
Better Process Mapping and Sparse Quadratic
Assignment∗

Christian Schulz1, Jesper Larsson Träff2, and Konrad von
Kirchbach3

1 University of Vienna, Faculty of Computer Science, Vienna, Austria
2 TU Wien, Faculty of Informatics, Vienna, Austria
3 University of Vienna, Faculty of Computer Science, Vienna, Austria

Abstract
Communication and topology aware process mapping is a powerful approach to reduce commu-
nication time in parallel applications with known communication patterns on large, distributed
memory systems. We address the problem as a quadratic assignment problem (QAP), and
present algorithms to construct initial mappings of processes to processors, and fast local search
algorithms to further improve the mappings. By exploiting assumptions that typically hold for
applications and modern supercomputer systems such as sparse communication patterns and hier-
archically organized communication systems, we obtain significantly more powerful algorithms
for these special QAPs. Our multilevel construction algorithms employ perfectly balanced graph
partitioning techniques and exploit the given communication system hierarchy in significant ways.
We present improvements to a local search algorithm of Brandfass et al. (2013), and further de-
crease the running time by reducing the time needed to perform swaps in the assignment as well
as by carefully constraining local search neighborhoods. We also investigate different algorithms
to create the communication graph that is mapped onto the processor network. Experiments
indicate that our algorithms not only dramatically speed up local search, but due to the mul-
tilevel approach also find much better solutions in practice.

1 Introduction

Communication performance between processes in high-performance parallel systems depends
on many factors. For example, communication is typically faster if communicating processes
are located on the same processor node compared to the cases where processes reside on
different nodes. This becomes even more pronounced for large supercomputer systems where
processors are hierarchically organized into, e. g., islands, racks, nodes, processors, cores with
corresponding communication links of similar quality. Given the communication pattern
between processes and a hardware topology description that reflects the strength of the
communication links, one hence seeks to find a good mapping of processes onto processors
such that pairs of processes exchanging large amounts of information are located closely.

Such a mapping can be computed by solving a corresponding quadratic assignment
problem (QAP) which is a hard optimization problem. Sahni and Gonzalez [23] have shown
QAP to be strongly NP-hard and, unless P=NP, admitting no constant factor approximation
algorithm. In addition, there are no algorithms that can solve meaningful instances of size n
with n > 20 to optimality in a reasonable amount of time [7]. Hence, heuristic algorithms
are necessary in order to solve large scale instances. Multiple heuristics have been proposed
to tackle real world instances [5, 15, 21]. We present more details in Section 3.

∗ This work was partially supported by DFG grants SA 933/11-1 and by the Austrian Science Founda-
tion (FWF, project P 31763-N31).

© Christian Schulz, Jesper Larsson Träff, and Konrad von Kirchbach;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

70
2.

04
16

4v
2

 [
cs

.D
C

]
 2

2
Ju

l 2
01

9

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Better Process Mapping and Sparse Quadratic Assignment

In this work, we make two important assumptions that are typically valid for modern
supercomputers and the applications that run on those. First, communication patterns are
almost always sparse since not all processes have to communicate with each other. This
is especially true for large scale scientific simulations in which the underlying models of
computation and communication are already sparse, see, e. g., [8, 12, 26]. To efficiently
parallelize the simulation one normally employs Graph Partitioning (GP) techniques which
then in turn yield a sparse communication pattern between the processes. Second, we
assume that the hardware communication topology under consideration is hierarchical with
communication links on the same level in the hierarchy exhibiting the same communication
speed. This is typically the case for current high-performance systems.

Using these assumptions, we derive algorithms that are able to create high quality
mappings, as well as faster local search algorithms for improving assignments. Overall,
our algorithms are able to compute better solutions than other recent heuristics for the
problem. Improving the (practical) complexity of such algorithms is highly important,
since the number of cores available in supercomputers is still increasing dramatically. The
rest of this paper is organized as follows. In Section 2, we introduce basic concepts and
describe relevant related work, such as the algorithm of Brandfass et al. [5], in more
detail. We present our main contributions in Section 3 and Section 4. We also look at
algorithms that create the communication model that has to be mapped. We implemented the
techniques presented here in the graph partitioning framework KaHIP [25] (Karlsruhe High
Quality Graph Partitioning). A summary of extensive experiments to evaluate algorithm
performance is presented in Section 5, and indicate that our algorithm not only drastically
speeds up local search, but due to the multilevel approach combined with high quality
partitioning techniques also finds better solutions in practice. Lastly, using hierarchical
multisection algorithms that take the system hierarchy into account for model creation
further improves the results of the overall process mapping.

2 Preliminaries
The total communication requirement between the set of processes in (some section of) an
application can be modeled by a weighted communication graph. The underlying hardware
topology can likewise be modeled by a weighted graph, but since the graph is complete
(any physical processor can communicate with any other physical processor through the
underlying networks), we represent it by a topology cost matrix which can for instance
reflect the costs of routing along shortest (cheapest) paths between processes. Our abstract
problem is to embed the communication graph onto the topology graph under optimization
criteria that we explain below. Throughout the paper, we assume that the number of
nodes in host and topology graphs are the same. Unless otherwise mentioned, a processing
element (PE) typically represents a core of a machine.

In practice, often an input graph is given with a much larger number of vertices than
the number of processors in the communication network. Assuming that edges of the
input graph correspond to interaction between pairs of vertices, the problem is to assign
the graph vertices to the processors of the communication network, such that the total
communication induced by the vertices of the input graph is minimized, taking into account
the hierarchical characteristics of the communication system. This can be viewed as a
two stage process of first creating a smaller graph with as many vertices as there are
processors in the communication network, and then mapping this smaller graph to the
communication system. We refer to this approach as the model creation problem, and
the smaller graph as the model for the given input graph.

Christian Schulz, Jesper Larsson Träff, and Konrad von Kirchbach XX:3

Basic Concepts
In the following, we consider undirected graphs G = (V = {0, . . . , n − 1}, E) with edge
weights ω : E → R>0, node weights c : V → R≥0, n = |V |, and m = |E|. We extend c and ω
to sets, i. e., c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e). We let Γ(v) := {u : {v, u} ∈ E}

denote the neighbors of a node v. A graph S = (V ′, E′) is said to be a subgraph of G = (V,E)
if V ′ ⊆ V and E′ ⊆ E ∩ (V ′× V ′). We call S an induced subgraph when E′ = E ∩ (V ′× V ′).

Throughout the paper, C ∈ Rn×n denotes the communication matrix, and D ∈ Rn×n the
topology or distance matrix. More precisely, Ci,j describes the amount of communication
that has to be done between process i and j, and Di,j represents the weighted distance
between PE i and PE j. That is, the cost for communicating the amount Ci,j between
processors i and j is Ci,jDi,j . We follow Brandfass et al. [5] and others, and model the
embedding problem as a quadratic assignment problem (QAP): Find a one-to-one mapping Π
of processes to PEs which minimizes the overall communication cost. More precisely, we want
to minimize J(C,D,Π) :=

∑
i,j CΠ(i),Π(j)Di,j where the sum is over all PE pairs and k = Π(i)

means that process k is assigned to PE i. Note that searching for the inverse permutation
instead, i. e., assigning process i to PE Π−1(i), results in the same assignment problem as Π
is a one-to-one mapping. Throughout this work, we assume that C and D are symmetric –
otherwise one can create equivalent QAP problems with symmetric inputs [5]. In this paper,
we focus on sparse communication patterns, and therefore do not want to store the complete
communication matrix but instead represent it more efficiently as a graph. Furthermore,
typical system topologies feature a hierarchy that can be exploit. For a given system, we
assume that hierarchy information, and in general D, is given implicitly as part of the system
description and can be queried, and therefore does not have to be stored explicitly.

Graph partitioning is a key component in our algorithms to find initial solutions. The
graph partitioning problem looks for blocks of nodes V1,. . . ,Vk that partition V , i. e., V1 ∪
· · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 6= j. The balancing constraint demands that ∀i ∈
1..k : c(Vi) ≤ Lmax := (1 + ε)dc(V)/ke for some parameter ε. In the perfectly balanced case
the imbalance parameter ε is set to zero, i. e., no deviation from the average is allowed.
One commonly used objective is to minimize the total cut

∑
i<j ω(Eij) where Eij :=

{{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. A vertex v ∈ Vi that has a neighbor w ∈ Vj , i 6= j, is a
boundary vertex. Another commonly used, similar objective is to minimize the maximum
cut over all subsets. We do not consider this objective explicitly here.

Related Work
There has been an enormous amount of research on GP, and we refer the reader to [4, 6]
for extensive material and references. All general-purpose methods that work well on large
real-world graphs are based on the multilevel principle. The basic idea can be traced
back to multigrid solvers for systems of linear equations [28]. Well-known multi-level
GP software packages include Jostle [31], Metis [17], and Scotch [22]. Jostle contains
algorithms to compute processor assignments in scientific simulations. Jostle integrates
local search into a multi-level method to partition the model of computation and commu-
nication. To do so, they solve the problem on the coarsest level and afterwards perform
refinement that takes the user supplied network communication model into account. Scotch
performs dual recursive bipartitioning to perform this task.

There is likewise a large literature on process mapping, often in the context of scientific
applications using MPI (Message-Passing Interface). Hatazaki [14] was among the first authors
to propose graph partitioning to solve the MPI process mapping problem for unweighted

XX:4 Better Process Mapping and Sparse Quadratic Assignment

process topologies. Träff [29] used a similar approach, and gave one of the first non-trivial
implementations for the NEC vector supercomputers. Mercier and Clet-Ortega and later
Jeannot [19, 20] simplify the mapping problem by only considering the topology inside the
compute nodes themselves and ignoring the topology of the network. Multiple placement
policies are investigated to enhance overall system performance. Yu et al. [32] discuss and
implement embedding heuristics for the BlueGene 3d torus systems. Hoefler and Snir [16]
optimize instead the congestion of the mapping, show that this problem is NP-complete,
and give a corresponding heuristic with an experimental evaluation based on application
data from the Florida Sparse Matrix Collection. Routing aware mapping heuristics taking
the hierarchy of specific hardware topologies into account were discussed in [1]. Vogelstein
et al. [30] concentrate on solving general quadratic assignment and graph matching problems.
They propose a gradient based heuristic that involves solving assignment problems and
give experimental evidence for better solution quality and speed compared to certain other
heuristics. The worst-case complexity of their approach is high, O(n3) steps.

Previous work on model creation can be grouped into two categories. One line of research
intertwines process mapping with graph partitioning. To this end, the objective of the
partitioning algorithm – most commonly the number of edges cut – is typically replaced by
an objective function that considers the processor distances. Throughout these algorithms,
the distances have to be updated. The second category, which is the primary focus of our
work, decouples partitioning and mapping. First, a graph partitioning algorithm is used to
partition a large network into n blocks, while minimizing some measure of communication,
such as edge cut, and at the same time balancing the load (size of the blocks). Afterwards,
a coarser model of computation and communication is created in which the number of
nodes matches the number of PEs in the given processor network. This model is then
mapped to a processor network of n PEs with given pair-wise distances using a process
mapping algorithm. We refer the reader to [4, 6] for more details.

Detailed Related Work
We now discuss related work by Müller-Merbach [21], Heider [15] and Brandfass et al. [5]
as well as Glantz et al. [13] in greater detail since our work either makes use of the tools
proposed by those authors or because we compare against their results. Müller-Merbach [21]
proposes a greedy construction method to obtain an initial permutation for the QAP. The
method roughly works as follows: Initially compute the total communication volume for each
processor and also the total distance for each core. Note that this corresponds to the weighted
degrees of the vertices in the communication and distance models, respectively. Afterwards,
the process with the largest communication volume is assigned to the core with the smallest
total distance. To build a complete assignment, the algorithm proceeds by looking at
unassigned vertices and cores. For each of the unassigned processes the communication load
to already assigned vertices is computed. For each core, the total distance to already assigned
cores is computed. The process with the largest communication sum is assigned to the core
with the smallest distance sum. Glantz et al. [13] note that the algorithm does not link
the choices for the vertices and cores and hence propose a modification of this algorithm
called GreedyAllC (the best algorithm in [13]). GreedyAllC links the mapping choices by
scaling the distance with the amount of communication to be done. The algorithm has the
same asymptotic complexity and memory requirements as the algorithm by Müller-Merbach.
We also compare our proposed methods against GreedyAllC in Section 5.

Heider [15] proposes a method to improve an already given permutation/mapping. The
method repeatedly tries to perform swaps in the assignment. To do so, the author defines

Christian Schulz, Jesper Larsson Träff, and Konrad von Kirchbach XX:5

a pair-exchange neighborhood N(Π) that contains all permutations that can be reached
by swapping two elements in Π. Here, swapping two elements means that Π(i) will be
assigned to processor j and Π(j) will be assigned to processor i after the swap is done. The
algorithm then looks at the neighborhood in a cyclic manner. More precisely, in each step
the current pair (i, j) is updated to (i, j + 1) if j < n, to (i+ 1, i+ 2) if j = n and i < n− 1,
and lastly to (1, 2) if j = n and i = n − 1. A swap is performed if it yields positive gain,
i. e., the swap reduces the objective. The overall runtime of the algorithm is O(n3). We
denote the search space with N2. To reduce the runtime, Brandfass et al. [5] introduce a
couple of modifications. First of all, only symmetric inputs are considered. If the input is
not symmetric, the input is substituted by a symmetric one such that the output of the
algorithm remains the same. Second, pairs (i, j) for which the objective cannot change, are not
considered. For example, if two processes reside on the same compute node, swapping them
will not change the objective. Lastly, the authors partition the neighborhood search space
into s consecutive index blocks and only perform swaps inside those blocks. This reduces the
number of possible pairs from O(n2) to O(ns) overall pairs. We denote the search space with
Np (pruned neighborhood). In addition, instead of starting from the identity permutation,
the authors use the method of Müller-Merbach [21] to compute an initial solution. This
improves runtime of the local search approach as well as the objective of the solution.

3 Rank Reordering Algorithms

We now present our main contributions and techniques. This includes algorithms to compute
initial solutions, speeding up the local search algorithms for sparse communication patterns
and defining new search spaces for the local search algorithm. Throughout this section,
we assume that the input communication matrix is already given as a graph GC, i. e., no
conversion of the matrix into a graph is necessary. More precisely, the graph representation
is defined as GC := ({1, . . . , n}, E[C]) where E[C] := {(u, v) | Cu,v 6= 0}. In other words,
E[C] is the edge set of the processes that need to communicate with each other. Note
that the set contains forward and backward edges, and that the weights of the edges in
the graph correspond to the entries in the matrix C.

3.1 Initial Solutions

We propose two strategies exploiting the hierarchy. Intuitively, we want to identify subgraphs
in the communication graph of processes that have to communicate much with each other
and then place such processes closely, i. e., on the same node, same rack and so forth. In the
following, we assume a homogeneous hierarchy of the supercomputer, but our algorithms can
be extended to heterogeneous hierarchies in a straightforward way. Let S = a1, a2, ..., ak be a
sequence describing the hierarchy of the supercomputer. The sequence should be interpreted
as each processor having a1 cores, each node a2 processors, each rack a3 nodes, . . . , such
that the total number of processors is n = Πk

i=1ai. We propose two algorithms to compute
initial mappings, a top down and a bottom up approach. The first one, top down, splits the
communication graph recursively and the second one, builds a hierarchy bottom up.

The top down approach starts by computing a perfectly balanced partition of GC into
ak blocks each having n/ak vertices (processes). The partitioning task is done using the
techniques provided by Sanders and Schulz [25] which provide high quality partitions and
guarantee that each block of the output partition has the specified amount of vertices. In
principle, the nodes of each block will be assigned completely to one of the ak system

XX:6 Better Process Mapping and Sparse Quadratic Assignment

entities. Each of the system entities provides precisely n/ak PEs. We then proceed re-
cursively and partition each subgraph induced by a block into ak−1 blocks and so forth.
The recursion stops as soon as the subgraphs have only a1 vertices left. In the base
case, we assign processes to permutation ranks.

The bottom up approach proceeds in the opposite order of the hierarchy. That means
the communication graph GC is split first into k = n/a1 blocks with precisely a1 vertices
each. Again, this is done using the perfectly balanced partitioning techniques mentioned
above. Each block will later on be assigned to a unique system entity that is able to
host a1 processes, i. e., a node having a1 cores. Then each of the blocks is contracted
and we partition the contracted graph and so forth. In this case, if replacing edges of the
form {u,w} , {v, w} would generate two parallel edges {x,w}, we insert a single edge with
C′x,w = Cu,w + Cv,w. This way, the correct sum of the distances are accounted for in later
stages of the algorithm. The recursion stops as soon as the last hierarchy stage is reached,
i. e., the last graph with n′ vertices has been partitioned into n′/ak vertices with ak vertices
each. Recall that vertices in the same block will be assigned to a specified subpart of the
system. In this case, a vertex in the graph on the last level of the recursion represents
a whole set of task with the property that the sum of the vertex weights of each block
is precisely the amount of PEs that are present in the subsystem that they are assigned
to. We then backtrack the recursion to construct the final mapping.

3.2 Faster Swapping
Initially computing and later recomputing the objective function after a swap is performed
is an expensive step in the algorithm of Brandfass et al. [5]. In their work, both the
communication pattern as well as the distances between the PEs are given as complete
matrices. These matrices have a quadratic number of elements and hence the initial com-
putation of the objective function costs O(n2) time. After a swap is performed, Brand-
fass et al. update the objective using the objective function value before the swap. This
is done by looking at all elements in the corresponding columns of the communication
and distance matrices. Overall, an update step in their algorithm takes O(n) time which
is clearly a bottleneck for sparse communication patterns.

We now describe how we speed up the initial computation as well as the update of the
objective. As a first step, we rewrite the objective to work with the inverse of the permutation:

J(C,D,Π) =
∑
i,j

CΠ(i),Π(j)Di,j

=
∑
u,v

Cu,vDΠ−1(u),Π−1(v)

with the interpretation that task u is assigned to PE Π−1(u). This makes it easier to work
with the graph representation of the communication matrix. We rewrite the objective to
work with the graph representation instead of the complete communication pattern matrix C:

J(C,D,Π) :=
∑

(u,v)∈E[C]

Cu,vDΠ−1(u),Π−1(v).

The first observation is that given an initial mapping, we can compute the initial object-
ive in O(n + m) time which is better for sparse graphs. Our next goal is to make the
update of the objective fast after a swap has been performed. To do so, let ΓΠ−1(u) :=∑

v∈N(u) Cu,vDΠ−1(u),Π−1(v) be the contribution to the objective of a single vertex u given

Christian Schulz, Jesper Larsson Träff, and Konrad von Kirchbach XX:7

the current mapping. Note that by using ΓΠ−1 , we can again rewrite the objective
J(C,D,Π) :=

∑
u∈V ΓΠ−1(u). Throughout the algorithm, the vertex contributions Γ are

always kept up to date. It is easy to see that performing a swap in the assignment only affects
the nodes that are swapped themselves as well as their neighborhood in the communication
graph. Hence, we only need to update the node contributions of those nodes and can update
the objective accordingly. We update the node contributions as follows: Let u and v be
the vertices to be swapped in their assignment Π−1. We start by subtracting the node
contributions of all affected nodes from the objective. Before we perform the swap, we
iterate over the neighbors of u and v and subtract the contribution induced by the edge
connecting the neighbor from its Γ value. We then set the node contributions of u and v to
zero and perform the swap. Now we again iterate over all neighbors, basically recomputing
the node contributions of u and v, and at the same time adding the new contribution induced
by the edge connecting the neighbor to its Γ value. As a last step, we add the new node
contributions of all affected nodes from the objective. Overall, this takes O(du + dv) time
where du and dv are the degrees of the vertices u and v in the communication graph.

3.3 Alternative Local Search Spaces

We now define swapping neighborhoods using the communication graph GC . In the simplest
version, assignments are only allowed to be swapped if the processes are connected by
an edge in the communication graph, i. e., the processes have to communicate with each
other. We denote this neighborhood with NC. The size of the search space is O(m) since
it contains exactly m pairs that may be swapped. Swaps are performed in random order.
Local search terminates after m unsuccessful swaps, i. e., all pairs have been tried and no
swap resulted in a gain in the objective. Note that this approach assumes that swaps with
positive gain are close in terms of graph theoretic distance in the communication graph.
We also define augmented neighborhoods in which swaps are allowed if two processes have
distance less than d in the communication graph. We denote this neighborhood by Nd

C . Note
that this creates a sequence of neighborhoods increasing in size NC ⊆ N2

C ⊆ . . . ⊆ Nn
C = N2

where N2 is the largest neighborhood used by Brandfass et al. [5] (see Section 2). Our
experimental section shows that performing swaps with small graph theoretic distance in
the communication graph is sufficient to obtain good solutions.

3.4 Miscellanea

Constant Time Distance Oracle.

Storing the complete distance matrix requires O(n2) space. However, due to the problem
structure it is not necessary to store the complete matrix. Instead one can build an interval
tree over the PE given describing the hierarchy. The distance of two PEs can then be
found by finding the lowest common ancestor in the tree. Such a query can be answered
in constant time by investing O(n) preprocessing time [3].

We can use a simpler approach that obtains the distance of two PEs by a few, simple
division operations. More precisely, for a hierarchy S = a1, a2, ..., ak we initially build
an array describing the sizes of the intervals on the different levels of the hierarchy. A
query scans the implicitly given intervals from top to bottom until the PEs are not on
the same subsystem, and then return the corresponding distance.

XX:8 Better Process Mapping and Sparse Quadratic Assignment

4 Model Creation

Recall the process mapping methodology: A graph partitioning algorithm is used to partition
a large network into n blocks, while minimizing some measure of communication, such as edge
cut, and balancing the load. Afterwards, a coarser model of computation and communication
is created. In this model each node corresponds to a block in the input network and edges
are between nodes if there is an edge between the corresponding blocks of the input network.
Edge weights in the graph model the amount of communication that needs to be done
between the blocks. Note that the coarse graph corresponds to the communication graph
GC from the previous sections. This model is then mapped to a processor network of n
PEs with given pair-wise distances using a process mapping algorithm. The algorithm in
this work map a model of computation and communication with n vertices onto a processor
network with n PEs. Note that the identity mapping, i. e., the algorithm that maps task
i to process i is also a possible option but the quality of this highly depends on the initial
numbering of the blocks given by the graph partitioning algorithm. Also note that this
process requires a graph partitioning algorithm. As we will investigate later, the way the
partitioning algorithm operates has a large impact on the quality that can be obtained by
using the identity mapping algorithm. In order to understand this fully, we now explain
techniques used in a multilevel graph partitioning framework.

Multilevel Graph Partitioning
Most, if not all, general-purpose methods that are able to obtain good partitions for large
real-world graphs in reasonable time are based on the multilevel principle [26, 4, 6]. We
now explain the multilevel graph partitioning approach implemented in KaHIP [24]. Before
we outline the multilevel approach, we need to define the notion of edge contractions.
Contracting an edge {u, v} means to replace the nodes u and v by a new node x connected
to the former neighbors of u and v. We set c(x) = c(u) + c(v) so that the weight of a node
at each level is the number of nodes it is representing in the original graph. If replacing
edges of the form {u,w}, {v, w} would generate two parallel edges {x,w}, a single edge with
ω({x,w}) = ω({u,w})+ω({v, w}) is inserted. Uncontracting an edge e undoes its contraction.

The multilevel approach to graph partitioning consists of three main phases. In the
contraction (coarsening) phase, a hierarchy of graphs is created. There are multiple ways to
do that. The most common way is to iteratively identify matchings M ⊆ E and contract the
edges in M . Contraction should quickly reduce the size of the input and each computed level
should reflect the global structure of the input network. Contraction is stopped when the
graph is sufficiently small to be directly partitioned using some expensive other algorithm.

In the local improvement (or uncoarsening) phase, the matchings are iteratively uncon-
tracted. Note that due to the way that the contraction is defined, a partitioning of the
coarse level creates a partitioning of the finer graph having the same objective and balance.
After uncontracting a matching, a local improvement algorithm moves nodes between blocks
in order to improve the cut size or balance. Usually variants of the Fiduccia-Mattheyses
algorithm [11] are used. The intuition behind this approach is that a good partition at one
level will also be a good partition on the next finer level, so that local search will quickly
find a good solution while moving only a very small amount of vertices between the blocks.
Moving a node on a coarse level hierarchy usually corresponds to the movement of a whole
set of node movements of the finest level of the hierarchy. Intuitively, the multilevel scheme
has a global view on the optimization problem on the coarse levels of the hierarchy and
a very local view on the finest levels with respect to the original graph.

Christian Schulz, Jesper Larsson Träff, and Konrad von Kirchbach XX:9

Hierarchy Aware Model Creation

There is an important detail: Systems like KaHIP and Metis [18] typically obtain a p-way
partition by computing a p-way partition on the coarsest level through a recursive bisection
strategy. The graph is recursively divided into two blocks until the number of blocks is
reached, i. e., a bisection algorithm is used to split the graph into two blocks. More precisely,
each bisection step itself uses a multilevel algorithm that stops as soon as the number of nodes
is below an even smaller threshold for the number of nodes. Greedy graph growing is used on
the coarsest level to obtain a bipartition. In KaHIP, if k is not even, we split the graphs into
two blocks, V1 and V2, such that c(V1) ≤ (1+ε)bp

2cd
c(V)

p e and c(V2) ≤ (1+ε)dp
2ed

c(V)
p e. Block

V1 will be recursively partitioned in bp
2c blocks and block V2 will be recursively partitioned

in dp
2e blocks. We call this partitioning approach recursive bisection based model creation.
It is important to note how the block IDs are distributed in this process. After the first

bisection steps the first consecutive block IDs are assigned to the left hand side block and
the remaining IDs are assigned to the right hand side block. Note that when computing the
communication graph GC , node IDs correspond the block IDs in the original input. Hence,
as observed in the experimental section, the identity mapping is good when elements in
the system hierarchy parameter string S = a1, a2, ..., ak are a power of 2. This is the case,
because of the way the model creation/partitioning process works, the identity mapping
yields good bisections in the model graph. On the other hand, if for example ak is not a
power of two, then it is unlikely that the identity mapping corresponds to good partition
of the model graph GC, as will be discussed again later.

With those observations in mind, we propose a different way to create the model graph.
The approach is similar to the top down approach from Section 3.1. However, this time
we use the approach to obtain an p-way partition of the input network. Roughly speaking,
instead of doing recursive bipartitioning of the input network, we now perform recursive
multisection along the system hierarchy S. The approach starts by computing a partition
of G into ak blocks. We then proceed recursively and partition each subgraph induced by
a block into ak−1 blocks and so forth. The recursion stops after the last subgraphs in the
recursion have been partitioned into a1 blocks. This algorithm also assigns consecutive block
IDs recursively during the process to maintain locality. Since local search algorithms typically
move only few vertices on the higher levels in the multilevel hierarchy, the initial recursive
structure is somewhat inherited to the final output partition. Note that we now also have
a partition from which we create a model GC, however, when we map the model onto our
system hierarchy S, the identity mapping intuitively is already quite good. We call this
partitioning approach recursive hierarchical multisection based model creation.

5 Experiments

Methodology

We have implemented the algorithms described in Section 3 within the KaHIP framework using
C++ and compiled all algorithms using gcc 4.63 with full optimization’s turned on (-O3 flag).
We integrated our algorithms in the KaHIP v1.00 graph partitioning framework [24]. The
codes of Brandfass et al. [5] could not be made available to us, so that we implemented those
algorithms in our framework as well. Our implementation also uses the sparse representation
of the communication pattern. GreedyAllC [13] has been kindly provided by the authors. We
also compare against the dual recursive bisection codes of Hofler and Snir [16] (LibTopoMap).

XX:10 Better Process Mapping and Sparse Quadratic Assignment

Table 1 Benchmark instance properties.

Graph n m

UF Graphs
cop20k_A 99 843 1 262 244
2cubes_sphere 101 492 772 886
thermomech_TC 102 158 304 700
cfd2 123 440 1 482 229
boneS01 127 224 3 293 964
Dubcova3 146 689 1 744 980
bmwcra_1 148 770 5 247 616
G2_circuit 150 102 288 286
shipsec5 179 860 4 966 618
cont-300 180 895 448 799

Large Walshaw Graphs
598a 110 971 741 934
fe_ocean 143 437 409 593
144 144 649 1 074 393
wave 156 317 1 059 331
m14b 214 765 1 679 018
auto 448 695 3 314 611

Large Other Graphs
del23 ≈8.4M ≈25.2M
del24 ≈16.7M ≈50.3M
rgg23 ≈8.4M ≈63.5M
rgg24 ≈16.7M ≈132.6M
deu ≈4.4M ≈5.5M
eur ≈18.0M ≈22.2M
af_shell9 ≈504K ≈8.5M
thermal2 ≈1.2M ≈3.7M
nlr ≈4.2M ≈12.5M

Our experiments evaluate the objective of
the quadratic assignment problem as well as the
running time necessary to compute the solution.
To keep the evaluation simple, we use mostly
one system hierarchy configuration S, D which is
specified in the corresponding chapter. Depend-
ing on the focus of the experiment, we measure
running time and/or the overall communication
cost as defined in Section 2. We perform ten
repetitions of each algorithm using different ran-
dom seeds for initialization. Unless otherwise
mentioned, we use the geometric mean when re-
porting averages in order to give every instance
the same influence on the final score. The system
we are using to compute solutions has four Octa-
core Intel Xeon E5-4640 processors (32 cores)
which run at a clock speed of 2.4 GHz. It has
512 GB local memory.

Instances

We use graphs from various sources to test our
algorithm. In Section 5.1, we use these graphs as
input to a partitioning algorithm that partitions
them into a given number of blocks and then
computes the communication graph C which is
the input to our mapping algorithms. For most
of the experiments we use the recursive bisection
based model creation approach. In Section 5.2
we compare the results to the recursive multisection approach for creating the communication
graph GC. We use the largest six graphs from Chris Walshaw’s benchmark archive [27].
Graphs derived from sparse matrices have been taken from the Florida Sparse Matrix
Collection [9]. We also use graphs from the 10th DIMACS Implementation Challenge [2]
website. Here, rggX is a random geometric graph with 2X nodes where nodes represent
random points in the unit square and edges connect nodes whose Euclidean distance is
below 0.55

√
lnn/n. The graph delX is a Delaunay triangulation of 2X random points

in the unit square. The graphs af_shell9, thermal2, and nlr are from the matrix and
the numeric section of the DIMACS benchmark set. The graphs europe and deu are
large road networks of Europe and Germany taken from [10]. Basic properties of the
graphs under consideration can be found in Table 1.

5.1 Sparse Quadratic Assignment Problem
In this section, we look at the impact of the various algorithmic components that we presented
throughout the paper. In general, we use a hierarchy S = a1, . . . , ak describing the system
hierarchy and communication parameters D = d1, . . . , dk describing the distances between
various cores in the subsystems. More precisely, di describes the distance of two cores that
are in the same subsystems for i′ < i, and in different subsystems for i′ ≥ i. The total number
of cores is then given by n =

∏
i ai. Here, we focus on two different system configurations to

Christian Schulz, Jesper Larsson Träff, and Konrad von Kirchbach XX:11

0.001

0.01

0.1

1

10

100

1000

10000

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e

n+m

Slow
Fast

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40

S
p
ee

d
u
p

m/n

1

10

100

1000

3596
10000

 0 500 1000 1500 2000 2500

S
p
ee

d
u
p

Instance

Figure 1 From left to right: Time of local search for both configurations (slow and fast),
algorithmic speedup as a function of graph density, algorithmic speedup for the different instances.

keep the evaluation simple. Our process in this section is as follows: Take the input graph,
partition it into n blocks using the fast configuration of KaHIP, compute the communication
graph induced by that (vertices represent blocks, edges are induced by connectivity between
blocks, edge cut between two blocks is used as communication volume) and then compute
the mapping of the communication graph to the specified system.

Speed-Up of Local Search

We now take the algorithm configurations initially used by Brandfass et al. [5] and investigate
the impact of our faster local search algorithms. The configurations are as follows: Use
the greedy growing algorithm by Müller-Merbach (as described in Section 2) to provide
initial solutions and use the pruned local search neighborhood Np by Brandfass et al. [5]
(see Section 2 for details). We run two configurations: One in which computing the gain
takes linear time (the old algorithm) and one with our improved algorithm. In this ex-
periment, we use S = 4 : 16 : k, D = 1 : 10 : 100 with k = 2i, i ∈ {1, ..., 9}. Note that
the objective of the computed solutions by the algorithm using faster gain computations
is precisely the same as their counter part, hence we do not report the value of the ob-
jective in this section. The results of the experiments are summarized in Figure 1 and
Table 2. First, we observe that our new algorithm is always faster than the old algorithm.
This is expected, since the models of computation and communication that are mapped
are indeed sparse. Table 2 shows that our fast local search algorithm scales almost linearly

Table 2 Average running time and average spee-
dup of local search for pruned search space Np.
m/n is the average density of the generated in-
stances, tLS the average running time of the al-
gorithm using slow gain computations and tfastLS

the average running time using fast gain computa-
tions.

n m/n tLS[s] tfastLS[s] speedup
64 6.7 0.016 0.003 5.3
128 7.3 0.064 0.006 10.7
256 7.9 0.268 0.014 19.1
512 8.3 1.073 0.029 37.0
1K 8.8 4.263 0.059 72.3
2K 9.2 17.083 0.124 137.8
4K 9.7 68.360 0.260 262.9
8K 10.3 268.907 0.540 498.0
16K 11.2 1 075.107 1.158 928.4
32K 12.5 4 348.374 2.472 1 759.1

in n while the algorithm not using fast gain
computations shows quadratic scaling beha-
viour. The table also already shows a de-
pendency of our algorithm on the density of
the instances. This is due to the fact that the
gain computation depends on the degrees of
the vertices in the communication graph and
is in alignment with our theoretical analysis.
The expected dependency on the density of
the instances can also be seen more clearly in
Figure 1. The smallest algorithmic speedup
obtained in this experiment is two and the
largest speedup is approximately 3 596. We
conclude that exploiting the sparsity of the
application can improve the running time
of local search significantly. We now always
use fast gain computations.

XX:12 Better Process Mapping and Sparse Quadratic Assignment

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000 2500

R
a
ti

o
N2

N10
N5
N3
Np
N2
N1

Mueller-Merbach
 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500

R
a
ti

o

N2

N10
N5
N3

Np
N2
N1

Mueller-Merbach

Figure 2 Left/Right: performance plot w.r.t. solution quality/running time for different local
search algorithms.

Local Search Neighborhoods

In this section, we look at the influence of local search neighborhoods on final solution
quality. The base configuration used here employs the greedy growing algorithm by Müller-
Merbach for initialization. Afterwards local search is done using the specified local search
neighborhood, i. e., the quadratic neighborhood N2, the pruned quadratic neighborhood
Np and the communication graph based neighborhoods Nd := Nd

C for d ∈ {1, 2, 3, 5, 10}.
Again, we use S = 4 : 16 : k, D = 1 : 10 : 100 with k = 2i, i ∈ {1, ..., 9}. To get a visual
impression of the solution quality of the different algorithms, Figure 2 presents performance
plots using all instances. A curve in a performance plot for algorithm X is obtained as
follows: For each instance, we calculate the ratio between the objective or running time
obtained by any of the considered algorithms and objective or running time of algorithm X.
These values are then sorted. Additionally, we present average ratios of solution quality and
running time in Table 3. First, the local search algorithm using the N1 neighborhood appears
to be the fastest algorithm but also the worst in terms of solution quality. Compared to the
initial construction heuristic it takes roughly a factor 1.34 in running time while improving
solution quality by roughly 4%. With increasing distance d for the local search neighborhood
Nd, solutions improve but also the running time increases. As expected, the local search
algorithm using the largest local search neighborhood N2 computes the best solutions. Here,
solutions generated by the initial heuristic are improved by roughly 20%. However, this is
also the slowest algorithm (a factor 443 slower than the initial construction heuristic). Also
note that we are only able to evaluate the performance of the algorithm at that scale due
to the fast gain computations introduced in this paper. Additionally, as n increases the
algorithm becomes much slower, as convergence of the algorithm takes more time for larger
n. In contrast, the other local search neighborhoods show much better scaling behaviour
as expected. The local search neighborhood N10 is faster and computes solutions that are
only slightly worse than N2. For example, for n = 32K the algorithm using N10 is more
than a factor nine faster and computes solutions that are only 5.5% worse.

Initial Heuristics and Their Scaling Behaviour

We now evaluate the different heuristics that can be used to create solutions. For the evalu-
ation, we employ the algorithm of Müller-Merbach [21], GreedyAllC [13], LibTopoMap [16]
(dual recursive bisectioning), Identity, Random, the Bottom-Up as well as the Top-Down
and the Top-Down algorithm combined with local search that uses the N10 neighborhood
(Top-Down+N10). The problems we look at S = 4 : 16 : k, D = 1 : 10 : 100 with
k ∈ {1, . . . , 128}. We run the Bottom-Up algorithm only to k ≤ 50 due to its large running

Christian Schulz, Jesper Larsson Träff, and Konrad von Kirchbach XX:13

Table 3 Average ratios for solution quality and running time. Baseline denotes the construction
heuristic of Müller-Merbach without local search. Algorithms use the baseline algorithm and add
local search with the respective local search neighborhood. Comparisons are done against the
baseline algorithm. Quality improvements are shown in %.

n N2 Np N1 N2 N10 N2 Np N1 N2 N10

baseline/{baseline+local search} local search/baseline
quality improvement [%] average running time ratios:

64 17.4 17.4 6.3 13.0 17.2 26.2 27.1 2.6 13.3 44.1
128 16.0 10.9 3.8 8.5 15.4 63.9 25.2 2.7 16.8 92.8
256 17.3 10.0 3.4 8.3 17.3 114.7 18.9 2.5 16.3 149.0
512 17.6 8.9 3.2 8.0 17.5 171.8 11.3 1.8 12.7 190.2
1K 18.8 8.2 3.1 8.2 18.2 259.1 6.8 1.3 10.0 245.1
2K 19.5 8.1 3.1 8.2 19.1 348.2 3.7 0.9 7.0 258.6
4K 20.5 8.0 3.3 8.7 19.8 472.0 2.0 0.6 5.1 231.8
8K 21.6 8.0 3.6 9.4 20.9 728.2 1.0 0.5 4.0 212.0
16K 23.1 8.3 4.2 10.4 22.1 1 030.8 0.6 0.3 2.9 173.6
32K 25.0 9.1 5.4 11.9 23.7 1 220.9 0.3 0.2 2.1 128.2
overall: 19.68 9.69 3.94 9.46 19.12 443.58 9.69 1.34 9.02 172.54

time. Figure 3 shows the average improvement over solutions obtained by the algorithm of
Müller-Merbach and a performance plot for the different algorithms. Indeed, the random
mapping algorithms performs worse than the algorithm of Müller-Merbach. On average,
the objective computed by the algorithm is 67% worse than the solutions computed by the
algorithm of Müller-Merbach. Our Top-Down algorithms yields the best solutions on most
of the instances. On average, solutions computed by Top-Down are 52% better than the
solutions computed by Müller-Merbach. Adding local search with the N10 neighborhood to
the algorithm yields additional 5.3% improvement on average. GreedyAllC only improves
slightly, i. e., 1% on average, over the algorithm of Müller-Merbach. The identity mapping
seems to be the best algorithm for powers of two. This is due to the way the input to the
algorithms is constructed, i. e., blocks are initially assigned by KaHIP. This algorithm uses
a recursive bisection algorithm on the input graph to compute a model of computation
and communication (the input to our mapping algorithms). In each recursion it assigns
consecutive blocks to the left side and to the right side. Hence, for powers of two, the
identity mapping yields a strategy similar to using recursive bisection on the model to be

-80

-60

-40

-20

 0

 20

 40

 60

 80

2
10

2
11

2
12

2
14

Im
p
ro

v
em

en
t

in
 %

n

TopDown+N10
TopDown
BottomUp

Identity

LipTopoMap
GreedyAllC

Mueller-Merbach
Random

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 16T 32T

R
a
ti

o

TopDown+N10
TopDown

Identity
LibTopoMap
GreedyAllC

Mueller-Merbach
Random

Figure 3 Average improvement in % for different values of n for different algorithms over the
algorithm by Müller-Merbach (left) and a performance plot comparing solution quality (right).

XX:14 Better Process Mapping and Sparse Quadratic Assignment

mapped with good bisections. If the number of elements is not a power of two, then the
bisections implied by the identity are not good and hence it performs worse.

LibTopoMap is somewhere in between. It mostly computes better solutions than the
greedy algorithms but overall worse solutions than BottomUp and TopDown. On average,
solutions are 8% better than the solutions computed by the greedy algorithm of Müller-
Merbach. Interestingly, its achieved solution quality is better when the number of vertices in
the instances is close to a power of two. This is due to the fact that the algorithm uses dual
recursive bisection on the communication and processor graph. However, when the input
size is not close to a power of two, there are no good bisections in the processor graph.

In our experiments, Bottom-Up is the slowest algorithm. This is due to the fact that on
the coarsest level large partitioning problems have to be solved. The Top-Down algorithm
does not have this problem, but is still slower than all other algorithms (except Bottom-Up).
On average it is a factor 194 slower than the Müller-Merbach algorithm and a factor 40
slower than GreedyAllC. LibTopoMap is roughly a factor 18 slower than the algorithm of
Müller-Merbach. However, the running time of Top-Down is on average only 80% of the
time it takes to partition the input graph (using the fast configuration of KaHIP), i. e., the
time it takes to create the model which is the input to the mapping algorithms. Adding
local search with the N10 neighborhood to the algorithm costs additional time, on average
64% of the time it takes to partition the graph. Considering also the high solution quality
advantage, we believe that the algorithms are still highly useful in practice.

Scalability. We now scale the problem size to n = 219 processes/cores. We take the
largest graph from our benchmark collection rgg24 and create mapping problems defined
as S = 4 : 16 : 128 : k, D = 1 : 10 : 100 : 1000 with k ∈ 2i, i ∈ {1, . . . , 8}. We run
Müller-Merbach and the TopDown+N1 algorithm once. Both algorithms work well on our
machine until i = 4 (n = 217), at which point there is not sufficient memory available if
the implementations use the full distance matrix. Note that the machine has 512GB of
memory. Hence, we performed a second run of both algorithms computing distances online
(as described in Section 3.4). Note that the version of the Müller-Merbach algorithm is only
able to solve larger problem sizes due to both of our changes: the sparse representation of
the communication pattern as well as online computation of distances. Computing distances
online slows down Müller-Merbach roughly by a factor of five and local search by a factor of
three. The running time of TopDown remains the same since it uses the provided hierarchy
instead of the distance matrix. In turn the running time advantage of Müller-Merbach
also decreases. This is also due to the fact that Müller-Merbachs algorithm is a quadratic
time algorithm. For the largest mapping problem (n = 219), the Müller-Merbach algorithm
takes a factor 1.64 longer than TopDown. Overall, computing distances online enables a
potential user of the algorithms to tackle larger mapping problems.

5.2 Multisection-based Model Creation
We now compare the different model creation algorithms. Recall that the model creation
algorithm takes an input graph G and partitions it using a graph partitioning algorithm.
From that partition we obtain the communication graph. In Section 4, we presented two
different strategies to perform the partitioning, the recursive bisection based algorithm
(RB) as well as the hierarchical multisection based algorithm (RMS) that takes the system
hierarchy into account. The conjecture is that the employed strategy has an impact on
the observed solution quality of the identity mapping and also on the overall mapping
performance of the algorithms that map the communication graph GC onto the processors.
Note that we now also compare the objective, J(C,D,Π) :=

∑
i,j CΠ(i),Π(j)Di,j , for different

Christian Schulz, Jesper Larsson Träff, and Konrad von Kirchbach XX:15

-40

-20

 0

 20

 40

 60

 80

2
10

2
11

2
12

2
14

Im
p
ro

v
em

en
t

in
 %

n

TopDown RMS
Identity RMS

Identity+N10 RMS
TopDown+N10 RMS

TopDown RB
Identity RB

Mueller-Merbach RB

Figure 4 Average improvement in % for different values of n for different algorithms as well as
different model creation algorithms. RB stands for a communication graph that has been obtained
using the recursive bisection based algorithm and RMS obtained GC by using the hierarchical
multisection based approach that takes the system hierarchy into account.

C as different model creation algorithms create different communication models C which
are then mapped by our algorithms. However, from the application perspective this is
unproblematic, since in some applications the user provides the input graph G which needs to
be both partitioned and mapped. We focus the evaluation on the best initial heuristic from
the previous section, i. e., we employ the Top-Down and the Top-Down algorithms combined
with local search that uses the N10 neighborhood (Top-Down+N10) and additionally evaluate
the Identity as well as the Müller-Merbach baseline algorithm. We use the abbreviations
RB and RMS to indicate which algorithm has been used to create the communication
graph GC. The problems are defined as before: we look at S = 4 : 16 : k, D = 1 : 10 : 100
with k ∈ {1, . . . , 128}. Figure 4 shows the average improvement over solutions obtained
by the Müller-Merbach algorithm when RB is used to create GC.

First of all, it can be seen that using the multisection strategy RMS that takes the
system hierarchy into account drastically improves the quality of the identity mapping
algorithm. While the Identity RB improves on Müller-Merbach RB by 18.2%, it improves
over Müller-Merbach RB by 51.6% when the RMS model creation algorithm is used (Identity
RMS). Moreover, it can be seen that the algorithm is now good for all values of k. In
contrast, TopDown RB improves over Müller-Merbach by 52.6%. Hence, Identity RMS
has comparable performance to TopDown RB. Identity RMS improves quality further to
55.4% over Müller-Merbach RB when addition local search N10 is used. However, also the
quality of TopDown improves when the model creation algorithm is switched to RMS. In
this case, TopDown RMS improves 54.1% over Müller-Merbach RB and when additional
local search N10 is used, it yields the best algorithm with 56.1% improvement.

6 Conclusion

In high performance systems, different cores that are on the same processor usually have the
same communication link quality when they communicate with each other, as do cores that
are on the same node but not on the same processor and so forth. Using these assumptions,
we derived algorithms to create initial mappings as well as faster local search algorithms with
alternative local search spaces. Overall, our algorithms drastically speedup local search and
are able to compute high quality solutions. Lastly, we have shown the impact of different model
creation algorithms on the mapping algorithms. Using recursive multisection algorithms that
take the system hierarchy into account improves the quality of the overall mappings achieved.

XX:16 Better Process Mapping and Sparse Quadratic Assignment

Important future work includes deriving distributed parallel algorithms for the problem.
Moreover, we want to investigate algorithms to create a hierarchy of the system if it is not
provided as an input to our algorithm. It may be worth to look at more complex local search
neighborhoods, e. g., local search spaces that allow to swap whole groups of assignments
or allow swapping along cycles in the communication graph. We also want to study the
impact of our process mapping on parallel application performance.

References
1 A. H. Abdel-Gawad, M. Thottethodi, and A. Bhatele. RAHTM: routing algorithm aware

hierarchical task mapping. In Intl. Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), pages 325–335, 2014.

2 D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner. Bench-
marking for graph clustering and partitioning. In Encyclopedia of Social Network Analysis
and Mining, pages 73–82. Springer, 2014.

3 M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Latin American
Symposium on Theoretical Informatics, pages 88–94. Springer, 2000.

4 C. Bichot and P. Siarry, editors. Graph Partitioning. Wiley, 2011.
5 B. Brandfass, T. Alrutz, and T. Gerhold. Rank reordering for MPI communication optim-

ization. Computers & Fluids, 80:372–380, 2013.
6 A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph

Partitioning. In Algorithm Engineering – Selected Topics, to app., ArXiv:1311.3144, 2014.
7 R. E Burkard, E. Cela, P. M. Pardalos, and L. S. Pitsoulis. The quadratic assignment

problem. In Handbook of combinatorial optimization, pages 1713–1809. Springer, 1998.
8 Ü. V. Çatalyürek and C. Aykanat. Decomposing Irregularly Sparse Matrices for Parallel

Matrix-Vector Multiplication. In Proc. of the 3rd Intl. Workshop on Parallel Algorithms
for Irregularly Structured Problems, volume 1117, pages 75–86. Springer, 1996.

9 T. Davis. The University of Florida Sparse Matrix Collection.
10 D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning algorithms.

In Algorithmics of Large and Complex Networks, volume 5515 of LNCS State-of-the-Art
Survey, pages 117–139. Springer, 2009.

11 C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network
Partitions. In Proc. of the 19th Conference on Design Automation, pages 175–181, 1982.

12 J. Fietz, M. Krause, C. Schulz, P. Sanders, and V. Heuveline. Optimized Hybrid Parallel
Lattice Boltzmann Fluid Flow Simulations on Complex Geometries. In Proc. of Euro-Par
2012 Parallel Processing, volume 7484 of LNCS, pages 818–829. Springer, 2012.

13 R. Glantz, H. Meyerhenke, and A. Noe. Algorithms for mapping parallel processes onto
grid and torus architectures. In 23rd Euromicro Intl. Conference on Parallel, Distributed,
and Network-Based Processing, pages 236–243, 2015.

14 T. Hatazaki. Rank reordering strategy for MPI topology creation functions. In 5th European
PVM/MPI User’s Group Meeting, volume 1497 of LNCS, pages 188–195, 1998.

15 C. H. Heider. A computationally simplified pair-exchange algorithm for the quadratic
assignment problem. Technical report, DTIC Document, 1972.

16 T. Hoefler and M. Snir. Generic topology mapping strategies for large-scale parallel archi-
tectures. In Proc. 25th Intl. Conf. on Supercomputing (ICSD), pages 75–84, 2011.

17 G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

18 G. Karypis and V. Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs.
Journal on Parallel and Distributed Compututing, 48(1):96–129, 1998.

Christian Schulz, Jesper Larsson Träff, and Konrad von Kirchbach XX:17

19 G. Mercier and J. Clet-Ortega. Towards an efficient process placement policy for MPI
applications in multicore environments. In European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, pages 104–115. Springer, 2009.

20 G. Mercier and Emmanuel J. Improving MPI applications performance on multicore
clusters with rank reordering. In 18th Eur. MPI Users’ Group Meeting, pages 39–49, 2011.

21 H. Müller-Merbach. Optimale reihenfolgen, volume 15 of Ökonometrie und Unternehmens-
forschung. Springer-Verlag, 1970.

22 F. Pellegrini. Scotch Home Page. http://www.labri.fr/pelegrin/scotch.
23 S. Sahni and T. F. Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–565,

1976.
24 P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In Proc.

of the 19th European Symp. on Algorithms, volume 6942 of LNCS, pages 469–480. Springer,
2011.

25 P. Sanders and C. Schulz. Think Locally, Act Globally: Highly Balanced Graph Partition-
ing. In 12th Intl. Sym. on Experimental Algorithms (SEA’13), LNCS. Springer, 2013.

26 K. Schloegel, G. Karypis, and V. Kumar. Graph Partitioning for High Performance Sci-
entific Simulations. In The Sourcebook of Parallel Computing, pages 491–541, 2003.

27 A. J. Soper, C. Walshaw, and M. Cross. A Combined Evolutionary Search and Multilevel
Optimisation Approach to Graph-Partitioning. Global Optimization, 29(2):225–241, 2004.

28 R. V. Southwell. Stress-Calculation in Frameworks by the Method of “Systematic Relaxa-
tion of Constraints”. Proc. of the Royal Society of London, 151(872):56–95, 1935.

29 J. L. Träff. Implementing the MPI process topology mechanism. In ACM/IEEE Supercom-
puting, 2002. http://www.sc-2002.org/paperpdfs/pap.pap122.pdf.

30 J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley, D. E.
Fishkind, R. J. Vogelstein, and C. E. Priebe. Fast approximate quadratic programming for
graph matching. PLOS One, April 2015.

31 C. Walshaw and M. Cross. Mesh Partitioning: A Multilevel Balancing and Refinement
Algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

32 H. Yu, I-H. Chung, and J. E. Moreira. Topology mapping for Blue Gene/L supercomputer.
In ACM/IEEE Supercomputing, page 116, 2006.

http://www. labri.fr/pelegrin/scotch
http://www.sc-2002.org/paperpdfs/pap.pap122.pdf

	1 Introduction
	2 Preliminaries
	3 Rank Reordering Algorithms
	3.1 Initial Solutions
	3.2 Faster Swapping
	3.3 Alternative Local Search Spaces
	3.4 Miscellanea

	4 Model Creation
	5 Experiments
	5.1 Sparse Quadratic Assignment Problem
	5.2 Multisection-based Model Creation

	6 Conclusion

