
Route Hijacking and DoS in Off-Chain Networks
Saar Tochner

School of Computer Science and

Engineering, The Hebrew University

saart@cs.huji.ac.il

Aviv Zohar

School of Computer Science and

Engineering, The Hebrew University

avivz@cs.huji.ac.il

Stefan Schmid

Faculty of Computer Science,

University of Vienna

stefan_schmid@univie.ac.at

ABSTRACT
Off-chain transaction networks can mitigate the scalability issues of

today’s trustless blockchain systems such as Bitcoin. However, these

peer-to-peer networks also introduce a new attack surface which is

not yet fully understood. This paper identifies and analyzes a novel

type of Denial-of-Service attack which is based on attracting routes,

i.e., which exploits the way transactions are routed and executed

along the channels of the network in order to attract nodes to route

through the attacker. This attack is conceptually interesting as it

highlights a fundamental design tradeoff for the defender (who

determines its own routes): to become less susceptible to hijacking,

a rational node has to pay higher fees to nodes that forward its

payments.

We focus on the Lightning network, and we investigate both the

structure of the network using real data collected over an extended

period of time, and the routing algorithms of different implementa-

tions. We find that the three most common implementations (lnd,
C-lightning, Eclair) approach routing differently. We then explore

the routes chosen by these implementations in the current Light-

ning network. We find that very few nodes route most of the traffic:

nearly 60% of all routes pass through only five nodes, while 80% go

through only 15 nodes. Thus, a relatively small number of colluding

nodes can deny service to a large fraction of the network.

We then turn to study an external attacker who creates links to

the network and draws more routes through its nodes by asking

for lower fees. While finding the optimal set of links to create

is NP-complete, we show that using a greedy attack strategy, an

attacker can obtain a 1 − 1/e approximation. Given this strategy,

we find that just five new links are enough to draw the majority

(65% - 75%) of the traffic regardless of the implementation being

used. The cost of creating these links is very low. Drawing this

traffic, the attacker is then able to deny service to all those who

route through it. We further show that newer routing algorithms

recently introduced into lnd, to penalize routes that failed in the

past and avoid selecting them again, do not effectively prevent such

attacks. Finally, we suggest modified routing policies, which may

help alleviate the problem.

CCS CONCEPTS
• Networks → Network experimentation; • Security and privacy
→ Network security; Denial-of-service attacks; Distributed
systems security.

ACM Conference on Advances in Financial Technologies, 2020, New York, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Cryptocurrencies; Routing Attack; Lightning Network; Payment

Channels Networks

1 INTRODUCTION
Emerging decentralized ledger and blockchain technologies bear

the promise to streamline business, governance and non-profit

activities, by eliminating intermediaries and authorities. A main

hurdle toward such more decentralized applications however re-

mains scalability [3, 8, 38]. The typical example is that Bitcoin can

only support dozens of transactions per second, compared to several

thousands in deployed payment services such as Visa [40].

Off-chain peer-to-peer networks (a.k.a. payment channel net-

works) [13] are a promising approach to mitigate this scalabil-

ity problem: by allowing participants to make payments directly

through a network of payment channels, the overhead of global

consensus protocols and committing transactions on-chain can be

avoided. This not only improves transaction throughput but also

avoids the blockchain’s transaction latency; ideally, in a payment

channel network, transactions require communications only be-

tween a handful of nodes, while the blockchain is used only rarely,

to establish or terminate channels. As an incentive to participate

in others’ transactions, intermediate nodes obtain a small fee from

every transaction that was relayed through their channels. Over the

last few years, payment channel networks such as Lightning [32],

Ripple [2], and Raiden [30] have been implemented, deployed and

have started growing.

This paper is concerned with the routing mechanisms which

lie at the heart of payment channel networks. An important fea-

ture of payment channel networks is that they support transac-

tions between participants without direct channels, using multihop
routing [24, 32]. The route itself is selected by the source node,

which differs greatly from conventional communication networks.

The design tradeoffs and security implications of such routing for

multi-hop payments are not well-understood today. In fact, routing

in payment channel networks differs from routing in traditional

communication networks in additional ways: in traditional commu-

nication networks, routing algorithms typically aim to find short

and low-load paths in a network whose links are subject to fixed

capacity constraints. In a payment channel network, link capacities

represent channel balances, which can be highly dynamic: every

transaction changes the balance initially set up for the channel.

This in turn implies that transactions may fail due to temporary

liquidity shifts within channels that are not known to all nodes

routing through this channel. Moreover, both the establishment

as well as the use of payment channels is an inherently strategic

decision: it is subject to complex incentives and the extent to which

a participant thinks she or he can benefit from different behaviors.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Conference on Advances in Financial Technologies, 2020, New York, USA Saar Tochner, Aviv Zohar, and Stefan Schmid

In fact, a participant may not only try to strategically maximize her

or his profit, but may also be malicious. Payment channel networks

apply onion routing techniques to help hide the source and desti-

nation of payments (to preserve privacy); but these tools also aid

attackers, as denial of service or other failures cannot be properly

attributed to the responsible nodes.

1.1 Our Contributions
This paper is motivated by the question whether and howmalicious

players can strategically influence and exploit the way transactions

are routed in off-chain networks. Our main contribution is the

identification, analysis, and evaluation of a novel Denial-of-Service

attack which is based on the hijacking of transaction routes. To this

end, we examine different existing implementations (which turn

out to differ significantly), and provide empirical insights into the

structure and properties of payment channel networks.

Information on the structure of the Lightning network is gos-

siped to all its nodes. Examining this information and applying the

different routing algorithms used, we find that there exists a group

of 10 nodes that participates in 80% of the routes, and 30 nodes that

participate in more than 95% of the routes.

We further consider an attack by an external participant that

creates links to the network, hijacks traffic and performs a denial

of service attack. We analyze the optimal attack and show that

it is NP-complete to locate the best links to form. Still, we show

that due to the submodularity of the problem, a greedy algorithm

finds a 1-1/e approximation. Using this approach, we find that by

creating only 5 new channels, with a total one-time cost of less

than 16$ (evaluated in May 2020), an attacker can hijack about

65% of the routes, and with 30 channels (which cost less than a

100$ to establish), it can hijack 80% of the routes, regardless of the

specific implementation clients use. The costs of channel creation

are extremely low – around 3.1$ per channel (correct to May 31,

2020), which includes both the liquidity locked in channels for the

attack, and the on-chain fees to create the channel.

Our findings are robust, and do not change significantly over

network snapshots that were taken during the last 13 months.

In general, we observe only limited empirical evidence that users

configure their nodes to extract high rewards. Nodes typically use

default values or set minimal fees and contribute cheap routes to

the network. Both aspects can be exploited by selfish and malicious

players.

Reasoning about more secure solutions, we find that the un-

derlying routing problem exhibits a fundamental design tradeoff,

related to the desire of rational players to save on costs: by ran-

domizing over more routes, even ones that cost more, a rational

player can become more secure against hijacking attacks; however,

such behaviors cost more, and may in fact allow intermediate nodes

to increase their fees (knowing that routing algorithms will keep

using them even if fees are not competitive) ruining the economic

incentives that drive down relay fees in the network.

An additional tradeoff that we discuss regards the times nodes

must be online (how often they need to check the network to

make sure funds are not stolen from them) and the time it takes

incomplete payment attempts to expire. For reasons of security,

network defaults currently allow nodes relatively long periods of

time for fund recovery, which implies that connection attempts

that fail are not retried quickly.

In order to ensure reproducibility and in order to facilitate fol-

lowup work, we share our code with the research community at

https://github.cs.huji.ac.il/saart/saart-lightning.

Our initial findings and suggested mitigation techniques have

been widely disseminated amongst Lightning developers and have

been discussed at length.

1.2 Organization
The remainder of this paper is organized as follows. In §2, we will

present our DoS attack and explore different hijack possibilities. §3

examines the state-of-the-art routing algorithms, and then provides

an overview of the experiments we conducted. We then describe

in §4 a model resulting from our attack as well as the algorithms

that we used in our experiments. In §5 we explore methods to

mitigate this vulnerability by using a modified routing algorithm

andmeasure the impact of such a modification. Related work will be

presented in §6. Finally, we conclude our contribution and discuss

future work in §7.

2 DOS ATTACK VIA ROUTE HIJACKING
This section uncovers a potential vulnerability, based on route

hijacking, which may be used for a Denial-of-Service (DoS) attack

on off-chain networks. We will first provide an explanation of the

key elements of the protocol, then present the basic attack, and

finally, describe how it may be amplified. In the next sections, we

explore the empirical feasibility of the attack using network data

we collected and reason about optimization opportunities for both

the attacker and the defender.

2.1 Context of the Attack
To be more concrete, we consider the Lightning network as a case

study. However, the concepts are similar in other payment channel

networks as well. In the Lightning off-chain network, the channels
are established by the nodes for secure payments. Every two nodes

that are willing to create such a channel, place a Bitcoin transaction

(on chain) in order to lock money (i.e., liquidity) for this channel
1
.

An off-chain transaction (within the channel) is then simply an

agreement between the two end-points of the channel, which leads

to a different split of the money between them. The intermediate

states resulting from this transaction do not have to be commit-

ted to the blockchain: Once they will commit the state into the

blockchain, the channel will be closed (because it spends the chan-
nel establishment transaction). Until this occurs, the channel can

remain operational and the internal split of funds can be adjusted

by the participants. As the intermediate states of channels are built,

older states are revoked: if one tries to commit an old state, the other

participant can claim funds back. This recovery of funds can only

be done within a certain pre-set period of time. This setup thus

requires each of the participants in a channel to occasionally check

the blockchain and make sure that the other party did not close the

channel using a revoked state. The timeout is set to allow for this,

1
Note that this means that every channel is fully backed-up with a real bitcoins,

therefore no one can spoof channels

2

https://github.cs.huji.ac.il/saart/saart-lightning

Route Hijacking and DoS in Off-Chain Networks ACM Conference on Advances in Financial Technologies, 2020, New York, USA

and also to give time for revocation transactions to be accepted in

the blockchain (in case of congestion on the blockchain).

Off-chain networks such as Lightning do not only support trans-

actions between nodes that have a direct channel between them, but

also allow chaining channels into longer paths in order to connect

nodes indirectly. In order to transfer over such “multi-hop” paths, a

transfer is executed on each channel along the composed path.

The technique used to chain channels together but still guar-

antee that funds are not stolen by intermediate nodes is based on

“Hashed TimeLocked Contracts", or HTLCs, which are essentially

contracts awarding nodes a slightly different split of the money

in each channel if a secret is revealed. Paths are then created by

establishing a chain of channels with HTLCs conditioned on the

release of the same secret, and the transfer is finally executed as the

recipient node releases the secret (additional details can be found

in [32]). HTLCs must additionally posses an expiration time which

specifies the timeout of each conditional payment. This timeout is

the timeout of the next node in the path plus some small delay spec-

ified by the preceding node. These decreasing timeouts ensure that

intermediate nodes never reach a situation where they might have

an outgoing payment without being compensated by an incoming

payment (due to an earlier timeout of the incoming channel). This

difference between HTLC timeouts is expressed by a number of

blocks in the blockchain (as timestamps on blocks are considered

unreliable, and block height is the fundamental way to meassure

the progress of time in blockchains). HTLC timeouts are set to allow

intermediate nodes suficient time to claim funds if the node in the

next hop in the path claimed funds from them. This timeout (that

can not be set too low) in our context results in a delay for the

transaction, and aids the attacker.

To motivate intermediate nodes to relay transactions, they are

allowed to charge a fee for forwarding transactions. This fee con-
sists of a base fee (a flat payment) and a proportional fee that is
relative to the transaction size (number of coins processed in the

transaction). For example, to use a channel that has a base fee of

100 millisatoshis (msat), and a proportional fee of 1 per million, a 1

million msat transaction will pay a fee of 101 msat, and a 2 million

msat transaction will pay a fee of 102 msat.

Information about the structure of the channel graph and about

the fees is continuously publicized by Lightning nodes through a

gossip algorithm. Given this knowledge of the network graph’s

structure, nodes are able to utilize source routing in order to pick

the path their own payments will follow. As we will see, different

implementations use different routing algorithms for path selection,

optimizing different measures (e.g. fee, timeout delay, security, etc.).

We ourselves make use of the fact that the channel graph informa-

tion is made public to evaluate our attack on the actual graph that

exists in today’s network.

2.2 Basic Attack: A Rerouting Vulnerability
The fact that nodes can strategically choose transaction paths in-

troduces a potential vulnerability. In the following, we model the

off-chain network as a graph, where vertices represent Lightning

nodes and edges represent payment channels. In the basic attack,

an adversary can aim to establish a set of edges in this graph which

put it in a topologically important location, as well as to announce

Figure 1: The routing vulnerability. An adversary creates
edges that decrease the fees for many nodes.

a low fee. As a consequence, other nodes are likely to route transac-

tions through the adversarial node. As route establishment is done

via an onion-routing approach, an intermediary node may drop the

payload and fail to follow through on the establishment of the rest

of the path.
2
In this case, the payment does not take place, and the

sender must wait for the original HTLC to expire before attempting

to re-send the payment.

By maximizing its centrality3, the adversary can hijack a large

number of transaction paths, which in turn allows it to launch a

Denial-of-Service attack. Even if payments are re-sent, randomized

route selection may yet again cause the path to go through one of

the attacker’s nodes.

For an illustration, consider Figure 1. First, ignore the red node

and its edges. In the blue network, there are then two groups of

nodes that communicate through a single link with a high fee of 10.

If an adversary (indicated as red node) now introduces the two red

edges of low fee, it essentially creates a shortcut between some of

the nodes, hijacking the transactions that aim to minimize the fee.

We note that counteracting this attack is non-trivial. Essentially,

there are two options within the current framework:

(1) One may consider introducing mechanisms which quickly

alert nodes about interrupted channels. However, this can

also be problematic as it may violate payment privacy, and

also be exploited by adversaries to make false reports of

failed paths.

(2) If the source node does not know which specific channels

were stopped, it may only heuristically avoid nodes or chan-

nels from the original path (which may disconnect the net-

work or lead to higher fees), and/or hope that a new ran-

domly chosen path may reestablish connectivity.

Note that every node can create channels to most of the nodes

that it chooses: the default behavior in all the implementations is to

accept every channel suggestion. This willingness to connect can

be attributed to the perceived low risk in doing so: the construction

guarantees that none of the funds in the channel is at risk of theft.

Given the attack that we propose, it may be wise to accept channel

connections only from known and trusted entities.

2
We validated it as a POC in the lab, using several instances of Lightning nodes

connected to a local Bitcoin network running in “regnet" mode.

3
In graph theory and network analysis, indicators of centrality identify the most

important vertices within a graph [10].

3

ACM Conference on Advances in Financial Technologies, 2020, New York, USA Saar Tochner, Aviv Zohar, and Stefan Schmid

2.3 Amplified Attack: Delay Vulnerability
The basic attack may be further amplified by exploiting the timeout

mechanism to induce delays. If the attacker pretends to participate

in path establishment, but does not really relay the path establish-

ment request, other nodes before it on the path have their funds

locked and will be able to free them only after a timeout. This means

that a higher timeout value will lock the money of the nodes in the

path for a longer time, but at the same time, some of the Lightning

implementations attempt to avoid these high delays. We explore

this aspect as well in our evaluation.

3 FEASIBILITY AND CASE STUDY
We now explore the feasibility of the attack identified above. To this

end, we consider different Lightning network implementations and

also conduct an empirical study on today’s network topology, its

fees and other parameters, which may be of independent interest.

We also report on our experimental evaluation results.

3.1 Existing Implementation Details
In order to investigate the feasibility of our attack, as a case study,

we consider the three main implementations of the Lightning net-

work: lnd (implemented in Golang), C-lightning (implemented in C)

and Eclair (implemented in Scala). The implementations differ in the

way they operate relative to aspects not covered in the BOLTs [23]

which make up the Lightning network’s standard. Specifically, the

standard does not dictate any routing behavior, leaving each imple-

mentation to set its own. In our experiments, we use the default

parameters of every implementation.

3.1.1 lnd. lnd chooses the path of minimum weight, calculated

using the following recursive formula, wherep is the list of channels
in the path, and ams is the list of amounts that go through each

channel (which changes due to fees that are removed at each hop):
4

f ee = ams[i + 1] · p[i].propFee + p[i].baseFee

weiдht[i] = ams[i + 1] · p[i].delay · riskFactor + f ee

The default riskFactor is set to 15/1,000,000,000.

Note that lnd changed this weight function in March 2019, in

commit 6b70791, and added
5
a new summand to the channel’s

weight:
100

edдeProbabil ity . This parameter is an aggregated success

score over the previous routing through this channel. If the node has

no prior knowledge about the channel, then it uses the default value

that is relative to the a-priori failure rate in the network. Otherwise,

the penalty considers only the time of the last failure. In the first

hour, the probability is 0 (dividing by 0 here will yield infinity),

and then it increases exponentially with the formula: 0.6 − 0.6
2
h

(by default, h counts in hours). We note that lnd looks only at the

last transaction failure when it discounts channels, so if the time

between failed attempts is long enough, it will effectively choose

between at most two channels in the network, both with lowweight

(quite similarly to Eclair’s “top 3" approach outlined below). This

is not in itself sufficient to bypass the attacker, as it is easy for it

4
References can be found in the methods FindRoutes and findPath in

lnd.routing.router.go and pathfind.go

5
References can be found in routing/missioncontrol.go:261, routing/pathfind.go:531

and probability_estimator.go:145

to be on both routes (just like we show for Eclair). Additionally,
the decay rate of the penalty on failures needs to be slow in order

to remain relevant as the previous HTLC contract times out. At

last, an attacker that completes the route as requested, but delays

the HTLC secret release until the very last moment, will delay the

transfer significantly and will not suffer the penalty at all.

Our empirical analysis examines lnd without this mechanism

in order to examine “the first route”. Later, Figure 17 shows the

effectiveness of this added penalization method.

3.1.2 C-lightning. C-lightning multiplies the fee for each edge by

a random fuzz factor, and gives a penalty for high timeouts. Denote

by h the hash that was calculated using siphash24 on a random

string that the user generated (before every path selection) and the

short channel id. Let f uzz denote the range of the random noise

factor (plus or minus 0.05 by default).
6
The weight assigned to each

channel is then:

scale = 1 + f uzz · (2 ·
h

2
64 − 1

− 1)

f ee = scale · (ams[i + 1] · p[i].propFee + p[i].baseFee)

weiдht[i] = (ams[i + 1] + f ee) · (p[i].delay · riskFactor) + 1

for a configurable riskFactor , which is 10 by default.

3.1.3 Eclair. Eclair multiplies the fee by a proportional factor de-

pending on the channel properties: delay, capacity, and height

(while assuming upper and lower bounds for each of them). In

addition to the above, Eclair also randomizes the selected paths

uniformly, from the 3 best routes.
7

f ee = ams[i + 1] · p[i].propFee + p[i].baseFee

weiдht[i] = f ee ·(normalizedDelay · delayRatio

+ normalizedCapacity · capacityRatio

+ normalizedHeiдht · aдeRatio)

For upper and lower bounds
8
:

9 < delay < 2016 delayRatio = 0.15

1000 < capacity < 2
24 capacityRatio = 0.5

0 < heiдht < 8640 aдeRatio = 0.35

3.2 First Empirical Insights
Wefirst provide some general analysis of today’s Lightning network.

While some of the analysis is not directly related to routing, it

provides insights into the behavior of users, and what this behavior

implies for the vulnerability of the network. In particular, these

insights show that users tend to use the default values, which we

will later use in our routing analysis.

6
References can be found in the methods bfg_one_edge and find_route in the file

gossipd/routing.c

7
This is a configurable parameter. References can be found in: eclair-

core/src/main/resources/reference.conf, and the methods FindRoute, edgeWeight in

the files eclair/router/Router.scala, Graph.scala

8
8640 is the number of blocks Bitcoin creates in expectaion over a two month period

4

Route Hijacking and DoS in Off-Chain Networks ACM Conference on Advances in Financial Technologies, 2020, New York, USA

3.2.1 Methodology. The following results are based on measure-

ment data we collected using a live Lightning node (lnd) that is
connected to the mainnet (the production network). We used the

CLI command lncli describeдraph in order to extract the network

structure (currently, the whole topology is stored by all nodes in

order to allow source-routing). We use the topology’s snapshot that

was retrieved from a live mainnet Lightning node that we main-

tained. We queried the node five times, ending on May 20th 2020.

Most of our analysis will be focused on the latest snapshot, and in

Figures 19,20 we show that results do not significantly change over

time.

Note that using this method, we can examine only public chan-

nels; our analysis omits private channels. We argue that since these

channels are private, nodes which are not directly part of the private

channel are not aware of them and will not route through them.

Private channels are therefore typically used only at the beginning

of routes (only their creators are aware of them) and so any transfer

other than a direct one between the two will still route using the

rest of the network and will be affected by our attack. Thus most

routing, by design, relies primarily on the public network.

3.2.2 Network Analysis. The network is composed of 4,300 nodes,

33,600 channels, with an average channel capacity of 0.028 BTC.

Figures 2, 3, 4, 5, and 6 show some basic properties of the Light-

ning network. In particular, Figure 2 reveals that the base fee across

channels has two highly common values: most channels simply use

the default value, which is 1000. Interestingly, however, the second

most frequent value, and the most frequent non-default value, is

the minimum possible fee. This provides two main insights: first,

most users do not configure the software beyond the default values;

and second, most of those who do, do it in a way which supports the
network. Thus, we hardly find any evidence for selfish optimiza-

tions of fees in the current network. Both properties may influence

a potential attacker.

Figure 3 shows the corresponding distribution for the propor-

tional fee. Here, the default value is 1/1000, which is also by far

the most frequent value. Interestingly, however, the value 1 is also

frequent; we conjecture that this may be due to a confusion with

the base fee, or with units (satoshis vs millisatoshis). Other high

values also appear, which one may interpret as an attempt to profit

from the network—but this is unlikely: the values are still very

small. Given the network scale, nodes are unlikely to be able to

benefit from such fees [17]. This figure also suggests that there are

altruistic nodes in the network, which are willing to hold channels

without taking fees. Indeed, out of the channels with base fee 0, we

find that the percentage of channels with 0 proportional fee is about

twice the percentage in the whole network (about 40% compared

to 24%).

Similarly to the other figures, Figure 4 shows that most of the

channels use default values, but there are other manual configured

values. In this case, we see that 144 blocks (a full day) or 40 blocks,

are used as timeout values for most of the channels. Note that the

cumulative percentage is similar to the percentage of the default

configuration in Figures 2 and 3.

Figure 5 provides another interesting insight: the capacities of

the channels are surprisingly large: around 5% of the nodes invest

1

10
of a full Bitcoin (10M satoshis) into a channel. This demonstrates

0.0 200.0 400.0 600.0 800.0 1000.0 more
Base Fee in Millisatoshis

0%

20%

40%

60%

Pe
rc

en
t o

f C
ha

nn
el

s

Figure 2: Channels by base fees

0.0 0.2 0.4 0.6 0.8 1.0 more
Proportional Fee in Millisatoshis

0%

20%

40%

60%

Pe
rc

en
t o

f C
ha

nn
el

s

Figure 3: Channels by proportional fees

0.0 25.0 50.0 75.0 100.0 125.0 150.0 more
Delay (time lock delta) in Blocks

0%

10%

20%

30%

40%

Pe
rc

en
t o

f C
ha

nn
el

s

Figure 4: The delay of the channels (144 blocks is ∼ 24 hours)

0.0 5000.0 10000.0 15000.0 20000.0 more
Capacity in 1000 Satoshis

0%

10%

20%

30%

Pe
rc

en
t o

f C
ha

nn
el

s

Figure 5: Channels by capacities

a high level of commitment to the network, which fits in well with

the surprisingly low fees mentioned above.

5

ACM Conference on Advances in Financial Technologies, 2020, New York, USA Saar Tochner, Aviv Zohar, and Stefan Schmid

0.0 10.0 20.0 30.0 40.0 50.0 more
Number of Channels (degree)

0%

10%

20%

30%

Pe
rc

en
t o

f N
od

es

Figure 6: Number of channels per node

0 500 1000 1500 2000
Number of Channels (degree)

0.00

0.25

0.50

0.75

1.00

1.25

To
ta

l C
ap

ac
ity

1e10

Figure 7: Liquidity of nodes vs degree. Every point repre-
sents a single node (5% of the nodes were trimmed).

Figure 6 shows the number of channels per node. We find that

approximately 25% of the nodes are end-points (are of degree 1), and

14% have degree 2. The distribution is heavy-tailed and some nodes

exhibit very high degrees. Furthermore, about 88% of channels are

connected to a node with degree higher than 600, and 90% of the

rest have the default configurations of base and proportional fee.

This suggests that the most sophisticated nodes are usually also

the more central ones.

Figure 7 compares the degree of nodes to the total amount of

money they have locked. We see that there is a weak positive

correlation between these quantities; nodes with higher degree

tend to lock more funds.

3.2.3 Evaluation of Routing Properties. We next take a deeper dive

into routing properties. In particular, we examine the paths that are

selected by the different routing algorithms used in the three main

implementations. For every two nodes we determine the paths for

transactions of size 1 satoshi. Figure 8 displays the difference in

distributions of path lengths that the different algorithms create.

In Figure 9 we see the correlation between the degree of nodes

and the percentage of nodes pairs that route through them. Not

surprisingly, high degree nodes appear on more routes.

3.3 Feasibility of the Attack
We now evaluate the feasibility of a DoS attack, in which the at-

tacker’s goal is to hijack as many routes as possible. We consider

two main scenarios:

1 2 3 4 5 6 7 8
Paths Length

0%

10%

20%

30%

Pe
rc

en
t o

f P
at

hs

lnd
c-lightning
eclair (best)
eclair (average)

Figure 8: Number of edges in each path for each implemen-
tation (for transactions of size 1 satoshi)

0 1000 2000 3000 4000 5000 6000
The Index of Nodes

10
6

10
4

10
2

Pe
rc

en
ta

ge
 (l

og
 s

ca
le

) paths percentage
neighbors percentage

Figure 9: The correlation between the degree and the num-
ber of occurrences in paths. The nodes in this graph are or-
dered according to their degree.

• Collusion by existing central nodes: We consider the

case that a small number of highly central nodes collude and

jointly launch a DoS attack using their existing resources

and connections.

• External attacker: An attacker joins the network, creates

new channels to existing nodes and “hijacks” routes using

low fees and other channel properties, introducing an attrac-

tive alternative to existing routes.

In what follows, let us assume that all pairs of nodes in the

network attempt to transfer 1000 satoshis (around 0.1$ in May

2020) between them exactly once. For our analysis, we compute the

percentage of disrupted pairs of nodes.

Note that we decided to measure transactions between every

pair of nodes, since the real distribution of payments is unknown:

Transactions in the Lightning network are private by design. It

is hard to infer the real distribution since (i) information about

transactions is hidden in the private state of channels and since (ii)

routes are obscured by onion encryption. Following this idea, our

analysis will examine the potential to disrupt transfer between a

large fraction of pairs of nodes.

3.3.1 Colluding Nodes. Figure 10 plots the cumulative centrality of

nodes: the number of paths going through the k most central nodes.

We can see that the five highest ranked nodes can disrupt roughly

60% of all pair connections, and that there are onlyminor differences

between implementations. Clearly, if these nodes collude and start

a DoS attack, they will cause major disruptions to the network.

6

Route Hijacking and DoS in Off-Chain Networks ACM Conference on Advances in Financial Technologies, 2020, New York, USA

0 5 10 15 20 25 30
First Strongest Nodes

0%

20%

40%

60%

80%

C
um

ul
at

iv
e

Pe
rc

en
t o

f P
at

hs

eclair (best)
lnd
c-lightning

Figure 10: Percentage of paths that go through themost com-
mon nodes (assuming transaction sizes of 1000 satoshis)

0 5 10 15 20 25 30
First Strongest Nodes

0%

20%

40%

60%

80%

C
um

ul
at

iv
e

Pe
rc

en
t o

f P
at

hs

eclair (best)
eclair (average)
eclair (worst)

Figure 11: Percentage of paths that go through themost com-
mon nodes. Average: increase the probability to hijack a cre-
ated path;Worst: increase the probability to hijacknodes (all
possible paths between the two nodes).

As Eclair’s implementation chooses uniformly between the best

three routes, we dive deeper with respect to that implementation. If

even one of the top three paths between a given pair of nodes does

not pass through the attacker, there is a chance that the payment

will succeed. Therefore, in Figure 11, we examine three metrics: (i)

[Best] The fraction of hijacked best routes (lowest weight route of

the 3 options), (ii) [Worst] the fraction of pairs for which we hijack

all the top 3 routes, in order to build an attack that always works,

and (iii) [Average] the expected fraction of hijacked routes from the

top 3. The main lesson from the figure is that all metrics are very

similar. Thus Eclair’s randomization between the top 3 routes helps

very little to avoid attackers.

Digging deeper, the figure shows that (iii) yields the highest

hijack rate, (i) the second highest and (ii) the lowest. Figure 12

illustrates a possible explanation to the results in Figure 11.

3.3.2 An External Attacker. We now consider attacks by an exter-

nal adversary that creates links to the network, in order to hijack as

many paths as possible (i.e., to maximize his centrality), and even-

tually perform a denial-of-service attack. We measure the success

of the attacker as a function of the number of new channels that

he creates (which directly represent the cost of the attack).

Figure 13 shows the consequences of an attack on the network for

different implementations. More specifically, we establish channels

from a single attacker node to the nodes identified by Algorithm 3

(which will be discussed broadly in Section 3.1) and calculated the

Figure 12: If the attacker creates the red edges, the best 3
routes are illustrated in blue dashed lines. The approach to
“hijack the best path" results in the value 0.5 (one of the two
best paths passes through the attacker). The approach “hi-
jack all the top 3" results in a value of 0 (as one path does
not pass through the attacker), and “hijack as many from
the top 3" gives a value of 0.66.

0 5 10 15 20 25 30
Number of Added Links

0%

20%

40%

60%

80%
Pe

rc
en

ta
ge

 o
f H

ija
ck

ed
 P

at
hs

eclair
lnd
c

Figure 13: Number of channels (with zero fees andminimum
delay) we need to create to hijack the paths of transactions
of 1000 satoshis.

percentage of hijacked paths, comparing the different implementa-

tions. Note that in both Eclair and C-lightning the routing algorithm
is probabilistic. We therefore use the average success rate of the

attacker over of multiple runs for each path.

Alternatively, we can also consider the hijacked routes with re-

spect to all the available connections between two nodes. Figure 14

shows that the adversary sometimes creates new paths between

nodes that were not previously connected. These new paths now

become available as the route weight and number of hops are de-

creased (below the threshold used by lnd).
Figure 15 shows the effectiveness of the weight-fuzzing method

of C-lightning. We used the weight function without any fuzzing in

order to greedily find the channels that the attacker should create,

and then evaluated our results against routing with different fuzz

factors (choosing the fuzz within this range randomly 4 times per

pair). The figure indicates that the re-introduction of the default fuzz

(±5%) does little to prevent the attack. Our suggested explanation

is that the fuzz multiplies only the channel’s fee, which is very low,

and thus does not substantially change routing decisions.

7

ACM Conference on Advances in Financial Technologies, 2020, New York, USA Saar Tochner, Aviv Zohar, and Stefan Schmid

0 5 10 15 20 25
Number of Added Links

0%

20%

40%

60%

80%

100%

Pe
rc

en
t o

f A
ll

Pa
irs

not hijacked
hijacked
not connected

Figure 14: Disconnected and hijacked nodes (lnd)

0 5 10 15 20 25 30
Number of Added Links

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f H
ija

ck
ed

 P
at

hs

no fuzz (training)
fuzz 5%
fuzz 5%
fuzz 15%
fuzz 30%

Figure 15: The hijack percentage in the trained sampling
(with no fuzz) compared to the percentage in other samples
with different fuzz magnitudes.

In addition to the above insights, in which we used Algorithm 3

(which assumes knowledge of the implementation of nodes), Fig-

ure 16 describes an attacker that uses a channel creation strategy

which is not based on a specific implementation. In this figure the

attacker chooses the channels based on two “absolute" algorithms:

(i) he chooses nodes uniformly at random, or (ii) he chooses the

nodes with the highest degree. The first strategy provides us with a

“control group” or baseline for our other experiments. The second

way of choosing connections, gives us two important insights: The

first is that the attacker does not need to know the distribution of

the current nodes’ implementations in order to attack the system ef-

ficiently. The second is that the topology plays an important role for

the vulnerability of the network, not only the routing algorithms.

Figure 17 shows the effectiveness of the lnd’s penalty, which
“punishes" channels over previously failed routes relatively to the

time that passed since the last routing attempt through these chan-

nels. In these experiments, we find that it takes time for a transac-

tion to fail. In particular, we examined the “punishment" formula:

n
0.6− 0.6

2
h

(in lnd it is n = 100) and parametrized both h (number of

hours between trials) and the fraction’s numerator n. The figure
compares the impact of increasing the time between the trials and

changing n. As we can see, the effectiveness of this method is ques-

tionable, with the current default parameters, as well as with other

parameters that we considered. Since senders cannot know exactly

which node along the route had failed (due to the onion routing),

the node is forced to “punish" all channels. Unfortunately, it is often

the case that attractive routes are very short, and there is only a

0 5 10 15 20 25 30
Number of Added Links

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f H
ija

ck
ed

 P
at

hs

lnd - random
lnd - by degree
eclair - random
eclair - by degree
c - random
c - by degree

Figure 16: The hijack percentage of each implementation for
the attacker that creates channels using a strategy that is not
implementation specific.

0 5 10 15 20 25 30
N'th Trial

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f H
ija

ck
ed

 P
at

hs
h=4; n=100
h=1; n=100
h=4; n=10,000
h=1; n=10,000

Figure 17: The hijack percentage of lnd with the attacker’s
best 30 channels, considering different penalty parameters

single route to the closest “hub". The node then penalizes all routes

with this prefix equally, and the attacker’s channel is still much

cheaper than alternatives. An example is the base fee: one of the

parameters to the channel’s weight. The attacker creates channels

with 0 base fee, while the default is 1000. It is hence much preferred,

even when given the max penalty, which is around 400.

3.4 Amplified Attack With Delays
We now show a way to amplify the DoS attack, by increasing the

time that the attacker holds the hijacked transaction (the delay

parameter). We suggest the following enhancement: the attacker

will report a high delay value for his node, which will then affect

the delay of all preceding HTLCs in the path (recall that delays accu-

mulate in the reverse order of the path to guarantee intermediaries

that the outgoing HTLCs expire before the incoming ones).

Note that there is a trade-off for the attacker, because this delay

is one of the properties used to calculate the channel’s weight,

it makes the route less appealing. Higher delay values imply a

stronger attack that will work on fewer pairs of nodes. Figure 18

shows the hijack rate when the delay of the 30 channels that were

created earlier is increased. Note that there is a large drop around

the delay of 144 blocks, which is related to the fact that many nodes

use lower values as their delay (Figure 4).

8

Route Hijacking and DoS in Off-Chain Networks ACM Conference on Advances in Financial Technologies, 2020, New York, USA

0 50 100 150 200 250 300
Added Delay (in blocks)

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f H
ija

ck
ed

 P
at

hs

lnd
c-lightning
eclair

Figure 18: The hijack percentage when we create edges for
increasing delays, using the top 30 new links from Figure 14

0 5 10 15 20 25 30
First Strongest Nodes

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f H
ija

ck
ed

 P
at

hs

9th Nov 2018
19th Feb 2019
1st Aug 2019
14th Dec 2019
20th May 2020

Figure 19: The hijack percentage of the strongest nodes in
the network across different timestamps.

3.5 Validation Across Time
In order to validate our results, we use snapshots of the topology

over the last year at five points in time: 9th November 2018 at

12:00pm, 27th February 2019 at 11:00am, 27th July 2019 at 17:00pm,

14th December 2019 at 16:30 pm and 20th May 2020 at 16:30 pm

(all times are in UTC+2).
9

The following results show the persistence of the above attacks

over these timestamps. Figure 19 shows the number of paths going

through the k most central nodes, and Figure 20 considers the

external attacker that creates links to the network. We see that the

discussed attack is indeed something that is persistent across past

states of the Lightning network, and its impact remains high.

4 ANALYSIS AND OPTIMIZATION OF
ATTACKER STRATEGY

Having demonstrated the feasibility of the attacks empirically, we

now explore the optimization problems underlying the attack from

an algorithmic perspective. To this end, we propose an analytical

model for the adversary. In particular, we will show that while

determining the best adversarial strategy is an NP-hard problem,

efficient polynomial-time approximation algorithms exist. To this

end, we revisit the connection to graph centrality theory, which

turns out to come with a twist in our setting.

9
The initial release of the Lightning Network was in 15th March 2018

0 5 10 15 20 25 30
Number of Added Links

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f H
ija

ck
ed

 P
at

hs

9th Nov 2018
19th Feb 2019
1st Aug 2019
14th Dec 2019
20th May 2020

Figure 20: The hijack percentage of an attacker that adds
new links across different timestamps.

4.1 Preliminaries
Let V be the nodes that participate in the network and E be the

channels, i.e., (u,v) ∈ E ⊆ V ×V are nodes with established chan-

nel.
10

A valid path from a source node s ∈ V to a target node t ∈ V
is a list of edges ((u1,v1), · · · , (un ,vn)) ∈ E∗ where u1 = s,vn = t
and vi = ui+1 for all i .

The path selection algorithmAW is an algorithmwith the inputs:

source node, target node, and the channel graph. It returns a valid

path from the source to the target. The centrality of a channel e is
the percentage of the network’s transactions that pass through this

channel. In the same way, define the centrality of a set of channels

e1, · · · , en (note: this is not necessarily the sum of their individual

centralities). Denote this function with C : 2
E −→ R. Note that

although this definition is close to the notion of betweeness central-
ity [10], we consider here routing algorithms that do not simply

choose the min weight path, like Eclair’s top-k randomization.

Note that in this simple model, the transaction size is constant

and all the channels have enough capacity to relay it. Therefore it

should be considered as a subgraph of the topology that contains

only relevant channels.

4.2 Attacker’s Algorithms
In general, computing an optimal attack is hard, as the problem of

computing optimal link additions is already NP-hard for shortest

paths, i.e., betweenness centrality [7]. We hence explore the pos-

sibility of polynomial-time approximation algorithms: algorithms

which are fast enough to scale at least to all the nodes and channels

of the Lightning network (about 4000 nodes at the moment).

In the following, we will explore an opportunity introduced

by submodularity, and consider the connection to the problem of

betweeness maximization with bounded budget [5].

Lemma 1. The centrality of existing edges for a given node is a
non-negative, monotone, sub-modular function. That is, for ∀A,B ⊆ E
it holds that C(A) + C(B) ≥ C(A ∪ B) + C(A ∩ B)

Proof. Recall that C(A) is the number of transactions that go

through the channels in A. The non-negative and monotone proper-

ties follow directly from the definition. Regarding the sub-modularity,

we consider the different cases: (i) We count transactions that go

through only one of A and B exactly once, on both sides of the

10
We are not interested in the P2P network itself, only in the channels graph

9

ACM Conference on Advances in Financial Technologies, 2020, New York, USA Saar Tochner, Aviv Zohar, and Stefan Schmid

equation. (ii) Transactions that do not go through A or B, we do
not count on both sides. (iii) Transactions that go both through

A and B and that are in A ∩ B, we count twice on every side. (iv)

Transactions that go both throughA and B, but that are not inA∩B,
we count twice on the left side, but only once on the right.

Overall, the left side can be larger then the right side, as desired. □

Remark 1. The above lemma can be rephrased also to A,B ⊆ V
(a set of nodes instead of edges).

Lemma 2. The centrality of a node creating new edges is a non-
negative, monotone, sub-modular function. I.e. ∀N1 ⊆ N2 ⊆ V and
x ∈ V \ N2, denote by A,B the sets of new channels that connect
N1,N2 to a new node v , respectively, and e that connects x to v . Then
it holds that C(A ∪ {e}) − C(A) ≥ C(B ∪ {e}) − C(B).

The proof is equivalent to the proof of Theorem 5.2 in [7]. The

key ideas are: (i) If we consider two sets of new edges X ⊆ Y ,
then the distance between every two nodes in the graph with the

new edges from X is greater equal the distance when adding Y . (ii)
If all new edges are connected to only the attacker’s nodes, then

the attacker’s centrality when adding X is less than or equal to

its centrality when adding Y . (iii) Strong inequality in (i) implies

strong inequality in (ii).

Let us now consider a repetitive attack, in which our goal is to

attract others to always route through our node. To achieve this

goal, we will add many edges with 0 fees and delay. Each such

channel bears some costs for the attacker due to the need to lock

funds. To decrease costs we therefore wish to minimize the number

of channels.

Function GreedyApproach(k , f , E,V , v̄):
for i = 1, · · · ,k do

e = arg maxv ∈V f (E ∪ {(v, v̄)})

E = E ∪ {e}
Algorithm 1: Greedy perspective to find k channels that maxi-

mize the function f

Theorem 1. A greedy algorithm that given edges E, node n and
number k , iteratively finds an edge e (e ∈ E in the existing edge case,
or e < E in the new edges case) that maximizes the centrality of n and
updates E = E∪{e} (Algorithm 1), gives a 1−(1− 1

k)
k approximation.

Proof. As in § 4 (corollary of Prop. 4.3) of [29], we can apply

the greedy heuristic on the function C, which is a sub-modular set

function according to Lemmas 1 in the existing edge case, or 2 in

the new edges case. □

It remains to show an efficientmethod to calculate arg maxe f (E∪
{e}). This can simply be achieved by dynamic programming: find

the best edge to add and update the state accordingly. Algorithm 2

describes this idea.

In our algorithm, we made some further improvements, based on

the fact that there are no valid paths between all the pairs (because
of defaults of max hops or max fee). See Algorithm 3 for details.

It is important to notice that the above algorithms are indeed

not optimal and are just an approximation. This only strengthens

our results: these algorithms yield, in practice, very good results

Function Preprocessing(E, V):
dbPaths = ∅

dbVertexes = ∅

for v ∈ V do
dbPaths .update(perform dijkstra and get shortest

paths and weights to v)
dbVertexes .update(map between vertex to all the

participated paths)

Function FindNextNaive(E, V , v̄):
best , value = null, 0;

for candidate ∈ V do
counter = 0

for src,dst ∈ V ×V do
if shortest(src, candidate) + shortest(v̄ , dst) ≤
shortest(src, dst) then
counter ++

if counter > value then
best , value = candidate , counter

return best

Algorithm 2: calculate arg maxe f (E ∪ {e}) efficiently

Function FindNext(E, V , v̄):
best , value = null, 0;

for candidate ∈ V do
counter = 0

for src with path to candidate do
for dst with path from src do

if (src,dst) already been hijacked then
continue

if shortest(src, candidate) + shortest(v̄ , dst) ≤
shortest(src, dst) then
counter ++

if counter > value then
best , value = candidate , counter

return best

Algorithm 3: Our implementation of findNext, minimizing run-

time and the number of calls to the database

(for the attacker), and more sophisticated attackers may inflict even

more damage.

5 LESSON LEARNED - SUGGESTED
IMPROVEMENTS

Let us now explore methods to increase the robustness of the net-

work, and at least partially address the tradeoffs observed above.

We suggest first ideas based on the empirical analysis that we

performed in §3.3. We will focus on insights that aim to increase

the cost of a successful hijack attack. In Figures 21,22,23 we show

the impact of slight changes to Eclair’s weight function.
The first lesson is related to the vulnerability of Eclair to the

delay attack. Here, the weight is determined by multiplying the

channel’s parameters with the fee. This creates a tradeoff between

10

Route Hijacking and DoS in Off-Chain Networks ACM Conference on Advances in Financial Technologies, 2020, New York, USA

the fee and the delay: multiplying the delay and dividing the fee by

the same factor, will result in the same weight, but will strengthen

the attack. Therefore we suggest to either multiply the delay by the

total amount of the transaction, or to add it to the weight function

as another summand.

The second lesson is how to create a non-deterministic routing

algorithm. C-lightning adds noise to the channel’s fee (fuzzing).

As we saw, this has a low effect in case of an attack because of

the exceptionally low fees set by the attacker. On the other hand,

Eclair chooses a path uniformly from the set of best paths, which

also has a low effect in case of an attack because the attacker can

create many different low-weight paths using very few resources.

Therefore, we suggest to add fuzz to the total weight of the channel,

and avoid choosing one of the top-k paths.

Additional lessons are worth pointing out: (i) older channels

are better because they came with a cost: interest rate on locked

liquidity (thus they are less likely to belong to the attacker, or they

exact a cost on it); (ii) high capacity is safer than low capacity; (iii)

high delay is important (and should be penalized).

We have considered adding the betweeness rank of channels to

the weight calculation, but we suspect that it will make the rout-

ing algorithm computationally expensive, and therefore diverges

from the goal of creating simple improvements to existing weight

functions.

Improve Eclair One may consider more rigorous approaches to

creating a weight function that will be resilient to hijacking attacks

and preserve important network properties (such as connectivity,

low fees, etc.). Here, we will not suggest an optimal weight function,

but only try to improve upon existing ones, following the structure

of current implementations. We base our suggestion on Eclair’s
weight function that was presented in §3.1.3.

We suggest to take into account the following channel properties.

Weight parameters should be determined according to the network

and the user’s configuration. The general structure is:

f ee = ams[i + 1] · p[i].propFee + p[i].baseFee

weiдht[i] = scale · (normalizedDelay · delayRatio

+ normalizedHeiдht · aдeRatio

− normalizedCapacity · capacityRatio

− capacity · heiдht · IntrestRatio +
f ee

ams[i + 1]
· f eeRatio)

We use scale ∼ N(1,σ), which is the standard Gaussian distribution
around 1 with variance σ 2

and some normalization factor. Note

that the fee is not normalized and that the scale multiplies globally,

and observe the negative sign in the capacity parameters.

In order to evaluate the above function, we use the following pa-

rameters:σ = 0.2,delayRatio = 0.5,aдeRatio = 0.5, capacityRatio =
0.3, f eeRatio = 100, and the normalization parameters of Eclair. We

implemented this weight function and evaluated it using the same

experiments as before. The results are presented in Figures 21,22,23.

We note that these results require further exploration, specifi-

cally, it is important to evaluate other features of the new weight

function, including the average fees for paths that it finds, and the

failure rates of paths it selects due to liquidity imbalances. We leave

such deeper evaluations for future work.

0 5 10 15 20 25 30
First Strongest Nodes

0%

20%

40%

60%

80%

C
um

ul
at

iv
e

Pe
rc

en
t o

f P
at

hs

eclair (best)
lnd
c-lightning
suggested

Figure 21: Percentage of paths that go through themost com-
mon nodes (assuming transaction sizes of 1000 satoshis)

0 5 10 15 20 25 30
Number of Added Links

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f H
ija

ck
ed

 P
at

hs

eclair
lnd
c
suggested

Figure 22: The hijack percentage in the trained sampling
(with no fuzz) compared to the percentage in other samples
with different fuzz magnitude

0 50 100 150 200 250 300
Added Delay (in blocks)

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f H
ija

ck
ed

 P
at

hs

lnd
c-lightning
eclair
suggested

Figure 23: The hijack percentage when we create edges with
higher and higher delay, using the top 30 new links

6 RELATEDWORK
Since Bitcoin was first deployed in 2009 [27], it received significant

interest in academia, including research on its security aspects.

While security research initially focused on the analysis of the

double-spending attack [35], many additional vulnerabilities were

identified later [22].

The P2P network of blockchain systems has been analyzed inten-

sively, mainly for Bitcoin [20], Ethereum [19] (including the central-

ization analysis in [12]) and the Lightning network [6],[36],[39], but

similar analysis exist also in other contexts, e.g., for Skype [14]. Our

routing attacks can generally be understood from the perspective of

11

ACM Conference on Advances in Financial Technologies, 2020, New York, USA Saar Tochner, Aviv Zohar, and Stefan Schmid

centrality. Betweenness centrality and its generalizations have been

studied much in the literature already [10]. A particularity in our

context is that the weight of an edge is calculated using properties

of the edges that may be altered by an incentivized attacker. For

an overview of research on networking aspects of cryptocurrency

networks, we refer the reader to a survey by Dotan et al. [11].

Many attacks on the network level are already known, e.g., the

eclipse attacks on Bitcoin [16] and Ethereum [25]. Route hijacking

attackswere researched in a variety of fields, such aswireless ad-hoc

networks [9], general P2P networks [28], and Bitcoin [1], however,

we are not aware of any work on the type of denial-of-service

attack considered in this paper. That said, an interesting recent

work also discusses path hijacking in the Lightning network [33].

There, the focus is on isolation attacks: the authors consider only

the graph of the channels, without referring to the different im-

plementations of the routing algorithms. Our work continues this

idea and generalizes it to a general DoS attack, where the attacker

tries to damage the transactions of the network and not the nodes

themselves. The delay amplifier and the analysis of the differences

between the weight functions and randomized path selection has

not been researched yet.

Off-chain networks, in particular, attracted many researchers to

study possible attacks. Some of these attacks overload the chan-

nels with pending transactions to DoS the network [26], create

congestion in the underlined blockchain to steal money [15], and

deanonymize users with active and passive timing attacks [31],

[34].

Routing attacks on different types of networks were studied as

well. As an example, in MANETs [37], there exist low-resources

routing attacks on TOR [4] that deanonymize its users and create

“blackholes" (non-existing nodes that drop routes). Following these

papers’ perspective, the novelty of our work is fundamentally based

on the incentives of the nodes that need to pay fees to channels

that participate in the route. This incentive supports the attacker,

that will offer lower fees than other channels.

Several solutions were suggested for different types of networks.

As an example, in [21] it was suggested to do multipath routing,

which is not possible in the “all or nothing" approach, which is

typical to cryptocurrencies. In [18] it was suggested to use routing

that is based on geographic locations, which is impossible here due

to the privacy in the network.

7 DISCUSSION & CONCLUSIONS
This paper identified and demonstrated the feasibility of a novel

attack on off-chain networks, in which an adversary can attract

many routes at low cost, in order to block a large volume of transac-

tions. We discussed the underlying optimization tradeoffs for both

the attacker and for rational defenders, and pointed out the risk of

accepting channel connections from untrusted entities. We found

that random fuzzing on the fee of every channel only provides weak

protection in practice compared to fuzzing the overall weight of the

channel. Furthermore, we showed that if the defender considers the

fee as a multiplier to the weight, then it will be especially vulnerable

to the increasing delay attack.

We see our work as a first step and believe that it opens several

interesting avenues for future work. Generally, it will be interesting

to analyze properties that weight functions should have, and build

optimal functions accordingly. It would also be interesting to study

mechanism design aimed at incentivizing nodes to choose routes

that will increase the overall security of the network. One may also

examine this attack on future features, such as node “switchboards"

for message passing, which limit the connections of the attacker.

More generally, we believe that the inherent tradeoffs identified

in this paper force us to revisit today’s transaction fee based ap-

proach to design off-chain networks, and explore radically different

solutions. For example off-chain cryptocurrency network providers,

which similarly to ISPs charge monthly subscription fees, could

provide an interesting alternative economic model that separates

fee payments from the underlying relay and routing mechanisms.

Acknowledgments. Research in part supported by the Vienna Sci-

ence and Technology Fund project WHATIF, ICT19-045, 2020-2024

and by the Israel Science Foundation (grant 1504/17) as well as a

grant from the HUJI Cyber Security Research Center in conjunction

with the Israel National Cyber Bureau.

REFERENCES
[1] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking bitcoin:

Routing attacks on cryptocurrencies. In 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 375–392.

[2] Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck Youssef, and

Erik Zenner. 2015. Ripple: Overview and outlook. In International Conference on
Trust and Trustworthy Computing. Springer, 163–180.

[3] Tobias Bamert, Christian Decker, Lennart Elsen, Roger Wattenhofer, and Samuel

Welten. 2013. Have a snack, pay with Bitcoins. In IEEE P2P 2013 Proceedings.
IEEE, 1–5.

[4] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas

Sicker. 2007. Low-resource routing attacks against tor. In Proceedings of the 2007
ACM workshop on Privacy in electronic society. ACM, 11–20.

[5] Xiaohui Bei, Wei Chen, Shang-Hua Teng, Jialin Zhang, and Jiajie Zhu. 2011.

Bounded budget betweenness centrality game for strategic network formations.

Theoretical Computer Science 412, 52 (2011), 7147–7168.
[6] Ferenc Béres, Istvan Andras Seres, and András A Benczúr. 2019. A cryp-

toeconomic traffic analysis of bitcoins lightning network. arXiv preprint
arXiv:1911.09432 (2019).

[7] Elisabetta Bergamini, Pierluigi Crescenzi, Gianlorenzo D’angelo, Henning Mey-

erhenke, Lorenzo Severini, and Yllka Velaj. 2018. Improving the betweenness

centrality of a node by adding links. Journal of Experimental Algorithmics (JEA)
23 (2018), 1–5.

[8] Christian Decker and Roger Wattenhofer. 2015. A fast and scalable payment

network with bitcoin duplex micropayment channels. In Symposium on Self-
Stabilizing Systems. Springer, 3–18.

[9] Hongmei Deng,Wei Li, and Dharma P Agrawal. 2002. Routing security in wireless

ad hoc networks. IEEE Communications magazine 40, 10 (2002), 70–75.
[10] Shlomi Dolev, Yuval Elovici, and Rami Puzis. 2010. Routing betweenness central-

ity. Journal of the ACM (JACM) 57, 4 (2010), 25.
[11] Maya Dotan, Yvonne-Anne Pignolet, Stefan Schmid, Saar Tochner, and Aviv

Zohar. 2020. Survey on Cryptocurrency Networking: Context, State-of-the-Art,

Challenges. arXiv preprint arXiv:2008.08412 (2020).
[12] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert Van Renesse, and Emin Gün

Sirer. 2018. Decentralization in bitcoin and ethereum networks. arXiv preprint
arXiv:1801.03998 (2018).

[13] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and

Arthur Gervais. 2019. SoK: Off The Chain Transactions. IACR Cryptology ePrint
Archive 2019 (2019), 360.

[14] Saikat Guha and Neil Daswani. 2005. An experimental study of the skype peer-to-
peer voip system. Technical Report. Cornell University.

[15] Jona Harris and Aviv Zohar. 2020. Flood & Loot: A Systemic Attack On The

Lightning Network. arXiv preprint arXiv:2006.08513 (2020).
[16] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse

attacks on bitcoin’s peer-to-peer network. In 24th {USENIX} Security Symposium
({USENIX} Security 15). 129–144.

[17] Alyssa Hertig. 2018. Coindesk: You Can NowGet Paid (a Little) for Using Bitcoin’s

Lightning Network.

[18] Zdravko Karakehayov. 2005. Using REWARD to detect team black-hole attacks

in wireless sensor networks. Wksp. Real-World Wireless Sensor Networks (2005),

12

Route Hijacking and DoS in Off-Chain Networks ACM Conference on Advances in Financial Technologies, 2020, New York, USA

20–21.

[19] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew Miller,

and Michael Bailey. 2018. Measuring Ethereum network peers. In Proceedings of
the Internet Measurement Conference 2018. ACM, 91–104.

[20] Philip Koshy, Diana Koshy, and Patrick McDaniel. 2014. An analysis of anonymity

in bitcoin using p2p network traffic. In International Conference on Financial
Cryptography and Data Security. Springer, 469–485.

[21] Patrick PC Lee, Vishal Misra, and Dan Rubenstein. 2007. Distributed algorithms

for secure multipath routing in attack-resistant networks. IEEE/ACM Transactions
on Networking 15, 6 (2007), 1490–1501.

[22] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. 2017. A survey

on the security of blockchain systems. Future Generation Computer Systems
(2017).

[23] Lightning Network In-Progress Specifications [n.d.]. Basis of Lightning Technol-

ogy (BOLTs). https://github.com/lightningnetwork/lightning-rfc.

[24] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability

and Interoperability.. In NDSS.
[25] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. 2018. Low-Resource Eclipse

Attacks on Ethereum’s Peer-to-Peer Network. IACR Cryptology ePrint Archive
2018 (2018), 236.

[26] Ayelet Mizrahi and Aviv Zohar. 2020. Congestion attacks in payment channel

networks. arXiv preprint arXiv:2002.06564 (2020).
[27] Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash system.

(2008).

[28] Naoum Naoumov and Keith Ross. 2006. Exploiting p2p systems for ddos attacks.

In Proceedings of the 1st international conference on Scalable information systems.
ACM, 47.

[29] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functions—I. Mathematical

programming 14, 1 (1978), 265–294.

[30] Raiden Network-Fast. 2018. cheap, scalable token transfers for Ethereum.

[31] Utz Nisslmueller, Klaus-Tycho Foerster, Stefan Schmid, and Christian Decker.

2020. Toward Active and Passive Confidentiality Attacks On Cryptocurrency

Off-Chain Networks. arXiv preprint arXiv:2003.00003 (2020).
[32] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments.

[33] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. 2019. Discharged Payment

Channels: Quantifying the Lightning Network’s Resilience to Topology-Based

Attacks. arXiv preprint arXiv:1904.10253 (2019).
[34] Elias Rohrer and Florian Tschorsch. 2020. Counting Down Thunder: Timing

Attacks on Privacy in Payment Channel Networks. arXiv preprint arXiv:2006.12143
(2020).

[35] Meni Rosenfeld. 2014. Analysis of hashrate-based double spending. arXiv preprint
arXiv:1402.2009 (2014).

[36] István András Seres, László Gulyás, Dániel A Nagy, and Péter Burcsi. 2020. Topo-

logical analysis of bitcoin’s lightning network. In Mathematical Research for
Blockchain Economy. Springer, 1–12.

[37] Sheenu Sharma and Roopam Gupta. 2009. Simulation study of blackhole attack

in the mobile ad hoc networks. Journal of Engineering Science and Technology 4,

2 (2009), 243–250.

[38] Yonatan Sompolinsky and Aviv Zohar. 2013. Accelerating Bitcoin’s Transaction

Processing. Fast Money Grows on Trees, Not Chains. IACR Cryptology ePrint
Archive 2013, 881 (2013).

[39] Saar Tochner and Stefan Schmid. 2020. On Search Friction of Route Discovery in

Offchain Networks. arXiv preprint arXiv:2005.14676 (2020).
[40] Manny Trillo. 2013. Stress test prepares VisaNet for the most wonderful time of

the year. URl: http://www. visa. com/blogarchives/us/2013/10/10/stress-testprepares-
visanet-for-the-most-wonderful-time-of-the-year/index. html (2013).

13

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 DoS Attack via Route Hijacking
	2.1 Context of the Attack
	2.2 Basic Attack: A Rerouting Vulnerability
	2.3 Amplified Attack: Delay Vulnerability

	3 Feasibility and Case Study
	3.1 Existing Implementation Details
	3.2 First Empirical Insights
	3.3 Feasibility of the Attack
	3.4 Amplified Attack With Delays
	3.5 Validation Across Time

	4 Analysis and Optimization of Attacker Strategy
	4.1 Preliminaries
	4.2 Attacker's Algorithms

	5 Lesson Learned - Suggested Improvements
	6 Related Work
	7 Discussion & Conclusions
	References

