Architectures (SOAs) [18]. They consist
of independently deployable, scalable and changeable services, each
having a single responsibility. These responsibilities model busi-
ness capabilities. Microservices are often deployed in lightweight
virtualization containers, encapsulate their own state, and commu-
nicate via message-based remote APIs in a loosely coupled fashion.
Microservices solutions leverage polyglot programming, polyglot
persistence, as well as DevOps practices including decentralized
continuous delivery and end-to-end monitoring [25], [32], [47].

Microservice API designers have to address concerns such as:
How many services should be exposed? Which service cuts let
services and their clients deliver user value jointly, but couple
them loosely? How often do services and their clients interact to
exchange data? How much and which data should be exchanged?
[51] The Microservice API Patterns (MAP) at www.microservice-
api-patterns.org1 cover and organize this design space, providing
guidance distilled from the collective experience of the API design
community.

This particular paper deals with two specific problems of design-
ing API endpoints and their operations (in the context of microser-
vice architectures):

• First, we briefly investigate the design question:Which ar-
chitectural role should an API endpoint play?

• Next, we go one level down and ask:What is the responsibility
of each API operation?

The drivers for API introduction and requirements for API de-
sign are diverse. As a consequence, the roles that APIs play in
applications and service ecosystems differ widely. Sometimes, an
API client just wants to inform the provider about an incident, or
hand over some data; sometimes they request provider-side data to
be able to continue client-side processing. Sometimes the provider
has to perform a lot of complex processing to satisfy the client’s
information need, sometimes it can simply return a data element
that already exists as part of the server-side application state. Some
of the provider-side processing, whether simple or complex, may
change server-side application state, some might leave this state
untouched.

1https://microservice-api-patterns.org/

https://doi.org/10.1145/3424771.3424822
https://doi.org/10.1145/3424771.3424822
https://microservice-api-patterns.org/
https://microservice-api-patterns.org/
https://microservice-api-patterns.org/

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

In response to these challenges, our responsibility patterns cover
two distinct main architectural roles for API endpoints: Process-
ing Resources are resources whose primary function is to handle
incoming action requests (also known as activities or commands),
whereas Information Holder Resources are resources whose primary
function is storage and management (including retrieval) of data
or meta-data. To decide between these two, API designers have to
prioritize one of two options:

• Should data or processing be the leading design concept on the
API endpoint level?

Within this paperwe cover the endpoint-level Processing Resource
pattern first, which emphasizes processing over data. Its alternative
Information Holder Resource, in which the designer emphasizes data
over processing, is covered in another paper2.

Next, more fine-grained decisions have to be made, covered in
four patterns of widely used API operation responsibilities:

• Computation Function: An operation that computes a result
solely from the client input and does not read or write server-
side state.

• State Creation Operation: An operation that creates states
on an API endpoint that is in essence write-only. Here ‘in
essence’ means that such operations might need to read some
state, e.g. to check for duplicate keys in existing data before
creation, but their main purpose should be state creation.

• Retrieval Operation: A read-only operation that only finds
and delivers data without allowing clients to change it. The
data may be manipulated (for instance, aggregated) before
being returned, but does not have to. Some retrieval opera-
tions search for data, others access single data elements.

• State Transition Operation: An operation that performs one or
more activities causing a server-side state change. Examples
of such operations are full and partial updates to server-side
data, as well as deletions of such data.

Figure 1 shows the two the endpoint role patterns, Processing
Resource (covered in this paper) and Information Holder Resource
(covered in the companion paper [50]), as well as the four operation
responsibility patterns (covered in this paper). The relations among
the patterns are shown as well.

The remainder of this paper is structured as this. Section 2
presents related work. Section 3 provides an overview of our pat-
tern language, its categories and patterns published so far; it also
introduces the API design vocabulary used in the pattern texts as
well as our pattern template. Section 4 features the five patterns.
Section 5 concludes and gives an outlook.

2 RELATEDWORK
2.1 Related pattern languages
We discussed pattern languages that deal with distributed system
and API design in our previous three EuroPLoP papers [52], [40],
[28], including Remoting Patterns [43], Enterprise Integration Pat-
terns (EIP) [19], Fowler’s patterns Service Layer and Remote Facade
[11], POSA vol. 4 with its distributed systems patterns [7], service
design patterns by Daigenau [8], and microservices patterns [39].

2“Data-Oriented Interface Responsibility Patterns: Types of Information Holder Re-
sources” [50].

Brown and Woolf describe a set of implementation patterns for
building applications using microservices [6]. They are primarily
focused on the overall architecture, but also cover DevOps and
scalable storage patterns. Rather surprisingly, they argue that mi-
croservices tend to be coarse-grained (despite their name) so that
they can implement “clear business capabilities”, a tenet that mi-
croservices share with previous generations of service-oriented
architectures [47]. Their Business Microservice, Adapter Microser-
vice, and also Backends for Frontends all expose remote APIs, which
can be described architecturally by our patterns in terms of their
request and response message structures, qualities, evolution and
versioning strategies as well as endpoint roles and responsibilities.
Hence, the two pattern languages complement each other nicely.

2.2 Other existing design heuristics
One can find many excellent books providing deep advice about
using RESTful HTTP, e.g., which HTTP verb or method to pick
to implement a particular operation, or how to apply asynchro-
nous messaging including routing, transformation, and guaranteed
delivery [1], [19]. Strategic Domain-Driven Design [9], [42] can
assist with service identification. SOA, cloud and microservice in-
frastructure patterns have already been proposed, and structuring
data storages is also well understood. Our previous publications
[52], [40] and [28] cover such related works; the MAP website also
gives reading recommendations3.

2.3 Responsibility-Driven Design (RDD)
The patterns in this paper represent vastly different invocation, pro-
cessing, and state management characteristics. To order and struc-
ture the design space, we adopt terminology and role stereotypes
from Responsibility-Driven Design (RDD)4. In RDD, a stereotype is
“a conventional, formulaic, and oversimplified conception, opinion,
or image”. An application is “a set of interacting objects”, an object
is “an implementation of one or more roles” (here: microservice).
A role is “a set of related responsibilities”, a responsibility is “an
obligation to perform a task or know information”. A collaboration
is “an interaction of objects or roles (or both)”, a contract is “an
agreement outlining the terms of a collaboration” [44].

Our microservice API design terms relate to the more general
RDD concepts in the following way: API operations take over a
responsibility, and API and their endpoints assemble these respon-
sibilities into roles. The collaborations then arise from calls to API
operations (a.k.a. service invocations). The API Description, pre-
sented in a previous paper [28], specifies the contract.

All API endpoints can be seen as (remote) interfacers that provide
and protect access to service providers, controllers/coordinators, as
well as information holders and structurers. RDD defines these and
other role stereotypes like this:

• An interfacer “transforms information and requests between
distinct parts of a system”.

• A service provider “performs work on demand”.
• A controller “makes decisions and closely directs others’
actions” and a coordinator “mechanically reacts to events”.

3https://microservice-api-patterns.org/relatedPatternLanguages
4http://www.wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf

https://microservice-api-patterns.org/relatedPatternLanguages
http://www.wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf
https://microservice-api-patterns.org/relatedPatternLanguages
http://www.wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

State Transition
Operation

State Creation
Operation

Processing
Resource

Computation
Function

Retrieval
Operation

Information
Holder
Resource

Functional vs. data perspective
(endpoint-level)

Responsibilities & constraints
(operation-level)

Realization strategy

St
at

e
R

ea
d

State Write
yes

n
o

ye
s

no

Figure 1: Endpoint role and operation responsibility patterns and their relations (bold pattern names indicate the scope of this paper).

• An information holder “knows and provides information”
and a structurer “maintains relationships between objects
and information about those relationships”[44].

Specifically, we (re-)use the following role stereotypes: con-
troller/coordinator (two roles taken by our Processing Resource
pattern, this paper) and information holder (separate paper).

3 CONTEXT: THE MAP LANGUAGE
3.1 Previously published patterns
Our language is organized into categories, three of which are par-
tially published already [28, 40, 52]:

1. Foundation patterns: What type of (sub-)systems and com-
ponents are integrated? Where should an API be accessible
from? How should it be documented?

2. Responsibility patterns: Which is the architectural role played
by each API endpoint and its operations? How do these roles
and the resulting responsibilities impact (micro-)service size
and granularity?

3. Structure patterns: What is an adequate number of represen-
tation elements for request and response messages? How are
these elements structured? How can they be grouped and
annotated with usage information? [52].

4. Quality patterns: How can an API provider achieve a certain
level of quality of the offered API, while using its available
resources in a cost-effective way? How can the quality trade-
offs be communicated and accounted for? [40].

5. Identification patterns: How can API endpoints and opera-
tions be found in business requirements and domain models?
What is the right approach to service decomposition?

6. Evolution patterns: How to deal with life cycle management
concerns such as support periods and versioning? How to
promote backward compatibility and communicate breaking
changes? [28]

This paper and its companion cover the responsibility category.
A retrospective of the evolution of the MAP language since 2016

can be found online5.

3.2 Domain model
We have generalized the concepts and terminology that we found
in remote API platforms and integration technologies such as
HTTP, gRPC, WSDL/SOAP (to name just a few) into a platform-
independent domain model. We described this domain model in a
previous EuroPLoP paper [28]; its vocabulary is used throughout
our pattern language and also in the following pattern texts.

An API endpoint is a provider-side end of a communication
channel and a specification of where the API resources are located
so that APIs can be accessed by API clients. Each API endpoint
belongs to an API ; one API can have different endpoints. The API
exposes operations.

3.3 Pattern template
We use the following template for our patterns: The context estab-
lishes preconditions for pattern applicability. The problem specifies
a design issue to be resolved. The forces explain why the prob-
lem is hard to solve – architectural design issues and conflicting
quality attributes are often referenced here; a non-solution may
be pointed out as well. The solution answers the design question
from the problem statement, describes how the solution works and
which variants (if any) exist. It also gives an example and shares
implementation hints. The consequences section discusses to which
extent the solution resolves the pattern forces; it may also include
additional pros and cons and identify alternative solutions. Known
uses report real-world pattern applications. Finally, relations to
other patterns are explained and additional pointers given under
more information.

5https://ozimmer.ch/patterns/2020/04/29/MAPRetrospective.html

https://ozimmer.ch/patterns/2020/04/29/MAPRetrospective.html
https://ozimmer.ch/patterns/2020/04/29/MAPRetrospective.html

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

4 PROCESSING RESOURCE ROLE AND
OPERATION RESPONSIBILITIES

Let us start with an example. The following service contract features
the MAP concepts introduced in the previous section:

data type Customer {"name": D<string>,
"address": D<string>,
"bday": D<string>}

endpoint type CustomerRelationshipManager
serves as PROCESSING_RESOURCE

exposes
operation validateCustomerRecord
with responsibility COMPUTATION_FUNCTION
expecting payload "customerRecord": Customer
delivering payload "isCompleteAndSound": D<bool>

operation createCustomer
with responsibility STATE_CREATION_OPERATION
expecting payload "customerRecord": Customer
delivering payload "customerId": D<int>

operation upgradeCustomer
with responsibility STATE_TRANSITION_OPERATION
expecting payload "promotionCode": P
delivering payload P

endpoint type CustomerRepository
serves as INFORMATION_HOLDER_RESOURCE

exposes
operation findCustomer
with responsibility RETRIEVAL_OPERATION
expecting payload "searchFilter": D<string>
delivering payload "customerList": Customer*

The example also applies the patterns introduced in this pa-
per as decorators (notation: Microservice Domain-Specific Lan-
guage (MDSL)6, a new style- and technology-independent ser-
vice contract modeling language [22]. The above contract spec-
ifies a CustomerRelationshipManager which is a processing re-
source, i.e. its primary function is to handle incoming requests.
Next, it exposes an operation validateCustomerRecord which is
a Computation Function meaning that it computes a result solely
from the input provided in the expected payload. The operation
createCustomer is different in that it is a write-only State Cre-
ation Operation that receives notifications about new customers
and creates server-side state for a new customer data record ac-
cordingly. upgradeCustomer has to perform activities causing a
server-side state change; thus, it is State Transition Operation. The
CustomerRepository is an Information Holder Resource as its pri-
mary function is storage and management of customer (master)
data. It exposes one Retrieval Operation called findCustomer.

Table 1 features the pattern names, problem statements, and
“bold face” solution summaries.

6https://microservice-api-patterns.github.io/MDSL-Specification/

4.1 Pattern: Processing Resource
a.k.a. Command Service, Controller Resource, Executor, Processing
Endpoint

Context. The functional requirements for an application have been
specified, e.g., in the form of agile user stories and/or analysis-level
business process models. An analysis of the functional requirements
suggests that one or more remote capabilities should be invoked;
Frontend Integration and/or Backend Integration are required and ap-
plication domain-driven APIs and their clients have to be designed.
A (micro-)services architecture and integration infrastructure have
been defined initially.

Problem. How can an API provider allow its remote clients to
trigger actions in it?

Such actions may be standalone commands (application domain-
specific ones or technical utilities) or activities in a business process;
they may or may not read and write provider-side application state.
A suitable level of abstraction is desired that only exposes the action
and hides data as much as possible.

Forces. When invoking provider-side processing upon request
from remote clients, general design concerns are:

• Contract expressiveness and service granularity (and their
impact on coupling)

• Learnability and manageability
• Semantic interoperability
• Response time
• API security and request/response data privacy
• Compatibility and evolvability

These forces conflict with each other partially. For instance, the
more expressive a contract is, the more has to be learned, managed,
and tested (w.r.t. interoperability). Finer-grained services might be
easier to protect and evolve, but there will be many of them, which
have to be integrated [31].

A key decision is whether the endpoint should have activity- or
data-oriented semantics. This pattern explains how to emphasize
activity; its Information Holder Resource sibling [50] focusses on
data orientation.

Details. Contract expressiveness and service granularity. API de-
signers have to decide how much functionality each API endpoint
and its operations should expose. Many simple interactions give
the client a lot of control and can make the processing highly ef-
ficient, but they also introduce coordination effort and evolution
challenges; few rich API capabilities can promote qualities such as
consistency but may not suit each client and waste resources. The
accuracy of the API Description and its implementation also matters.
Ambiguities in the invocation semantics harm interoperability and
can lead to invalid processing results (which in turn might cause
bad decisions to be made and other harm to be caused). Hence, the
meaning and side effects of the invoked action (i.e., a self-contained
command or part of a conversation) including the representations

https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.github.io/MDSL-Specification/

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Table 1: Problem-solution pairs of the patterns in this paper.

Pattern Name Problem Solution

Processing Resource How can an API provider allow its remote
clients to trigger actions in it?

Add a Processing Resource endpoint to the API that bundles
and wraps application-level activities or commands as its
operations (a.k.a. “actions required”).

Computation Function How can a client invoke side-effect-free
remote processing on the provider side to
have a result be calculated from its input?

Introduce an API operation f with f: in -> out to an
API endpoint (for instance, a Processing Resource) that
validates the received request message structure, performs
the desired function f, and returns its result. This
Computation Function neither accesses nor changes the
server-side application state.

State Creation Operation How can an API provider allow a client to
report that something new has happened
that is worth capturing (for later
processing)?

Add a State Creation Operation f: in -> (out,S') to an
API endpoint (e.g., a Processing Resource or an Information
Holder Resource [50]) that is in essence write-only.

Retrieval Operation How can information owned or controlled
by a remote party (a service provider) be
retrieved (to satisfy an information need of
an end user or to allow further client-side
processing)?

Add a read-access-only operation f: (in,S) -> out to
an API endpoint to request a report that contains a
machine-readable representation of the data that makes up
the requested information (this API endpoint may be a
Processing Resource or an Information Holder Resource). Add
search, filter, and formatting capabilities to the operation
signature (as part of the API contract).

State Transition
Operation

How can a client initiate a processing
action that causes the server-side
application state to advance? How can API
clients and API providers share the
responsibilities required to perform and
control the execution of business processes
and their activities?

Introduce an operation in an API endpoint (typically a
Processing Resource, or an Information Holder Resource) that
combines client input and current state to trigger a
provider-side state change f: (in,S) -> (out,S').

of the exchanged messages must be made clear in the API Descrip-
tion, for instance with the help of preconditions, invariants, and
postconditions.

Learnability and manageability. An excessive amount of actions
leads to hard to understand complexity in the sense that it causes
orientation challenges for client programmers, testers, and API
maintenance and evolution staff (which might or might not include
the original developers); it leads to orientation questions such as
how to find and choose the right actions. The more options are
available, the more explanations and decision making support have
to be given and maintained over time.

Semantic interoperability. Syntactic interoperability is a technical
concern for middleware, protocol, and format designers and there-
fore discussed in our structural representation patterns [52]. That
said, the communication parties must also agree on the meaning
of the data exchanged before and after any operation is executed;
hence, any processors and services must be clear in their API De-
scription [28] in what they do and what they do not do (in terms of
state changes, idempotency, transactionality, event emission, and
downstream resource consumption). Not all of these properties
should be exposed publicly to API clients, but still be described.

Response time. Having invoked the remote computation, the
client may block until a result becomes available. The longer the
client has to wait, the higher the chances that something will break
(either on the provider-side or on upstream clients). The network
connection between the client and the API may time out sooner or
later. An end user waiting for slow results may click refresh, thus
putting additional load on an API provider serving the end user
application.

API security and request/response data privacy. If a full audit log
of all API invocations and resulting server-side processing has to
be maintained, e.g., because of data privacy requirements, stateless-
ness on the provider side is an illusion (even if application state
is not required from a functional requirement point of view). Per-
sonal sensitive information and/or otherwise classified information
(e.g., by governments or enterprises) might be contained in the
request and response message representations (this also holds true
for Information Holder Resources). Furthermore, in many scenarios
one has to ensure that only authorized clients can invoke certain
actions (i.e., commands, conversation parts); for instance, regular
employees are usually not permitted to increase their own salary in
the employee management systems integrated via Community APIs
and implemented as microservices. Hence, the security architecture

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

design has to take the requirements of processing-centric API oper-
ations into account – for instance in its Policy Decision Point (PDP)
and Policy Enforcement Point (PEP) design and when deciding
between Role-Based Access Control (RBAC) and Attribute-Based
Access Control (ABAC). The processing resource is the subject of
API security design7, but also is an opportunity to place PEPs into
the overall control flow. The threat model and controls catalogs
created by security consultants, risk managers, auditors also must
take processing-specific attacks into account, for instance by talk-
ing about denial of service (DoS) attacks as well as the probability
and impact of the creation of fake orders, fraudulent claims, etc.
[21].

Compatibility and evolvability.. The server and the client should
agree on the assumptions concerning the input/output representa-
tions as well as the semantics of the function to be computed. The
client’s expectations should match what is offered by the server.
The data contract may change over time; if, for instance, units of
measure change or optional parameters are introduced, the client
must have a chance to notice this and react to it (for instance, by
developing an adapter or by evolving itself into a new version, possi-
bly using a new version of the API operation) Ideally, new versions
are forward and backward compatible with existing API clients.
Our Evolution Patterns deal with such concerns in depth [28].

Non-solution. A Shared Database8 that offers actions and com-
mands in the form of stored procedures9 could be a valid integration
approach (and is used in practice), but creates a single point of fail-
ure, does not scale with a growing number of clients, and cannot
be (re-)deployed independently [19]. Shared databases with stored
procedures do not align well with service design principles such
as single responsibility and loose coupling, which is one of the Iso-
lated State, Distribution, Elasticity, Automation and Loose Couping
(IDEAL) cloud application properties10 [10], many of which also
apply to on-premises APIs and their implementations.

Solution. Add a Processing Resource endpoint to the API that bun-
dles and wraps application-level activities or commands as its oper-
ations (a.k.a. “actions required”).

How it works. Define one or more operations for the new end-
point that take over a dedicated action responsibility each.Computa-
tion Function, State Creation Operation, and State Transfer Operation
are common in activity-oriented Processing Resources; Retrieval Op-
erations should be limited to mere status/state checks here and
are more commonly found in data-oriented Information Holder Re-
sources. These operation responsibilities might represent a general-
purpose or application domain-specific functional system capability
(implemented in the API provider or residing in the backend and
accessed via an outbound port/adapter) or a technical utility. The
request message should make the action explicit and allow the API
endpoint to determine which processing logic to execute.

For each of these operations, define a Command Message [19]
for the request. Add a Document Message [19] for the response
when required (i.e., when realizing an operation as a Request-Reply
7https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10.htm
8https://www.enterpriseintegrationpatterns.com/patterns/messaging/
SharedDataBaseIntegration.html
9https://en.wikipedia.org/wiki/Stored_procedure
10https://www.cloudcomputingpatterns.org/resources/oop17_fehling.pdf

EndpointRoles

ProcessingBackendProcessInstanceDatastore

«pattern»
ProcessingResource

preconditions
invariants // business rules and checks/controls on them
postconditions
resourceState // here: process instance state

ResponseMessage1 computationFunction1(RequestMessage1)
ResponseMessage2 stateCreationOperation1(RequestMessage2)
ResponseMessage3 retrievalOperation1(RequestMessage3)
ResponseMessage4 stateTransitionOperation1(RequestMessage4)

API

UtilityFunctions DatabaseAdapter BackendAdapter

ProcessingResourceImpl

ApplicationState

ResponseMessageN processOperation(RequestMessageN)

ResourceState

createUpdateDelete(Data)
Value lookupById(Key)
RowSet retrieve(Query)

Figure 2: Processing Resources represent activity-oriented API de-
signs. Some operations in the endpoint access and change applica-
tion state, others do not. Data is only exposed in request and re-
sponse messages.

message exchange [19]). Figure 2 sketches this endpoint-operation
design in a UML class diagram.

Document the endpoint semantics (including pre- and postcondi-
tions per operation, as well as invariants) in the API Description [28]
and/or additional supplemental text. Make the endpoint remotely
accessible for one or more API clients by providing a unique logical
address.

Decide whether the Processing Resource should be a Stateful Com-
ponent11 or a Stateless Component12

If invocations of the new API operation cause changes in the
(shared) provider-side state, design and decide the approach to
consistency management consciously (decisions include strict
vs. weak/eventual, optimistic vs. pessimistic locking, etc.). Do not
expose transaction management policies in the API (so that they
would be visible to the API client), but open and close (or commit,
rollback) system transactions inside the API implementation,
preferably at the operation boundary. Think about compensating
operations a.k.a. sagas for things that cannot be undone easily by
system transaction managers. For instance, an email that gets sent
in an API call implementation cannot be taken back once it has left
the mail server; a second mail “please ignore previous one” has to
be sent instead [39], [49].

Example. The Policy Management Backend13 of the Lakeside
Mutual microservices sample contains a stateful Processing Re-
source InsuranceQuoteRequestProcessingResource that offers
State Transition Operations which move an insurance quotation
request through various stages. The resource is implemented as
an HTTP resource API in Java and Spring Boot. It also contains

11http://www.cloudcomputingpatterns.org/stateful_component/
12http://www.cloudcomputingpatterns.org/stateless_component/
13https://github.com/Microservice-API-Patterns/LakesideMutual/tree/master/
policy-management-backend

https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10.htm
https://www.enterpriseintegrationpatterns.com/patterns/messaging/SharedDataBaseIntegration.html
https://en.wikipedia.org/wiki/Stored_procedure
https://www.cloudcomputingpatterns.org/resources/oop17_fehling.pdf
https://www.cloudcomputingpatterns.org/resources/oop17_fehling.pdf
https://www.cloudcomputingpatterns.org/resources/oop17_fehling.pdf
https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10.htm
https://www.enterpriseintegrationpatterns.com/patterns/messaging/SharedDataBaseIntegration.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/SharedDataBaseIntegration.html
https://en.wikipedia.org/wiki/Stored_procedure
https://www.cloudcomputingpatterns.org/resources/oop17_fehling.pdf
http://www.cloudcomputingpatterns.org/stateful_component/
http://www.cloudcomputingpatterns.org/stateful_component/
http://www.cloudcomputingpatterns.org/stateless_component/
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/master/policy-management-backend
http://www.cloudcomputingpatterns.org/stateful_component/
http://www.cloudcomputingpatterns.org/stateless_component/
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/master/policy-management-backend
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/master/policy-management-backend

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

RiskComputationService, a stateless Processing Resource that im-
plements a singleComputation Function called computeRiskFactor
(this pattern is introduced Section 4.2) :
@RestController
@RequestMapping("/riskfactor")
public class RiskComputationService {

@ApiOperation(
value = "Computes the risk factor of a customer.")

@PostMapping(
value = "/compute")

public ResponseEntity<RiskFactorResponseDto>
computeRiskFactor(

@ApiParam(
value = "the request containing relevant

customer attributes (e.g., birthday)",
required = true)

@Valid @RequestBody
RiskFactorRequestDto riskFactorRequest) {

int age =
getAge(riskFactorRequest.getBirthday());

String postalCode =
riskFactorRequest.getPostalCode();

int riskFactor =
computeRiskFactor(age, postalCode);

return ResponseEntity.ok(
new RiskFactorResponseDto(riskFactor));

}

Implementation hints. Architects and developers that decide
to realize Processing Resources should take the following advice into
consideration:

• Be precise and consistent in the naming of the endpoint (and
its operations). For instance, prefer verbs over nouns to ex-
press single, action-oriented responsibilities when naming
the operations of the endpoint. For operations with domain
semantics, avoid generic names such as “execute”, “perform”,
or “do” unless the name of the endpoint (the Processing Re-
source) is self explanatory and expressive enough already.
Practice the Ubiquitous language [9] of the project; make
all names meaningful for domain experts without computer
science education and software engineering experience.

• Strive for high cohesion (within a Processing Resource) and
low coupling (between endpoints). One way of doing so is
grouping endpoints by stakeholder/user groups.

• Consider using existing formats such as microformats14 or
ALPS specification(s)15 to ease client development and pro-
mote semantic interoperability .

• Make the resource composable (SOA principle) by avoiding
usage of HTTP session state and pushing any state down
into a database as soon as possible; in other words, prefer
Database Session State16 over Server Session State17.

• Try to make the processing of incoming API operation calls
idempotent (from a client perspective) to avoid any undesired

14http://microformats.org/wiki/Main_Page
15https://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-01
16https://www.martinfowler.com/eaaCatalog/databaseSessionState.html
17https://www.martinfowler.com/eaaCatalog/serverSessionState.html

side effects (realizing the Idempotent Receiver pattern [19]).
Include this information in the API Description. For instance,
HTTP PUT operations should be idempotent, but will still
change the provider-side application state. unlike read access,
write access is nontrivial to make idempotent (but can be
achieved, depending on the operation semantics andmessage
structure design).

• Inform theAPI userwhether invocation results can be cached
(as described in the Conditional Request pattern [40]).

• Add at least two unit tests per operation to your (automated)
test suite, one representing a “sunny day scenario” and an-
other one representing an application domain-level error
situation.

• Include the endpoint resource in the DevOps practices for
the API and its implementation; for instance, log calls to op-
erations and monitor API performance. Backup the provider-
internal application state.

• Version the endpoint adequately, for instance with the help
of Semantic Versioning and Version Identifiers [28]. Strive for
backward compatibility when refactoring [46].

Consequences.

Resolution of forces.
+ Business activity- and process-orientation can reduce cou-

pling and promote information hiding.
− In many integration scenarios, activity- and process-

orientation would have to be forced into the design, which
makes it hard to explain and maintain (among other negative
consequences). In such cases, Information Holder Resource is
a better choice.

The resolution of all other forces is determined on the operation
level; see subsequent patterns (Sections 4.2 to 4.5).

Further discussion. A Processing Resource can be identified
when applying a service identification technique such as dynamic
process analysis or event storming [37]; this has positive effect on
the “business alignment” theme in SOA and microservices. One can
define one instance of the pattern per backend integration need
appearing in a use case or user story; if a single execute operation
is included in a Processing Resource endpoint, it should accept self-
describing (or contract-adhering and therefore possible to validate)
action request messages and return corresponding, self-contained
documents. The request and response messages possibly can be
structured according to any of the four structural representation
patterns Atomic Parameter, Atomic Parameter List, Parameter Tree,
Parameter Forest [52].

Other patterns address manageability; see our Evolution Pat-
terns [28] for design time advice and remoting patterns books ([7],
[43]) for runtime considerations.

Applications of this pattern must make sure not to come across
as RPC “tunneled” in a message-based API (and consequently be
criticized because RPCs increase coupling, for instance in the time
and format autonomy dimensions). Many enterprise applications
and information systems do have “business RPC” semantics as they
execute a business command or transaction from a user that have
to be triggered somehow. According to the original literature and
more recent design collections [1], an HTTP resource does not

http://microformats.org/wiki/Main_Page
https://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-01
https://www.martinfowler.com/eaaCatalog/databaseSessionState.html
https://www.martinfowler.com/eaaCatalog/serverSessionState.html
http://microformats.org/wiki/Main_Page
https://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-01
https://www.martinfowler.com/eaaCatalog/databaseSessionState.html
https://www.martinfowler.com/eaaCatalog/serverSessionState.html

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

have to model data (or only data), but can represent such business
transaction, particularly if it is a long running one.18

It is possible to define API endpoints that are both processing-
and data-oriented (as many classes in object-oriented programming
that combine storage and behavior). Even amere Processing Resource
may have to hold state (but wil want to hide its structure from the
API clients). Such joint use of Processing Resource and Information
Holder Resource is not recommended for microservices architectures
due to the amount of coupling possibly introduced.

Processing Resources require to choose the appropriate conver-
sation or interaction sequence depending on a) how long the pro-
cessing will take and b) whether the client must receive the result
immediately to be able to continue its processing (otherwise, the
result can be delivered later). Processing time may be difficult to
estimate as it depends on the complexity of the actual function to be
executed, the amount of data sent by the client and the load/resource
availability of the provider. The request-reply approach at the inter-
face level requires at least two messages that can be exchanged via
one network connection, e.g., one HTTP request-response pair in a
HTTP resource API. Alternatively, multiple technical connections
can be used, for instance, by sending the command via an HTTP
POST and polling for the result via GETs in RESTful HTTP.

Decomposing the processing resource to call operations in other
API endpoints should be considered (it is rather common that no sin-
gle existing or to-be-constructed system can satisfy all processing
needs, either due to organizational or legacy system constraints).
This is where most of the design difficulty lies: How to decompose a
Processing Resource into the right granularity and set of operations?
The “Stepwise Service Design” activity in our emerging Design
Practice Repository (DPR)19 and a future Identification category of
our pattern language investigate this problem set.

Known Uses. The Slack Web API20 is processing-oriented with its
https://slack.com/api/METHOD_FAMILY.method syntax. It has
the notion of “HTTP RPC methods”21 and even puts a command
name in the resource URIs (which is considered a REST anti pattern
by some authors in the Web API design community).

The layers of the Domain-Driven Design Sample Ap-
plication22, characterized here23, implement (local) inter-
faces for Processing Resources, BookingService.java and
CargoInspectionService.java.

You can find instances of Processing Resources in most integration
architectures. Service-Oriented Architectures (SOAs) in enterprises
often feature services exposing business capabilities rather than
data abstractions in their interfaces; each of these services is a
Processing Resource. An early example that went into production
in early 2003 is the Dynamic Interface of a core banking backend
described in an OOPSLA 2004 experience report24 and in [5].

18Note that HTTP is a synchronous protocol as such; hence, asynchrony has to be
added on the application level (or by using QoS headers or HTTP/2). We describe such
design in the Data Transfer Resource pattern [50] and in [36].
19https://github.com/socadk/design-practice-repository
20https://api.slack.com/web
21https://api.slack.com/methods
22https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/
dddsample
23http://dddsample.sourceforge.net/characterization.html
24http://soadecisions.org/soad.htm#oopsla04

Terravis provides a process hub for enabling fully digitalized
mortgage processes between Swiss land registries, banks, notaries
and other parti. It uses a variety of Command Services (e.g., Contract
Signing) to trigger actions in partners when coordinating inter-
organizational business processes [29].

More examples for usage of the pattern in a business information
system (a.k.a. enterprise application) context can be found in the
telecommunications order management SOA described in [48]. This
SOA introduces the notion of business services and application
services.

Related Patterns. Processing Resources may contain operations
hat differ in the way they deal with provider-side state (stateless
services vs. stateful processors): State Transition Operation, State
Creation Operation, Computation Function, and Retrieval Operation
(some of which in turn have variants). These specializations also
differ w.r.t. client commitment and expectations as expressed in pre-
and postconditions and request and response message signatures in
the API contract. These four patterns are presented in Sections 4.2
to 4.5 of this paper. The Information Holder Resource [50] pattern
represents opposite semantics and is an alternative to this pattern.

Processing Resources are commonly exposed in Community APIs
and Public APIs; if this is done, they can be protected with an
API Key and Rate Limits [40]. Their usage is often governed by a
Service Level Agreement [40] that accompanies the technical API
Contract. To avoid that technical parameters creep into the payload
in request and response messages, such parameters can be isolated
in a Context Representation that might come as/be complemented
with an Annotated Parameter Collection.

The three patterns Command Message, Document Message and
Request-Reply [19] are used in combination when realizing this
pattern. The Command pattern in [13] codifies a processing request
and its invocation data as an object and as a message, respectively.25

This pattern and its operation-level companions (see above) can
be seen as the remote API variant of the general Command pattern
in [13] and Application Service in [2]. Its provider-side implementa-
tions often use a Service Activator [19].

Other Sources. Processing Resources correspond to interfacers
that provide and protect access to service providers in Responsibility-
Driven Design (RDD) [44]. Domain-Driven Design (DDD) [9] and
this pattern are also related in several ways:

• DDD Services are good candidates for remote interface expo-
sure.

• A DDD Bounded Context can map and correspond to an
API (with several endpoints).

• A DDD Aggregate can also map and correspond to an
API (with several endpoints, starting with the root entity).

• DDD Factories and Repositories deal with entity lifecycle
management, which involves read and write access to API
provider-side application state.

• DDD Value Objects can be exposed as Data Transfer Repre-
sentations (DTRs) in the Published Language established by
the data part of the API Description (a.k.a. service contract).

25A pattern language for distributed systems design that pulls patterns from other
books can be found in [7].

https://github.com/socadk/design-practice-repository
https://github.com/socadk/design-practice-repository
https://api.slack.com/web
https://api.slack.com/methods
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample
http://dddsample.sourceforge.net/characterization.html
http://soadecisions.org/soad.htm#oopsla04
https://github.com/socadk/design-practice-repository
https://api.slack.com/web
https://api.slack.com/methods
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample
http://dddsample.sourceforge.net/characterization.html
http://soadecisions.org/soad.htm#oopsla04

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Chapter 6 in “SOA in Practice” [20] is on service classification;
it compares several taxonomies including the one from “Enter-
prise SOA” [24]. Some of the examples in the process services
type/category in these SOA books qualify as known uses (these
books also include project examples/case studies from domains
such as banking and telecommunications).

The online article “Understanding RPC Vs REST For HTTP
APIs”26 talks about RPC vs. REST, but taking a closer look it actually
(also) is about deciding between Processing Resource and Information
Holder Resource.

The action resource topic area/category in the API Stylebook27
provides a (meta) known use for this pattern. Its undo topic28 is
also related.

We now switch from the endpoint level to the operation level;
endpoint roles may contain any of the following operation responsi-
bility patterns.

4.2 Pattern: Computation Function
?

a.k.a. Stateless Computation Operation, Calculation Action, Side-
Effect-Free/Stateless Operation

Context. The requirements for an application indicate that some-
thing has to be calculated. While the input is available locally and
the output will be used in the same place, the calculation should
not be run there for cost, efficiency, workload, security, or other
reasons.

For instance, an API client might want to ask the API endpoint
provider whether some data data meets certain conditions or might
want to convert it from one format to another.

Problem. How can a client invoke side-effect-free remote process-
ing on the provider side to have a result calculated from its input?

Forces. The following forces apply when introducing side-effect-
free processing on the provider side:

• Networking efficiency vs. data parsimony (message sizes)
• Reproducibility
• Workload management

Details. Networking efficiency vs. data parsimony. The smaller
messages are, the more messages have to be exchanged to reach
a particular goal. Few large messages cause less network traffic,
but make the individual request and response messages harder to
prepare and process in the communication endpoints.

Reproducibility. Local calls can be logged and replayed rather
easily. Outsourcing work to a remote party causes a loss of control
and latency, which make it harder to reproduce previous executions.

Workload management. Some computations might require a lot
of resources such as CPU time and main memory (RAM); they may
run for a long time due to their computational complexity. This
may affect the scalability of the provider and its ability to meet the
Service Level Agreement. If the computation accesses server-side

26https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
27http://apistylebook.com/design/topics/resource-action
28http://apistylebook.com/design/topics/undo

API Client

API

Computation Operation f

State

in (request message)

out (response message)

Figure 3: A Computation Function is a stateless operation neither
reading nor writing to provider-side storage.

resources (for instance, loggers or backend services), it becomes
stateful and cannot be scaled out as easily as stateless computations.

Non-solution. One could perform the required function locally,
but this might require to process large amounts of data, which in
turn might slow down the client. Eventually such non-distributed
approach leads to a monolithic architecture (which has pros and
cons).

Solution. Introduce an API operation f with f: in -> out to an
API endpoint (for instance, a Processing Resource) that validates the
received request message structure, performs the desired function
f, and returns its result. This Computation Function neither accesses
nor changes the server-side application state as shown in Figure 3.

How it works. Design request and response message struc-
tures that fit the purpose of the function. Consider patterns from
the Structure Category (for instance, Parameter Tree or Atomic Pa-
rameter) [52] and the Quality Category (for instance, Rate Limit
or Request Bundle) [40] when designing the request and response
messages that convey the operation responsibility.

Include the function in the API Description [28] (in the context
of the endpoint it is added to). Define at least one explicit precon-
dition that references the request message (a.k.a. in parameters)
and one or more postconditions that specify what the response
message (a.k.a. out parameters) contain (and how this data should
be interpreted).

If the computation is resource-intense (CPU, RAM), algorithm
and distribution design might have to be rethought to avoid bottle-
necks and single points of failure; see conversation pattern Long-
Running Request [35]. While not directly observable in the func-
tional API contract, this is critical for the API design because it
may affect the ability to meet its Service Level Agreement (SLA)
[40]. CPU and RAM consumptions also impact the components
implementing the API; it becomes more challenging to scale the
function implementation. Result pre-computation or caching may
also come into play. If the API implementation is deployed to a
cloud, the cost of renting the cloud service offering also has to be
taken into account [40].

There is no need to introduce transaction management here
because a mere Computation Function is stateless by definition.

https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
http://apistylebook.com/design/topics/resource-action
http://apistylebook.com/design/topics/undo
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
http://apistylebook.com/design/topics/resource-action
http://apistylebook.com/design/topics/undo

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

OperationResponsibilities

«pattern»
ValidationService

boolean validateSomeData(DTR validationTarget)
boolean checkIfActivityIsPossible(DTR nextStepAndInputToIt)

Figure 4: Validation Service variant: arbitrary request data, boolean
response (DTR: Data Transfer Representation)

Variant(s). The general, rather simple pattern described above
has several variants, Transformation Service and Validation Ser-
vice (which both satisfy specialized integration needs) as well as
Long Running Computation (which is more challenging technically
than the general case). Each variant required slightly different re-
quest/response message representations.

Transformation Service. A Transformation Service implements one
or more of the message translation patterns from “Enterprise Inte-
gration Patterns” [19] in a network-accessible form. For instance,
they might convert from one meta model to another (e.g., customer
record schemas used in two different subsystems) or from one meta
meta model to another (e.g XML to JSON, JSON to CSV); it does
not change the payload/content semantics. Such services typically
accept and return Parameter Trees of varying complexity.

Validation Service (a.k.a. (Pre-)Condition Checker). To deal with
potentially incorrect input, the server should always validate it
before processing it and make it explicit in its contract that the
input may be rejected. It may be useful for clients to be able to test
their input validity explicitly and independently from the invocation
of the function for processing it. The API thus breaks down into a
pair of two operations:

1. An operation to validate the input without performing the
computation.

2. An operation to perform the computation (which may fail
due to invalid input unless this input has been validated
before).

Step 1 solves the following problem: How can an API provider
check the correctness/accuracy of incoming data transfer represen-
tations (parameters) and server-side resources (and their state)?

The solution to this problem is to introduce an API operation that
receives a Data Element and returns an Atomic Parameter [52] (e.g.,
a boolean value or integer) that represents the validation result. The
validation primarily pertains to the payload of the request message,
but the API implementation may consult the current internal state
during the validation (for instance, to look up certain values and
calculation rules) as shown in Figure 4.

An example request like “will you be able to process this?” (hat
is invoked prior to a call to a State Transfer Operation. In case of
such “pre-activity-validation”, the parameter types can be complex
(depending on the activity to be pre-validated); the response might
contain suggestions how to correct any errors that were reported. If
such “Business Object Validator” includes provider-side application
state into the checking process, it morphs into a “Business Rule
Validator”.

There are many other types of conditions and things to
validate, ranging from classifications and categorizations
such as isValidOrder(orderDTR) and status checks like
isOrderClosed(orderId) to complex compliance checks, e.g.,
has4EyesPrinicipleBeenApplied(...). These validations have
in common that they return rather simple results (typically, a
success indicator and possibly some additional explanations); they
are stateless and operate on the received request data exclusively,
which makes them easy to scale and move from one deployment
node to another.

Long Running Computation. A simple function operation may be
sufficient under the following assumptions:

• The input representation is expected to be correct.
• The expected function execution time is short.
• The server has enough CPU processing capacity for the
expected peak workload.

However, sometimes the processing will take a noticeable
amount of time, and sometimes it cannot be assured that the
processing time of a computation will be short enough (for
instance, due to unpredictable workload or resource availability on
the server or due to varying sizes of input data sent by the client. In
such cases, clients should be provided some form of asynchronous
non-blocking invocation of a processing function. A more refined
design is needed for such Long Running Computations, which
may receive invalid input and may require to invest a significant
amount of CPU time to execute them.

There are different ways of implementing this pattern variant:

• Call over asynchronous messaging. The client sends its input
via a request message queue, and the API provider puts the
output on a response message queue [19].

• Call followed by callback: the input is sent via a first call, and
the result is sent via a callback, which assumes that clients
support callbacks [43]

• Long running request (input is posted, a link is provided
where the progress can be polled, eventually the result is
published at its own link – there is an optional but useful
opportunity to use the link to cancel the request and clean
up the result when no longer needed) [35].

If we can assume that more than one client is likely to request to
perform the same computation over the same input, that the result
is deterministic, and that the server has enough storage capacity,
then it may be worth it to invest into caching results so that they
can be shared across multiple clients.

Examples. A simple, rather self-explanatory example of a Trans-
formation Service is shown in Figure 5

A call to find out about the health of a service (a.k.a. heartbeat
test message) is another example of a simple command exposed
remotely within a Processing Resource endpoint (see Figure 6).

Such “I am alive” operations (a.k.a. “ping” calls) accepting test
messages) are often added to mission-critical API implementations
as part of a systems management strategy (here: fault and perfor-
mance management). Its pre- and postconditions are simple; its
API contract is sketched in the above UML snippet. Neither system

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

LakesideMutualSampleApplication

«processingResource»
GeoComputationAndValidationUtility

ResultDTR «computationFunction» calculateDistance(AddressDTR from, AddressDTR to)
int «transformationService» milesToKilometers(int ukDistance)
boolean «validationService» isAddressValid(AddressDTR address)

API

Figure 5: A Processing Resource providing Transformation Services

LakesideMutualSampleApplication

Watchdog

«processingResource»
ManagedBusinessApplicationEndpoint

boolean «computationFunction» testConnectivity()
OperationalStatus «computationFunction» testAvailability(String testMessage)

Figure 6: Examples of Validation Services: Health Check operations

transactions nor business-level compensation (undo) is required in
this simple example.

Implementation hints. Architects and developers that decide
to realize stateless Computation Operations should take the follow-
ing advice into consideration:

• Name the operation in such a way that the operation
responsibility and the pattern variant (Long Running
Computation, Validation Service, Transformation Service)
get clear intuitively. For instance hasXYZProperty or
meetsConditionABC are good names for Validation Services
(if XYZ and ABC are domain terms), while check or test are
rather generic and therefore less expressive and intuitive.
They do not unveil the validation goal.

• Offer one and only one way to express the input and mini-
mize the number of options for the presentation of the out-
put.

• Specify the postcondition formally or semi-formally; con-
sider the same for the precondition.

• Respect the variants of Computation Function (Long Running
Computation, Validation Service, Transformation Service) by
adding suited test cases.

• Maintain computation/validation services and computation
input/validated data together (for instance, use the same
version control system and repository).

• When realizing Transformation Services and Validation Ser-
vices, consider to integrate an off-the-shelf automation of
syntactic validations such as JSON or XML schema valida-
tions, as validation logic takes effort to write and maintain
(and typically this effort is not contained in project bud-
gets). You can either include an adequately licensed, mature
enough library or call an external service.

• Being stateless, Computation Operations can be realized as
HTTP GETs (unless its in parameters are too complex to
be represented as path and/or query parameters). When
using HTTP to invoke long-running Computation Operations
(or those returning multiple complex results), the Multipart
Content-Type29 can be used to bundle several responses.

• Keep track of the performance overhead of frequent calls to
externalized Computation Operations; in case of problems,
consider the Request Bundle pattern, scale out, or revert to
local calls.

Consequences.

Resolution of forces.

+ Workload management is simplified because stateless opera-
tions can be moved freely.

− Reproducability and auditability suffer because an external
dependency is introduced that cannot be controlled by the
client; it has to trust the provider that multiple subsequent
calls are possible and will return the same result.

− Message size might increase because stateless servers cannot
retrieve any intermediate results from their own data stores.

Further discussion. Exposing API calls with business domain
semantics such as computations, transformations and data valida-
tion is a key principle in SOA and tenet in microservices implemen-
tations. The pattern can help resolve the forces and contribute to
application health if implemented properly. If exposing a transfor-
mation or validation operation as a remote service is too costly, a
local library-based API is a cheaper alternative.

From a security point of view, the request message of a validation
or transformation often has low to medium needs, but has to avoid
denial-of-service attacks; the response message often has lower
protection needs (if it is less expressive).

By definition, implementations of the pattern do not change
application state on the server (possibly except for access logs and
temporary or permanent storage of validation results, if/as needed
to meet security requirements such as non-repudiation). They are
therefore easy to scale and to move, which makes them eligible to
cloud deployments.

Known Uses. Serverless computing lambdas, deployed to public
clouds such as AWS or Azure, may be seen as Computation Functions
as well (unless they are combined with cloud storage offerings,
which makes them stateful).

Online JSON and JSON schema validators operate purely input-
based and qualify as Validation Services; they do not have to take
server-internal state into account (other than the schema definition
and their metametamodels). The same holds for imagemanipulation
and PDF processing tools, both of which are abundant on the Web
today (Transformation Service).

A basic known use of the Validation Service variant of this pattern
can be found in the Cargo root entity and the RouteSpecification
in the Cargo Aggregrate30 of the Domain-Driven Design Sample

29https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
30https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/
dddsample/domain/model/cargo

https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
http://dddsample.sourceforge.net/characterization.html
http://dddsample.sourceforge.net/characterization.html
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
http://dddsample.sourceforge.net/characterization.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
http://dddsample.sourceforge.net/characterization.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
http://dddsample.sourceforge.net/characterization.html

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

Application31. It implements several validation routines (that are
not exposed in the remote API of the application).

A major German car manufacturer offers a REST level 2 user
profile management microservice for all its clients; the analysis
endpoint of this service qualifies as a known use of the Validation
Service variant: It offers a POST operation to validate data strictly,
suggests corrections, and converts addresses and phone numbers to
country-specific standards (without storing them); profile updates
are also supported by the microservice, but at another endpoint
address. Swagger/Open API contracts are exposed in an API De-
scription portal/website [28].

Terravis, a process integration platform [4], offers an API to
internal clients to calculate a valid payment date. The operation is
called by specifying a desired payment date. Depending on certain
rules (e.g., taking bank holidays into accounts as well as weekends),
the next feasible payment date is calculated and returned to the
caller. This operation does not change the provider-side application
state, all required input comes from the received request message.
Moreover, Terravis offers Solution-Internal APIs for generating vari-
ous business documents such as contracts. Data is passed from the
calling clients to the document generation API, which validates the
data for completeness and conformance with certain business rules
and then generates a PDF document statelessly.

Related Patterns. The pattern compares to its siblings as this:
• Just like a Retrieval Operation, a Computation Function does
not change the application state (but delivers nontrivial data
to the client); it receives all required data from the client,
whereas a Retrieval Operation consults provider-side appli-
cation state (in read-only mode).

• Both State Creation Operations instances and Computa-
tion Functions receive all required data from the client; a
State Creation Operation changes the server-side application
state (write access) whereas a Computation Function
preserves it (no access). The client of a Computation Function
usually has a higher expectation w.r.t. the response than a
client that invokes an State Creation Operation to report an
event (and only requires a positive confirmation).

• A State Transition Operation also returns non-trivial data
(like Retrieval Operation and Computation Function, but it
also changes the server-side application state. Input comes
from the client but also from the server-side application state
(read-write access).

The Service pattern in Domain-Driven Design (DDD) includes
similar semantics (but is broader) and can help to identify Compu-
tation Function candidates during endpoint identification [42].

Other Sources. Service types are a topic covered by SOA liter-
ature from the early 2000s, e.g., “Enterprise SOA” [24] and “SOA in
Practice” [20]. While the service type taxonomies in these books
are more focussed on the overall architecture, some of the basic
services and utility services have responsibilities that do not require
read or write access to provider/server state and therefore qualify
as instance of this pattern an its variants.

31http://dddsample.sourceforge.net/characterization.html

The design-by-contract approach in the object-oriented program-
ming method and language Eiffel [30] includes validation into busi-
ness commands/domain methods and automates pre- and postcon-
dition checking. This program-internal approach can be seen as
an alternative to external Validation Services (but also as a rather
advanced known use of it).

A lot of online resources on serverless computing exist. One
starting point is the web site and blog “Serverless”32 by J. Daly.

4.3 Pattern: State Creation Operation
A A’

a.k.a. Write-Only Operation, Data Insertion Operation

Context. An API endpoint has been introduced. The API client
has expressed its API wants and needs, for instance in the form
of user stories and/or given-when-then clauses33; non-functional
requirements have been elicited as well.

The API client(s) would like to inform the API provider about
new client-side incidents without requesting any further server-
side processing that would require any immediate response to be
returned beyond a simple “got it” acknowledgment (and, provider-
internally, initialization of application state).

For instance, the client might want to kick off a long-running
business transaction (like an order management and fulfillment
process) in the provider or report the completion of a client-side
batch job (like the bulk re-initialization of a product catalog). Such
creation events cause data to be inserted on the provider side, but
this does not become visible to the client.

Problem. How can an API provider allow a client to report that
something new has happened that is worth capturing for later
processing?

Forces. The following forces have to be taken into account:
• Coupling tradeoffs (accuracy and expressiveness vs. infor-
mation parsimony)

• Consistency effects
• Timing considerations
• Reliability considerations

Details. Coupling tradeoffs (accuracy and expressiveness vs. in-
formation parsimony). To ease processing on the provider side, the
incoming report should be self-contained so that it is independent
from other events. To streamline report construction on the client
side, save transport capacities and hide implementation details,
it should only contain the bare minimum of information the API
provider is interested in.

Consistency effects. If the providers-state can or should not be
read, it becomes more difficult to validate that the provider-side pro-
cessing caused by incoming requests does not break and invariants
and other consistency properties.

Timing considerations. The client-side occurrence of an incident
may differ from the moment it is reported and the time when the
incident report finally reaches the provider. It may not be possible
32https://www.jeremydaly.com/serverless/
33https://www.martinfowler.com/bliki/GivenWhenThen.html

http://dddsample.sourceforge.net/characterization.html
http://dddsample.sourceforge.net/characterization.html
https://www.jeremydaly.com/serverless/
https://www.martinfowler.com/bliki/GivenWhenThen.html
https://www.jeremydaly.com/serverless/
https://www.martinfowler.com/bliki/GivenWhenThen.html

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

API Client

API

State Creation Operation
State

out (ack)

in

S'

Figure 7: A State Creation Operation has the responsibility to write
to provider-side storage, but cannot read from it.

to determine the sequencing/serialization of incidents happening
on different clients (time synchronization is a general theoretical
limitation and challenge in any distributed system; logical clocks
have been invented for that reason).

Reliability considerations. Sometime reports cannot be processed
in the same order in which they were produced and sent. Sometimes
reports get lost or the same reports is transmitted and received
multiple times. It would be nice to acknowledge that the report
causing state to be created has been processed properly.

Non-solution. One could simply add yet another API opera-
tion to an endpoint without any special semantics (and pattern
usage). If this is done, the specific integration needs and concerns
described above have to be made explicit in the API documentation
and usage examples; there is a risk of making implicit assumptions
that get forgotten over time. Ths can cause undesired extra efforts
for client developers and API maintainers when they find out that
their assumptions no longer hold. Furthermore, Cohesion within
the endpoint might be harmed; DevOps staff has to guess where and
how to deploy the endpoint implementation (for instance, in cer-
tain cloud environments and container managers). Load balancing
becomes more complicated.

Solution. Add a State Creation Operation f: in -> (out,S')
to an API endpoint (e.g., a Processing Resource or an Information
Holder Resource) that is in essence write-only. Here ‘in essence’
means that such operations might have to read some state, e.g., to
check for duplicate keys in existing data before creation, but their
main purpose should be state creation.

The design is sketched in Figure 7.

How it works. Let such State Creation Operation represent a
single business incident that does not mandate any instant reaction
from the provider-side endpoint; it is free to simply store the data,
acknowledge it, or perform further backend processing. Let the
client receive a mere “got it” acknowledgment or identifer (for in-
stance to be able to enquire about the state and resend the operation
in case of transmission problems).

Describe the abstract and the concrete syntax as well as the
semantics of the incident report (i.e., the incoming state creation
messages) and the acknowledging response (if any) in the API
Description [28]. Express the operation behavior in (rather simple)
pre- and postconditions.

State Creation Operations may or may not have fire-and-forget
semantics. In the latter case, give each state item caused by calls

to instances of this pattern a unique id (for duplicate detection
and removal). Include a timestamp to capture the time when the
reported incident happened (according to the client-side clock).

Unless you write to an append-only event store, perform the
required write/insert operation in its own system transaction whose
boundaries match that of the API call (but are not visible to the
API client). Let the processing of the State Creation Operation appear
to be idempotent.

The request messages accepted by a State Creation Operation
contain all data that is required to describe the incident that has
happened (but not more) in its request message, often in the form
of a Parameter Tree [52], possibly annotated withMetadata Element.
Past tense is often used to name events (e.g., “customer entity cre-
ated”). The response message typically only contains a basic and
simple “report received” element, for instance, an Atomic Parameter
[52] containing an explicit positive acknowledgment or an Atomic
Parameter List [52] combining an error code with an error message
(forming an Error Report).

Variants. A prominent variant of this pattern is Event Notifi-
cation Operation, notifying the endpoint about an external event
without assuming any visible provider-side activity and thus realiz-
ing event sourcing34. Such Event Notification Operations can report
that data has been created, updated (fully or partially), or deleted
elsewhere. Unlike in most implementations of stateful server-side
processing, the incoming event is only stored as-is, but the appli-
cation state is not updated instantly. If the most recent state is
required later on, all stored events (or all events up to a certain
point in time when snapshots are taken) are rather replayed and
the application state is calculated. This makes the event reporting
fast, at the expense of slowing down the later state lookup. An
additional benefit of event sourcing is that time-based queries can
be performed as the entire data manipulation history is available
in the event journal. Modern event-based systems such as Apache
Kafka support such replays in their event journals and distributed
transaction logs.

Event Notification Operations and event sourcing can form the
base of Event-Driven Architectures (EDAs); see related pattern
languages for advice [38].

Another variant of this pattern is a Bulk Report: The client reports
multiple related events (in a single call in the form of a Request
Bundle or in separate ones) that all pertain to the same or to different
entities (domain objects), for instance to simplify processing of each
individual one or to create a full audit log.

Examples. In the online shopping scenario, message such as
“new product XYZ created” send from a product management sys-
tem or “customer has checked out order 123” from an online shop
qualify as examples.

Figure 8 gives an example in a fictitious insurance company.
Steps 5 and 6 of the demo “Domain-Driven Service Design with

Context Mapper and MDSL”35 feature an instance of this pattern
and introduces the MDSL decorator for it:
"STATE_CREATION_OPERATION" @PaperItemDTO
createPaperItem (String who, String what, String where);

34https://martinfowler.com/eaaDev/EventSourcing.html
35https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

https://martinfowler.com/eaaDev/EventSourcing.html
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

LakesideMutualSampleApplication

«processingResource»
CustomerEventProcessorExample

«stateCreationOperation» informAbout(CustomerContactedEvent)

«domainEvent»
CustomerMasterDataCreatedEvent

CustomerId
AgentName
Timestamp
ConversationSummary

Figure 8: Example of a State Creation Operation: Event Processor

Implementation hints. Architects and developers that decide
to apply and realize a State Creation Operation should take the
following advice into consideration:

• Apply a recognized analysis and design practice to identify
State Creation Operations and their endpoints, for instance
event storming36.

• Test with representative data, include different timing con-
ditions and error situations in the test plan.

• Acknowledge the recommended practices for event sourcing,
for instance to avoid unnecessary/undesired data coupling.
Small event messages might have to cross-reference each
other; large messages might be self-contained but take
longer to process. Consider usage of Command-Query-
Responsibility-Segregation (CQRS)37 to be able to design
and deploy the write and the read part of an API separately
(for instance, for performance reasons when facing high
workloads). A tutorial on event sourcing and CQRS in the
context of Domain-Driven Design can be found on the
Context Mapper website38.

• Make sure to use universal data formats, especially for the
time stamps of incoming messages. An example of such
format is the CloudEvents specification39.

• When implementing the pattern in HTTP resource APIs, use
the POST method by default, but also consider PUT. Consult
[1] for further advice regarding when to prefer which verb.

Consequences.

Resolution of forces.
+ Loose coupling is promoted because client and provider do
not share any application state, the client merely informs
the provider about activities on its side. No provider-side
state is read when a request message arrives.

− No provider-side checks are possible due to missing state
reads. Hence, consistency cannot be ensured fully when
write-only operations are used.

36https://contextmapper.org/docs/event-storming/
37https://martinfowler.com/bliki/CQRS.html
38https://contextmapper.org/docs/event-sourcing-and-cqrs-modeling/
39https://cloudevents.io/

− Time management remains a difficult design task for the
same reason.

− Reliability might suffer if no acknowledgment or state iden-
tifier is returned; if it is returned, the API client has to make
sure to interpret it correctly (for instance, to avoid unneces-
sary or premature resending of messages).

Further discussion. Exposing write-only API operations with
business semantics that report external events is a key principle of
EDAs; we discussed it in the Event Notification Operation variant.
In replication scenarios, events represent state changes that have to
be propagated. In Domain-Driven Design, domain event40 sourcing
is the recommended practice to integrate Aggregates (both within
the same and in different Bounded Contexts) because it decouples
them and allows replaying events up to the current state in case of
failures that lead to consistency issues [42].

The pattern is easier to apply, implement and test than its more
comprehensive State Transition Operation peer, but leaves room for
interpretation on the receiver side (here: API provider):

• What should be done with arriving reports, should they
be simply stored locally, processed further, or passed on?
Does provider-side state have to be accessed minimally, for
instance to check the uniqueness of keys?

• Does the report processing change the behavior of future
calls to other operations in the same endpoint?

• Are the operations idempotent? How to ensure strict or
eventual consistency (events can get lost due to the fallacies
of distributed computing, and there is a tradeoff between
consistency and availability according to the CAP and BAC
theorems [34]).

State Creation Operations are sometimes exposed in Public APIs;
if this is done, they can be protected with anAPI Key and Rate Limits
[40]. Introducing a Rate Limit can be rather critical, as events may
happen with high throughput, depending on the domain/source.

This pattern covers scenarios in which an API client notifies a
known API provider about an incident. An API provider notify-
ing its clients via callbacks and publish-subscribe mechanisms is
another approach covered in other pattern languages and middle-
ware/distributed systems books [15], [19], [43].

Known Uses. Known uses of this pattern are common in enter-
prise information systems and public Web APIs:

• The submitReport operation of the Handling Report Ser-
vice41 in the Domain-Driven Design Sample Application42
implementing a cargo tracking scenario allows external
clients to notify the application about handling events such
as a container arriving at a particular port.

• The Slack Event API43 is a comprehensive implementation
of API-based event processing.

• The article “Know the Flow! Microservices and Event Chore-
ographies”44 by B. Rücker introduces event command trans-
formations and implements an example that includes a usage

40https://martinfowler.com/eaaDev/DomainEvent.html
41https://github.com/citerus/dddsample-core/blob/master/src/main/java/com/
aggregator/HandlingReportService.wsdl
42http://dddsample.sourceforge.net/characterization.html
43https://api.slack.com/events-api
44https://www.infoq.com/articles/microservice-event-choreographies

https://contextmapper.org/docs/event-storming/
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://contextmapper.org/docs/event-sourcing-and-cqrs-modeling/
https://cloudevents.io/
https://contextmapper.org/docs/event-storming/
https://martinfowler.com/bliki/CQRS.html
https://contextmapper.org/docs/event-sourcing-and-cqrs-modeling/
https://cloudevents.io/
https://martinfowler.com/eaaDev/DomainEvent.html
https://github.com/citerus/dddsample-core/blob/master/src/main/java/com/aggregator/HandlingReportService.wsdl
https://github.com/citerus/dddsample-core/blob/master/src/main/java/com/aggregator/HandlingReportService.wsdl
http://dddsample.sourceforge.net/characterization.html
https://api.slack.com/events-api
https://www.infoq.com/articles/microservice-event-choreographies
https://www.infoq.com/articles/microservice-event-choreographies
https://martinfowler.com/eaaDev/DomainEvent.html
https://github.com/citerus/dddsample-core/blob/master/src/main/java/com/aggregator/HandlingReportService.wsdl
https://github.com/citerus/dddsample-core/blob/master/src/main/java/com/aggregator/HandlingReportService.wsdl
http://dddsample.sourceforge.net/characterization.html
https://api.slack.com/events-api
https://www.infoq.com/articles/microservice-event-choreographies

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

of this pattern (“order placed”) as well as the sibling pattern
State Transition Operation. The articles makes the case for
workflow engine usage on the microservice API provider
side.

The pattern is often applied in enterprise settings as well (show-
ing how common us of the pattern is):

• Banks can request a new process at the platform Terravis.
By calling a “start process” operation, a new process is in-
stantiated and state for it is managed separately from other
process instances from now on. Thus, this start operation is
a State Creation Operation.

• A provider of a Swiss banking solution software imple-
mented a microservice architecture based on events that
are implemented as State Creation Operations. For example,
such notifications report modifications of business objects
to interested microservices, which in turn can update their
local data or initiate processes, e.g., checking a customer
against a blacklist.

Related Patterns. The endpoint-level role patterns Processing Re-
source and Information Holder Resource [50] may contain instances
of this pattern; its sibling patterns (other operation responsibili-
ties) are State Transition Operation (and its variants), Computation
Function, and Retrieval Operation (and its variants). A State Tran-
sition Operation usually identifies a provider-side state element in
its request message (for instance, an order id or serial number of a
staff member); State Creation Operations do not have to do this (but
might).

Event-Driven Consumer and Service Activator in [19] describe
how to trigger message consumption asynchronously. Chapter 10
in “Process-Driven SOA” features patterns for integrating events
into process-driven SOAs [16].

In Domain-Driven Design (DDD), the Domain Event pattern [42]
has similar semantics and can help to identify State Creation Opera-
tions in the variant Event Notification Operation during endpoint
identification.

Other Sources. Instances of this patternmay participate in long
running and therefore stateful conversations [17].

CQRS45 and event sourcing46 are described by M. Fowler and
other authors. As event sourcing and domain events in DDD have
gained momentum and popularity in recent years, one can find a
lot of best practice advice for modeling and implementing them, for
instance in presentations and articles by V. Vernon47, and M. Plöd48,
and C. Richardson49. Other online resources on event sourcing and
CQRS can be found at InfoQ50 and DZone51. The Context Mapper
DSL and tools support DDD modeling, model refactoring as well
as diagram and service contract generation.

45https://martinfowler.com/bliki/CQRS.html
46https://martinfowler.com/eaaDev/EventSourcing.html
47https://vaughnvernon.co/
48https://de.slideshare.net/mploed/presentations
49https://microservices.io/patterns/data/event-sourcing.html
50https://www.infoq.com/eventsourcing/
51https://dzone.com

The open source Software/Service/API Design Practice Reposi-
tory (DPR)52 features a seven-step service design method to carve
out API endpoints and their operations.

4.4 Pattern: Retrieval Operation
a.k.a. Read-Only Operation, State Lookup Operation, Query, Data
Extractor

Context. An API endpoint has been established; functional and
non-functional requirements for it have been specified. However,
the operations of these resources do not cover all required integra-
tion capabilities yet; the API consumer(s) also demand read only
access to large amounts of structured, possibly aggregated data.
This data can be expected to be structured differently than in the
underlying domain model; for instance, it might pertain to a partic-
ular time interval or subdomain element (like a product category
or customer profile group). The information need arises either ad
hoc or regularly, e.g., at the end of/for a certain time interval (such
as week, month, quarter, or year).

Problem. How can information owned or controlled by a remote
party (a service provider) be retrieved (to satisfy an information
need of an end user or to allow further client-side processing)?

Related sub-problems are:
• How can data model differences be overcome and data be
aggregated and combined with information from other
sources?

• How can clients influence the scope and the selection criteria
for the retrieval results?

• How can the time frame for reports be specified?53

Forces. The following top-level forces have to be resolved when
exposing data in API operations:

• Veracity, variety, velocity, volume (the four Vs in big data).
• Workload management
• Networking efficiency vs. data parsimony (message sizes)

Details. Veracity, variety, velocity, and volume. Data comes in
many forms and client interest in it varies. See this infographic54 for
an introduction to and illustration of the challenges when exposing
and analyzing large amounts of data.

Workload management. See explanation of this force in Compu-
tation Function pattern (Section 4.2 of this paper).

Networking efficiency vs. data parsimony (message sizes). Also see
explanation in Computation Function pattern (Section 4.2).

Non-solution. It is hard to imagine a distributed system that
does not require some kind of retrieval and query capability. One
could replicate all data to its users “behind the scenes” periodi-
cally, but such approach has major deficiencies w.r.t. consistency,
manageability, and data freshness.

52https://github.com/socadk/design-practice-repository
53Note that the scheduling of periodic query execution (a form of batch processing) is
out of scope here.
54http://www.ibmbigdatahub.com/infographic/four-vs-big-data

https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://vaughnvernon.co/
https://de.slideshare.net/mploed/presentations
https://microservices.io/patterns/data/event-sourcing.html
https://www.infoq.com/eventsourcing/
https://dzone.com
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://vaughnvernon.co/
https://de.slideshare.net/mploed/presentations
https://microservices.io/patterns/data/event-sourcing.html
https://www.infoq.com/eventsourcing/
https://dzone.com
https://github.com/socadk/design-practice-repository
https://github.com/socadk/design-practice-repository
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://github.com/socadk/design-practice-repository
http://www.ibmbigdatahub.com/infographic/four-vs-big-data

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

API Client

API

Retrieval Operation
State

in

out

S

Figure 9: A Retrieval Operation reads from, but does not write to
provider-side storage. Searching and filtering may be supported.

Solution. Add a read-only operation f: (in,S) -> out to an
API endpoint to request a report that contains a machine-readable
representation of the requested information (this API endpoint may
be a Processing Resource or an Information Holder Resource). Add
search, filter, and formatting capabilities to the operation signature.

How itworks. Access the provider-side state in read-onlymode.
Make sure that the pattern implementation does not change appli-
cation/session state on server (except for access logs etc.) as shown
in Figure 9. Document this behavior in the API Description.

For simple retrievals, one can use an Atomic Parameter List to
define the query parameters for the report and return the report as
a Parameter Tree or Parameter Forest [52]. In more complex scenar-
ios, a more expressive query language (such as GraphQL55 with its
hierarchical call resolvers or SPARQL56, used for big data lakes) can
be introduced; the query then describes the desired output declara-
tively (i.e., as an expression formulated in the query language); it
can travel as an Atomic Parameter [52] string. Such expressive,
highly declarative approach supports the “variety” V (one of the
four Vs introduced above).

Adding support for Pagination [52] is common and advised if
result collections are large (the “volume” V of the four big data Vs).
The output can be streamlined when the request contains aWish
List or Wish Template [40].

Supporting data access settings (i.e., transaction boundary and
isolation level) may be required in the operation implementation.

Examples. In an online shopping example, an analytic Retrieval
Operation “show all orders customer ABC has placed in the last 12
months”.

In the Lakeside Mutual example, we can define two operations to
find customers as illustrated in Figure 10. CRM stands for Customer
Relationship Management; the allData parameter is a simpleWish
List, allowing to return either an Embedded Entity or a Linked
Information Holder.

A code-level example is:
curl http://localhost:8080/claims?limit=10\&offset=0

@GET
public ClaimsDTO listClaims(

@DefaultValue("3")
@QueryParam("limit") Integer limit,
@DefaultValue("0")
@QueryParam("offset") Integer offset,
@QueryParam("orderBy") String orderBy

55https://graphql.org/
56https://en.wikipedia.org/wiki/SPARQL

«informationHolder»
CustomerRepository

Customer «retrievalOperation» findById(id)
CustomerCollection «retrievalOperation» findByArea(String area, boolean allData)
CustomerCollection «retrievalOperation» findByProfile(CustomerProfile marketSegment)
int «retrievalOperation» getCustomerStatus(id)
ReportDTR «retrievalOperation» getMonthlyCRMReport(month)

API

Figure 10: Examples of Retrieval Operations: search, filter, direct
access

) {
List<ClaimDTO> result = [...]
return new ClaimsDTO(limit, offset,

claims.getSize(), orderBy, result);
}

Steps 5 and 6 of the demo “Domain-Driven Service Design with
Context Mapper and MDSL”57 features a an instance of this pattern
and introduces the MDSL decorator for it:
"RETRIEVAL_OPERATION" Set<@PaperItemDTO>
lookupPapersFromAuthor (String who);

Variants. Several variants of this pattern exist, for instance
Status Check a.k.a. Progress Inquiry/Polling, Time-Bound Report,
and Business Rule Validator.

A Status Check has rather simple in and out parameters (e.g., two
Atomic Parameter instances): an id is passed in and a status code
(int) or state name (from an enumeration) are returned.

A Time-Bound Report typically specifies the time interval(s) as
an additional query parameter (or set of parameters); its responses
then contain one Parameter Tree per interval.

A Business Rule Validator is similar to the Validation Service
variant of a Computation Function. However, it does not validate
data that is passed on, but retrieves this data from the provider-side
application state. A list of identifiers of entities already present in
the server (validation target) might be included in the request. One
example of a hybrid Business Rule Validator is a check whether the
provider will be able to process this business object in the current
state the conversation wit the client. Such validator can be invoked
prior to a call to a State Transfer Operation that primarily works on
the business object that is passed in, but also includes provider-side
application state into the checking process. In an online shopping
example, “check whether all order items point to existing product
that are currently in stock” is an example of such validator.

Implementation hints. Architects and developers that decide
to realize Retrieval Operations should take the following advice into
consideration:

• Realize Retrieval Operations as HTTP GETs when designing
HTTP resource APIs, possibly cached, if the input is simple
enough to be expressed in path and query parameters; use
POST otherwise.

• Make the types of the query parameters explicit, for instance
by introducing Metadata Elements.

57https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

https://graphql.org/
https://en.wikipedia.org/wiki/SPARQL
https://graphql.org/
https://en.wikipedia.org/wiki/SPARQL
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

• Provide one example per query capability that includes sam-
ple responses and rationale for their selection; the more
powerful and expressive the descriptive/declarative a query
language is, the harder it is to create and maintain query
statements/expressions that do exactly what you want — and
continue to do so in the long run.58

• Invest in data quality and related metrics/management pro-
cedures to achieve the required veracity (one of the four Vs
from the forces section).

• Consider introducing Rate Limits and Conditional Requests
to reduce server-side workload.

• Keep track of the workload caused by Retrieval Operation
calls.

• Consider caching if performance becomes a concern, but be
advised that caches are not easy to design, test, and main-
tain (cache invalidation, for instance, is one of two hard
problems59 in computer science).

• Queries (reads) can be separated from commands (writes)
to optimize the respective performance of these two dif-
ferent channels; each channel then has its own API. This
architectural pattern is called Command-Query Segrega-
tion/Separation (CQRS)60.

• Acknowledge the concepts, methods, tools and related best
practices from the business intelligence and data warehouse
community and the big data movement (e.g., use Extract-
Transform-Load (ETL) staging to achieve separation of oper-
ational and analytical data processing).

Consequences.

Resolution of forces.
+ Workload management: Due to their read-only nature, Re-

trieval Operations can scale by replicating data.
+ Networking efficiency vs. data parsimony (message sizes):
Retrieval Operations can make full use of identifiers, can
fetch, cache, and optimize local data on demand (note: there
is no need for all of this data to appear in the request).

− May become a performance bottleneck if user information
needs and query capabilities do not match.

To resolve 4-V force (veracity, variety, velocity, and volume)
additional patterns, technology-level practices and design tactics
are required; we highlighted some in the solution description above.

Further discussion. Usage of Pagination is common to address
“the volume V”; the “velocity V” can not be easily supported with
standard request-reply retrievals; the introduction of stream pro-
cessing (which is out of our scope here) can be considered instead.

If query responses are not self explanatory, metadata can be
introduced to reduce risk of misinterpretations on consumer side.

From a security point of view, the in message often has low to
medium data protection needs; however, the request message may
contain secure credentials to authorize access to sensitive informa-
tion and has to avoid denial-of-service attacks. The out message
protection requirements might be more advanced, as the report
58have you ever have to debug a complex XPath/XQuery expression that you had not
touched in a long time?
59https://martinfowler.com/bliki/TwoHardThings.html
60https://martinfowler.com/bliki/CQRS.html

might contain business performance data or sensitive personal in-
formation such as health case records. OWASP has published an
API Security Top 1061 that any API should respect, especially those
dealing with sensitive and/or classified data.

Retrieval Operation instances are commonly exposed in Public
APIs; if this is done, they can/should be protected with an API Key
and Rate Limits [40]. The Rate Limits for queries might restrict the
number of queries and/or the number of results; GitHub and Google
Search supply usage examples for these patterns.

Time-Bound Report services can use denormalized data replicas
and apply the extract-transform-load staging commonly used in
data warehouses. Such services are common in Community APIs
and Solution-Internal APIs.

Known Uses. Known uses of this pattern are very common in
enterprise information systems and public Web APIs:

• eBay has a traffic report API operation62
• The Cargo Repository in the Cargo Aggregate63 of the
Domain-Driven Design Sample Application64 implements
two basic find operations Cargo find(TrackingId
trackingId) and List<Cargo> findAll().

• The Open Weather Map API65 illustrates this pattern in its
many lookup options (expressed as parameters). For instance,
historic weather data per city is provided by History Bulk66.
Note that only the responses are batched/bulked in a file; the
requests are single/individual ones.

• The Slack Web API has a files.list method67. While not
truly RESTful (but HTTP-based), this call shows a typical
parameter and query response message structure. Another
known use can be found in the Force.com API68. It works
with a Salesforce Object Query Language (SOQL) to define
the query parameters.

• The Swiss eGov initiative offers a central company lookup
WSDL/SOAP service called Zefix69 with operations such as
searchByName.

GraphQL queries (but not its mutations) and restSQL70 can be
seen as advanced, particularly flexible instances of the pattern
(designed to avoid over-fetching).

The pattern is often applied in enterprise settings as well (just
to show how common the pattern is:

• Some of the 1000+ services in [5] qualify as known uses of
this pattern, for instance, “Kundengesamtübersicht” (i.e., a
wild carded search for customers and an overview of their
activities and products used). See this article71 for a business-
oriented architecture overview.

61https://owasp.org/www-project-api-security/
62https://developer.ebay.com/api-docs/sell/analytics/resources/traffic_report/
methods/getTrafficReport
63https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/
dddsample/domain/model/cargo
64http://dddsample.sourceforge.net/characterization.html
65http://openweathermap.org/api
66http://openweathermap.org/history-bulk
67https://api.slack.com/methods/files.list
68https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/dome_
query.htm
69https://www.e-service.admin.ch/wiki/display/openegovdoc/Zefix+Webservice
70http://restsql.org/doc/Overview.html
71https://subs.emis.de/LNI/Proceedings/Proceedings175/378.pdf

https://martinfowler.com/bliki/TwoHardThings.html
https://martinfowler.com/bliki/TwoHardThings.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/TwoHardThings.html
https://martinfowler.com/bliki/CQRS.html
https://owasp.org/www-project-api-security/
https://developer.ebay.com/api-docs/sell/analytics/resources/traffic_report/methods/getTrafficReport
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
http://dddsample.sourceforge.net/characterization.html
http://openweathermap.org/api
http://openweathermap.org/history-bulk
https://api.slack.com/methods/files.list
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/dome_query.htm
https://www.e-service.admin.ch/wiki/display/openegovdoc/Zefix+Webservice
http://restsql.org/doc/Overview.html
https://subs.emis.de/LNI/Proceedings/Proceedings175/378.pdf
https://owasp.org/www-project-api-security/
https://developer.ebay.com/api-docs/sell/analytics/resources/traffic_report/methods/getTrafficReport
https://developer.ebay.com/api-docs/sell/analytics/resources/traffic_report/methods/getTrafficReport
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/domain/model/cargo
http://dddsample.sourceforge.net/characterization.html
http://openweathermap.org/api
http://openweathermap.org/history-bulk
https://api.slack.com/methods/files.list
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/dome_query.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/dome_query.htm
https://www.e-service.admin.ch/wiki/display/openegovdoc/Zefix+Webservice
http://restsql.org/doc/Overview.html
https://subs.emis.de/LNI/Proceedings/Proceedings175/378.pdf

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

• The same holds for a subset of the business and application
services in the order management SOA presented in [48].
An example is the customer master data lookup performed
during phone number and address validation.

• A large Swiss banking software provider provides its clients
an API to fetch aggregated data in the context of domain-
specific use cases, e.g., a 360-degree view on a customer.

Terravis’ parcel information retrieval API [4] provides examples
of more sophisticated Retrieval Operations that do not directly trans-
late to database queries. Because land registry data in Switzerland
is federated, the parcel information retrieval API is a facade that
hides the location of the data from the client. Internally, a request
is resolved and routed to the responsible land registry, which in
turn offers standardized APIs for land register data retrieval. The
main operation retrieves a list of parcels by an electronic parcel
ID (eGRID, German: “Elektronische Grundstücks-ID”). IDs can be
resolved by querying by municipality, owner names, and so on.
Requests have size limitations, i.e., only ten parcels may be queried
at once in order to manage load on land registry systems. Opera-
tions may return historical data if this is desired. Depending on the
number of managed objects, queries can be paginated (as described
in our Pagination pattern [52]) or the amount of data can be set to
different levels (e.g., full, partial, full history) with aWishlist [40].

Related Patterns. The endpoint pattern Processing Resource and
all types of Information Holder Resources [50] may expose Retrieval
Operations. The Pagination pattern [52] is often applied in Retrieval
Operations.

The sibling patterns are State Transition Operation, State Creation
Operation, and Computation Function. An State Creation Operation
pushes data from the client to the API provider, whereas a Retrieval
Operation pulls data; bothComputation Function and State Transition
Operation can support unidirectional data flows and bidirectional
ones.72

Other Sources. The is a large body of literature on database
design and information integration, including data warehouses [23].
Chapter 8 in the RESTful Web Services Cookbook by [1] discusses
queries (in the context of HTTP APIs).

“Implementing Domain-Driven Design” [42] talks about Query
Models in Chapter 4 (in the section on CQRS). Endpoints that only
expose Retrieval Operations form the Query Model in CQRS.

4.5 Pattern: State Transition Operation

A A’

a.k.a. Read-Write Operation, Data Change Operation, Business Ac-
tivity Processor

Context. It has been decided to expose business functionality in
an API. The functionality should be decomposed into multiple ac-
tivities, whose execution state should be visible in the API so that
clients can advance it. For example, functionality that is part of
72We call state-preserving processing roles functions (as they just get some work done
on behalf of a client) and state changing ones operations (as they become active because
the client hands in some data, which is then processed and stored).

longer-running business processes might require data exchanges
including incremental updates and coordinated application state
management to move process instances from initiation to termina-
tion in a stepwise fashion.

The business process behavior and interaction dynamics might
have been specified in a use case model and/or set of related user
stories, or even an analysis-level business process model (using
BPMN, UML activity diagrams or an equivalent notation). [45]

Problem. How can a client initiate a processing action that causes
the server-side application state to advance?

How can API clients and API providers share the responsibili-
ties required to execute and control business processes and their
activities? More specifically:

• How can API clients ask an API provider to take over cer-
tain functions that represent business activities of varying
granularities, from atomic activities to subprocesses to entire
processes, but still own the process state (“Frontend BPM”)?

• How can API clients initiate, control and follow the asyn-
chronous execution of remote business processes (includ-
ing subprocesses and activities) exposed and owned by an
API provider (“Business Process Management (BPM) ser-
vices”)?

A canonical example process from the insurance domain is claim
processing, with activities such as initial validation of a received
claim form, fraud check, additional customer correspondence, deci-
sion, payment/settlement, and archiving. Instances of this process
can live for days to months or even years. Process instance state
has to be managed; some parts of the processing can run in parallel
whereas others have to be executed one by one sequentially. When
dealing with such complex domain semantics, the control and data
flow depends on a number of decisions. Multiple systems and ser-
vices might be involved along the way, each exposing one or more
APIs. Other services and application frontends act as API clients.
The process instances and the state ownership can lie with the API
client (Frontend BPM), with the API provider (BPM services), or be
shared.

Forces. The following specific forces have to be resolved when rep-
resenting business processes and their activities as API operations,
or, more generally speaking, updating provider-side application
state:

• Service granularity
• Consistency
• Dependencies on state changes being made before-
hand, which may collide with other state changes (e.g.,
transactions).

• Networking efficiency vs. data parsimony (message sizes)
• Workload management

Time management and reliability also qualify as forces of this
pattern; these design concerns are discussed in the pattern State
Creation Operation.

Details. Service granularity. Large services may contain com-
plex and rich state information, updated only in a few transitions,
while smaller ones may be simple but chatty in terms of their state
transitions.

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Consistency. Process instances are often subject to audit; depend-
ing on the current process instance state, certain activities must
not be performed. Some activities have to be completed in a certain
time windows (because they require resources that have to be re-
served and then allocated). When things go wrong, some activities
might have to be undone to bring the process instance and backend
resources (e.g., business objects in databases) back into a consistent
state.

Dependencies on state changes being made beforehand. State-
changing API operations may collide with other state changes
(e.g., system transactions triggered by other API clients, by external
events in downstream systems, or by provider-internal batch jobs).

Networking efficiency vs. data parsimony (message sizes). One
can reduce the weight of the message payload and only send the
delta/difference w.r.t. the previous report (an incremental approach).
See State Creation Operation (Section 4.3) for more information
about this force.

Workload management. See Computation Function (Section 4.2)
for description of this force.

Non-solution. One could decide to ban provider-side applica-
tion state entirely. This is only realistic in trivial application sce-
narios such as pocket calculators (not requiring any storage) or
simple translation services (working with static data). One could
also decide to expose stateless operations and transfer state to and
from the endpoint every time. The Client Session State pattern in
[11] describes the pros and cons of this approach (and the REST
principle of hypertext as the engine of application state73 promotes
it). While it scales well, it may introduce security threats and, if
state is large, cause performance problems. Client programming
becomes more flexible but also more complex and risky; auditabil-
ity suffers; for instance, how to guarantee that all execution flows
are valid (e.g., “order->pay->deliver->return->refund”), preventing
“order->deliver(->pay)”, “order->deliver->pay->refund”, and other
fraudulent sequences?.

Solution. Introduce an operation in an API endpoint (typically a
Processing Resource, or an Information Holder Resource) that com-
bines client input and current state to trigger a provider-side state
change f: (in,S) -> (out,S') (a.k.a. “update action required”).

Pair a Command Message with a Document Message (two “En-
terprise Integration Patterns” [19]) to describe the input and the
desired action and receive an acknowledgment or result.

How it works. In a business process-like context, for instance
claims processing or order management, an API operation may
realize a single business activity in a business process or even
wrap the complete execution of an entire process instance on the
provider side. In this case, calls to this operation trigger one or more
instances of the Business Transaction pattern described in “Patterns
of Enterprise Application Architecture” [11].

When multiple State Transition Operations are offered by a Pro-
cessing Resource, the API gives explicit control to the internal pro-
cessing states so that the client may cancel the execution, track its
progress and influence its outcome. This basic principle is shown
in Figure 11.

73https://en.wikipedia.org/wiki/HATEOAS

API Client

API

State Transition Operation (Business Activity)

State

out

in

S'

S

Figure 11: State TransitionOperations are stateful, both reading and
writing provider-side storage.

API Client

API Client

State Transition Operation
(Business Activity)

State Transition Operation
(Business Activity)

State
(Business Activity)

State
(Business Activity)

a

s

s'

b

Figure 12: State TransitionOperations are stateful, both reading and
writing provider-side storage. Process instances have an identity
and a lifecycle (see Figure 13).

Single activities can be responsible for any of the following fine-
grained process control action primitives:

• prepare
• start
• suspend/resume
• cancel
• undo
• restart
• cleanup

Given an asynchronous nature of the business activity execution
and client-side process ownership (in frontend BPM), it should
also be possible to receive the following events as State Transfer
Operations (see Figure 13):

• completed (or, in more detail, finished/failed/aborted)
• stateChanged

Prepare (a.k.a. initialize): This primitive allows clients to pre-
pare the execution of the activity by transferring the required in-
formation, which could be validated by the provider. Depending
on the complexity of such information, initialization may involve
a single call or a more complex conversation as illustrated in the
State Creation Operation pattern. Once all information has been

https://en.wikipedia.org/wiki/HATEOAS
https://en.wikipedia.org/wiki/HATEOAS

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

Completed

Finished Failed Aborted

Ready

Running Suspended

prepare

start

cancel

suspend

resume

restart

undo

cleanup

Figure 13: A state machine featuring common transition primitives.
These common primitives can be refined in domain-specific process
models.

provided the activity is ready to start. This primitive can also be
mapped to the sibling pattern State Creation Operation.

Start: This primitive allows clients to explicitly start the execu-
tion of an activity, which has been initialized and it is ready to start.
The state of the activity turns into “running”.

Suspend/resume: These primitives allow clients to pause and
later resume the execution of a running activity. Suspending a
running activity may free execution resources within the provider.

Cancel: This primitive allows clients to interrupt the execution
of the activity and abort it in case they are no longer interested
about its results.

Undo: This primitive allows compensating the actions per-
formed by the activity, effectively reverting the state of the system
back to its original one, before the activity was started. It may not
always be possible to do so, especially when activities provoke
side-effects that impact the outside of the API provider.

Restart: This primitive allows clients to retry the execution of
a failed or aborted activity.

Cleanup: This primitive removes any state associated with com-
pleted/failed or aborted activities. The activity identifier is no longer
valid.

In Frontend BPM, API clients own the process instance state and
have to inform the API provider about the following two types of
events (when exposing BPM Services, the other event notification
direction is required):

Completed (and/or failure/abortion notification):Once the
execution of the activity finishes, affected parties should be notified
of its successful or failed completion so that they can retrieve its
output.

State changed (a.k.a. getState/notifyStateChange): For
monitoring and tracking the progress of the activity, a client might
want to fetch the current state of the activity; all affected parties
can be notified when a state transition occurs.

State Transition Operations change the business activity state on
the API provider side; the complexity of their pre- and postcondi-
tions as well as invariants varies, depending on the business and
integration scenario at hand. Medium to high complexities of these
rules are common in many application domains and scenarios. This
behavior must be specified in the API Description [28].

Consciously decide where to compose: Frontend BPM often uses
a Web frontend as API client, BPM as a Service yields composite
services (i.e., Processing Resource exposing coarse-grained State
Transition Operations). Other options are to a) introduce an API
Gateway74 as a single integration and choreography coordination
point or b) choreograph services in fully decentralized fashion via
peer-to-peer calls and/or event transmission.

From a message structure point of view State Transition Opera-
tion instances can be fine-grained as well as coarse-grained. Their
request message representations vary greatly in their complex-
ity. We present the available structural design space (i.e., types of
representation elements) in [52].

Instances of this pattern can be composed to cover subprocesses
or entire business processes. If this is done, context information
necessary for logging and debugging should also be propagated
(for instance, by applying the pattern Context Representation).

Many State Transition Operations are transactional internally.
Operation execution should be governed and protected by a trans-
action boundary that is identical to the API operation boundary
(while this should not be visible to the client on the technical level,
it is ok to disclose it in the API documentation due to the conse-
quences for composition, see below). The transaction can either
be a system transaction following the ACID75 paradigm [49] or
a saga76, roughly corresponding to compensation-based business
transactions77. If ACID is not an option, the BASE principles or try-
cancel-confirm (TCC) [33] can be considered; a conscious decision
between strict and eventual consistency is required, and a locking
strategy also has to be decided upon.

Let the processing of the State Transition Operation appear to
be idempotent, for instance by preferring absolute updates over
incremental ones (e.g., “set value of x to y” is easier to process with
consistent results vs. “increase value of x by y” which could lead
to data corruption if the event gets duplicated/resent). Idempotent
Receiver78 in “Enterprise Integration Patterns” [19] provides further
advice.

It should be considered to add compliance controls and other
security means such as Attribute-Based Access Control (ABAC),

74https://microservices.io/patterns/apigateway.html
75https://en.wikipedia.org/wiki/ACID
76http://microservices.io/patterns/data/saga.html
77https://en.wikipedia.org/wiki/Compensating_transaction
78https://www.enterpriseintegrationpatterns.com/patterns/messaging/
IdempotentReceiver.html

https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://en.wikipedia.org/wiki/ACID
http://microservices.io/patterns/data/saga.html
https://en.wikipedia.org/wiki/Compensating_transaction
https://en.wikipedia.org/wiki/Compensating_transaction
https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html
https://microservices.io/patterns/apigateway.html
https://en.wikipedia.org/wiki/ACID
http://microservices.io/patterns/data/saga.html
https://en.wikipedia.org/wiki/Compensating_transaction
https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

LakesideMutualSampleApplication

«processingResource»
OfferCreationBusinessActivityProcessor

OfferDTR «stateTransitionOperation» insureCustomer(DTR applicationData)

«processingResource»
ClaimsManagementBusinessActivityProcessor

id «stateTransitionOperation» createClaim(DTR) //prepare, start
Status «stateTransitionOperation» performFraudCheck(id) // state change
Status «stateTransitionOperation» approveClaim(id) // state change
Status «stateTransitionOperation» rejectClaim(id) // state change
boolean «stateTransitionOperation» closeClaim(id) // completed

Figure 14: Two examples of State Transition Operations: coarse-
grained BPM service and fine-grained Frontend BPM process exe-
cution

for instance based on an API Key [40] or a stronger authentication
token, to the API operation/endpoint may degrade performance.

Variants. There are two quite different types of update, Full
Overwrite (a.k.a.Replacement) and Partial Change (a.k.a. Incremental
Update). Full overwrites/replacements can be processed without
accessing current state (and can therefore be seen as instances of
the sibling pattern State Creation Operation); incremental change
typically requires read access to state (as described in this pattern).

Events can either contain absolute new values (Full Report) or, as
Delta Reports, communicate the changes since the previous event
(identified by a Correlation Identifier or indirectly by timestamp and
entity identifier).

With HTTP-based APIs, Full Overwrite is typically exposed with
the PUT method, while Partial Change can be achieved with PATCH.

Example. The activity “proceed to checkout and pay” in an on-
line shop illustrates the pattern in an order management process.
“Add item to shopping basket” then is an activity in the “product
catalog browsing” subprocess. These operations do change provider-
side state, they do convey business semantics, and they do have
nontrivial pre- and postconditions as well as invariants (for in-
stance, “do not deliver the goods and invoice the customer before
the customer has checked out and confirmed the order”).

The following example from the insurance domain illustrates
the two extremes of the pattern; see Figure 14. Offers are created in
a single-step operation; claims are managed step-by-step, causing
incremental state transitions on the provider side. Some of the
primitives from Figure 13 are assigned to State Transition Operations
in the example.

Implementation hints. Architects and developers that decide
to apply this pattern may take the following advice into considera-
tion:

• Apply process-oriented analysis and design techniques such
as event storming79 or use case walkthroughs to carve out
events (activity triggers), commands (corresponding to busi-
ness activities), data entities (business items) and event flows
(business processes).

79https://www.eventstorming.com/

• Consider state machines, supported in middleware such as
Spring Integration80, to keep track of endpoint-internal appli-
cation state. Also consider workflow languages and engines;
one of many offerings is the BPMN engine from Camunda.

• Consider the use or process mining [41] and other techniques
from the Business Process Management (BPM) community
to monitor and improve the execution of the process flows
(for full or partial process execution).

• When implementing the pattern in HTTP resource APIs, use
the PATCH (for partial updates) or PUT methods (for full
replacements). Use hyperlink formats such as HAL or JSON-
LD when referencing previous or subsequent processing
steps.

Consequences.

Resolution of forces.

+ Networking efficiency vs. data parsimony (message sizes):
A RESTful API design can use state transfers from clients
to providers and resource designs to come up with a suited
balance between expressiveness and efficiency.

+ Service granularity: State Transition Operations can accom-
modate both smaller and larger “service cuts” [14] and there-
fore promote agility and flexibility.

+ Consistency: State Transition Operations can andmust handle
business and system transaction management (internally).

− Dependencies on state changes made beforehandmay collide
with other state changes (see explanation of force above).

− Workload management: stateful State Transition Operations
cannot scale easily, and endpoints featuring such operations
cannot be relocated to other nodes seamlessly (for instance,
in when deploying to clouds and striving for IDEAL81 cloud
application properties).

Further discussion. Exposing API operations with business
semantics such as business activity/transaction is a key principle
and tenet in SOAs and their microservice implementations. A good
test is to show the API documentation (e.g., operation name, param-
eter names/types/descriptions, pre- and postconditions) to business
stakeholders a.k.a. domain experts who are not computer scientists
or trained in software engineering practices: if such reviewers are
able to digest the specification, comment on it and request changes,
chances are that the “business alignment” property of the interface
is met.

Idempotence is good for fault resiliency and scalability, as men-
tioned above. But it is often not clear/easy how to achieve it: for
instance, one can send “new value is n” message rather than “value
of x has increased by one”. However, the picture gets more complex
in more advanced business scenarios such as order management
and payment processing. See coverage of the topic in [10] and [19].

80https://spring.io/projects/spring-integration
81The acronym IDEAL (isolated state, distribution, elasticity, automated management,
loose coupling) is introduced in [10].

https://www.eventstorming.com/
https://www.eventstorming.com/
https://spring.io/projects/spring-integration
https://spring.io/projects/spring-integration

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

Performance and scalability are primarily driven by technical
complexity of the API operation, and the amount of backend pro-
cessing required in its implementation, the contention to concur-
rently access shared data, and the resulting IT infrastructure work-
load (remote connections, computations, disk I/O, CPU energy
consumption).

Known Uses. The Application Layer82 of the Domain-Driven
Design Sample Application83 implements (local) interfaces
for two instances of this pattern: BookingService.java and
CargoInspectionService.java.

PayPal has the notion of controller resources84 and M. Nygard
also recommends this behavior- and reponsibility-oriented pattern
when talking about activity sets and process services85. Note that
Nygard considers entity services an anti pattern in all cases, unlike
other authors who argue that context matters86.

Advocates of workflow engines recommend lightweight mi-
croservice compositions as well, for instance to decouple steps
with an event command transformation87.

A large body of State Transfer Operations can be found in enter-
prise settings (just to show how common the pattern is):

• Most of the 1000+ services in the core banking SOA featured
in [5] qualify as known uses of this pattern, for instance,
money transfers.

• The same holds for the business and application services in
the telecommunications order management SOA presented
in [48]; for instance, the scheduling of a technician visit when
customers relocate or upgrade their telephony services is
part of a medium complex business process (or workflow).

• The Swiss land register Terravis uses State Transition Opera-
tions in its backend infrastructure, e.g., for managing mort-
gages in a position keeping service (e.g., transfer mortgage
from one depot to another) or for moving forward in a busi-
ness process instance (e.g., submit digitally signed document)
[29].

Related Patterns. The patterns differs from its siblings like this: A
Computation Function does not touch the provider side application
state (read or write) at all; a State Creation Operations only writes to
it (in appendmode). Instances of Retrieval Operation read, but do not
write it; State Transition Operation instances both read and write the
provider-side state. Computation Function and Retrieval Operation
pull information from the provider; State Creation Operations (such
as instances of its Event Notification Operation variant) push updates
to the provider. State Transition Operations may push and/or pull. A
State Transition Operationmay refer to a provider-side state element
in its request message (for instance, an order id or serial number
of a staff member); State Creation Operations usually do not do
this. A single API endpoint may, but not necessarily should apply
more than one of these patterns; command-query separation88 is
82https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/
dddsample/application
83http://dddsample.sourceforge.net/characterization.html
84https://github.com/paypal/api-standards/blob/master/patterns.md#
controller-resources
85http://www.michaelnygard.com/blog/2018/01/services-by-lifecycle/
86https://icwe2020.webengineering.org/keynotes/#academy
87https://www.infoq.com/articles/microservice-event-choreographies
88https://martinfowler.com/bliki/CommandQuerySeparation.html

a principle from object-oriented programming also eligible on the
architectural level.

State Transition Operations can be seen to trigger and/or real-
ize the Business Transactions [11]. Instances of this pattern may
participate in long running and therefore stateful conversations
[17]. They can use and go along with one or more of the RESTful
conversation patterns from [35]. For instance, one may want to
consider factoring out the state management and the computation
part of the pattern into separate services. Conversation patterns or
choreographies and/or orchestrations may then define the valid
combinations and execution sequences of these services.

State Transition Operations are often exposed in Community APIs;
if this is done, they can be protected with an API Key [40] and their
usage can be governed with a Service Level Agreement [40].

In Domain-Driven Design (DDD) [9], the Aggregate and Entity
patterns have related semantics (i.e., they represent groups of do-
main concepts that have an identify and a lifecyle). Hence, these
patterns can help to identify State Transition Operation candidates
during endpoint identification. It is important not to expose the
entire domain as Published Language on the API level because this
creates an undesired tight coupling between the API clients and
the provider-side API implementation.

Other Sources. The is a large body of literature on BPM(N) and
workflow management that introduces concepts and technologies
to implement stateful service components in general and State
Transition Operations in particular, for instance [26] [27] [3] [12].

In Responsibility-Driven Design (RDD), State Transition Opera-
tions correspond to coordinators and controllers that are encapsu-
lated as service providers made accessible from remote with the help
of an interfacer as described in [44].

The seven-step service design method89 in the Soft-
ware/Service/API Design Practice Repository (DPR) suggests to
call out endpoint roles and operation responsibilities such as State
Transition Operation when preparing candidate endpoint lists and
refining them.

5 CONCLUSIONS AND OUTLOOK
The knowledge captured in this paper already has been used as
guidance for making architectural decisions in industry projects.
Our patterns are applicable not only to microservice APIs, but also
to any remote API based on plain document messages rather than
stateful protocols or remote objects. Both synchronous APIs using
direct HTTP exchanges and asynchronous, queue-based ones are
in scope.

Selected patterns are implemented in the Lakeside Mutual90 sce-
nario and sample application. Lakeside Mutual is a fictitious insur-
ance company that implemented its core business capabilities for
customer, contract, and risk management as a set of microservices
with corresponding application frontends. The emerging Microser-
vice Domain Specific Language (MDSL)91 features all responsibility
patterns as endpoint or operation decorators; it also integrates simi-
lar role stereotype information for the entire API and on the level of
message representation elements. Our new Software/Service/API

89https://github.com/socadk/design-practice-repository
90https://github.com/Microservice-API-Patterns/LakesideMutual
91https://microservice-api-patterns.github.io/MDSL-Specification/tutorial

https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/application
http://dddsample.sourceforge.net/characterization.html
http://dddsample.sourceforge.net/characterization.html
https://github.com/paypal/api-standards/blob/master/patterns.md#controller-resources
http://www.michaelnygard.com/blog/2018/01/services-by-lifecycle/
https://icwe2020.webengineering.org/keynotes/#academy
https://www.infoq.com/articles/microservice-event-choreographies
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/application
https://github.com/citerus/dddsample-core/tree/master/src/main/java/se/citerus/dddsample/application
http://dddsample.sourceforge.net/characterization.html
https://github.com/paypal/api-standards/blob/master/patterns.md#controller-resources
https://github.com/paypal/api-standards/blob/master/patterns.md#controller-resources
http://www.michaelnygard.com/blog/2018/01/services-by-lifecycle/
https://icwe2020.webengineering.org/keynotes/#academy
https://www.infoq.com/articles/microservice-event-choreographies
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://github.com/socadk/design-practice-repository
https://github.com/Microservice-API-Patterns/LakesideMutual
https://microservice-api-patterns.github.io/MDSL-Specification/tutorial
https://microservice-api-patterns.github.io/MDSL-Specification/tutorial
https://github.com/socadk/design-practice-repository
https://github.com/Microservice-API-Patterns/LakesideMutual
https://microservice-api-patterns.github.io/MDSL-Specification/tutorial

Interface Responsibility Patterns EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Design Practice Repository (DPR)92 features the responsibility pat-
terns in Step 5 of its stepwise service design method. The blog post
“MAP Retrospective and Outlook”93 reflects on the evolution of our
pattern language since 2017.

As part of our future work, we consider to cover service imple-
mentation details in addition to API contract design. Candidate
patterns include Guard Resource (a wrapper around a backend sys-
tem, Ground Resource (a service not having any outbound depen-
dencies) and Composed Resource (representing orchestrations and
choreographies). We also consider to extend our pattern collection
with additional structural, behavioral, and process patterns.

ACKNOWLEDGMENTS
We want to thank the EuroPLoP shepherds and writers’ workshop
participants that provided constructive feedback since 2017, stu-
dents and members of our professional networks who helped to
investigate publicWeb APIs, donated pattern candidates and known
uses, and reviewed early drafts of pattern candidates and language
structure. The work of Olaf Zimmermann and Mirko Stocker on
MDSL and DPR is supported by the Hasler Foundation. The work
of Cesare Pautasso and Uwe Zdun was supported by the API-ACE
project, funded by SNF project 184692 and FWF (Austrian Science
Fund) project I 4268.

REFERENCES
[1] Subbu Allamaraju. 2010. RESTful Web Services Cookbook. O’Reilly.
[2] Deepak Alur, Dan Malks, and John Crupi. 2013. Core J2EE Patterns: Best Practices

and Design Strategies (2nd ed.). Prentice Hall.
[3] Jesus Bellido, Rosa Alarcón, and Cesare Pautasso. 2013. Control-Flow Patterns

for Decentralized RESTful Service Composition. ACM Transactions on the Web
(TWEB) 8 (December 2013), 5:1–5:30. https://doi.org/10.1145/2535911

[4] Walter Berli, Daniel Lübke, and Werner Möckli. 2014. Terravis – Large Scale
Business Process Integration between Public and Private Partners. In Lecture
Notes in Informatics (LNI), Proceedings INFORMATIK 2014, Erhard Plödereder,
Lars Grunske, Eric Schneider, and Dominik Ull (Eds.), Vol. P-232. Gesellschaft für
Informatik e.V., Gesellschaft für Informatik e.V., 1075–1090.

[5] Michael Brandner, Michael Craes, Frank Oellermann, and Olaf Zimmermann.
2004. Web services-oriented architecture in production in the finance in-
dustry. Informatik-Spektrum 27, 2 (2004), 136–145. https://doi.org/10.1007/
s00287-004-0380-2

[6] Kyle Brown and Bobby Woolf. 2016. Implementation Patterns for Microservices
Architectures. In Proceedings of the 23rd Conference on Pattern Languages of
Programs (PLoP ’16). The Hillside Group, USA, Article Article 7, 35 pages.

[7] Frank Buschmann, Kevlin Henney, and Douglas Schmidt. 2007. Pattern-Oriented
Software Architecture: A Pattern Language for Distributed Computing. Wiley.

[8] Robert Daigneau. 2011. Service Design Patterns: Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Addison-Wesley Professional. http:
//www.servicedesignpatterns.com/

[9] Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of
Software. Addison-Wesley.

[10] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. 2014. Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer.

[11] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-
Wesley.

[12] Alessio Gambi and Cesare Pautasso. 2013. RESTful Business Process Management
in the Cloud. In 5th ICSE International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS 2013). San Francisco, CA, USA.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley.

[14] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. 2016.
Service Cutter: A Systematic Approach to Service Decomposition. In European
Conference on Service-Oriented and Cloud Computing. Springer, 185–200.

[15] Robert Hanmer. 2007. Patterns for Fault Tolerant Software. Wiley.

92https://github.com/socadk/design-practice-repository
93https://ozimmer.ch/patterns/2020/04/29/MAPRetrospective.html

[16] Carsten Hentrich and Uwe Zdun. 2011. Process-Driven SOA: Patterns for Aligning
Business and IT. Auerbach Publications.

[17] Gregor Hohpe. 2007. Conversation Patterns: Interactions between Loosely Cou-
pled Services. In Proceedings of the 12th European Conference on Pattern Languages
of Programs (EuroPLoP). Irsee, Germany.

[18] Gregor Hohpe. 2007. SOA Patterns: New Insights or Recycled Knowl-
edge? Online article. https://www.enterpriseintegrationpatterns.com/docs/
HohpeSOAPatterns.pdf

[19] Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley.

[20] Nicolai Josuttis. 2007. SOA in Practice: The Art of Distributed System Design.
O’Reilly.

[21] Klaus Julisch, Christophe Suter, Thomas Woitalla, and Olaf Zimmermann. 2011.
Compliance by design–Bridging the chasm between auditors and IT architects.
Computers & Security 30, 6 (2011), 410–426.

[22] Stefan Kapferer and Olaf Zimmermann. 2020. Domain-driven Service Design -
Context Modeling, Model Refactoring and Contract Generation. In Proc. of the
14th Advanced Summer School on Service-Oriented Computing (SummerSOC’20)
(to appear). Springer CCIS.

[23] Ralph Kimball and Margy Ross. 2002. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling (2nd ed.). John Wiley.

[24] Dirk Krafzig, Karl Banke, and Dirk Slama. 2004. Enterprise SOA: Service-Oriented
Architecture Best Practices (The Coad Series). Prentice Hall.

[25] James Lewis and Martin Fowler. 2014. Microservices: a definition of this new
architectural term. https://martinfowler.com/articles/microservices.html. https:
//martinfowler.com/articles/microservices.html

[26] Frank Leymann and Dieter Roller. 2000. Production workflow - concepts and
techniques. Prentice Hall.

[27] Frank Leymann, Dieter Roller, and Marc-Thomas Schmidt. 2002. Web services
and business process management. IBM Syst. J. 41, 2 (2002), 198–211. https:
//doi.org/10.1147/sj.412.0198

[28] Daniel Lübke, Olaf Zimmermann, Mirko Stocker, Cesare Pautasso, and Uwe Zdun.
2019. Interface Evolution Patterns - Balancing Compatibility and Extensibility
across Service Life Cycles. In Proc. of the 24th European Conference on Pattern
Languages of Programs (EuroPLoP ’19).

[29] Daniel Lübke and Tammo van Lessen. 2016. Modeling Test Cases in BPMN for
Behavior-Driven Development. IEEE Software 33, 5 (Sept.-Oct. 2016), 15–21.

[30] Bertrand Meyer. 1997. Object-oriented Software Construction (2nd Ed.). Prentice-
Hall.

[31] Davide Neri, Jacopo Soldani, Olaf Zimmermann, and Antonio Brogi. 2020. Design
principles, architectural smells and refactorings for microservices: a multivocal
review. SICS Softw.-Intensive Cyber Phys. Syst. 35, 1 (2020), 3–15. https://doi.org/
10.1007/s00450-019-00407-8

[32] Sam Newman. 2015. Building Microservices: Designing Fine-Grained Systems.
O’Reilly.

[33] Guy Pardon and Cesare Pautasso. 2011. Towards Distributed Atomic Trans-
actions over RESTful Services. Springer, 507–524. https://doi.org/10.1007/
978-1-4419-8303-9_23

[34] Guy Pardon, Cesare Pautasso, and Olaf Zimmermann. 2018. Consistent Disaster
Recovery for Microservices: the BAC Theorem. IEEE Cloud Computing 5, 1 (12
2018), 49–59. https://doi.org/10.1109/MCC.2018.011791714

[35] Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. 2016. A Pattern Language
for RESTful Conversations. In Proceedings of the 21st European Conference on
Pattern Languages of Programs (EuroPLoP). Irsee, Germany.

[36] Cesare Pautasso and Olaf Zimmermann. 2018. The Web as a Software Connector:
Integration Resting on Linked Resources. IEEE Software 35 (January/February
2018), 93–98. https://doi.org/10.1109/MS.2017.4541049

[37] Cesare Pautasso, Olaf Zimmermann,Mike Amundsen, James Lewis, andNicolaiM.
Josuttis. 2017. Microservices in Practice, Part 1: Reality Check and Service Design.
IEEE Software 34, 1 (2017), 91–98. https://doi.org/10.1109/MS.2017.24

[38] Chris Richardson. 2016. Microservice Architecture. http://microservices.io.
(2016).

[39] Chris Richardson. 2018. Microservices Patterns. Manning.
[40] Mirko Stocker, Olaf Zimmermann, Daniel Lübke, Uwe Zdun, and Cesare Pautasso.

2018. Interface Quality Patterns - Communicating and Improving the Quality of
Microservices APIs. In Proc. of the 23nd European Conference on Pattern Languages
of Programs (EuroPLoP ’18).

[41] Wil M. P. van der Aalst. 2011. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer.

[42] Vaughn Vernon. 2013. Implementing Domain-Driven Design. Addison-Wesley
Professional.

[43] Markus Voelter, Michael Kircher, and Uwe Zdun. 2004. Remoting Patterns -
Foundations of Enterprise, Internet, and Realtime Distributed Object Middleware. J.
Wiley & Sons, Hoboken, NJ, USA.

[44] RebeccaWirfs-Brock andAlanMcKean. 2002. Object Design: Roles, Responsibilities,
and Collaborations. Pearson Education.

[45] Olaf Zimmermann. 2009. An architectural decision modeling framework for service-
oriented architecture design. Ph.D. Dissertation. University of Stuttgart, Germany.

https://github.com/socadk/design-practice-repository
https://ozimmer.ch/patterns/2020/04/29/MAPRetrospective.html
https://doi.org/10.1145/2535911
https://doi.org/10.1007/s00287-004-0380-2
https://doi.org/10.1007/s00287-004-0380-2
http://www.servicedesignpatterns.com/
http://www.servicedesignpatterns.com/
https://github.com/socadk/design-practice-repository
https://ozimmer.ch/patterns/2020/04/29/MAPRetrospective.html
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1147/sj.412.0198
https://doi.org/10.1147/sj.412.0198
https://doi.org/10.1007/s00450-019-00407-8
https://doi.org/10.1007/s00450-019-00407-8
https://doi.org/10.1007/978-1-4419-8303-9_23
https://doi.org/10.1007/978-1-4419-8303-9_23
https://doi.org/10.1109/MCC.2018.011791714
https://doi.org/10.1109/MS.2017.4541049
https://doi.org/10.1109/MS.2017.24
http://microservices.io

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker

http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/
[46] Olaf Zimmermann. 2015. Architectural Refactoring: A Task-Centric View on

Software Evolution. IEEE Software 32, 2 (Mar.-Apr. 2015), 26–29. https://doi.org/
10.1109/MS.2015.37

[47] Olaf Zimmermann. 2017. Microservices Tenets. Comput. Sci. 32, 3-4 (July 2017),
301–310. https://doi.org/10.1007/s00450-016-0337-0

[48] Olaf Zimmermann, Vadim Doubrovski, Jonas Grundler, and Kerard Hogg. 2005.
Service-oriented architecture and business process choreography in an order
management scenario: rationale, concepts, lessons learned. (2005), 301–312.

[49] Olaf Zimmermann, Jonas Grundler, Stefan Tai, and Frank Leymann. 2007. Archi-
tectural Decisions and Patterns for Transactional Workflows in SOA. In Service-
Oriented Computing - ICSOC 2007, Fifth International Conference, Vienna, Austria,
September 17-20, 2007, Proceedings (Lecture Notes in Computer Science), Bernd J.
Krämer, Kwei-Jay Lin, and Priya Narasimhan (Eds.), Vol. 4749. Springer, 81–93.
https://doi.org/10.1007/978-3-540-74974-5_7

[50] Olaf Zimmermann, Daniel Pautasso, Cesare Lübke, Uwe Zdun, , and Mirko
Stocker. 2019. Data-Oriented Interface Responsibility Patterns: Types of Informa-
tion Holder Resources. In Proc. of the European Conference on Pattern Languages
of Programs (EuroPLoP ’19).

[51] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun.
2020. Introduction to Microservice API Patterns (MAP). In Joint Post-proceedings
of the First and Second International Conference on Microservices (Microservices
2017/2019) (OpenAccess Series in Informatics (OASIcs)), Luís Cruz-Filipe, Saverio
Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and Sabine
Sachweh (Eds.), Vol. 78. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 4:1–4:17. https://doi.org/10.4230/OASIcs.Microservices.
2017-2019.4

[52] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. 2017. Interface
Representation Patterns: Crafting and Consuming Message-Based Remote APIs.
In Proc. of the 22nd European Conference on Pattern Languages of Programs (Euro-
PLoP ’17). ACM, Article 27, 36 pages. https://doi.org/10.1145/3147704.3147734

http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/
https://doi.org/10.1109/MS.2015.37
https://doi.org/10.1109/MS.2015.37
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/978-3-540-74974-5_7
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.1145/3147704.3147734

	Abstract
	1 Introduction
	2 Related Work
	2.1 Related pattern languages
	2.2 Other existing design heuristics
	2.3 Responsibility-Driven Design (RDD)

	3 Context: The MAP language
	3.1 Previously published patterns
	3.2 Domain model
	3.3 Pattern template

	4 Processing Resource Role and Operation Responsibilities
	4.1 Pattern: Processing Resource
	4.2 Pattern: Computation Function
	4.3 Pattern: State Creation Operation
	4.4 Pattern: Retrieval Operation
	4.5 Pattern: State Transition Operation

	5 Conclusions and Outlook
	References

