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Abstract

This paper revisits the online balanced repartitioning prob-

lem (introduced by Avin et al. at DISC 2016) which asks for

a scheduler that dynamically collocates frequently communi-

cating nodes, in order to reduce communication costs while

minimizing migrations in distributed systems. More specif-

ically, communication requests arrive online and need to be

served, either remotely across different servers at cost 1, or

locally within a server at cost 0; before serving a request, the

online scheduler can change the mapping of nodes to servers,

i.e., migrate nodes, at cost α per node move. Avin et al.

presented a deterministic O(k log k)-competitive algorithm,

Crep, which is optimal up to a logarithmic factor; however,

their algorithm has the drawback that it relies on expensive

repartitioning operations which result in a super-polynomial

runtime. Our main contribution is a different deterministic

algorithm pCrep which achieves the same competitive ra-

tio, but runs in polynomial time. Our algorithm monitors

the connectivity of communication requests over time, rather

than the density as in prior work by Avin et al.; this enables

the polynomial runtime. We analyze pCrep both analyti-

cally and empirically.

1 Introduction

Most distributed systems critically rely on an efficient
interconnecting communication network. With the in-
creasing scale of these systems, the network traffic
often grows accordingly: applications related to dis-
tributed machine learning, batch processing, or scale-
out databases, spend a considerable fraction of their
runtime shuffling data [1]. An interesting approach to
improve the efficiency in these systems is to exploit their
resource allocation flexibilities: many distributed sys-
tems are highly virtualized today and support to relo-
cate (or migrate) communication partners (e.g. virtual
machines). By collocating two frequently communicat-
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ing nodes on the same server, slow and costly inter-
server communication can be reduced. However, reloca-
tions also come at a cost, and the number of migrations
should be kept low.

This paper revisits the online balanced repartition-
ing problem [2] which models the tradeoff between the
benefits and the costs of dynamic relocations. The goal
is to design an algorithm which maintains, at any time,
a mapping of n communication nodes (virtual machines)
to ` servers of fixed equal size k; in the absence of aug-
mentation, n = `k. The communication pattern can be
seen as a dynamic graph, from which communication
requests arrive in an online manner; in other words,
the online algorithm does not have prior knowledge of
future communication requests. The goal is to strike
a balance between the benefits and the costs of migra-
tions. More specifically, the cost model is as follows: if a
communication request is served remotely, i.e., between
nodes mapped to different servers, it incurs a communi-
cation cost of 1; communication requests between nodes
located on the same server are free of cost. Before the
cost for the current request is paid, an algorithm has
the option to migrate nodes at a cost of α > 1 for each
node move.

The problem can be seen as a symmetric version of
caching: two nodes can be “cached” together on any
server.

1.1 Contributions Our main result is a determinis-
tic online algorithm pCrep for the dynamic balanced
graph partitioning problem which achieves a competi-
tive ratio of O(k log k) and runs in polynomial time, for
a constant augmentation.

A O(k log k)-competitive algorithm, Crep, was al-
ready given by Avin et al. in [2], together with an almost
tight lower bound Ω(k). However, the algorithm relies
on expensive repartitioning which results in a super-
polynomial runtime. Our algorithm, pCrep, is similar
to the algorithm by Avin et al., but it comes with a
twist: rather than considering the density of emerging
communication patterns when deciding the repartition-
ing, we consider the connectivity. The latter allows for
polynomial-time approximations, as we will show, but
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also requires a new analysis.
Besides the analytical evaluation, we report on

simulations based on real datacenter workloads. Our
implementation is publicly available as open source [3].

1.2 Preliminaries Let us introduce some definitions
and notations that will be used throughout the paper.
We define a graph G = (V,E,w) where V is the
set of vertices, E the set of (undirected) edges, and
w : E → N assigns each edge an (integer) weight.
Given a graph G = (V,E,w), we define an (edge) cut
of G as a pair of two disjoint subsets X,Y of V such
that X ∪ Y = V . The value of this cut is the sum of
the weight of edges between nodes from X and Y , i.e.∑
e={u,v}∈E:u∈X,v∈Y w(e) is the value of the cut (X,Y ).

Note that such a cut can also be defined by the set of
the edges connecting X and Y that are cut. We call a
cut a minimum (edge) cut of G if it is one of the cuts
with minimum value.

The connectivity of a graph G is equal to the value
of a minimum edge cut of G. This definition will be
used in order to define the communication components
our algorithm maintains as these are subsets of V which
induce subgraphs of high connectivity. We explain the
concept of components in greater detail later.

Furthermore we define the term (s, t)-cut as a cut
(X,Y ) for which s ∈ X and Y ∈ X, i.e. a (s, t)-cut
separates the nodes s and t in G. Then a minimum
(s, t)-cut is a (s, t)-cut of minimum value. Note that a
minimum (s, t)-cut is not necessarily a minimum cut.

Finally we sometimes call a function m : X → Y
a mapping of X to Y . We use this terminology for
example when we talk about the assignment of nodes to
servers.

2 Model

We consider the problem of maintaining a partitioning
of a set of n = k · ` nodes (e.g., processes or virtual
machines) that communicate with each other, into `
servers (henceforth sometimes also called clusters) of
size k each, while minimizing both the cost due to
communication and due to node migrations. More
formally we are given ` servers V0, ..., V`−1, each with
capacity k and an initial perfect mapping of n =
k · ` nodes to the ` servers, i.e. a mapping in which
each server is assigned exactly k nodes. An input
sequence σ = ((u1, v1), 1), ((u2, v2), 2), ...((ui, vi), i), ...
describes the sequence of communication requests: the
pair ((ut, vt), t) represents a communication request
between the nodes ut and vt arriving at time t. At time
t the algorithm is allowed to perform node migrations
at a cost of α > 1 per move. After the migration step,
the algorithm pays cost 1 if ut and vt are mapped to

different servers and does not pay any cost otherwise.
Note that an algorithm may also choose to perform no
migrations at all.

We are in the realm of competitive analysis and
as a result we compare an online algorithm ONL to
the optimal offline algorithm OPT. ONL only learns of
the requests in the input sequence σ as they happen
and as a result only knows about the partial sequence
(u1, v1), ..., (ut, vt) at time t whereas OPT has perfect
knowledge of the complete sequence σ at all times.

The goal is to design an online algorithm ONL with
a good competitive ratio with regard to OPT defined
as follows. An online algorithm ONL is ρ-competitive if
there exists a constant β such that

ONL(σ) ≤ ρ ·OPT(σ) + β ∀σ

where ONL(σ) and OPT(σ) denote the cost of serving
input sequence σ of ONL and OPT respectively. This
has to hold for any input sequence σ.

We consider a model with augmentation (as in prior
work [2]), and allow the online algorithm to use larger
capacities per server. In particular, the online algorithm
is allowed to assign (2 + ε) · n/` nodes to each server
where ε > 0. This augmented online algorithm is then
compared with the optimal offline algorithm OPT which
is not allowed to use any augmentation.

Throughout this paper, we will also use 1 + ε as the
basis for the logarithm.

3 Basic Algorithm

We first describe the basic algorithm underlying our ap-
proach, before presenting the polynomial-time imple-
mentation later in this paper. In general, pCrep re-
lies on a second-order partitioning of the communication
nodes into communication components which represent
node-induced sub-graphs of the original communication
graph given by the requests from the input sequence
σ. To this end we define a component C as the set
of its nodes together with the time t of its creation, i.e.
C = ({v1, v2, ..., vk}, t). For a component B = (M, t) let
nodes(B) = M , τ(B) = t and we define |B| = |M | in
order to improve readability. Initially each node forms
a singleton component, but as the input sequence σ is
revealed, new communication patterns unfold. The al-
gorithm keeps track of these patterns by maintaining a
graph in which the nodes represent the actual communi-
cation nodes and the weighted edges represent the num-
ber of communication requests between nodes that were
part of different components at the time of the request;
that is, for edge e = {u, v}, w(e) represents the number
of paid communication requests between u and v. We
say that a communication request between nodes u and
v is paid if the nodes are located on different servers
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at the time of the request. The algorithm merges a set
S of components, which we will refer to as a compo-
nent set, into a new component C if the connectivity
of the component graph induced by the components in
S is at least α. After each edge insertion the algorithm
checks whether there exists a new component set S with
|S| > 1 which fulfills this requirement.

If after any request and the insertion of the resulting
edge the algorithm discovers a new subset S of nodes
whose induced subgraph has connectivity at least α
and which is of cardinality at most k, it merges the
components that form this set into one new component
and collocates all the nodes in the resulting set on a
single server. The algorithm reserves additional space
min{k − |C|, bε · |C|c} for each component of size |C|
on the server it is currently located on. Note that
the additional reservation may be zero for components
smaller than 1/ε. This reservation guarantees that
nodes are not migrated too often for the analysis to
work. This also limits the total space a component
can use to a maximum of k. This makes sense as a
component whose size exceeds k is split (rather than
merged). To this end the algorithms keep track of the
reservations for each component.

The algorithm uses augmentation 2 + ε in order
to guarantee that the collocation of such component
sets of at most k individual communication nodes is
always possible without moving a node not in C. This
guarantees by an averaging argument that there is
always at least one cluster with capacity at least k,
which a newly merged component can be moved to.

If the subset has cardinality greater than k, the
components that form this set are split. We also give
a pseudocode description of the algorithm in which we
denote the reservation of a component C by res(C) and
the current server it is mapped to by serv(C). The
free capacity of a server i is denoted by cap(i). The
general structure of our algorithm is summarized in
Algorithm 1. In the case of a merge the subroutine
Algorithm 2 is called which first increases the capacities
of the involved servers by the reserved amounts of the
components that are to be merged. In a second step
the subroutine Algorithm 4 moves the nodes to a server
of suitable capacity and claims the space required for
the nodes as well as additional reservations. In the case
of a split subroutine Algorithm 3 is called which splits
the components and frees up the additional reservations.
The capacity used for the nodes involved is not changed.

The main differentiating factor of this approach
compared to prior work [2, 4] is that we merge once
a component set reaches connectivity α, while prior
approaches do so once the component set reaches a
certain density threshold. More specifically earlier

Algorithm 1 pCrep

G ← ({1, ..., n}, ∅, w) //initialize a graph on n nodes
without edges, w assigns 0 to every edge
turn each of the n nodes into a singleton component
for all r = ((u, v), t) ∈ σ do

if comp(v) 6= comp(u) then
w({u, v})← w({u, v}) + 1

end if
if ∃ component set X with connectivity at least α
and |X| > 1 and nodes(X) ≤ k then

mergeAndRes(X)
end if
if ∃ component set Y with connectivity at least α
and nodes(Y ) > k then

split(Y ) // to be specified later
end if

end for

Algorithm 2 mergeAndRes(X)

for all C ∈ X do
cap(serv(C))← cap(serv(C)) + res(C)

end for
collocate(X) // moves all components from X to the
same server as described

algorithms merge a component set S once it fulfills
w(S) ≥ (|S| − 1) ·α where w(S) denotes the cumulative
weight of the edges between nodes contained in the
components of S.

Algorithm 3 split(Y ) of pCrep

for all e = {u, v} ∈ E do
if u ∈ Y or v ∈ Y then
w(e)← 0

end if
end for
for all C ∈ Y do
cap(serv(C))← cap(serv(C)) + res(C)
res(C)← 0

end for

pCrep resets all the edges contained in the split
component C and also resets the weights of edges
adjacent to C, i.e. all edges e = {u, v} are reset to zero
if u or v were contained in component C at the time
of its split. The splitting method is also described in
pseudocode in Algorithm 3. Additionally, Algorithm 4
describes the collocation procedure that first tries to
find a component such that the remaining ones that are
to be merged fit into its existing reservation (if-case). If
this is not possible all the components that are to be
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Algorithm 4 collocate(X)

Cmerged ←
⋃
C∈X C

if ∃C ∈ X s.t. res(C) >= |Cmerged| − |C| then
move all nodes from Cmerged to the server of C,
freeing reservations and capacity
res(Cmerged)← res(C)− (|Cmerged| − |C|)

else
target ← server s.t. cap(server) ≥ min{k, b(1 +
ε) · |Cmerged|c}
move all nodes from Cmerged to target, freeing
reservations and capacity
cap(target) ← cap(target) − min{k, b(1 + ε) ·
|Cmerged|c}
res(Cmerged)← min{k − |Cmerged|, bε · |Cmerged|c}

end if

merged are moved to a new server with enough space
for the resulting merged component Cmerged as well
as the additional reservation of min{k − |Cmerged|, bε ·
|Cmerged|c}. Furthermore the merge and split process
is illustrated in Figure 1.

As we will see, the idea for the competitive analysis
is to relate the cost of both OPT and pCrep to the
split components in the solution of pCrep. The fact
that pCrep also resets adjacent edges means that we
can uniquely identify requests with the split component
whose split led to the reset of the corresponding edge
weights to zero.

4 Competitive Analysis

We analyze the competitive ratio of pCrep with aug-
mentation (2+ε) and show that pCrep isO(2/ε·k log k)-
competitive. We will use the following general defini-
tions throughout the analysis.

Definition 4.1. For any subset S of components, let
w(S) be the total weight of all edges between nodes of S.

Definition 4.2. We call a set of components of size at
least 2 and of connectivity α mergeable.

Definition 4.3. An α-connected component is a max-
imal set of vertices that is α-connected.

Despite the algorithmic differences, some claims
from [4] can be adapted for pCrep. In particular, we
can show that there is always at most one mergeable
component set after the insertion of a new edge which
pCrep then merges. The earliest point in time a new
mergeable component set can emerge is after the next
edge is inserted. In the following, we will now focus on
the novel aspects of the competitive analysis.
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Figure 1: Illustration for the pCrep approach: The
horizontal lines represent the nodes over time, vertical
lines represent requests between the respective end
points. We consider the case where α = 3 and k =
3. At time t = 3 the nodes 1 and 2 are merged,
resulting in component C1 = ({1, 2}, 3). The next three
requests lead pCrep to merge the singleton component
({3}, 0) with C1, resulting in the component C2 =
({1, 2, 3}, 6). The following eight requests connect the
singleton components containing the nodes 4, 5, 6 and
7 to C2, but the respective cuts have value 2, hence
no merge is performed. At time t = 15 finally the
edge weight between the component of node 4 and C2

increases to 3. Now the subgraph induced by the set
of nodes M = {1, 2, 3, 4} has connectivity 3, but as
|M | = 4 > 3 = k pCrep splits the components. During
this split all edge weights representing the requests
shown in the figure are reset to zero, both those that
led to the merges and the remaining ones.
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4.1 Upper Bound On pCrep We start the analysis
with upper bounding the cost of pCrep by introducing
several notions that we will use throughout the analysis.
We define the set Sp (σ) as the set of components that
were split by pCrep during its execution given the input
sequence σ. We define the following notions for a split
component C ∈ Sp (σ). Let τ(v) be the time when the
node v was last turned into a singleton component and
let τ(C) denote the time at which component C was
created. If C was one of the components created during
the initialization of the algorithm then τ(C) = 0. Note
that a component can either be created via merges or
during the split process of another component B when
the nodes of B are turned into singletons. Let EPOCH(C)
denote the (node, time) pairs of nodes in C starting
directly after the time τ(node), i.e.

EPOCH(C) =
⋃

v∈nodes(C)

{v} × {τ(v) + 1, ..., τ(C)}.

Note that for C ∈ Sp (σ), τ(C) denotes both the
time of the creation as well as the time of the split
of C as C is split by pCrep right away. We can
use this definition of a component epoch EPOCH(C) to
uniquely assign each node to a split component C at
each point in time t (except for nodes in components
that persist until the end of sequence σ). We assign all
requests to EPOCH(C) whose corresponding edges are
reset because of the split of component C and call the
set of those requests REQ(C). We split the requests from
REQ(C) into two sets: CORE(C) and HALO(C). CORE(C)
contains all requests for which both nodes have already
been assigned to C at the time of the request, i.e.

CORE(C) = {r = ((u, v), t) ∈ σ|(u, t) ∈ EPOCH(C)

and (v, t) ∈ EPOCH(C)}.

These are the requests that led to the creation of
component C by increasing the connectivity within the
corresponding subgraph.

We define HALO(C) as the set of all requests from
REQ(C) for which exactly one end point was associated
with C at the time of the request. Note that this
means that HALO(C) = REQ(C)\CORE(C). These
definitions allow us to differentiate between the highly-
connected sub-graph induced by the nodes of C which
are connected by requests from CORE(C) and the edges
leaving C from HALO(C) which are relatively less dense
as pCrep has not merged any outer node with the
component.

We start the analysis by bounding the communica-
tion cost of pCrep that is due to serving requests from
CORE(C) for C ∈ Sp (σ).

Lemma 4.1. With augmentation 2 + ε, pCrep pays at
most communication cost |C|·α for requests in CORE(C)
where C ∈ Sp (σ).

Proof. First note that due to Lemma A.1, pCrep
merges mergeable component sets as soon as they
emerge. Whenever pCrep performs a merge of a
mergeable component set S, Lemma A.4 states that
there was at most total edge weight (|S|−1) ·α between
the merged components, i.e. w(S) ≤ (|S| − 1) · α.
Each such merge decreases the number of components
that need to be merged in order to form component C
by |S| − 1. Hence pCrep has payed at most |C| · α
communication cost for requests in CORE(C).

We define FIN-WEIGHTS(σ) as the total amount
of edge weight between the components FIN-COMPS(σ)
which are present after the execution of pCrep given
input sequence σ. Together with the fact that pCrep
pays for all requests in HALO(C) for split components C
we use these definitions as well as the previous lemma
to bound the total communication cost of pCrep in the
following lemma.

Lemma 4.2. The cost of serving communication re-
quests that pCrep has to pay, denoted by pCrepreq(σ)
given input sequence σ is bounded by

pCrepreq(σ) ≤
∑

C∈Sp (σ)

(|C| · α+ |HALO(C)|)+

∑
C∈FIN-COMPS(σ)

|C| · α+ FIN-WEIGHTS(σ).

Proof. The number of communication requests that
led to the creation of a component C is bounded by
|C| · α due to Lemma A.4. If component C was split
by pCrep then also the edge weights corresponding
to requests from HALO(C) were reset to zero. All
other edge weights were not changed. The remaining
communication requests that have not been accounted
for so far have either led to the creation of component
C ∈ FIN-COMPS(σ) and are hence also bounded by |C| ·α
or have not led pCrep to any merge and are hence
contained in FIN-WEIGHTS(σ). This concludes the proof.

We define COMPS(σ) := Sp (σ) ∪ FIN-COMPS(σ) and
continue our analysis by bounding the migration cost of
pCrep in the following lemma.

Lemma 4.3. With augmentation 2 + ε, pCrep pays at
most migration costs of

pCrepmig(σ) ≤ 2 ·
∑

C∈COMPS(σ)

|C| · ((2/ε+ 1) + log1+ε k) · α.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Proof. Consider the cases in Algorithm 4 in which
components are migrated after a merge. In the if-
case only components are moved that fit into the
reservation of some merged component C with enough
free reservation, hence the number of migrated nodes
is at most ε · |C| ≤ |C|. Hence only components are
moved whose size is at most half the size of the resulting
component Cmerged. Hence each node is merged at most
log2 k times during the time it is in EPOCH(B) for some
B ∈ Sp (σ).

In the else-case components are moved if none of
the reservations of the merged components in X are
enough to fit Cmerged. Again we observe that this may
only happen at most log1+ε k times, hence each node v
of some split component B ∈ Sp (σ) that contains v is
moved at most log1+ε k times during the time it is in
EPOCH(B).

In addition components may be moved if the com-
ponents are still small and thus their reservations are
rounded to zero. This may only lead to at most 2/ε
migrations per node in B ∈ Sp (σ).

Hence we may bound the migration cost of pCrep
by summing over components in Sp (σ)∪FIN-COMPS(σ):

pCrepmig(σ) ≤
∑

C∈COMPS(σ)

(|C| · ((2/ε) + log2 k)

+ |C| · ((2/ε) + log1+ε k)) · α

≤ 2 ·
∑

C∈COMPS(σ)

|C| · ((2/ε) + log1+ε k) · α.

We combine our results from Lemma 4.2 and
Lemma 4.3 in the following lemma in order to obtain
the final upper bound on the cost of pCrep.

Lemma 4.4. With augmentation 2 + ε, pCrep pays at
most total cost

3 ·
∑

C∈COMPS(σ)

|C| · ((2/ε+ 1) + log1+ε k) · α

+
∑

C∈Sp (σ)

|HALO(C)|+ FIN-WEIGHTS(σ).

where COMPS(σ) = Sp (σ) ∪ FIN-COMPS(σ).

Proof. We use the results from Lemma 4.2 and

Lemma 4.3 to obtain the lemma:

pCrep(σ) ≤ pCrepreq(σ) + pCrepmig(σ)

≤
∑

C∈Sp (σ)

(|C| · α+ |HALO(C)|)

+
∑

C∈FIN-COMPS(σ)

|C| · α+ FIN-WEIGHTS(σ)

+ 2 ·
∑

C∈COMPS(σ)

|C| · ((2/ε+ 1) + log1+ε k) · α

≤ 3 ·
∑

C∈COMPS(σ)

|C| · ((2/ε+ 1) + log1+ε k) · α

+
∑

C∈Sp (σ)

|HALO(C)|+ FIN-WEIGHTS(σ).

4.2 Lower Bound on OPT We next bound the cost
on OPT by assigning cost to OPT based on the size of
the components C that pCrep resets and the associated
adjacent edges HALO(C) which pCrep resets to zero
during the split of C. In order to achieve this we
introduce some additional notions. First we define the
term offline interval of a node v to be the time between
two migrations of v in the solution of OPT. More
specifically let T (v) = (t0, t1, t2, ...) denote the ordered
sequence of the times at which OPT migrates node v
with the addition of t0 = 0 such that for all i, ti < ti+1 if
ti, ti+1 ∈ T (v). Then an offline interval (ti, ti+1] of node
v is defined by every two subsequent times in T (v).

Furthermore we say that an offline interval (ti, ti+1]
of node v ∈ C is contained in the epoch EPOCH(C) of a
component C ∈ Sp (σ) if it ends before the time τ(C),
i.e. if ti+1 < τ(C). Note that τ(C) is both the time
of the creation of C in the solution of pCrep and the
time of its split as C ∈ Sp (σ). We assign a request r
occurring at time τ(r) that involves the nodes v and u
to an offline interval I = (ti, ti+1] of v if τ(r) ∈ I and if
it is both the first offline interval of one of the end points
of r that ends and if the offline interval ends before the
deletion of the edge representing r due to a component
split, i.e. let t̂ be the time of the component split
that resets the edge corresponding to r and (tj , tj+1])
be the offline interval of node u that contains τ(r),
then ti+1 < t̂ and ti+1 < tj+1. The requests from
H =

⋃
C∈Sp (σ) HALO(C) that are not assigned to any

offline interval are then those which are reset due to
the split of a component that took place before the
corresponding offline interval ended. Let P denote the
set of edges from

⋃
C∈Sp (σ) HALO(C) that both pCrep

and OPT pay for and let I denote the set of requests we
have assigned to offline intervals.

These definitions are illustrated in Figure 2. Note
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Figure 2: Illustration of definitions used in the analy-
sis; vertical lines represent requests between the corre-
sponding nodes; dashed black requests are assigned to
another component; the dashed green line is assigned to
the offline interval of node 5; the regular green lines are
assigned to an offline interval which is not contained in
EPOCH(C).

that we only show some requests explicitly for the sake
of readability. The grey horizontal lines represent the
nodes at each time t. The brown outline surrounds
the (node,time) pairs of EPOCH(C). Blue dots mark
migrations of the corresponding node performed by OPT

while brown dots mark splits of the component the node
was assigned to at that time. The dashed vertical lines
in black mark requests that are assigned to another
component because it is split before component C. The
dashed green line is a request from HALO(C) assigned to
the offline interval of node 5 between the two blue dots.
The regular green lines are assigned to an offline interval
which is not contained in EPOCH(C). We define this
concept more formally at a later point in the analysis.
The lines in magenta are sample requests from CORE(C).

We start by bounding the total edge weight (the
total number of requests) we assign to any one offline
interval when limiting ourselves to requests from H
which pCrep pays for but OPT does not. We denote
the set of these requests by N , i.e. N = H\P . Note
that H only contains requests which pCrep payed for
due to the definition of HALO(C).

Lemma 4.5. We assign at most k · α requests from N
to any one offline interval.

Proof. We fix an arbitrary offline interval of node v.

Observe that none of the nodes involved in the assigned
requests are moved by OPT during the offline interval,
hence all the requests in question involve only nodes
that OPT has placed on the same server as v during the
offline interval.

The number of such nodes is hence limited by the
server capacity k. As we only examine requests from H
we know that none of these requests have led pCrep
to perform any merges, hence there were at most α
requests between v and any one of the other nodes on
its server during the offline interval. This bounds the
number of requests assigned to the offline interval by
k · α.

Let R(C) denote the set of requests from
HALO(C)\P that were not assigned to any offline in-
terval for a split component C ∈ Sp (σ) and that OPT

does not pay for. We say that a migration of node v at
time t in the solution of OPT is contained in EPOCH(C)
if (v, t) ∈ EPOCH(C). Let OPT-MIG(C) denote the cost
of OPT due to migrations of nodes from component C
that are contained in EPOCH(C) and let OPT-REQ(C)
denote the cost of OPT due to serving requests from
CORE(C). We show the following lower bound on the
cost of OPT for migrations from OPT-MIG(C) and re-
quests from OPT-REQ(C) for all split components C.

Lemma 4.6.∑
C∈Sp (σ)

OPT-MIG(C) + OPT-REQ(C) ≥

1/2 ·
∑

C∈Sp (σ)

|C|/k · α+ |R(C)|/k

Proof. For the following part of the proof we fix an
arbitrary component C ∈ Sp (σ). Note that the nodes
involved in requests from R(C) were not moved by
OPT during the processing of requests from R(C) until
the time of the split of C as otherwise they would be
assigned to an offline interval.

The number of nodes contained in C or connected
to C via edges representing requests from R(C) is at
least |C| + |R(C)|/α since requests from R(C) have
not led pCrep to perform any migrations. Because
of this fact OPT must have placed those nodes on at

least |C|+|R(C)|/α
k different servers. As OPT does not

pay for any requests from R it follows that OPT must
have placed the nodes from C in (|C| + |R(C)|/α)/k
different servers.

We first examine the case in which OPT does not
move any nodes from C during EPOCH(C). In this case
OPT must partition a graph containing the nodes from C
which are connected via edges representing the requests
from CORE(C). As stated earlier OPT placed those
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nodes in (|C| + |R(C)|/α)/k different servers at time
τ(C). As pCrep merged component C this graph is α-
connected and hence Lemma A.3 gives that OPT has to
cut at least edges of total weight ((|C|+|R(C)|/α)/k)/2·
α = 1/2 · (|C|/k · α+ |R(C)|/k).

For the more general case in which OPT may
perform node migrations during EPOCH(C) we adapt
the graph construction from above as follows: we
add a vertex representing each (node, time) pair from
EPOCH(C). We connect each (node, time) pair p with
edges of weight α to the pairs of the same node that
represent the time step directly before and directly after
p (if they exist in the graph). These edges represent the
fact that OPT may choose to migrate a node between
any two time steps in EPOCH(C). Additionally we add
an edge of weight one for each request r = ((u, v), t)
from CORE(C) by connecting the nodes in the graph that
represent the pairs (u, t) and (v, t), respectively. OPT

once again has to partition this graph into |C|+|R(C)|/α
k

parts. Note that we only added edges of weight α to
the graph and hence this graph is also α-connected. We
conclude that once again OPT has to cut edges of weight

at least |C|+|R(C)|/α
k ·1/2·α = 1/2·(|C|/k ·α+|R(C)|/k).

In both cases only edges representing either requests
from OPT-REQ(C) or migrations from OPT-MIG(C) were
cut. As the sets CORE(C), R(C) , CORE(D) and R(D)
are disjoint for two different components C,D ∈ Sp (σ)
per their definition we conclude that∑

C∈Sp (σ)

OPT-MIG(C) + OPT-REQ(C) ≥

1/2 ·
∑

C∈Sp (σ)

|C|/k · α+ |R(C)|/k.

In the following lemma we combine the results of
the previous lemmas in order to bound the cost of OPT

given input sequence σ, denoted by OPT(σ).

Lemma 4.7. The cost of the solution of OPT given
input sequence σ is bounded by

OPT(σ) ≥ 1/4 ·
∑

C∈Sp (σ)

|C|/k · α+ |HALO(C)|/k.

Proof. We combine the results from Lemma 4.5 and
Lemma 4.6. Note that the cost from Lemma 4.6 may
contain migration costs. In this case the corresponding
migrations represent the end of an offline interval. We
denote the number of offline intervals by o. This gives
us that

2OPT(σ) ≥
∑

C∈Sp (σ)

OPT-MIG(C) + OPT-REQ(C) + o · α+ |P |

as we account for each migration at most twice.
Consider that due to Lemma 4.5 we have the

inequality o ≥ |N |/k. We repeat that H =⋃
C∈Sp (σ) HALO(C). Note that N is the subset of re-

quests of H for which OPT does not pay while P is the
subset of H OPT pays for. It follows that the disjoint
union of N and P is H. Hence we obtain

2OPT(σ) ≥
∑

C∈Sp (σ)

OPT-MIG(C) + OPT-REQ(C) + o · α+ |P |

≥
∑

C∈Sp (σ)

1/2 · (|C|/k · α+ |R(C)|/k) + (|N |+ |P |)/k

≥ 1/2 ·
∑

C∈Sp (σ)

|C|/k · α+ |HALO(C)|/k.

This completes the proof.

4.3 Competitive Ratio We can now combine the
results of Lemma 4.4 and Lemma 4.7 to obtain the fol-
lowing theorem which gives us the desired competitive
ratio.

Theorem 4.1. With augmentation (2 + ε) the compet-
itive ratio of pCrep is in O(2/ε · k log1+ε k).

Proof. We arbitrarily fix an input sequence σ and use
our previous results to bound the competitive ratio of
pCrep. We define COMPS(σ) := Sp (σ)∪ FIN-COMPS(σ)
and c := 2/ε+ 1 in order to improve readability.

pCrep(σ)− FIN-WEIGHTS(σ)

OPT(σ)

≤
3 ·

∑
C∈COMPS(σ) |C| · (c+ log1+ε k) · α+

∑
C∈Sp (σ) |HALO(C)|

1/4 ·
∑
C∈Sp (σ) |C|/k · α+ |HALO(C)|/k

≤ k log1+ε k
3 ·

∑
C∈Sp (σ) |C| · c · α+

∑
C∈Sp (σ) |HALO(C)|

1/4
∑
C∈Sp (σ)(|C| · α/2 + |HALO(C)|)

+ β

= O(2/ε · k log1+ε k) + β

where

β =
∑

C∈FIN-COMPS(σ)

|C| · ((2/ε+ 1) + log1+ε k) · α

Let β′ = β + FIN-WEIGHTS(σ). Then it follows that

pCrep(σ)

OPT(σ)
≤ O(2/ε · k log1+ε k) + β′.

To obtain the bound on β′ we observe that the
components in FIN-COMPS(σ) each are of size at most
k since they were not split by pCrep. This allows
us to derive the bound

∑
C∈FIN-COMPS(σ) |C| · ((2/ε +

1) + log1+ε k) ≤ ` · k · ((2/ε + 1) + log1+ε k). Since

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



at the end of the execution of pCrep there can be at
most k · ` components, Lemma A.4 allows us to bound
FIN-WEIGHTS(σ) by k ·` ·α. Hence we conclude that β′ ≤
`·k ·((2/ε+1)+log1+ε k)·α+k ·`·α ∈ O(2/ε·k log1+ε k).

5 Poly-Time Implementation

So far we have only shown that the Algorithm pCrep
described in Section 3 has a competitive ratio O(2/ε ·
k log1+ε k). We now show that it can also be imple-
mented in polynomial time.

In order to limit the section of the graph G main-
tained by pCrep that needs to be updated upon a
new request between nodes of different components, we
maintain a decomposition tree defined as follows: the
root represents the whole graph and is assigned the con-
nectivity of the entire graph. Given a node v in the
tree that represents a subgraph G′ of G, we decompose
G′ into subgraphs whose connectivity is strictly larger
than that of G′ and add children to v for each such
subgraph. We do not decompose sub-graphs of connec-
tivity at least α any further as we only need to identify
whether a new subgraph of connectivity at least α was
created by the insertion of the most recent request. Ad-
ditionally we keep track of the connectivity of each such
subgraph. In the decomposition tree we have labelled
each node with the corresponding subset of vertices and
the connectivity of the graph induced by these vertices.

If a new request is revealed to pCrep then we only
need to update the smallest subtree of the decompo-
sition tree which still contains both end points of the
request. This is correct because we can view each de-
composition of a subgraph G′ into smaller graphs of a
higher connectivity as a set of cuts that separates the
nodes of G′. Inserting a new edge within a subgraph
G′ may only increase the value of the cuts which re-
sult in the decomposition of G′, but does not affect cuts
separating G′ itself from other subgraphs. If a new re-
quest led to the creation of a new component this means
that two old components that were at least α-connected
were merged and hence the number of leaves in the de-
composition tree decreased. If this is the case then the
algorithm checks whether the new component contains
more than k nodes. In this case the component is split
and split into singleton components, each containing one
node from the split component.

Upon such a component split the edges inside of and
adjacent to the component are deleted, i.e. their weight
is reset to zero. This means that the decomposition
tree needs to be recomputed in order to reflect this
change. If however the resulting component C contains
at most k nodes the algorithm tries to collocate the
nodes of the component while minimizing migration

costs, i.e. looking for a cluster which contains as many
nodes of the newly merged component as possible but
which also has enough free capacity for the remaining
nodes to be moved there and for additional reservation
min{k − |C|, bε · |C|c}.

5.1 Subgraph Decomposition We next describe
our algorithm for the decomposition of a given subgraph
represented by a node in the decomposition tree.

Given a node v of the decomposition tree, first a
partition graph is constructed which is a graph consist-
ing of the nodes in the subgraph represented by v and
the edges which are between the nodes of the subgraph.
This partition graph also supports merges and cuts of
its nodes. More specifically the partition graph is ini-
tialized as a graph P = (V,E) with V = nodes(v) and
E = {e = {u,w} ∈ E′|u ∈ nodes(v) and w ∈ nodes(v)}
where E′ represents the set of edges in the graph main-
tained by pCrep. Additionally we maintain a mapping
M which assigns each node from V a set of the nodes
in the subgraph represented by the decomposition tree
node v. Initially M assigns each node in V the subset
containing only the node itself.

We now run a maximum adjacency search al-
gorithm, sometimes also called maximum cardinality
search algorithm [5], in order to obtain an arbitrary min-
imum (s, t)-cut of the graph. The maximum adjacency
search algorithm is defined as follows: We start with
an empty list L to which we add an arbitrary node of
P . We then continually add the most tightly connected
node from V to L, i.e. the node which is connected to
the nodes in L via edges of the most total weight. Stoer
and Wagner [5] have shown that the edges between the
last two nodes s and t added to L form a minimum
(s, t)-cut. We use the value of this cut in order to de-
cide whether to merge the nodes s and t or whether to
separate them. If the cut has value less than c we sepa-
rate the nodes, otherwise we perform a merge. Here the
separation of the nodes s and t means that we remove
all edges in the cut from the edges E of the partition
graph P . In the case of a merge we combine the nodes
s and t and merge the outgoing edges, i.e. we replace
the set of nodes V of P by the set V ′ = V \{s, t}∪ {v′}.
The edges E of P are modified by removing all edges
adjacent to s and t and adding an edge e′ = {v′, u}
of weight w({s, u}) + w({t, u}) where w(e) denotes the
weight of edge e if it exists and is equal to zero other-
wise. Furthermore we adjust the mapping M by setting
M(v′) = M(s) ∪M(t).

We continually run this algorithm until P contains
no edges, i.e. until E = ∅. The sets of nodes mapped to
each ot the nodes of P by M now represent candidate
subgraphs for the decomposition. Note though that we
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have only cut and merged according to minimum (s, t)-
cuts and not according to minimum cuts. This means
that the specific sequence in which we have performed
the cuts may influence the result, e.g. if we merged
based on a minimum (s, t)-cut which is not a minimum
cut. This can be remedied by repeating the procedure
on the resulting subgraphs until it returns a subgraph of
only one node, i.e. until no separation step is performed
during the decomposition. This is due to the fact that
this procedure always cuts a subgraph of connectivity
less than c at least once, as Chang et al. have shown (see
Cutability Property in [6]). In order to speed up this
computation we use the heap data structure proposed
and analyzed by Chang et al. [6].

Thus we conclude that this procedure correctly
decomposes a given subgraph as Chang et al. have also
stated in Theorem 3.1 in [6].

There are several additional optimizations with
which one can improve the running time of our imple-
mentation of pCrep. For example, with a k-core-based
optimization, an α-connected component may only con-
tain nodes or other components whose weighted degree
is at least α. Hence we can iteratively cut all compo-
nents whose weighted degree is less than α until no more
components can be cut by applying this rule. Further-
more, we can track the smallest cut. In each decom-
position step we keep track of the smallest minimum
(s, t)-cut that was encountered and then may increase
the connectivity as maintained by our decomposition
tree data structure that corresponds to the current sub-
graph to this number. This can significantly speed up
our algorithm in cases where parts of the tree are re-
computed as it guarantees that each subtree is merged
completely at most once. For example there may be a
case where after a split of a component the connectivity
of the whole graph is 0 but the graph still contains large
subgraphs of high connectivity. In this case the connec-
tivity of those subgraphs that is tracked in the tree can
be increased by more than one if a decomposition step
has resulted in merges only.

5.2 Running Time We will now show that pCrep
is indeed a polynomial-time algorithm. The main
bottleneck of the algorithm lies in the decomposition
updates; it is easy to see that the other parts of the
algorithm can be implemented in polynomial time.

Lemma 5.1. The subroutine decompose which decom-
poses a subgraph can be implemented in polynomial time
O(α|V |2|E|).

Proof. The worst case is given when the whole tree has
to be recomputed. We first discuss the time complexity
of decomposing a single tree node v. Let the corre-

sponding subgraph be denoted by Gv = (Vv, Ev). Since
each iteration of the subroutine decompose performs at
least one cut as long as the connectivity of the given
graph is smaller than the current threshold c we con-
clude that after at most |Vv| iterations of decompose a
correct decomposition is found.

Each step of decompose can be performed in O(|Vv|·
|Ev|) as the maximum adjacency search algorithm finds
an arbitrary minimum (s, t)-cut in time O(|Ev|) as
shown in theorem 4.1 in [6] and as there are at most
|Vv| minimum (s, t)-cuts computed for each invocation
of decompose.

Hence the complexity of decomposing the subgraph
represented by a tree node v is in O(|Vv|2|Ev|). Let
Cv denote the time needed for the decomposition of the
subgraph represented by decomposition tree node v.

We now sum this complexity over the nodes for each
connectivity level of the decomposition tree. To this end
let level(i) denote all nodes in the decomposition tree
which are of connectivity exactly i.

α∑
i=0

∑
v∈level(i)

Cv ≤
α∑
i=0

O(|V |2|E|) ∈ O(α|V |2|E|).

We conclude our analysis of the time complex-
ity by observing the polynomial-time complexity of
O(α|V |2|E|).

We conclude our analysis of the running time by
observing that the remaining subroutines can be imple-
mented in polynomial time which results in the following
theorem on the running time.

Theorem 5.1. The algorithm pCrep can be imple-
mented in polynomial time.

6 Empirical Evaluation

In order to complement our analytical results and shed
light on the performance of our algorithm in practice, we
implemented pCrep and conducted experiments under
real-world traffic traces from datacenters and high-
performance computing clusters. We also discuss an
algorithm engineering approach to improve the practical
performance of pCrep, and compare the algorithm to
different reference algorithms and heuristics.

6.1 Reference Algorithms We consider the follow-
ing baselines in our evaluation. First, we consider an
alternative implementation of pCrep, called dCrep,
that does not use the decomposition tree structure men-
tioned in Section 5. Rather, this implementation applies
the MinCut-based decomposition algorithm presented
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trace nodes requests ` k α ε

NB 512 250 000 32 16 3 0.1

Mocfe 1024 250 000 32 32 3 0.1

FB 2048 10 000 64 32 3 0.1

Figure 3: Traffic traces used in the evaluation
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Figure 4: Comparison of the runtimes of pCrep (left),
dCrep (middle) and CREP-CORE (right) for all 3 data
sets

in Section 5.1 to the whole graph and thus computes
the new components in one decomposition step.

Furthermore, recall that pCrep always maintains
a second-order partition of the nodes into components,
and when a component is split, all edges inside of and
adjacent to the component are reset. A natural alter-
native is to reset internal edges only on this occasion;
we will refer to this algorithmic variant as CREP-CORE.
The pCrep and CREP-CORE algorithms start with ran-
domly initialized mappings of nodes to servers.

Another natural reference algorithm is a static
graph partitioning; to this end, we use the
METIS PartGraphRecursive algorithm implemented in
the METIS framework [7, 8], and will refer to it simply
as Static. For Static we first record the communica-
tion graph resulting from the requests, and give it as
input to Static. We then compute the cost of Static
due to migrations from the random initial mapping of
nodes to servers; in addition, we charge the remote re-
quests, i.e., the total weight of edges between nodes of
the communication graph which Static mapped to dif-
ferent servers. The algorithms start with randomly ini-
tialized mappings of nodes to servers.

6.2 Traffic Traces and Methodology We consider
different real-world traffic traces (workloads), two HPC
traces, NB and Mocfe, as well as a trace from a Facebook
data center which we call FB. The traces and their
characteristics are described in more detail in [9]. The
traces are publicly available.

With Mocfe we study a scenario where the number
of servers is ` = 32, each of size k = 32, and we use the
first 250k requests in a setting with 1024 nodes. For FB
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Figure 5: Comparison of the runtimes of pCrep (top),
dCrep (middle) and CREP-CORE(bottom) for both
HPC traces. The left column shows their distribution
while the right shows the respective total runtimes.
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we restrict the trace to 2048 nodes. For this restriction
we iteratively chose the vertex pairs that communicate
the most during the first 20 million requests until we
reached the number of 2048 nodes; we then added all
requests between two of these nodes to our data set.
For this scenario, we used a configuration with ` = 64
servers is ` = 32 of size k = 32. The runs are then
performed on the first 10k of these requests. Similarly
we restricted NB to 512 nodes and used the first 250k
requests for this setting; this data set is then evaluated
in a scenario where the number of servers is ` = 32,
each of size k = 32. For all configurations we use α = 3
and ε = 0.1. These configurations are summarized in
Figure 3. The influence of α on the running time is
investigated further in Section 6.3.

6.3 Runtime Evaluation We evaluate the running
time of pCrep by considering different traces and
alternative algorithms.

Figure 4 shows the results of all data sets for pCrep
and dCrep. Here we filtered the running times to only
include updates which have led the respective algorithm
to update, i.e. those updates where the communicating
nodes belonged to different components at the time of
the request. We can see that for pCrep and CREP-CORE

FB produces by far the highest runtime and that
dCrep performs significantly better than pCrep and
CREP-CORE for FB. We first compare the runtimes of
the three algorithms for the HPC data sets before we
discuss the runtimes for FB in greater detail.

Figure 5 shows plots of runtimes of pCrep, dCrep
and CREP-CORE for the HPC traces. On the left of the
figure, we can see the distribution of the update times
over the requests while the total times are shown on
the right. The figure shows that pCrep is the fastest
for both HPC traces while CREP-CORE is faster than
dCrep. This indicates that the decomposition tree data
structure which both pCrep and CREP-CORE use may
be a significant advantage for the HPC traces.

Figure 6 illustrates the relation of the time needed
for handling a request, and the number of edges in the
data structure for pCrep and for CREP-CORE for FB.
We can see a high correlation, i.e., a large number of
edges in the graph maintained by the respective algo-
rithm seems to lead to longer update times. Similarly
the update times are shorter after the number of edges
decreases, i.e. after a component split. While we cannot
prove this, we suspect that this may be due to the fact
that the data used for the run shows little structure, and
thus leads to a large number of (costly) recomputation
steps for our data structure. This is also supported by
the fact that dCrep is significantly faster for FB as one
can see in Figure 4.
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Figure 6: Relation of size to time for FB for pCrep
(left) and CREP-CORE (right)
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Figure 7: Runtime of pCrep (top) and CREP-CORE

(bottom) for Mocfe for different values of α. The left
column shows their distribution while the right shows
the respective total runtimes.

It is also interesting to study the influence of
α on the running time of pCrep and CREP-CORE.
Figure 7 shows plots of the running time of pCrep
and CREP-CORE for α ∈ {1, 2, 4, 8, 16}. In order to
improve the readability, only requests which led to an
update of the data structure are included. The results
show that for both algorithms the runtimes increase for
increasing values of α. This may be due to the fact
that higher values of α lead the algorithms to update
the tree structure less frequently and thus also to delete
components less frquently. This increases the size of the
data structure, making updates slower.

6.4 Cost Evaluation In order to shed light on the
cost, in terms of communication and migration, we
compare our algorithms pCrep and CREP-CORE with
Static.

Figure 8 shows the costs of pCrep, CREP-CORE and
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Figure 8: Comparison of the costs of pCrep (left),
CREP-CORE (middle) and Static (right) for all 3 data
sets

Static for FB, Mocfe and NB. Note that for FB the
costs of pCrep and CREP-CORE are actually lower than
the cost of Static. For the HPC traces Static is able
to achieve significantly lower cost than both pCrep and
CREP-CORE. However, it is important to keep in mind
that Static is essentially an offline algorithm, which
knows requests ahead of time; furthermore, we also
note that Static may not produce a perfectly balanced
partitioning.

7 Related Work

The closest work to ours is by Avin et al. [2, 4, 10]
who initiated the study of the dynamic balanced graph
partitioning problem. The authors present pCrep,
a O(k log k)-competitive algorithm with augmentation
2 + ε for any ε > 1/k; this algorithm however has
a super-polynomial runtime, which we improve upon
in this paper. In their paper, Avin et al. also show
a lower bound of k − 1 for the competitive ratio of
any online algorithm on two clusters via a reduction
to online paging; the lower bound was later generalized
by Pacut et al. to Ω(k`) [11].

Restricted variants of the balanced repartitioning
problem have also been studied. Here one assumes
certain restrictions of the input sequence σ and then
studies online algorithms for these cases. In this
context, Avin et al. [12, 13] assume that an adversary
provides requests according to a fixed distribution of
which the optimal algorithm OPT has knowledge while
an online algorithm that is compared with OPT has
not. Further the authors restrict the communication
pattern to form a ring-like pattern, i.e. for the case of
n nodes 0, ..., n − 1 only requests r of the form r = {i
mod n, (i + 1) mod n} are allowed. For this case they
present a competitive online algorithm which achieves a
competitive ratio of O(log n) with high probability.

Henzinger et al. [14] study a special learning vari-
ant of the problem where it is assumed that the input
sequence σ eventually reveals a perfect balanced parti-
tioning of the n nodes into ` parts of size k such that
the edge cut is zero. In this case the communication

patterns reveal connected components of the commu-
nication graph of which each forms one of the parti-
tions. Algorithms are tasked to learn this partition and
to eventually collocate nodes according to the partition
while minimizing communication and migration costs.
The authors of [14] present an algorithm for the case
where the number of servers is ` = 2 that achieves a
competitive ratio of O((log n)/ε) with augmentation ε,
i.e. each server has capacity (1 + ε)n/2 for ε ∈ (0, 1).
For the general case of ` servers of capacity (1 + ε)n/`
the authors construct an exponential-time algorithm
that achieves a competitive ratio of O((` log n log `)/ε)
for ε ∈ (0, 1/2) and also provide a distributed ver-
sion. Additionally the authors describe a polynomial-
time O((`2 log n log `)/ε2)-competitive algorithm for the
case with general `, servers of capacity (1 + ε)n/` and
ε ∈ (0, 1/2).

In a recent follow-up work, Henzinger et al. (at
SODA 2021) [15] improve upon their results and present
deterministic and randomized algorithms which achieve
(almost) tight bounds for the learning variant of the
online graph partitioning problem. In particular,
they present a polynomial-time randomized algorithm
achieving a polylogarithmic competitive ratio: they de-
rive an O(log `+ log k) upper bound on the competitive
ratio of their algorithm, where ` is the number of servers
and k is the server capacity, and show that no random-
ized online algorithm can achieve a competitive ratio of
less than Ω(log ` + log k). For the deterministic learn-
ing variant with no resource augmentation, Pacut et al.
showed a tight bound of Θ(k · l) in [11].

The dynamic balanced graph partitioning problem
can be seen as a generalization (or symmetric version)
of online paging. In the online paging problem [16], [17]
one is given a scenario with a fast cache of k pages and
n− k pages in slow memory. Pages are requested in an
online manner, i.e. without prior knowledge of future
requests. If a requested page is in the cache at the time
of the request it can be served without cost. If it is in
slow memory however, then a page fault occurs and the
requested page needs to be moved into the cache. If
the cache is full then a page from the cache needs to
be evicted, i.e. moved to the slow memory in order to
make space for the requested one. The goal is to design
algorithms which minimize the number of such page
faults. However, the standard version of online paging
has no equivalent to the option of serving a request
remotely as is possible in the Dynamic Balanced Graph
Partitioning problem. The variant with bypassing allows
an algorithm to access pages in slow memory without
moving them into the cache, thus providing such an
equivalent. It is worth stressing however that in our
problem requests involve two nodes while in Online
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Paging the nodes themselves are requested.
The static balanced graph partitioning problem is

the static offline variant of the problem of this paper.
In this version an algorithm may not perform any
migrations, but has perfect knowledge of the request
sequence σ and then needs to provide a perfectly
balanced partitioning of the n = k ·` nodes into ` sets of
equal size k that minimizes cost, i.e. the weight of edges
between the servers. This scenario can be modelled as
a graph partitioning problem where the weight of an
edge corresponds to the number of requests between
its end points in the input sequence σ. An algorithm
then has to provide a partition of the nodes into sets
of exactly k nodes each while minimizing the total edge
weights between partitions, i.e. an algorithm needs to
minimize the edge cut of the graph. This problem is NP-
complete ( [18]) and for the case where ` ≥ 3, Andreev
and Räcke [18] have shown that there is no polynomial
time approximation algorithm which guarantees a finite
approximation factor unless P=NP.

There are several algorithms and frameworks for
graph partitioning problems. Usually these frameworks
employ heuristics in order to achieve their results. The
most successful such heuristic is Multilevel Graph Parti-
tioning [19]. This method consists of three phases. Ini-
tially the graph is repeatedly coarsened into a hierarchy
of smaller graphs in such a way that cuts in the coarse
graphs also correspond to cuts in the finer graphs. On
the coarsest level a (potentially expensive) algorithm is
used in order to compute an initial partition. This par-
titioning is then transferred to the finer graphs. In this
process one usually uses other local heuristics in order
to improve the partition quality even further with every
step. METIS [7,8] and Jostle [20,21] are examples of li-
braries that utilize this multilevel approach. We choose
METIS as a reference for our empirical evaluation.

More generally, clustering has been studied within a
variety of different contexts from data mining to image
segmentation [22,23,24], and is the process of generating
subsets of elements with high similarity [25]. However,
we consider an online problem, i.e. algorithms need to
react dynamically to changes in the graph and need to
maintain their data structures and adapt accordingly
whereas clustering considers complete data sets which
are static.

8 Future Work

While our algorithm does not only achieve a polyno-
mial runtime and an almost competitive ratio (up to a
logarithmic factor), our work leaves upon several inter-
esting directions for future research. On the theoretical
front, it would be interesting to explore how to close
the gap between upper and lower bound on the com-

petitive ratio, and to study randomized algorithms. On
the practical front, we believe that our algorithm can
be further engineered and optimized to achieve a lower
runtime in practice, as well as an improved empirical
competitive ratio under real (non worst-case) workloads.
These kinds of adjustments may be achieved for exam-
ple by changing certain algorithm parameters such as
the connectivity threshold. There may also be poten-
tial in adapting and improving our decomposition tree
data structure in order to improve running times.
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A Deferred Technical Details

The proofs of the following claims are omitted due to
space constraints.

Lemma A.1. At any time t after pCrep performed its
merge and split actions, all subsets S of components
with |S| > 1 have connectivity less than α, i.e. there ex-
ist no mergeable component sets after pCrep performed
its merges and splits.

The following lemma is adapted for our
connectivity-based approach from Corollary 4.2
in [4].

Lemma A.2. Fix any time t and consider weights right
after they were updated by pCrep but before any merge
or split actions. Then all subsets S of components with
|S| > 1 have connectivity at most α and a mergeable
component set S has connectivity exactly α.

The following two lemmas combined give us a result
similar to Lemma 4.3 in [4]: bounds on the edge weight
that is cut when partitioning a mergeable component
set, i.e. a set of components of connectivity at least α.

We start by establishing a lower bound on this edge
weight in the following lemma.

Lemma A.3. Given a mergeable set of components S
and a partition of S into g > 1 parts S1, ..., Sg. Then
the weight between the parts of the partition is at least
g/2 · α.

In the following lemma we establish the upper
bound on the cut edge weight when partitioning a
mergeable set of components S into g ≥ 2 parts.

Lemma A.4. Given a mergeable set of components S
and a partitioning of S into g ≥ 2 parts S1, ..., Sg. The
weight between the parts Si is at most (g− 1) ·α during
the execution of pCrep.
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