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Abstract

Maintaining and updating shortest paths information in a graph is a fundamental problem with many
applications. As computations on dense graphs can be prohibitively expensive, and it is preferable to
perform the computations on a sparse skeleton of the given graph that roughly preserves the short-
est paths information. Spanners and emulators serve this purpose. Unfortunately, very little is known
about dynamically maintaining sparse spanners and emulators as the graph is modified by a sequence
of edge insertions and deletions. This paper develops fast dynamic algorithms for spanner and emulator
maintenance and provides evidence from fine-grained complexity that these algorithms are tight. For
unweighted undirected m-edge n-node graphs we obtain the following results.

Under the popular OMv conjecture, there can be no decremental or incremental algorithm that main-
tains an n1+o(1) edge (purely additive) +nδ-emulator for any δ < 1/2 with arbitrary polynomial pre-
processing time and total update time m1+o(1). Also, under the Combinatorial k-Clique hypothesis, any
fully dynamic combinatorial algorithm that maintains an n1+o(1) edge (1+ε, no(1))-spanner or emulator
for small ε must either have preprocessing time mn1−o(1) or amortized update time m1−o(1). Both of
our conditional lower bounds are tight.

As the above fully dynamic lower bound only applies to combinatorial algorithms, we also develop
an algebraic spanner algorithm that improves over the m1−o(1) update time for dense graphs. For any
constant ε ∈ (0, 1], there is a fully dynamic algorithm with worst-case update time O(n1.529) that whp
maintains an n1+o(1) edge (1 + ε, no(1))-spanner.

Our new algebraic techniques allow us to also obtain a new fully dynamic algorithm for All-Pairs
Shortest Paths (APSP) that can perform both edge updates and can report shortest paths in worst-case
timeO(n1.9), which are correct whp. This is the first path-reporting fully dynamic APSP algorithm with
a truly subquadratic query time that beats O(n2.5) update time. It works against an oblivious adversary.

Finally, we give two applications of our new dynamic spanner algorithms: (1) a fully dynamic (1+ε)-
approximate APSP algorithm with update time O(n1.529) that can report approximate shortest paths in
n1+o(1) time per query; previous subquadratic update/query algorithms could only report the distance,
but not obtain the paths; (2) a fully dynamic algorithm for near-2-approximate Steiner tree maintenance
with both terminal and edge updates.
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1 Introduction

Computing shortest paths in a graph is a fundamental problem with many applications. However, as on
dense graphs the running time can be prohibitively expensive, it is preferable to perform the computation on
a sparser representation of the given graph that approximately preserves the shortest paths distances. Such
representations are called spanners and emulators. Given an undirected, unweighted graph G = (V,E), a
subgraph H of G is defined to be an (α, β)-spanner if for every pair of vertices x, y ∈ V , we have that

distG(x, y) ≤ distH(x, y) ≤ α · distG(x, y) + β.

A graph H = (V,E′) is defined to be an (α, β)-emulator if it fulfills the above constraint, is possibly edge-
weighted, but not necessarily a subgraph of G. Thus every spanner is also an emulator but not vice versa.
When evaluating the quality of a spanner or emulator H three parameters are of interest: the multiplicative
approximation α, the additive approximation β and the sparsity of H that is the number of edges in H .

Spanners and emulators have a variety of applications, ranging from efficient routing to parallel and
distributed algorithms to efficient distance oracles, i.e. data structures that answer shortest-path queries.
Thus, there exists a large body of work on computing spanners (see below). As real-world graphs are
often dynamic, it raises the question whether spanners and emulators can be maintained efficiently when the
graph is modified by edge updates. Unfortunately, very little is known about this question. In this article,
we are concerned with the design of efficient algorithms to dynamically maintain an (1 + ε, β)-spanner on
an undirected unweighted graph that is undergoing edge insertions and deletions.

If the update sequence is restricted to consist exclusively of insertions, we say that the graph is incremen-
tal and if it only consists of edge deletions we say that it is decremental. If the graph is either incremental
or decremental, we also say it is partially dynamic and otherwise we say it is fully dynamic.

Apart from giving new decremental and fully dynamic deterministic and randomized algorithms that
maintain spanners and emulators we also provide evidence from fine-grained complexity that these algo-
rithms are tight. We then use our new algorithms and techniques to give novel fully dynamic approximate
and exact all-pairs shortest paths (APSP) algorithms that can report the corresponding shortest path, ad-
dressing an open question raised by [8282]. We further provide applications for other problems such as the
maintenance of an approximate Steiner tree of a graph.

Prior Work. In this section, we discuss work that is directly related to the results in our paper. We use
Õ-notation to suppress logarithmic factors, let n and m be the maximum number of vertices and edges
respectively in any version of the graph under consideration. Unless otherwise specified, all graphs are
undirected and unweighted. To ease the discussion, we assume for the rest of the section that ε is a constant.

Spanners and Emulators. Spanners and static algorithms to construct them have been studied in great
detail for multiplicative approximation [1212, 7070, 1010, 3636, 1313, 1818, 7272] culminating in near-optimal algorithms
to construct (2k − 1, 0)-spanners of sparsity Õ(n1+1/k). There has also been an extensive line of research
on purely additive spanners [99, 88, 3838, 2828, 1616, 3030] where (1, 2), (1, 4) and (1, 6)-spanners are known of
sparsity Õ(n3/2), Õ(n7/5) and Õ(n4/3). While algorithms for fast constructions have been studied (e.g.
[8686, 6363, 6464]), no near-optimal algorithm for the construction of any of the above additive spanners is known.
For example, the fastest algorithm for constructing a O(1)-additive spanner with O(n4/3) edges is O(n2).
Further, Abboud and Bodwin [22] proved that any purely additive spanner of sparsity Õ(n4/3−ε), for any
constant ε > 0, has at least polynomial in n additive error. Constructions by Bodwin and Vassilevska
Williams [2727, 2626] are known giving sparsity Õ(n) and additive error Õ(n3/7+ε). Following [22], Huang and
Pettie [5858] constructed a family of graphs such that any Õ(n)-sized spanner for an n-node graph in the
family must have Ω(n1/13) additive stretch.
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Mixed-error (α, β)-spanners were studied in [4444, 1616, 8181, 7171, 4040, 1919]. Most of these results focus on
the setting of near-additive spanners, that is (α, β)-spanners where α = 1 + ε for some arbitrarily small
constant ε > 0. The goal of this setting is to obtain extremely sparse spanners Õ(n). The best results obtain
(1 + ε, no(1))-spanners with Õ(n) edges. Abboud et al. [33] further developed a fine-grained hierarchy to
give lower bounds for trade-offs between ε, additive error and the sparsity of emulators. These lower bounds
also apply to the setting of (α, β)-emulators.

Finally, we point out that a related notion to emulators are hopsets: given a graph G, we say that a graph
H is a (α, β, h)-hopset if for every two vertices x, y ∈ V , there is a path πx,y from x to y in the graphG∪H
consisting of at most h edges, such that distG(x, y) ≤ w(πx,y) ≤ (1 + ε)distG(x, y) + β where w(πx,y)
denotes the weight of the path πx,y. There is a lot of recent work on hopsets, especially (1+ε, β, h)-hopsets,
for which there are efficient algorithms [4242, 5959, 4141] with β = 0 and h = no(1). The hopset literature builds
heavily on previous clustering techniques from near-additive spanners. An excellent survey that highlights
this connection was recently given by Elkin and Neiman [4343].

Spanners and Emulators in Dynamic Graphs. Spanners have also been extensively studied in the dy-
namic graph setting, where near-optimal algorithms for multiplicative spanners in fully dynamic graphs
exist [1111, 3939, 1717, 1414, 2525, 2323, 4848, 2020]. For hopsets, the dynamic graph literature has been mainly concerned
with maintaining (1 + ε, no(1), no(1))-hopsets in partially dynamic graphs [5555, 2121, 5050] where they were used
to derive fast algorithms for the partially dynamic Single-Source Shortest Paths problem. As was observed
in [5252] (Lemma 4.2) combining [7474] with [8181] leads to a (1 + ε, 2(1 + 2/ε)k−2)-approximate decremental
emulator with total time O((1 + 2/ε)k−2mn1/k). To our knowledge, additive and near-additive spanners
have not been studied in the dynamic graph literature. Also, there are no known conditional lower bounds
for dynamic algorithms for maintaining a spanner.

Fully Dynamic Shortest Paths with Worst-Case Update Time. Closely related to maintaining a span-
ner/emulator is the problem of maintaining shortest paths. There are three problems of focal interest:

(1) The s-t Shortest Path (st-SP) problem asks for the shortest path between two fixed vertices s, t ∈ V .
(2) The Single-Source Shortest Paths (SSSP) problem asks for the shortest path tree from a fixed vertex.
(3) The All-Pairs Shortest Paths (APSP) problem asks for the shortest path between every vertex pair.
For each of these three problems, there is the distance reporting and the path reporting variant, where

the former requires to only return the length of the shortest path, while the latter needs to return the actual
shortest path. There is an enormous line of research on these three problems in various settings. Since our
fully dynamic algorithms have worst-case guarantees on update time, we focus this discussion on prior work
on fully dynamic algorithms with worst-case update time.

For the st-SP problem and the SSSP problem the lower bounds in [44, 5656] suggest that the essentially best
solution to these problems is to rerun Dijkstra’s algorithm after every update (even when the updates are not
required to be worst-case). However, these conditional lower bounds are based on the BMM conjecture and
therefore hold only for “combinatorial” algorithms. Indeed, Sankowski [7676] has shown that a worst-case
update time of O(n1.932) and query time of O(n1.288) to obtain the distance between a pair of vertices is
possible and therefore has given the first subquadratic algorithm for the distance-reporting version of the st-
SP problem. Recently, this result was further improved to worst-case update time Õ(n1.863) and query time
Õ(n0.45) in [8282] where distance reporting queries are only required to return a (1 + ε)-approximate distance
estimate. Rebalancing their trade-off terms, the authors also obtain an algorithm that maintains (1 + ε)-
approximate SSSP with worst-case update time Õ(n1.823) and (1 + ε)-approximate APSP in worst-case
update time Õ(n2).

A major drawback of both approaches is that they cannot answer path reporting queries. The algorithm
with fastest worst-case update time that can return actual (approximate) shortest-paths for st-SP and SSSP
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remains to rerun Dijkstra’s algorithm and for the APSP problem to use a combinatorial data structure where
the currently best worst-case update is Õ(n2+2/3) for weighted graphs and Õ(n2.5) time for unweighted
graphs (see [7979, 66, 5151]).

For approximate distance oracles with amortized running time, Abraham et al. [77] achieved an 2O(k)-
approximation with O(

√
mn1/k) amortized update time for constant k, and Forster et al. [4949] gave an

(O(log n))3k−2-approximation with O(k log2 n) query time and m1/k+o(1)(O(log n))4i−3 update time for
any k ≥ 2, being the first to break the

√
m update time barrier.

Partially Dynamic Shortest Paths. The classic ES-tree data structure [4747] initiated the field with a de-
terministic total time O(mn) algorithm for partially dynamic exact SSSP. In the setting where a (1 + ε)-
multiplicative approximation is allowed, Bernstein and Roditty [2424] gave the first improvement over the
ES-tree for an approximation algorithm with an algorithm for decremental (1 + ε)-approximate SSSP with
total time n22O(

√
log(n)). Subsequently, Henzinger et al. gave an algorithm [5555] with total update time

m1+o(1). These algorithms are all randomized and against an oblivious adversary.
Bernstein and Chechik gave the first deterministic partially dynamic (1 + ε)-approximate algorithm

that improves upon the ES-tree data structure; it runs in total time Õ(n2) [2121] and does not report paths,
only distances. Chuzhoy and Khanna [3434] gave an algorithm with total time n2+o(1) that works against
an adaptive adversary and returns paths with n1+o(1) query time. Chuzhoy and Saranurak [3535] recently
further improved the running time of the path query to |P |no(1) for an approximate shortest path P . Further,
Bernstein and Chechik recently gave an algorithm with total update time Õ(mn3/4) [2222], which was then
improved to O(mn0.5+o(1)) by Probst Gutenberg and Wulff-Nilsen [5050]. Neither of these data structures
can answer path queries which was recently addressed in [2020].

For decremental APSP, Henzinger et al. [5555] presented an approximation algorithm with stretch ((2 +
ε)k − 1) and total update time m1+1/k+o(1) for any positive integer k. They also gave an algorithm with
stretch (2 + ε) or (1 + ε, 2) with total update time Õ(n2.5) in [5353] which was recently derandomized by
Chuzhoy and Saranurak [3535]. Finally Henzinger et al. [5353] presented a (1 + ε)-approximate deterministic
algorithm with Õ(mn/ε) update time which derandomized the construction by Roditty and Zwick [7474]
with matching running time. Later on, Chechik [3131] presented a (2 + ε)k − 1-approximate algorithm with
update time mn1/k+o(1) for any positive integer k and constant ε, whose total update time matches the
preprocessing time of static distance oracles [8080] with corresponding stretch. Recently, Chen et al. [3232]
gave an incremental (2k− 1)-approximate algorithm with O(m1/2n1/k) worst-case time per operation. We
point out that there is an extensive line of work on the decremental APSP problem [6262, 1515, 3737, 7373, 7979, 2424,
7474, 55, 5555, 5353, 5454, 66, 3131, 4646] that is beyond the scope of this overview.

From the lower bounds side, Roditty and Zwick [7373] showed that any incremental or decremental al-
gorithm for SSSP in weighted graphs with preprocessing time p(n), query time q(n) and update time u(n)
must satisfy p(n) + n · u(n) + n2 · q(n) ≥ n3−o(1) unless APSP has a truly subcubic time algorithm. Sim-
ilarly, for unweighted graphs, they showed that any combinatorial incremental or decremental algorithm
must satisfy that equation unless Boolean matrix multiplication (BMM) has a truly subcubic time combina-
torial algorithm. Abboud and Vassilevska Williams [44] extended these lower bounds to also hold for st-SP,
where now the algorithms must satisfy p(n) + n · (u(n) + q(n)) ≥ n3−o(1), for weighted graphs under the
APSP conjecture, and for unweighted graphs under the combinatorial BMM conjecture.

Hypotheses for Fine-Grained Complexity Our conditional lower bounds rely on two popular hypothe-
ses: the Online Boolean Matrix-Vector Multiplication (OMv) conjecture and the Combinatorial k-Clique
hypothesis. In the OMv problem we are given an n×n matrix M that can be preprocessed. Then, an online
sequence of vectors v1, . . . , vn is presented and the goal is to compute each Mvi before seeing the next
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vector vi+1. The OMv conjecture was first defined in [5656], and has been used many times since.

Conjecture 1.1 (OMv). For any constant ε > 0, there is no O(n3−ε)-time algorithm that solves OMv with
error probability at most 1/3 in the word-RAM model with O(log n) bit words.

The Combinatorial k-Clique hypothesis is defined as follows and has been used a number of times
(e.g. [6868, 11, 2929]).

Hypothesis 1.2 (Combinatorial k-Clique). For any constant ε > 0, for an n-node graph there is noO(nk−ε)
time combinatorial algorithm for k-clique detection with error probability at most 1/3 in the word-RAM
model with O(log n) bit words.

For the special case of k-Clique detection where k = 3 (i.e. triangle detection), we also consider non-
combinatorial algorithms. Triangle detection can easily be solved using matrix multiplication but it is a big
open question whether triangle detection admits a O(mω−ε) time algorithm, where ω < 2.373 is the matrix
multiplication exponent (e.g. [8484], [8585] Open Problem 4.3(c), and [7878] Open Problem 8.1). It is generally
believed that such an algorithm does not exist, and our reductions from k-Clique also imply hardness under
this hypothesis.

Our results. We present novel algorithms and conditional lower bounds for (α, β)-spanners and emulators
as well as faster fully dynamic APSP algorithms. We prove the following for undirected unweighted graphs.

1. Conditional lower bounds for partially dynamic spanners/emulators. Under the OMv conjecture, there
can be no decremental or incremental algorithm that maintains a (1, no(1))-emulator (and thus spanner)
with O(m1−ε) edges for any constant ε > 0 with arbitrary polynomial preprocessing time and total update
time O(mn1−ε). The same result also holds for all sparsities m for combinatorial algorithms under the
Combinatorial k-Clique hypothesis.

For completeness, we also present algorithms that are tight with our conditional lower bounds. Note that
mixed additive/multiplicative error is necessary for these algorithms since there can be no (O(1), 0)-spanner
or emulator with n1+o(1) edges (e.g. [6969]). Our algorithms rely heavily on prior work. Using techniques
similar to [3131], for any constant ε ∈ (0, 1], we maintain whp against an oblivious adversary a partially
dynamic n1+o(1) edge (1 + ε, no(1))-spanner in total update time m1+o(1) time. Using techniques from [5050],
we also give a deterministic partially dynamic algorithm that maintains a (1 + ε, nα+o(1))-emulator of a
graph in total time O(mn1−α+o(1)) for any α > 0. Using a result in [2020], we can further turn the above
algorithm into a randomized algorithm that maintains a (1 + ε, nα+o(1))-spanner in expected total time
O(mn1−α+o(1)) for any α > 0 and that works against an adaptive adversary.

2. Conditional lower bounds for combinatorial fully dynamic spanners. Under the Combinatorial k-Clique
hypothesis, for a graph of any sparsity m, for any constant ε > 0, there can be no fully dynamic combi-
natorial algorithm that maintains an O(m1−ε)-edge (1 + α, no(1))-emulator for small α with preprocessing
time mn1−ε and amortized update time m1−ε. This conditional lower bound also extends to incremental
and decremental algorithms but only for worst-case update times.

For completeness, we also present an algorithm that is tight with our conditional lower bound. This
algorithm follows from rerunning a known static algorithm after every update. For any constant ε ∈ (0, 1],
we give a deterministic fully dynamic algorithm with preprocessing time m1+o(1) and worst-case update
time m1+o(1) time that maintains an n1+o(1) edge (1 + ε, no(1))-spanner.

3. Algebraic fully dynamic spanner algorithms. The above fully dynamic lower bound only applies to
combinatorial algorithms, and we show that this is inherent; we develop an algebraic spanner algorithm
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that beats our combinatorial lower bound. For any constant ε ∈ (0, 1], there is a fully dynamic algorithm
with preprocessing time Õ(n2) in an initially empty graph and O(n2.373) in an initially non-empty graph
and worst-case update time O(n1.529) that whp maintains an n1+o(1)-edge (1 + ε, no(1))-spanner and works
against an oblivious adversary. 11

The construction from our above lower bound from the Combinatorial k-Clique hypothesis with k = 3
(i.e. triangle detection) also gives a conditional lower bound for non-combinatorial algorithms. Unless
there is a breakthrough in non-combinatorial algorithms for triangle detection algorithms, there can be no
fully dynamic algorithm that maintains an O(nω−1−ε)-edge (1 + α, no(1))-emulator for constant α < 2/3
with preprocessing time O(nω−ε) and amortized update time O(nω−1−ε), where ω < 2.373 is the matrix
multiplication exponent. Thus O(n1.372) update time and O(n2.372) preprocessing time is not possible with
current techniques.

We also give a conditional lower bound from the OMv conjecture that precludes algorithms for emulators
with more edges and higher preprocessing time than the above lower bound from triangle detection, but at
the cost of a lower update time. Under the OMv conjecture, for any constant ε > 0, there can be no fully
dynamic algorithm that maintains an O(m1−ε)-edge (1 + α, no(1))-emulator for constant α < 2/3 with
arbitrary polynomial preprocessing time and amortized update time O(n1−ε).

Both of these conditional lower bound also extend to incremental and decremental algorithms but only
for worst-case update times.

4. Fully dynamic exact path-reporting APSP. To achieve the above results we develop the first fully dy-
namic APSP data structure that supports distance queries, path reporting queries, and edge updates in sub-
quadratic time per operation. It uses algebraic techniques, is randomized, and works against an oblivious
adversary. Specifically we show the following result, where ω(a, b, c) is the exponent for multiplying an
na × nb matrix by an nb × nc, and κ∗ is the solution to ω(1, 1, κ) = 1 + 2κ. With the current bounds for
rectangular matrix multiplication, κ∗ ≈ 0.529.

Theorem 1.3. Let κ be such that 0 < κ ≤ κ∗, and let D be a distance parameter between 1 and n. There
is a randomized fully dynamic data structure that can maintain an unweighted directed graph G = (V,E)
supporting the following operations with preprocessing time Õ(n2) in an empty initial graph and Õ(Dnω)
in an non-empty initial graph: (a) edge updates in worst-case time Õ(Dnω(1,1,κ)−κ) time; (b) [distance
reporting]: on query i, j ∈ V , return dist(i, j) if dist(i, j) ≤ D, or answer that dist(i, j) > D otherwise,
in worst-case Õ(Dnκ) time, where the answer is correct whp; (c) [path reporting]: on query i, j ∈ V , if
dist(i, j) ≤ D, return a shortest path from i to j, in Õ(D2nκ) time, where the answer is correct whp.

We believe that this result is of independent interest.
Based on it we build a fully dynamic exact APSP data structure that with preprocessing time Õ(n2) on

an initially empty graph achieves worst-case time O(n1.9) per edge update, O(n1.529) per distance query
and O(n1.9) per path reporting query. This is a significant improvement over the O(n2.5) worst-case update
time of [66, 5151] and closer to the O(n2) time bound which is achieved by the data structure of [3737] which can
only support distance reporting queries, but no path reporting queries.

The algorithms in Theorem 1.31.3 are all Monte Carlo– they are correct with high probability and always
run in the desired running time. If they could be made into Las Vegas algorithms (ones that are always correct
but have expected running time), our applications of Theorem 1.31.3, such as our algebraic spanners, would
also be Las Vegas, which is a more desirable guarantee.However, there are significant hurdles to overcome in
order to make Theorem 1.31.3 Las Vegas. Like Sankowski’s original data structure [7575], Theorem 1.31.3 heavily

1Both the bound on the time per update as well as the correctness hold with high probability. If we rebuild the data structure
from scratch every polynomially many updates, we can instead achieve an expected amortized time bound of O(n1.529) per update.
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relies on the use of polynomial identity testing (PIT), namely on the fact that PIT is in co-RP and hence
has a fast Monte Carlo algorithm. To obtain a Las Vegas algorithm using a similar approach, one would
need a ZPP algorithm for PIT. However, obtaining such an algorithm seems extremely difficult, and in fact
Impagliazzo and Kabanets [6060, 6161] showed that such an algorithm would imply strong circuit lower bounds.
Thus although the rest of our techniques can be made Las Vegas, making Theorem 1.31.3 Las Vegas as well is
far from possible with current techniques.

5. Applications. We present two applications of our above results: fully dynamic approximate path-
reporting APSP, and fully dynamic Steiner tree. Using the above theorem and the above algebraic span-
ner, we give the first subquadratic fully dynamic (1 + ε)-approximate APSP algorithm. It needs Õ(n2)
preprocessing time on an empty graph and achieves worst-case time n1+κ

∗+o(1) = O(n1.529) for updates,
n1+o(1) for approximate distance reporting and approximate shortest path reporting, whp against an oblivi-
ous adversary. Note that all previous subquadratic update/query algorithms could only report distances, not
paths.

Our second application of our above results is a fully dynamic algorithm for (2+ε)-approximate Steiner
tree, which can be used, for example, for routing in dynamic networks. Specifically we give the first sub-
quadratic algorithm that maintains a (2 + ε)-approximate Steiner tree for a set S of terminals with both
terminal and edge updates. Specifically, it has preprocessing time Õ(n2) on an empty initial graph and
nω+o(1) on a non-empty initial graph, and worst-case time n1+κ

∗+o(1) + |S|2 · n1+o(1) per edge update,
|S|n1+o(1) per node addition to S, and |S|no(1) per node removal from S, giving subquadratic update time
when |S| ≤ n1/2−o(1) whp against an oblivious adversary. By increasing the processing time to O(n2.621)
using the data-structure of [8282], the time for edge updates can be madeO(n1.843+|S|2 ·n0.45+|S|·n1+o(1)),
allowing for more leverage over the size of the terminal set S. The only prior work in general graphs main-
tains a (6 + ε)-approximate Steiner Tree under changes to S only (no edge updates) and has preprocessing
time Õ(m

√
n) and update time Õ(

√
n) [6565].

Organization In Section 22 we give a technical overview of a selection of our results. Section 33 is the
preliminaries. In Section 44, we present our conditional lower bounds. In Section 55, we present our data
structure for dynamic APSP with path reporting. In Section 66, we present our algebraic spanner algorithm,
which uses the data structure from Section 55. In Section 77 we present two additional applications of the
data structure from Section 55: our dynamic algorithm for approximate APSP with path reporting and our
dynamic Steiner tree algorithm. Finally, in Section 88, we present our combinatorial dynamic spanner and
emulator algorithms.

2 Technical overview

Conditional lower bounds. We first outline our OMv-based constructions. Instead of reducing from the
OMv problem, we reduce from the related OuMv problem, which is defined as follows. We are given an
n × n matrix M that can be preprocessed. Then, an online sequence of vector pairs (u1, v1), . . . , (un, vn)
is presented and the goal is to compute each (ui)ᵀMvi before seeing the next pair. A reduction from OMv
to OuMv is known [5656].

For both our fully dynamic and incremental/decremental lower bounds from OMv we begin with the
same basic gadget. Given the matrix M from the OuMv instance, we construct a bipartite graph A,B where
A = {a1, . . . an}, B = {b1, . . . bn}, and the edge (ai, bj) is present if and only if Mi,j = 1.

The fully dynamic construction is shown in Figure 11. We begin by taking a number c of disjoint copies
G1, . . . , Gc of the basic gadget and an additional set of c + 1 isolated vertices w0, . . . wc. Each basic
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gadget will introduce error to the approximation, so larger c means that we are showing a lower bound for
algorithms with higher approximation factors but faster running times.

After constructing this initial graph, we start n dynamic phases. In phase i, we are given the vectors ui

and vi of the OuMv instance. For each 1 ≤ j ≤ c and each k with uik = 1, insert an edge between wj−1 and
ak ∈ Gj . Similarly, for each 1 ≤ j ≤ c and each k with vik = 1, insert an edge between wj and bk ∈ Gj .
We remove these edges after the phase is over.

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w0 w1

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w2

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w3

. . .

G1 G2 G3

Edge (w0, ak)

iff ui
k = 1

Edge

iff vik = 1

(bk, w1)

Figure 1: The construction for fully dynamic algorithms. The red edges are dynamically added in phase i.

At the end of each phase, we run Breadth-First Search (BFS) on the dynamic emulator to estimate the
distance between w0 and wc, which we claim provides the answer to this phase of the OuMv instance. In
particular, note that for any i the distance between wi and wi+1 is 3 if and only if (ui)ᵀMvi = 1, and
otherwise this distance is at least 5. Also, since the emulator has O(n2−ε) edges, the resulting algorithm
would solve OuMv in O(n3−ε) time.

The incremental construction is similar, however we cannot remove edges at the end of each phase. To
get around this, we replace each wi with a path and insert edges incident to a different vertex in the path at
each phase. The resulting construction is shown in Figure 22.

z1 z2 z3 y3z4

z5

y4y5
=

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

G0

z1 z2 z3 y1y2y3z4

z5

y4y5
=

. . .z1 z2

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

G1

y1y2

P0 P1 P2

Figure 2: The construction for incremental algorithms. The red edges are dynamically added in phase 1 and
the blue edges are dynamically added in phase 2.

The decremental construction is roughly the reverse of the incremental construction.
For the k-clique-based constructions, we instead reduce from the k-cycle problem (a reduction from k-

clique to k-cycle is known [6868]). The k-cycle constructions for both the fully and partially dynamic settings
follow a similar structure to the OuMv constructions but use a different basic gadget. The basic gadget is
built by using color coding and taking a layered version of the graph where each color is a layer and only
edges between vertices of adjacent colors are present.
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Algebraic Fully Dynamic Spanner Algorithm. Let us next present an algorithm to maintain a (1 +
ε, no(1))-spanner on a fully dynamic graph with worst-case update time O(n1.529).

Let k =
√

log n. We sample sets V = A0 ⊇ A1, · · · ⊇ Ak ⊇ Ak+1 = ∅ where Ai for i ∈ [1, k + 1] is
obtained by sampling each vertex in V with probability n−i/k log n (and to make the sets nesting add it to
all Aj where j ≤ i, we assume that Ak+1 is empty which can be achieved by resampling a constant number
of times in expectation). Given these sets, we say that each a ∈ A` \ A`+1 is active if for no j > ` there
exists a vertex a′ ∈ Aj \ Aj+1 with distG̃(a, a′) .

(
1
ε

)j . Using this definition of activeness, we can show

by a simple hitting set argument that each active vertex a ∈ A` \ A`+1 has in its ball to radius ∼
(
1
ε

)`+1 at
most Õ(n(`+1)/k) vertices w.h.p..

Given this set-up, a natural way to construct a spanner H , would be to find for each level ` ∈ [0, k], the
active vertices in A` \ A`+1 and to include their shortest path trees truncated at radius ∼

(
1
ε

)`+1. For the
number of edges ofH , it is not hard to see that each for each ` ∈ [0, k), there are at most Õ(n1−`/k) vertices
that are active in A` \A`+1. Each of these vertices contributes a single edge for each vertex in its truncated
ball (except for itself), and as discussed above we have that each ball is of size at most Õ(n(`+1)/k). Thus,
we have that H has at most Õ(n1+1/k) = n1+o(1) edges.

For the stretch factor, observe that for any vertices s, t ∈ V , with shortest path πs,t, we have that for
s ∈ A` \ A`+1 for some level `, if s is active, we can simply travel along the πs,t to some vertex s′ that is
closer to t (since the truncated shortest path tree of s is included inH) and then expose the shortest path πs′,t
inductively. Or, we have that there is a vertex a′ ∈ Aj \ Aj+1 at distance .

(
1
ε

)j to vertex s (with j > `.
Choosing a′ to be the vertex that is at this distance to a with the largest possible j, we will be able to argue
that a′ is active. Thus, we can travel from s to a′ to a vertex s′ on πs,t at distance roughly

(
1
ε

)j+1 along the
shortest path tree at a′ truncated at depth ∼

(
1
ε

)j+1 that was included in H . It is not hard to see that the
error induced for visiting a′ can be subsumed in a multiplicative (1 + O(ε))-approximation. However, this
only works if s and t are at distance &

(
1
ε

)j+1, otherwise it induces an additive error of no(1). This explains
why we obtain a (1 + ε, no(1))-approximation.

Unfortunately, while this set-up of H is sensible, consider the example of the complete graph. Then,
there would be a vertex a ∈ Ak \ Ak+1 (which is active since Ak+1 is empty) where visiting the truncated
ball at a would take time Õ(n2), which is by far too expensive for our algorithm.

Too overcome this issue, instead of inserting truncated shortest path trees to H , we only insert for any
active vertex a ∈ A` \ A`+1, the shortest paths to other vertices in A` \ A`+1 in the truncated shortest
path tree of a. We then fix a threshold γ ≈ b0.529 · kc, and can use the algebraic data structure from
Theorem 1.31.3 to maintain the distances of vertices in Aγ (and thereby Aγ+1, Aγ+2, . . . , Ak, Ak+1) without
explicitly maintaining the balls of the active vertices. For active vertices in some setA` \A`+1 for ` < γ, we
can compute the balls explicitly after every update. This is because each such ball only contains Õ(n(`+1)/k)
vertices, and therefore the induced graph can contain at most Õ(n2(`+1)/k) edges, which implies that we
overall, spend at most time Õ(n1−`/k) · n2(`+1)/k = Õ(n1+(`+2)/k) time for computing all such balls. We
refer the reader to section Section 66 for a proper analysis of the running time.

Finally, we point out that so far H only contains shortest paths between active vertices in the same set
A` \ A`+1 (if they are reasonably close). However, to have a path between vertices on different levels, we
also add a O(log n) spanner G̃ of G to H . Such a spanner is simple to maintain, for example [4848] shows
how to maintain such a spanner with Õ(n) edges and Õ(1) amortized update time.

The idea of the approximation proof then becomes the following for some path πs,t: Let i be the largest
index such that an active vertex a ∈ Ai is at distance at most ∼ ε−i to s. Let w be the farthest vertex from s
on πs,t such that (1) the distance from s to w is at most ∼ ε−(i+1), and (2) w has distance at most ∼ ε−i to
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an active vertex a′ ∈ Ai. Such a vertex w exists since we could have w = s and a′ = a. It is then apparent
that the distance between a and a′ is . ε−(i+1) and since a′ is active, we can ensure that the shortest path
from a to a′ is in H . Further, we can use the paths in the spanner G̃ (which belongs to H) to get from s to
a and from a′ to w; since these two distances are small, it suffices to have an O(log n) multiplicative error
for them. Now, observe that this induces additive error along the path segment from s to w of Õ(ε−i) (by
the triangle inequality). We either have that a and a′ are roughly at distance ∼ ε−(i+1) (which suffices to
subsume the additive error in the multiplicative error), or we have that for the next path segment of length
∼ ε−(i+1), no vertex is close to any active vertex in Ai. Thus, when we repeat the whole argument for the
next path segment, we get that vertices on lower levels are active, which means that they induce less additive
error. This allows us to subsume the additive error from higher levels into multiplicative error for a series of
segments of lower levels.

We refer the reader to Section 66 for the full details of the algorithm.

Fully dynamic APSP with path reporting. Our data-structure of theorem 1.31.3 is an augmentation of
Sankowski’s [7575] data structure to support fast successor queries. Essentially, Sankowski showed how to
reduce the problem of maintaining the short distances in a dynamic unweighted graph to the dynamic matrix
inverse problem, by representing the path lengths as degrees of the adjoint of a polynomial matrix. He then
showed how to efficiently maintain the inverse of a matrix subject to entry updates, allowing for fast dis-
tance queries. We extend his techniques to maintain products of matrices and the inverse, and show how to
use these products to extract successor information similarly to Seidel’s path reporting algorithm for static
APSP [7777]. Let us begin here by sketching Sankowski’s data-structure [7575], formally reviewed in Section
5.25.2, and then present the high level of our augmentation.

Short Distances to Dynamic Matrix Inverse. [7575] showed how to encode path lengths of an unweighed graph
in the adjoint of a matrix, that is, given a adjacency matrix Aij with a random integer entry if (i, j) ∈ E,
then the lowest degree non-zero term of the polynomial adj(I − uA)ij over the variable u is the distance
dij whp (Lemma 5.65.6). In this manner maintaining adj(I − uA)ij mod uD+1, for some distance parameter
D, allows us to query a distance i → j correctly whp if dij ≤ D. Note that adjM = detM ×M−1, s.t. it
suffices just to maintain det M and M−1 mod uD+1.

Dynamic Matrix Inverse. We detail the algebraic tools developed by Sankowski [7575] to maintain the inverse
of a matrix M dynamically and over a ring in Section 5.25.2. The main idea is to maintain explicitly (i.e. all
n2 entries) two matrices T,N , s.t. we maintain the invariant

M−1 = T (I +N) (1)

where, initially, T = M−1 and N = 0, and as later shown each single entry update to M corresponds to a
single row update to N (and no modifications to T !). After m updates, N has at most m non-zero rows, and
we can exploit this sparsity of N to quickly compute its row-updates in O(mn), and every m = nκ updates
we reset T ← T + TN , N ← 0, in O(nω(1,1,κ)−κ) time on average. In this manner, we guarantee that N is
always sparse, and updates take amortized time

O(nω(1,1,κ)−κ + n1+κ) (2)

for some parameter κ ∈ (0, 1) which we can later optimize over. Entry queries (i, j) are now straightfor-
ward, as it suffices to compute the dot product

M−1ij = eTi T (I +N)ej = Tij + (eTi T ) · (Nej) (3)
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which can be done in O(nκ) time since a given column of N has at most O(nκ) non-zero entries. In
Corollary 5.85.8 [7575] showed that we can maintain these matrices over a ring mod uD+1 by introducing a
multiplicative factor of Õ(D) to the runtimes described above, s.t. now if M = I − uA we can query any
distance d ≤ D in the graph in time Õ(Dnκ).

Successor Queries to Product Maintenance. There are two main ingredients to our augmentation the data-
structure of [7575]. The first is to reduce the successor query of a pair (i, j) of an unknown number of distinct
successors to that of a single successor, using a known sparsification trick used first in Seidel’s algorithm
for static, undirected and unweighted APSP [7777]. This only introduces a log2 n multiplicative factor to the
runtime and we defer the formal argument to Lemmas 5.125.12 and 5.135.13. The second ingredient is to show how
to find a single successor by finding a witness of the product (A·adj(I − uA))ij . The key new insight is
that if the distance 1 < dij ≤ D, then adj(I − uA)ij has minimum degree dij , and thereby the product
(A·adj(I−uA))ij must have minimum degree dij − 1. This is since there must exist a unique witness s (the
single successor!) s.t. Ais is non-zero, corresponding to an edge, and adj(I − uA)sj has minimum degree
dsj = dij − 1, corresponding to the length of the shortest path from s to j.

We can find this single witness by computing its bitwise description, that is, defining O(log n) versions
of the adjacency matrix A, A(l) for l ∈ [O(log n)], where we null the pth column of A(l) if the lth bit
of p is 0. As there is only a single witness s, the minimum degree of the product (A(l)·adj(I − uA))ij is
dsj = dij − 1 only if the column of s is selected, that is, the lth bit sl = 1. In this manner, if we query the
O(log n) products (A(l)·adj(I−uA))ij , the 1-bits sl = 1 are exactly the products l s.t. the minimum degree
is correct. This allows us to extract the successor description in a polylog number of queries to products
(E·adj(I− uA))ij for given matrices E.

Product Maintenance. The last detail in our successor query augmentation is to show how to maintain
products (E·adj(I − uA)), where we can modify entries of E and A, and query entries i, j of the result.
Note again that it suffices to maintain (E · (I − uA)−1), as opposed to the adjoint, just by multiplying by
the determinant. We do so by following the inverse maintenance algorithm and explicitly maintaining the
matrices T,N and V ≡ ET , s.t. we maintain the invariant

EM−1 = ET (I +N) = V (I +N) (4)

We address updates toE and toA completely differently. Updates toA follow the original lazy construction,
where we simply perform a row-update to N , and every nκ updates we ”reset” V ← V (I +N), T ← T (I +
N), N ← 0. We note that correctness follows by associativity, s.t. although matrices V and T are dense we
can still exploit the sparsity ofN to compute their updates independently in timeO(Dn1+κ+Dnω(1,1,κ)−κ)
on average. Entry-Updates toE,E ← E+eij , are much simpler. We once again use associativity to compute
the row update V ← V + eijT in Õ(Dn) time. Finally, to query an entry of the product (EM−1)ij , we
follow analogously to [7575] and compute the dot product

(EM−1)ij = eTi V (I +N)ej = Vij + (eTi V ) · (Nej) (5)

and since V andN are maintained explicitly, this takes time Õ(Dnκ), the exact same as the distance queries.
Overall, this allows for Õ(Dnκ) time successor queries, and by iterating, short path queries of length ≤ D
in time Õ(D2nκ).
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3 Preliminaries

We let G = (V,E) denote an undirected unweighted dynamic input graph, where n = |V | and m =
|E|. For any graph H , and two vertices a, b ∈ V (H), we denote by distH(a, b) the distance between
the two vertices in G and let πa,b,H denote a corresponding shortest path between a and b. If the graph
H , especially when we use the input graph G, is clear from the context, we simply use πa,b. We define
BH(s, r) in the graph H , to be the ball rooted at s with radius r, i.e. the set of vertices BH(s, r) =
{w ∈ V (H)|distH(s, w) ≤ r}. Throughout the article, we often use the data structure stated below that is
sometimes referred to as the Even-Shiloach (ES) tree.

Lemma 3.1 (c.f. [4747]). For any vertex s ∈ V , radius r, there is a deterministic data structure on a partially
dynamic graph G that reports for every w ∈ B(s, r), the distance dist(s, w). In fact, the data structure
maintains explicitly the shortest path tree inG[B(s, r)]. The total update time of the data structure isO(mr)
time where m is the maximum number of edges ever in G[B(s, r)].

Let ω be the infimum over all reals such that n × n matrices can be multiplied in O(nω+ε) time for all
ε > 0. It is known that ω ∈ [2, 2.373) [8383, 6666]. More generally, let ω(a, b, c) be the infimum over all reals
such that an na × nb matrix can be multiplied by an nb × nc matrix in O(nω(a,b,c)+ε) time for all ε > 0. A
notable result is that for b ≤ 0.313, ω(1, b, 1) = 2 [6767].

4 Conditional lower bounds

We present conditional lower bounds for amortized algorithms in the fully dynamic, incremental, and
decremental settings. Our constructions for amortized algorithms in the fully dynamic setting also imply
lower bounds for the incremental and decremental settings, but only for worst-case update times. We present
separate constructions for the amortized incremental and decremental settings.

We first describe why our fully dynamic conditional lower bounds also apply to the incremental and
decremental settings for worst-case update times. This is due to the nature of our reductions: all of our
reductions produce an initial graph on which we perform update stages that only insert or only delete (we can
choose which) a batch of edges, ask a query and undo the changes just made, returning to the initial graph.
An incremental (resp. decremental) algorithm can be used for this type of dynamic graph by performing the
insertions (resp. deletions) and then rolling back the data structure to the initial graph and repeating.

4.1 Conditional lower bounds from the OMv conjecture

4.1.1 Statement of results
We prove conditional lower bounds from the OMv conjecture for dynamic emulator maintenance in the

fully dynamic, incremental, and decremental settings. We prove the following theorem for the fully dynamic
setting, which also extends to the incremental and decremental settings but only for worst-case update times.

Theorem 4.1. Under the OMv conjecture, for an n-vertex fully dynamic graph with at most m edges at
all times, for every constant ε > 0, there is no algorithm for maintaining a (1 + α, β)-emulator for any
α ∈ [0, 2/3) and integer β ≥ 0, withO(m1−ε(2−3αβ )) edges, polynomial preprocessing time, and amortized
update time O(n1−ε(2−3αβ )2) such that over a polynomial number of edge updates the error probability is
at most 1/3 in the word-RAM model with O(log n) bit words.

The same result holds for incremental and decremental algorithms, but for worst-case update time.

In particular, for the natural setting where α is constant and β = no(1) we have the following corollary:
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Corollary 4.2. Under the OMv conjecture, for an n-vertex fully dynamic graph with at most m edges at
all times, for every constant ε > 0, there is no algorithm for maintaining a (1 + α, no(1))-emulator for
any constant α ∈ [0, 2/3) with O(m1−ε) edges, polynomial preprocessing time, and amortized update time
O(n1−ε) such that over a polynomial number of edge updates the error probability is at most 1/3 in the
word-RAM model with O(log n) bit words.

The same result holds for incremental and decremental algorithms, but for worst-case update time.

For the incremental and decremental settings, we prove the following theorem.

Theorem 4.3. Under the OMv conjecture, for an n-vertex incremental or decremental graph with m edge
insertions or deletions, for every constant ε > 0, there is no algorithm for maintaining a β-additive emulator
for any integer β ≥ 0, with O(m1−ε/β) edges, polynomial preprocessing time, and total update time
O(mn1−ε/β2) with error probability at most 1/3 in the word-RAM model with O(log n) bit words.

In particular, for the natural setting where β = no(1) we have the following corollary:

Corollary 4.4. Under the OMv conjecture, for an n-vertex incremental or decremental graph with m edge
insertions or deletions, for every constant ε > 0, there is no algorithm for maintaining a no(1)-additive
emulator with O(m1−ε) edges, polynomial preprocessing time, and total update time O(mn1−ε) with error
probability at most 1/3 in the word-RAM model with O(log n) bit words.

4.1.2 Preliminaries
Our reductions are from the Online Vector-Matrix-Vector Multiplication problem (OuMv). A reduction

from OMv to OuMv is known:

Theorem 4.5 (OuMv: Theorem 2.7 from [5656]). The OMv conjecture implies that for any constant ε > 0,
there is no algorithm for OuMv with with polynomial preprocessing time and computation time O(n3−ε)
with error probability at most 1/3 in the word-RAM model with O(log n) bit words.

Given an instance of OuMv, we introduce a basic gadget that we will use in all of our constructions.

The basic gadget Let M be the n × n input matrix for the OuMv instance. We construct a gadget as
shown in Figure 33. The gadget consists of a bipartite graph A,B where A = {a1, . . . an}, B = {b1, . . . bn},
and the edge (ai, bj) is present if and only if Mi,j = 1.

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

Figure 3: The basic gadget for reductions from OMv.

4.1.3 Reduction for fully dynamic algorithms
In this section we prove Theorem 4.14.1.
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Construction Let c = d β
2−3αe + 1 and take c disjoint copies G1, . . . , Gc of the basic gadget (from Fig-

ure 33). Let w0, . . . wc be an additional set of c+ 1 isolated vertices.
Now, we start n dynamic phases. In phase i, we are given the vectors ui and vi of the OuMv instance.

For each 1 ≤ j ≤ c and each k with uik = 1, insert an edge between wj−1 and ak ∈ Gj . Similarly, for each
1 ≤ j ≤ c and each k with vik = 1, insert an edge between wj and bk ∈ Gj . See Figure 44.

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w0 w1

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

w2

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .
w3

. . .

G1 G2 G3

Edge (w0, ak)

iff ui
k = 1

Edge

iff vik = 1

(bk, w1)

Figure 4: The construction for fully dynamic algorithms. The red edges are dynamically added in phase i.

Throughout all of the edge updates, we maintain our dynamic emulator. At the end of each phase, we
run a single source shortest paths computation via Breadth-First Search (BFS) on the emulator to estimate
the distance between w0 and wc.

If the estimated distance between w0 and wc is less than 5c, we return 1 for this phase of the OuMv
instance, and otherwise we return 0.

Following the end of each phase, we remove all of the edges added during that phase.

Correctness First we will show that if uiMvi = 1 then our algorithm returns 1 for the ith phase. If
uiMvi = 1 then there exists j, k such that uij = Mj,k = vik = 1. Thus, the basic gadget contains the edge
(aj , bk). Also, for all 1 ≤ ` ≤ c, in the ith phase we add an edge between w`−1 and aj ∈ G` and an edge
between w` and bk ∈ G`. Thus, there is a path of length 3 from w`−1 to w` through aj and bk. Therefore,
dist(w0, wc) ≤ 3c. Thus, the estimate of dist(w0, wc) returned by our (α + 1, β)-emulator is at most
3c(α+ 1) + β, which is less than 5c since c > β

2−3α . Thus, our algorithm returns 1 for the ith phase.
Now we will show that if our algorithm returns 1 in the ith phase then uiMvi = 1. If our algorithm

returns 1, then the estimate of dist(w0, wc) returned by our (1 + α, β)-emulator is less than 5c, so the true
distance dist(w0, wc) is also less than 5c.

First, we observe that the layered structure of the graph ensures that every path between w0 and wc must
contain every w` in chronological order. That is, every shortest path between w0 and wc must contain as a
subpath a shortest path from w`−1 to w` for all 1 ≤ ` ≤ c. Then since the graph is c identical copies of a
gadget, we have that dist(w0, wc) = c · dist(w0, w1).

Since dist(w0, wc) < 5c, we know that dist(w0, w1) < 5. Furthermore, since the graph is bipartite
and w0 and w1 are on opposite sides of the bipartition, dist(w0, w1) must be odd so dist(w0, w1) ≤ 3.
Observe that the only possible paths of length 3 between w`−1 and w` contain a vertex aj ∈ G` followed by
a vertex bk ∈ G`. If such a path exists in the ith phase, then the basic construction ensures that Mj,k = 1
and the dynamic phase ensures that uij = 1 and vik = 1. Thus, uiMvi = 1.

Running time Let n′ be the number of vertices in the dynamic graph and let m′ be the maximum number
of edges ever in the dynamic graph. We first calculate n′ and m′. Each basic gadget contains 2n vertices
and at most n2 edges. Thus, c copies of the basic gadget contain 2cn vertices and cn2 edges. There are
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also an additional c+ 1 vertices w`. During each of the n phases we add at most 2nc edges. Thus, the total
number of vertices is n′ = O(nc) and the total number of edge updates over the entire sequence is O(cn2),
so m′ = O(cn2).

Suppose that the emulator has O(m′1−ε(2− 3α)/β) edges for ε > 0 and has polynomial preprocessing
time and amortized update time O(n′1−ε((2− 3α)/β)2).

Then, our dynamic emulator algorithm has amortized update timeO(n′1−ε(2−3αβ )2) = O((nc)1−ε(2−3αβ )2).
Since there are O(cn2) edge updates, the total update time of the dynamic emulator algorithm is O(n3−ε)
since c = d β

2−3αe+ 1.
Additionally, n times during the algorithm, we run a single call of BFS on the emulator. The number of

edges in the emulator is O(m′1−ε(2−3αβ )) = O((cn2)1−ε(2−3αβ )) = O(n2−ε) since c = d β
2−3αe+ 1. Thus,

running BFS takes total time O(n3−ε).
Putting everything together, our dynamic emulator algorithm implies an algorithm for OuMv with poly-

nomial preprocessing time and computation time O(n3−ε) for ε > 0, contadicting the OMv conjecture.
4.1.4 Reduction for incremental and decremental algorithms.

In this section we prove Theorem 4.34.3.

Construction The construction will be similar to the fully dynamic construction, but with different inter-
actions between consecutive copies of the basic gadget. We first describe the incremental construction.

Starting with an empty graph, we perform edge insertions to construct the following graph. Take β + 1
disjoint copies G1, . . . , Gβ+1 of the basic gadget (from Figure 33). Then, add β+ 2 paths P0, . . . , Pβ+1 each
on 2n− 1 new vertices. Call the vertices of each path z1, z2, . . . , zn = yn, yn−1, . . . , y1. In other words, the
middle node of each path has two names, zn and yn.

Now, we start n phases. In phase i, we are given the vectors ui and vi of the OuMv instance. For each
1 ≤ j ≤ β + 1 and each k with uik = 1, insert an edge between yi ∈ Pj−1 and ak ∈ Gj . Similarly, for each
1 ≤ j ≤ β + 1 and each k with vik = 1, insert an edge between zi ∈ Pj and bk ∈ Gj . See Figure 55.

z1 z2 z3 y3z4

z5

y4y5
=

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

G0

z1 z2 z3 y1y2y3z4

z5

y4y5
=

. . .z1 z2

Edge (ai, bj)

b1

A B

a2 b2

a1

iff Mi,j = 1

. . .

. . .

G1

y1y2

P0 P1 P2

Figure 5: The construction for incremental algorithms. The red edges are dynamically added in phase 1 and
the blue edges are dynamically added in phase 2.

Throughout all of the edge updates, we maintain our incremental emulator. At the end of each phase,
we run a single call of BFS on the emulator to estimate the distance between z1 ∈ P0 and y1 ∈ Pβ+1.

If the estimated distance between z1 ∈ P0 and y1 ∈ Pβ+1 at the end of phase i is less than
4(β + 1) + (β + 2)(2n − 2i) + 2(i − 1), we return 1 for phase i of the OuMv instance, and otherwise we
return 0.

Now, we describe the decremental construction, which is similar to the incremental construction. The
initial graph consists of G1, . . . , Gβ+1 and P0, . . . , Pβ+1 from the incremental construction, as well as an
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edge for all 1 ≤ ` ≤ β + 1 from zi ∈ P` to every vertex in B ⊆ G`, and an edge for all 1 ≤ ` ≤ β + 1 from
yi ∈ P`−1 to every vertex in A ⊆ G`.

Now, we start n dynamic phases. In phase i, we are given the vectors ui and vi of the OuMv instance.
For each 1 ≤ j ≤ β + 1, and each k with uik = 0, delete the edge between yn−i+1 ∈ Pj−1 and ak ∈ Gj .
Similarly, for each 1 ≤ j ≤ β + 1 and each k with vik = 0, delete the edge between zn−i+1 ∈ Pj and
bk ∈ Gj .

Throughout all of the edge updates, we maintain our decremental emulator. At the end of each phase,
we run a single call to BFS on the emulator to estimate the distance between z1 ∈ P0 and y1 ∈ Pβ+1.

Following the end of each phase i, for each 1 ≤ j ≤ β + 1, we delete all edges between yn−i+1 ∈ Pj−1
and A ⊆ Gj and all edges between zn−i+1 ∈ Pj and B ⊆ Gj .

If the estimated distance between z1 ∈ P0 and y1 ∈ Pβ+1 at the end of phase i is less than
4(β+ 1) + (β+ 2)(2n− 2(n− i+ 1)) + 2((n− i+ 1)− 1), we return 1 for phase i of the OuMv instance,
and otherwise we return 0. Note that this threshold is exactly the threshold from the incremental algorithm
but with i replaced with n− i+ 1.

Correctness The following argument is written for the incremental setting but the same argument applies
for the decremental setting.

First we will show that if uiMvi = 1 then our algorithm returns 1 for the ith phase. If uiMvi = 1 then
there exists j, k such that uij = Mj,k = vik = 1. Thus, the basic gadget contains the edge (aj , bk). Also, for
all 1 ≤ ` ≤ β + 1, in the ith phase we add an edge between yi ∈ P`−1 and aj ∈ G` and an edge between
zi ∈ P` and bk ∈ G`.

Thus, for all 1 ≤ ` ≤ β + 1, there is a path of length 3 from yi ∈ P`−1 to zi ∈ P` through aj ∈ G`
and bk ∈ G`. Also, for each 0 ≤ ` ≤ β + 2, there is a path along P` from zi ∈ P` to yi ∈ P` of length
(2n− 2)− 2(i− 1) = 2n− 2i. Finally, there is a path of length i− 1 from z1 ∈ P0 to zi ∈ P0 and a path
of length i − 1 from yi ∈ Pβ+2 to y1 ∈ Pβ+2. Concatentating all of these paths, we have that dist(z1 ∈
P0, y1 ∈ Pβ+1) ≤ 3(β+ 1) + (β+ 2)(2n− 2i) + 2(i− 1). Thus, the estimate of dist(z1 ∈ P0, y1 ∈ Pβ+1)
returned by our β-additive emulator is at most 4(β + 1) − 1 + (β + 2)(2n − 2i) + 2(i − 1). Thus, our
algorithm returns 1 for the ith phase.

Now we will show that if our algorithm returns 1 in the ith phase then uiMvi = 1. If our algorithm
returns 1, then the estimate of dist(z1 ∈ P0, y1 ∈ Pβ+1) returned by our β-additive emulator is less than
4(β + 1) + (β + 2)(2n − 2i) + 2(i − 1), so the true distance dist(z1 ∈ P0, y1 ∈ Pβ+1) is also less than
4(β + 1) + (β + 2)(2n− 2i) + 2(i− 1).

First, we observe that the layered structure of the graph ensures that every path between z1 ∈ P0 and
y1 ∈ Pβ+1 contains each zi and yi in order from P0 to Pβ+1. That is, every shortest path between z1 ∈ P0

and y1 ∈ Pβ+1 is composed of precisely following subpaths:

• A shortest path from z1 ∈ P0 to zi ∈ P0. The only simple path connecting these vertices is of length
i− 1.

• A shortest path from yi ∈ Pβ+1 to y1 ∈ Pβ+1. The only simple path connecting these vertices is of
length i− 1.

• A shortest path from zi ∈ P` to yi ∈ P` for all 1 ≤ ` ≤ β + 2. The only simple path connecting these
vertices is of length (2n− 2)− 2(i− 1) = 2n− 2i.

• A shortest path from yi ∈ P`−1 to zi ∈ P` for all 1 ≤ ` ≤ β+1. Since the graph is a series of identical
copies of a gadget, we know that dist(yi ∈ P`−1, zi ∈ P`) is the same for all `. Furthermore, we
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know the length of each of the previous three types of subpaths and we know that dist(z1 ∈ P0, y1 ∈
Pβ+1) < 4(β+1)+(β+2)(2n−2i)+2(i−1), so we conclude that each dist(yi ∈ P`−1, zi ∈ P`) < 4.

Due to the layering of the graph, for all 1 ≤ ` ≤ β + 1 the shortest path between yi ∈ P`−1 and zi ∈ P`
must contain vertices aj ∈ G` and bk ∈ G` for some j, k. Since dist(yi ∈ P`−1, zi ∈ P`) < 4, there are
no other vertices on this shortest path. The basic construction ensures that since the edge (aj , bk) exists, we
have Mj,k = 1, and the dynamic phase ensures that since the edge (yi ∈ P`−1, aj ∈ G`) exists, we have
uij = 1 and since the edge (bk ∈ G`, zi ∈ P`) exists, we have vik = 1. Thus, uiMvi = 1.

Running time Let n′ be the number of vertices in the dynamic graph and let m′ be number of edge
insertions or deletions. We first calculate n′ and m′. Each basic gadget contains 2n vertices and at most n2

edges. Thus, β+1 copies of the basic gadget contain 2(β+1)n vertices and (β+1)n2 edges. Additionally,
we have (β+2) paths on (2n−1) vertices each, for a total of (2n−1)(β+2) additional vertices. During each
of the n phases there are at most 2n(β + 1) edge updates. Thus, the total number of vertices is n′ = O(βn)
and the total number of edges updates is m′ = O(βn2).

Now assume that our incremental or decremental emulator has O(m′1−ε/β) edges, polynomial prepro-
cessing time and total update time O(m′n′1−ε/β2).

Then the total update time of the emulator is O(m′n′1−ε/β2) = O(βn2(βn)1−ε/β2) = O(n3−ε).
Additionally, n times during the algorithm, we run BFS on the emulator. The number of edges in the

emulator is O(m′1−ε/β) = O((βn2)1−ε/β) = O(n2−ε). Thus, running the BFS calls takes total time
O(n3−ε).

Putting everything together, our incremental or decremental emulator algorithm implies an algorithm
for OuMv with polynomial preprocessing time and computation time O(n3−ε) for ε > 0, contradicting the
OMv conjecture.

4.2 Conditional lower bounds from the k-Clique hypothesis

4.2.1 Statement of results
We prove conditional lower bounds from the k-Clique hypothesis for dynamic emulator maintenance

in the fully dynamic, incremental, and decremental settings. We prove the following theorem for the fully
dynamic setting, which also extends to the incremental and decremental settings but only for worst-case
update times.

Theorem 4.6. Under the Combinatorial k-Clique hypothesis, for every constant ε > 0 and every constant
integer ` ≥ 1, for an n-vertex fully dynamic graph with at most m = Θ(n1+1/`) edges at all times, there is
no combinatorial algorithm for maintaining a (1 + α, β)-emulator for any α ∈ [0, 2

2`+1) and integer β ≥ 0

with O(m1−ε(2−(2`+1)α
β )) edges, preprocessing time O(mn1−ε(2−(2`+1)α

β )2), and amortized update time

O(m1−ε(2−(2`+1)α
β )2) with error probability at most 1/3 in the word-RAM model with O(log n) bit words.

The same result holds for incremental and decremental algorithms, but for worst-case update time.

In particular, for the natural setting where α is constant and β = no(1) we have the following corollary:

Corollary 4.7. Under the Combinatorial k-Clique hypothesis, for every constant ε > 0 and every constant
integer ` ≥ 1, for an n-vertex fully dynamic graph with at most m = Θ(n1+1/`) edges at all times, there is
no combinatorial algorithm for maintaining a (1 + α, no(1))-emulator for any constant α ∈ [0, 2

2`+1) with
O(m1−ε) edges, preprocessing timeO(mn1−ε), and amortized update timeO(m1−ε) with error probability
at most 1/3 in the word-RAM model with O(log n) bit words.

The same result holds for incremental and decremental algorithms, but for worst-case update time.
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When k = 3 (i.e. triangle detection), our construction also implies a conditional lower bound under
the hypothesis that triangle detection cannot be done in time O(nω−ε) for any constant ε even for non-
combinatorial algorithms:

Theorem 4.8. Under the hypothesis that there is no algorithm for triangle detection in O(nω−δ) for any
constant δ, for every constant ε > 0 for an n-vertex fully dynamic graph with at most m edges at all
times, there is no algorithm for maintaining a (1 + α, β)-emulator for any α ∈ [0, 2/3) and integer
β ≥ 0 with O(nω−1−ε(2−3αβ )ω−1) edges, preprocessing time O(nω−ε(2−3αβ )ω), and amortized update time
O(nω−1−ε(2−3αβ )ω) with error probability at most 1/3 in the word-RAM model with O(log n) bit words.

The same result holds for incremental and decremental algorithms, but for worst-case update time.

In particular, for the natural setting where α is constant and β = no(1) we have the following corollary:

Corollary 4.9. Under the hypothesis that there is no algorithm for triangle detection in O(nω−δ) for any
constant δ, for every constant ε > 0 for an n-vertex fully dynamic graph with at most m edges at all
times, there is no algorithm for maintaining a (1 + α, no(1))-emulator for any constant α ∈ [0, 2/3) with
O(nω−1−ε) edges, preprocessing time O(nω−ε), and amortized update time O(nω−1−ε) with error proba-
bility at most 1/3 in the word-RAM model with O(log n) bit words.

The same result holds for incremental and decremental algorithms, but for worst-case update time.

For the incremental and decremental settings, we prove the following theorem.

Theorem 4.10. Under the Combinatorial k-Clique hypothesis, for every constant ε > 0 and every constant
integer ` ≥ 1, for an n-vertex incremental or decremental graph with m = Θ(n1+1/`) edge insertions or
deletions, there is no combinatorial algorithm for maintaining a β-additive emulator for any integer β ≥ 0
with O(m1−ε/β) edges and total time O(mn1−ε/β2) with error probability at most 1/3 in the word-RAM
model with O(log n) bit words.

In particular, for the natural setting where β = no(1) we have the following corollary:

Corollary 4.11. Under the Combinatorial k-Clique hypothesis, for every constant ε > 0 and every constant
integer ` ≥ 1, for an n-vertex incremental or decremental graph with m = Θ(n1+1/`) edge insertions
or deletions, there is no combinatorial algorithm for maintaining a no(1)-additive emulator with O(m1−ε)
edges and total time O(mn1−ε) with error probability at most 1/3 in the word-RAM model with O(log n)
bit words.

4.2.2 Preliminaries
Our reductions are from the k-Cycle problem. A reduction from k-clique to k-cycle in graphs of all

sparsities is known:

Theorem 4.12 (Combinatorial k-Cycle [6868]). Under the Combinatorial k-Clique hypothesis, for every con-
stant ε > 0 and every integer ` ≥ 1, there is no combinatorial algorithm for detecting a k = 2` + 1-cycle
in a directed graph with m = Θ(n1+1/`) edges in time O(mn1−ε) with error probability at most 1/3 in the
word-RAM model with O(log n) bit words.

Given an instance of k-Cycle, we introduce a basic gadget that we will use in all of our constructions.
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color 1
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Figure 6: The basic gadget for reductions from k-clique.

The basic gadget Let G = (V,E) with n = |V | and m = |E| be the graph on which we wish to find a
directed k-cycle. We use color coding: we color the vertices with colors in 1, 2, . . . , k uniformly at random.
For all i, let Vi be the set of vertices of color i. We construct a gadget as shown in Figure 66.

The gadget consists of k + 1 layers of vertices. For all 1 ≤ i ≤ k, layer i contains a copy xij of every
xj ∈ Vj . Layer k+ 1 contains a copy xk+1

j of every xj ∈ V1. For two consecutive layers i, i+ 1, we include
the undirected edge (xia, x

i+1
b ) if and only if the directed edge (xa, xb) is in E.

Our constructions will use several copies of the basic gadget. Each copy uses the same coloring of G so
each copy is identical.
4.2.3 Reduction for fully dynamic algorithms

In this section we prove Theorems 4.64.6 and 4.84.8.

Construction We say that a k cycle in G is colorful if according to the coloring from the basic gadget the
k-cycle has exactly one vertex of each color and the vertices are in color order 1, 2, . . . k around the cycle
(i.e. the vertex of color 1 is a adjacent to the vertex of color k). We will present an algorithm that detects
a colorful k-cycle in G if one exists. Any given k-cycle is colorful with probability 1/kk−1. We repeat the
entire algorithm, including construction of the basic gadget, Θ(kk−1) times so that if G contains a k-cycle,
then with probability at least 2/3, for at least one of the repetitions G contains a colorful k-cycle.

We will construct a dynamic graph G′. Let c = d β
2−kαe+ 1 and take c disjoint copies G′1, . . . , G

′
c of the

basic gadget. This completes the preprocessing phase.
Now, we start the dynamic phases. There is one dynamic phase for each vertex in G of color 1. In

each phase i, we insert an undirected edge between every pair of consecutive gadgets G′j and G′j+1 from
xk+1
i ∈ G′j x1i ∈ G′j+1. See Figure 77.

Throughout all of the edge updates, we maintain our dynamic emulator. At the end of each phase i, we
run a single call to BFS on the emulator to estimate the distance between x1i ∈ G′1 and xk+1

i ∈ G′c. If the
estimated distance is less than (k + 2)c− 1, we return that we have detected a k-cycle.

Following the end of each phase, we remove all of the edges added during that phase.
If after all phases of all Θ(kk−1) repetitions of the algorithm, we have not detected a k-cycle, we return

that the graph has no k-cycles.

Correctness First we will show that if the graph G contains a k-cycle then our algorithm detects one.
Suppose we are in a repetition of the algorithm where this k-cycle is colorful. Without loss of generality, let
x1, . . . , xk be the vertices in a k-cycle in G. such that each xi has color i.

We claim that our algorithm detects this k-cycle at the end of the first phase. The basic construction
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Figure 7: The construction for fully dynamic algorithms. The red edges are dynamically added in phase j.

ensures that for all 1 ≤ i ≤ k − 1, in each gadget G′j , the edge (xii, x
i+1
i+1) exists and the edge (xkk, x

k+1
1 )

exists. Thus, there is a path of length k from x11 to xk+1
1 in each basic gadget.

Furthermore, in the first dynamic phase we insert an edge between every two consecutive gadgets G′j
and G′j+1 from xk+1

1 ∈ G′j x11 ∈ G′j+1. Concatenating these paths, we have a path of length kc − 1 from
x11 ∈ G′1 and xk+1

1 ∈ G′c. Thus, the estimate of dist(x11 ∈ G′1, x
k+1
1 ∈ G′c) returned by our (1 + α, β)-

emulator is at most (kc − 1)(1 + α) + β < (k + 2)c − 1 by choice of c. Therefore, our algorithm returns
that we have detected a k-cycle.

Now we will show that if our algorithm returns that we have detected a k-cycle, then G contains a k-
cycle. Let i be the phase that our algorithm detects a k-cycle. Consider G′ at the end of phase i. Because
our algorithm detected a k-cycle, we know that the distance between x1i ∈ G′1 and xk+1

i ∈ G′c estimated by
our emulator is less than (k+ 2)c− 1. Therefore, the true distance between x1i ∈ G′1 and xk+1

i ∈ G′c is also
less than (k + 2)c− 1.

We note that since there is only one edge between every pair of adjacent gadgets G′i, any shortest path
between x1i ∈ G′1 and xk+1

i ∈ G′c contains for every edge whose endpoints are in different copies of the
basic gadget. That is, this path contains for every 1 ≤ j ≤ c − 1 the edge (xk+1

i ∈ G′j , x
1
i ∈ G′j+1).

Therefore, for every 1 ≤ j ≤ c − 1 this path contains as a subpath a shortest path between x1i ∈ G′j and
xk+1
i ∈ G′j . Since G′ contains c identical copies of the basic gadget, dist(x1i ∈ G′j , x

k+1
i ∈ G′j) is the same

for all j.
Since dist(x1i ∈ G′1, x

k+1
i ∈ G′c) < (k + 2)c − 1 the edges between gadgets contribute c − 1 to this

quantity, we know that for all 1 ≤ j ≤ c, dist(x1i ∈ G′j , x
k+1
i ∈ G′j) < k + 1. Fix j. Since each basic

gadget contains k + 1 layers, we know that dist(x1i ∈ G′j , x
k+1
i ∈ G′j) ≥ k. Therefore, there is a path

from x1i ∈ G′j to xk+1
i ∈ G′j that contains exactly one vertex from each layer. The construction of the basic

gadget ensures that there is an edge (xia ∈ G′j , x
i+1
b ∈ G′j) if and only if the directed edge (xa, xb) is in E.

Thus, this path from x1i ∈ G′j to xk+1
i ∈ G′j corresponds to a directed walk of length k in G. In particular

the first and last vertex on this walk are both xi so this is a closed walk. Furthermore, every internal layer
of G′j corresponds to a different color, so every vertex of the closed walk in G has a different color. Thus,
every vertex of the closed walk is distinct so the closed walk is indeed a directed k-cycle.

Running time Let n′ be the number of vertices in the dynamic graph and let m′ be the maximum number
of edges ever in the dynamic graph. We first calculate n′ and m′. Each basic gadget contains O(n) vertices
and O(m) edges. Thus, c copies of the basic gadget contain n′ = O(cn) vertices and O(cm) edges. During
each of the at most n phases we add c − 1 edges so the number of edge updates after preprocessing is
O(cm). Thus, m′ = O(cm) = O(cn1+1/`) = O(c(n′/c)1+1/`) = O(n′1+1/`). We repeat the entire
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algorithm O(kk−1) = O(1) times. Thus, the total number of edge updates over the entire sequence is
O(cn).

We will now split our running time analysis into two – one for refuting the combinatorial k-Clique con-
jecture, and one for refuting the hypothesis that triangles cannot be solved faster than matrix multiplication.

Combinatorial k-Clique Let us assume that the dynamic emulator has, for some ε > 0, preprocessing

time O(m′n′1−ε
(
2−(2`+1)α

β

)2
), and amortized update time O(m′1−ε

(
2−(2`+1)α

β

)2
).

Our dynamic emulator algorithm has preprocessing time
O(m′n′1−ε(2−(2`+1)α

β )2) = O((cm)(cn)1−ε/c2) = O(mn1−ε) and amortized update time

O(m′1−ε(2−(2`+1)α
β )2) = O((cm)1−ε/c2) = O(m1−ε/c). Since there are O(cn) edge updates, the total

running time due to the dynamic emulator algorithm is O(mn1−ε).
Additionally, at most n times during each repetition the algorithm, we run BFS on the emulator. The

number of edges in the emulator is O(m′1−ε(2−(2`+1)α
β )) = O((cm)1−ε/c) = O(m1−ε). Thus, the BFS

calls take total time O(nm1−ε) = O(mn1−ε).
Putting everything together, our combinatorial dynamic emulator algorithm implies a combinatorial

algorithm for directed k-cycle detection in time O(mn1−ε), thus refuting the combinatorial k-Clique hy-
pothesis.

Non-combinatorial triangle Here we assume that the dynamic emulator has, for some ε > 0, prepro-
cessing time O(n′ω−ε(2−3αβ )ω) and amortized update time O(n′ω−1−ε(2−3αβ )ω).

Thus, our dynamic emulator algorithm has preprocessing time
O(n′ω−ε(2−3αβ )ω) = O((cn)ω−ε/cω) = O(nω−ε) and amortized update time
O(n′ω−1−ε(2−3αβ )ω) = O((cn)ω−1−ε/cω) = O(nω−1−ε/c1+ε). Since there are O(cn) edge updates, the
total running time of the dynamic emulator algorithm is O(nω−ε).

Additionally, at most n times during each repetition the algorithm, we run BFS on the emulator. The
number of edges in the emulator is O(n′ω−1−ε(2−3αβ )ω−1) = O((cn)ω−1−ε/cω−1) = O(nω−1−ε). Thus,
the BFS calls take total time O(nω−ε).

Putting everything together, our dynamic emulator algorithm implies an algorithm for triangle detection
in time O(nω−ε), refuting the hypothesis that triangle detection needs nω−o(1) time.
4.2.4 Reduction for incremental and decremental algorithms.

In this section we prove Theorem 4.104.10.

Construction The construction is similar to the fully dynamic construction, but with different interactions
between consecutive gadgets. We first describe the incremental construction.

As in the fully dynamic construction, we say that a k cycle in G is colorful if according to the coloring
from the basic gadget the k-cycle has exactly one vertex of each color and the vertices are in color order
1, 2, . . . k around the cycle (i.e. the vertex of color 1 is a adjacent to the vertex of color k). We will present
an algorithm that detects a colorful k-cycle in G if one exists. Any given k-cycle is colorful with probability
1/kk−1. We repeat the entire algorithm, including construction of the basic gadget, Θ(kk−1) times so that
if G contains a k-cycle, then with probability at least 2/3, for at least one of the repetitions G contains a
colorful k-cycle.

We will construct a dynamic graph G′. Starting with an empty graph, we perform edge insertions to
construct the following graph. Take β + 1 disjoint copies G′1, . . . , G

′
β+1 of the basic gadget. Then, we add

β + 2 paths P0, . . . , Pβ+1 each on 2n − 1 new vertices. Call the vertices of each path z1, z2, . . . , zn =
yn, yn−1, . . . , y1. In other words, the middle node of each path has two names, zn and yn.
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Now, we start the phases. There is one phase for each vertx in G of color 1. In phase i, for each
1 ≤ j ≤ β + 1 we insert an edge between yi ∈ Pj−1 and x1i ∈ G′j . Similarly, for each 1 ≤ j ≤ β + 1 we
insert an edge between zi ∈ Pj and xk+1

i ∈ G′j . See Figure 88.
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Figure 8: The construction for incremental algorithms. The red edges are dynamically added in phase 1 and
the blue edges are dynamically added in phase 2.

Throughout all of the edge updates, we maintain our incremental emulator. At the end of each phase,
we run BFS on the emulator to estimate the distance between z1 ∈ P0 and y1 ∈ Pβ+1.

If the estimated distance between z1 ∈ P0 and y1 ∈ Pβ+1 at the end of phase i is less than
(k + 3)(β + 1) + (β + 2)(2n− 2i) + 2(i− 1), we return that we have detected a k-cycle.

If after all phases of all Θ(kk−1) repetitions of the algorithm, we have not detected a k-cycle, we return
that the graph has no k-cycles.

Now, we describe the decremental construction. The edge updates are exactly the reverse of the in-
cremental construction. That is, the initial graph in the decremental construction is the final graph in the
incremental construction. Then, in phase i of the decremental construction, for each 1 ≤ j ≤ β + 1 we
delete the edge between yn−i+1 ∈ Pj−1 and x1n−i+1 ∈ G′j . and delete the edge between zn−i+1 ∈ Pj and
xk+1n−i+1

∈ G′j .
Throughout all of the edge updates, we maintain our decremental emulator. At the end of each phase,

we run BFS on the emulator to estimate the distance between z1 ∈ P0 and y1 ∈ Pβ+1.
If the estimated distance between z1 ∈ P0 and y1 ∈ Pβ+1 at the end of phase i is less than

(k + 3)(β + 1) + (β + 2)(2n − 2(n − i + 1)) + 2((n − i + 1) − 1), we return that we have detected a
k-cycle. Note that this threshold is exactly the threshold from the incremental algorithm but with i replaced
with n− i+ 1.

If after all phases of all Θ(kk−1) repetitions of the algorithm, we have not detected a k-cycle, we return
that the graph has no k-cycles.

Correctness The following argument is written for the incremental setting but the same argument applies
for the decremental setting.

First we will show that if the graph G contains a k-cycle then our algorithm detects one. Suppose we
are in a repetition of the algorithm where this k-cycle is colorful. Without loss of generality, let x1, . . . , xk
be the vertices in a k-cycle in G where each xi is of color i.

We claim that our algorithm detects this k-cycle at the end of the first phase. The basic construction
ensures that for all 1 ≤ i ≤ k − 1, in each gadget G′j , the edge (xii, x

i+1
i+1) exists and the edge (xkk, x

k+1
1 )

exists. Thus, there is a path of length k from x11 to xk+1
1 in each basic gadget.

Also due to the dynamic edge updates, for each 0 ≤ j ≤ β + 1, there is an edge between yi ∈ Pj−1 and
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x11 and an edge between zi ∈ Pj and xk+1
1 . Additionally, for each 0 ≤ j ≤ β + 2, there is a path along Pj

from zi ∈ Pj to yi ∈ Pj of length (2n − 2) − 2(i − 1) = 2n − 2i. Finally, there is a path of length i − 1
from z1 ∈ P0 to zi ∈ P0 and a path of length i − 1 from yi ∈ Pβ+2 to y1 ∈ Pβ+2. Concatenating all of
these paths, we have that dist(z1 ∈ P0, y1 ∈ Pβ+1) ≤ (k+ 2)(β+ 1) + (β+ 2)(2n− 2i) + 2(i− 1). Thus,
the estimate of dist(z1 ∈ P0, y1 ∈ Pβ+1) returned by our β-additive emulator is at most (k + 2)(β + 1) +
(β + 2)(2n− 2i) + 2(i− 1) + β < (k + 3)(β + 1) + (β + 2)(2n− 2i) + 2(i− 1).

Now we will show that if our algorithm returns that we have detected a k-cycle, then G contains a k-
cycle. Let i be the phase that our algorithm detects a k-cycle. Consider G′ at the end of phase i. Because
our algorithm detected a k-cycle, we know that the distance between z1 ∈ P0 and y1 ∈ Pβ+1 estimated by
our emulator is less than (k+ 3)(β+ 1) + (β+ 2)(2n−2i) + 2(i−1). Therefore, the true distance between
z1 ∈ P0 and y1 ∈ Pβ+1 is also less than (k + 3)(β + 1) + (β + 2)(2n− 2i) + 2(i− 1).

We observe that the layered structure of the graph ensures that every path between z1 ∈ P0 and y1 ∈
Pβ+1 contains each zi and yi in order from P0 to Pβ+1. That is, every shortest path between z1 ∈ P0 and
y1 ∈ Pβ+1 is composed of precisely following subpaths:

• A shortest path from z1 ∈ P0 to zi ∈ P0. The only simple path connecting these vertices is of length
i− 1.

• A shortest path from yi ∈ Pβ+1 to y1 ∈ Pβ+1. The only simple path connecting these vertices is of
length i− 1.

• A shortest path from zi ∈ Pj to yi ∈ Pj for all 1 ≤ j ≤ β+ 2. The only simple path connecting these
vertices is of length (2n− 2)− 2(i− 1) = 2n− 2i.

• A shortest path from yi ∈ Pj−1 to zi ∈ Pj for all 1 ≤ j ≤ β+1. Since the graph is a series of identical
copies of a gadget, we know that dist(yi ∈ Pj−1, zi ∈ Pj) is the same for all j. Furthermore,
we know the length of each of the previous three types of subpaths and we know that dist(z1 ∈
P0, y1 ∈ Pβ+1) < (k + 3)(β + 1) + (β + 2)(2n − 2i) + 2(i − 1), so we conclude that each
dist(yi ∈ Pj−1, zi ∈ Pj) < k + 3.

Due to the layering of the graph, for all 1 ≤ p ≤ β+ 1 the shortest path between yi ∈ Pp−1 and zi ∈ Pp
must contain vertices x1j ∈ G′p and xk+1

j′ ∈ G′p for some j, j′. Fix j, j′. Since dist(yi ∈ Pp−1, zi ∈ Pp) <
k + 3, we have that dist(x1j ∈ G′p, x

k+1
j′ ∈ G′p) < k + 1. Then since each basic gadget contains k + 1

layers, we know that there is a path from x1j ∈ G′p to xk+1
j′ ∈ G

′
p that contains exactly one vertex from each

layer. The construction of the basic gadget ensures that there is an edge (xia ∈ G′j , x
i+1
b ∈ G′j) if and only

if the directed edge (xa, xb) is in E. Thus, this path from x1i ∈ G′p to xk+1
i ∈ G′p corresponds to a directed

walk of length k in G. In particular the first and last vertex on this walk are both xi so this is a closed walk.
Furthermore, every internal layer of G′j corresponds to a different color, so every vertex of the closed walk
in G has a different color. Thus, every vertex of the closed walk is distinct so the closed walk is indeed a
directed k-cycle.

Running time Let n′ be the number of vertices inG′ and letm′ be number of edge insertions or deletions.
We first calculate n′ and m′. Each basic gadget contains O(n) vertices and O(m) edges. Thus, β + 1
copies of the basic gadget contain O(βn) vertices and O(βm) edges. Additionally, we have (β + 2) paths
on (2n − 1) vertices each, for a total of (2n − 1)(β + 2) additional vertices. Thus, n′ = O(βn). During
each of the at most n phases there are at most 2(β + 1) edge updates. Thus, m′ = O(βm). We repeat the
entire algorithm O(kk−1) = O(1) times. Thus, the total number of edge updates over all repetitions of the
algorithm is O(βm).
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Let’s assume that the incremental or decremental emulator algorithm has total time O(m′n′1−ε/β2) =
O(βm(βn)1−ε/β2) = O(mn1−ε).

Additionally, at most n times during the algorithm, we run BFS on the emulator. The number of
edges in the emulator is O(m1−ε/β) = O((βm)1−ε/β) = O(m1−ε). Thus, the BFS calls take total time
O(nm1−ε) = O(mn1−ε).

Putting everything together, our incremental or decremental emulator algorithm implies an algorithm
for directed k-cycle detection in time O(mn1−ε), thus refuting the combinatorial k-Clique hypothesis.

5 Algebraic All Pairs Shortest Paths with Path Reporting

The main result of this section is a randomized, fully dynamic algorithm that can maintain and query
successors for all pairs shortest paths of up to D edges. Our algorithm is an augmentation of the algebraic
all pairs shortest distances algorithm of Sankowski [7575], who originally posed as an open problem to use
his techniques and the construction of 5.65.6 to actually report paths. We state our new result formally in the
following theorem

Theorem 5.1 (Successor Queries and Short Paths). For any parameters κ ∈ (0, 1), D < n, and an un-
weighted graph G = (V,E) subject to edge insertions and deletions, there is a dynamic, randomized
data-structure PDκ that supports the following operations:

• Ins/Delete(e) Inserts/Deletes edge e ∈ E in worst case time O
(
Dnω(1,1,κ)−κ +Dn1+κ).

• Short Distance/Successor Query(i, j) Returns the distance d ≤ D and a successor on any short,
shortest i→ j path in worst case time O(Dnκ) and is correct whp.

• Short Path Queries(i, j) Returns a shortest i→ j path of length d ≤ D by repeatedly finding succes-
sors in worst case O(dDnκ) time, and is correct whp.

with pre-processing time O(Dn2) on empty graphs and O(Dnω) otherwise.

as also presented in 5.145.14. We believe this result is of independent interest. We can minimize the update time
by the choice of κ = κ∗ that balances the exponents in the runtime, that is, κ∗ is the solution to

ω(1, 1, κ)− κ = 1 + κ (6)

which numerically can be evaluated to κ∗ ≈ .529. The corresponding update time is O(Dn1+κ
∗
) =

O(Dn1.529)
An overview of this section is as follows. We begin by listing a small toolkit of sparse matrix facts, to

be used in the following subsections. In subsection 5.25.2, we detail [7575]’s original all pairs shortest distances
construction, his path encoding lemma 5.65.6 and the dynamic matrix inverse algorithm 5.75.7, all central to our
augmentations and key to our proof of 5.15.1. In subsection 5.35.3, we build on the matrix inverse algorithm to
show how to maintain the product of the adjacency matrix and the inverse, and then use these products to
prove the theorem above. Finally, in subsection 5.45.4, we then use this result to construct the first subquadratic
time update and path reporting algorithm for fully dynamic, unweighted APSP.

5.1 Preliminaries

Fact 5.2 (Rectangular Matrix Multiplication). We denote as O(nω(a,b,c)) the cost of multiplying two rect-
angular matrices, the first of size na × nb, the second nb × nc. The current exponent of square matrix
multiplication ω(1, 1, 1) ≡ ω ≤ 2.3729.
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Fact 5.3 (Row Sparse Matrix Multiplication). The product of two matrices A,B, the first of ≤ nδ non-zero
rows, and the second of≤ nα non-zero rows, has at most nδ+nα non-zero rows and takes timeO(nω(1,α,δ))
to compute.

Fact 5.4 (Row Sparse Matrix Inverse). The inverse of a matrix A that differs from identity in at most nδ

rows, differs from identity in at most nδ rows. Moreover, it can be computed in nω(1,δ,δ) time.

Fact 5.5 (The Hitting Set Lemma). Given a set S of n elements, a random sample H ⊂ V of size ≥
cn log n/k for a given constant c > 1 hits every subset of size k of S with high probability.

5.2 Algebraic All Pairs Distances
In his PhD thesis, Sankowski [7575] showed the following lemma on how to encode path lengths in a

matrix.

Lemma 5.6 ([7575]). Let Ã be the symbolic adjacency matrix of the graph G = (V,E), where each edge
(i, j) ∈ E defines a variable Ãij = xij , and Ãij = 0 if (i, j) /∈ E. Consider the adjoint adj(I − uÃ)ij as
a polynomial over an additional variable u. The length of the shortest path in G from i to j is equal to the
degree of u of the smallest degree non-zero term in adj(I − uÃ)ij .

Sankowski [7575] used this result to construct algorithms for the All Pairs Shortest Distances problem by
sampling a uniformly random integer in a field F of size nO(1) for each symbolic edge-variable and using the
Schwartz-Zippel Lemma to guarantee that with high probability, for all i, j ∈ V the degree dij (the distance)
term in adj(I − uÃ)ij is non-zero - and thus whp it suffices to read the polynomial entry at i, j to obtain the
distance dij . Sankowski [7575] then showed how to maintain and query this adjoint dynamically, and over a
ring mod uD+1 in worst case update time O(D(nω(1,1,κ)−κ +n1+κ)) for a given parameter κ ∈ (0, 1). This
effectively allowed the short distance queries, that is, to return the distance between any pair of vertices i, j
correctly if the distance dij is less than D, however introducing a tradeoff in runtime for large D. We state
and re-prove these theorems here, for concreteness.

Theorem 5.7 (Dynamic Integer Matrix Inverse [7575]). Given a constant κ ∈ (0, 1), there is a deterministic,
dynamic data-structure Dκ that maintains the inverse and the determinant of an integer matrix M subject
to non-singular entry-wise updates, and supports the following operations:

• Update(i, j, v) Updates entry Mij = v and the data-structure Dκ in time O(nω(1,1,κ)−κ + n1+κ)

• Query(i, j) Returns the value of the inverse at entry (i, j), M−1ij , in O(nκ) time.

For current ω < 2.3729, the value of κ that balances the update time is κ∗ ≈ .529.

The key idea is to write the inverse as M−1 = T (I + N) as the product of two matrices, where one of
them, N , is sparse and initially null. As we will show, each entry update to M corresponds to a row update
to N (without updating T ), and every O(nκ) updates we exploit fast matrix multiplication over this sparse
N to ”reset” T ← T +NT,N ← 0, guaranteeing the sparsity of N .

Proof. Let us denote vijeieTj as the matrix corresponding to the additive update to entry ij of M during
some update. That is, M ′ ←M +vijeie

T
j . We constructDκ as follows. We maintain explicitly the matrices

T,N during the execution, where initially N = 0 and we precompute T = M−1 in O(nω) time. At every
non-singular entry update, we first compute the update to N through the following algorithm:
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• Compute the row vector b = vije
T
j M

−1 = vij(e
T
j T )(I +N)

• Compute the inverse B = (I + eib)
−1

• Finally, update
N ′ ← NB +B − I (7)

Correctness of this update follows from plugging in the result into the definition of M−1 to guarantee the
invariant

T (I +N ′) = T (NB +B) = M−1B = (M + eibM)−1 = (M + eivije
T
j )−1 = (M ′)−1 (8)

as intended. Note that by Fact 5.45.4, as (I + eib) has exactly one non-identity row, so does its inverse B =
(I + eib)

−1. By Fact 5.35.3 this implies that at each update N gains at most one additional non-zero row, and
thereby after k updates N has at most k non-zero rows. Finally, after O(nκ) updates, we reset the inverse
by computing

• After every nκ updates, T ← T (1 +N), N ← 0

Since N has at most O(nκ) non-zero rows, computing this product takes time O(nω(1,1,κ)). Note that it
takes timeO(n1+κ) to compute the row vector b given the product of the row vector eTj T and the row-sparse
N , s.t. the average update time is

O
(
n1+κ + nω(1,1,κ)−κ

)
(9)

which for current ω ≈ 2.3729 is minimized at κ ≈ .529, for a runtime of O(n1.529). Finally, to query any
entry ij of M−1, we compute the dot product of the row vector (eTi T ) and the sparse column vector (Nej)
in time O(nκ):

eTi M
−1ej = eTi T (I +N)ej = eTi Tej + (eTi T )(Nej) (10)

To conclude this proof, we note that the determinant detM is easily maintained in O(1) by definition of the
matrix B above. At an update to entry (i, j) of M , M ′ = B−1M ⇒ detM ′ = detM · (1 + bi). This allows
us to support queries to the adjoint of M . �

Sankowski then showed how to support the above dynamic matrix inverse algorithm over polynomial
matrices. We present the result in the corollary below

Corollary 5.8 (Dynamic Polynomial Matrix Inverse [7575]). Given κ ∈ (0, 1), D ∈ [n] there is a dynamic
data-structure DDκ that can maintain the inverse M−1 of polynomial matrix M = I − A where M,A ∈
(F[X]/〈XD+1〉)n×n subject to entry-wise polynomial updates toM , incurring a multiplicative cost of Õ(D)
to the runtimes of the theorem above.

The proof of the corollary above arises from Sankowski’s extension of Strassen’s idea of computing
over the formal power series to the dynamic case. We note that over the formal power series mod XD,
M = I−A ∈ (F[X]/〈Xk+1〉)n×n is always invertible as

M−1 =
1

I−A
=

k∑
i=0

Ai =

dlogDe∏
i=1

(I +A2i) (11)

and moreover can be computed/preprocessed in Õ(Dnω). The details are in [7575]. Corollary 5.85.8 above,
together with the path encoding lemma 5.65.6 define the fully dynamic data-structureDDκ that can support edge
updates and short distance queries, which we base this section off of and later augment. For concreteness,
we state this result in the following theorem:
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Theorem 5.9 (Short Distance Queries [7575]). Given a unweighted, dynamic graph G subject to edge inser-
tions and deletions, and parameters κ ∈ (0, 1) and 1 < D < n, there exists a dynamic data-structure DDκ
that supports edge updates in worst caseO(D(nω(1,1,κ)−κ+n1+κ)) time and can query any distance d ≤ D
correctly whp in worst case time O(Dnκ). If otherwise d > D, the distance query outputs a failure.

Which follows simply by defining M = I − uA in Corollary 5.85.8, where A is the symbolic adjacency
matrix with random integer values whenever non-zero. Additionally, DDκ can also maintain the H × H
submatrix of the inverse, corresponding to the up to D distances between all pairs of vertices in a subset of
size |H| = nq vertices in O(Dn2q) time, as follows:

Corollary 5.10 (Submatrix Maintenance [7575]). Given a subsetH ⊂ [n] of size nq of the column/row indices,
DDκ can maintain the H ×H submatrix M−1H,H of the inverse in additional O(Dn2q) update time, allowing
queries in O(1) to the submatrix.

Proof. To explicitly maintain M−1H,H , it suffices to show how to efficiently perform updates. In the notation
of the proof of the theorem above,

M−1H,H ← (M−1B)H,H = M−1H,H +M−1H,{i}(B − I){i},H (12)

where the update to the inverse is expressed in terms of the matrix B, which only differs from identity at a
single row i, and thereby can be quickly computed in O(Dn2q). �

5.3 Successor and Short Path Queries
We dedicate this section to the proof of Theorem 5.15.1. The key idea in maintaining and querying the

successors in short, shortest paths is inspired by Seidel’s static algorithm for undirected, unweighted APSP
[7777]. In order to augment the data-structure of Theorem 5.95.9 [7575], we additionally maintain the product
A · adjM of the boolean adjacency matrix and the adjoint of the polynomial matrix M = I− uA as defined
in Lemma 5.65.6. The (i, j) entry of the adjoint (adjM)ij is a polynomial where the degree of the lowest
degree non-zero monomial is the length of the shortest path, and if the distance from i to j ∈ V is d ≤ D,
then we can query it in time O(Dnκ) under Theorem 5.95.9. Moreover, inspection of the product tells us
that (A · adjM)ij must have smallest degree d − 1 as there must exist some witness s (the successor!)
s.t. Ais = 1 and M−1sj has minimum degree d − 1. This idea of maintaining successors as witnesses of
a polynomial matrix product in addition to a sparsification argument that allows us to reduce the case of a
multiple witnesses (successors) to that of a single witness (successor), enables a bitwise selection trick that
follows closely to Seidel’s successor finding algorithm [7777] in the static case.

The outline of this section is as follows. First, we describe how to maintain the product A · adjM . Note
again that A · adjM = detM × A ·M−1, and thus we can instead maintain A ·M−1, and detM following
5.75.7. Then, we show how to find a successor on a given path i→ j of length ≤ D, if the successor is unique,
using log n queries to the products described. Finally, we review Seidel’s sparsification trick [7777] to reduce
the case of multiple witnesses to a polylog number of single witness queries, and we conclude with our main
theorem on the short path finding algorithm PDκ . In the next subsection, we use this path finding black box
as a subroutine to construct novel algorithms for exact dynamic APSP with path reporting. We begin by
presenting our theorem on maintaining the products.

Theorem 5.11 (Dynamic Product Maintenance). Let κ ∈ (0, 1) be a constant, and define the dynamic
polynomial matrices E,A,M ∈ (F[X]/〈XD+1〉)n×n, where M ≡ I − A, and both E and A are subject
to entry-wise updates. There is a data-structure that supports the following operations over the product
E ·M−1:
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• UpdateE(i, j, v) Updates the entry Eij ← v for i, j ∈ [n] and v ∈ (F[X]/〈XD+1〉) in worst case
time O(Dn).

• UpdateA(i, j, v) Updates the entry Aij ← v for i, j ∈ [n] and v ∈ (F[X]/〈XD+1〉) in worst case
time O

(
D(nω(1,1,κ)−κ + n1+κ)

)
• Query(i, j) Returns the entry (E ·M−1)ij ∈ (F[X]/〈XD+1〉) in time O(Dnκ).

Proof. The key idea in this proof is to use Theorem 5.75.7 and maintain matrices T,N s.t. M−1 = T (I +N),
as well as explicitly maintaining a matrix V ≡ ET . Using associativity this avoids an intermediary matrix
product during queries, and as we will show can be efficiently maintained subject to updates to E and A
under slight modifications to the original scheme.

During the execution we maintain explicitly the polynomial matrices E, T,N and the product V = ET ,
such that we maintain the correctness invariant EM−1 = (ET )(I + N) = V (I + N) by associativity.
At every entry update to E ← E + vijeie

T
j , we simply compute the row vector vijeTj T , corresponding to

the update to the ith row V ← V + ei(vije
T
j T ) in O(Dn) time. Correctness of this update follows from

associativity in the expansion

(E + vijeie
T
j )M−1 = (ET + vijeie

T
j T )(I +N) = (V + ei(vije

T
j T ))(I +N) (13)

showing that it suffices to update the product V . Next, whenever we update A ← A + vijeie
T
j , we simply

follow Theorem 5.75.7 and update the sparse matrix N , and every nκ updates to A we reset V ← V · (1 +N),
then T ← T ·(1+N), finallyN ← 0, inO(Dnω(1,1,κ)−κ+Dn1+κ) amortized time. Note that this maintains
the invariant that EM−1 = V (I + N) as well as M−1 = T (I + N). To conclude this proof, we support
queries to (EM−1)ij by computing

eTi EM
−1ej = eTi V ej + (eTi V )(Nej) (14)

in Õ(Dnκ) time due to the dot product of the vectors (eTi V ) and (Nej), where (Nej) is a column vector
with a sparse number of non-zero rows, as detailed in the proof of 5.75.7 in the previous subsection. Note that
maintaining V explicitly was key to these fast queries. �

Effectively, this implies that we can efficiently maintain and query the product above E ·M−1, for any
matrix E, in the same time bounds as Sankowski’s original dynamic polynomial matrix inverse construction
DDκ of Corollary 5.85.8. We now show how to use this construction to find single witnesses/single successors.

Lemma 5.12. Let i, j ∈ V be vertices s.t. their distance is 1 < dij ≤ D. If there is a single successor
s ∈ V = [n] on any shortest path from i to j, then we can find it usingO(log n) queries to the data-structure
of the theorem above, in Õ(Dnκ) time.

Proof. For each l ∈ [O(log n)] we define a subset of the column indices Sl ⊆ [n] where each index s ∈ [n]
is in Sl if the lth bit of s’s bitwise description is sl = 1. Define O(log n) copies of the adjacency matrix
A, where A(l) for l ∈ [O(log n)] is defined by only picking the subset of columns Sl, and all other columns
of A(l) are completely null. We initialize and maintain O(log n) copies of the data-structure of Theorem
5.115.11, where E(l) = A(l). As described, for a given pair of vertices i, j ∈ V if 1 < dij ≤ D then there
must exist some successor s ∈ [n] of i s.t. Ais = 1, adjMsj has minimum degree dsj = dij − 1, and
thereby the product (A · adjM)ij has minimum degree dsj = dij − 1. However, as by assumption there
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is a single witness s, all other s′ ∈ [n] \ {s} have minimum degree of adjMs′j > dsj , and thus any copy
of the data-structure (A(l) · adjM)ij where s is not one of the selected columns will have minimum degree
> dij − 1. This is simply since A(l)

is = 0 if the lth bit sl = 0. It follows that the minimum degree of the
lth product at entry (i, j) is dij − 1 if the lth bit of s is 1, and so if we query the O(log n) data-structures
(A(l) ·adjM)ij for each l, and define a sequence of bits bl = 1 if (A(l) ·adjM)ij has minimum degree dij−1,
then (b1, b2 · · · bO(logn)) ≡ s is exactly the bitwise description of the single witness s. �

A straightforward sparsification trick allows us to reduce the case of multiple witnesses to that of a single
witness.

Lemma 5.13. If there is an arbitrary number of distinct successors of i ∈ V on any shortest path from i to
a given j ∈ V of length ≤ D, then we can find an arbitrary one of them in in Õ(Dnκ) time.

Proof. The key construction is to maintainO(log2 n) versions of the single-witness data-structure of Lemma
5.125.12. We first address the case of a known number of witnesses c ≥ 1 for a given product ij via a sparsifi-
cation trick, and then show how to efficiently ”guess” the number of witnesses for each product in only an
additional factor of log n.

If the number of witnesses c of the product (AM−1)ij is known to be bounded in a range by n/2w+1 ≤
c ≤ n/2w for some w = O(log n), then sampling 2w columns C ⊂ [n] uniformly at random gives us a
constant probability that we sample only a single witness s ∈ C. This is since

P[|W ∩ C| = 1] = 2w
c

n
(1− c

n
)2
w−1 ≥ 1

2
(1− 1

2w
)2
w−1 ≥ 1/2e (15)

where W is the set of witnesses of the product ij. It follows that if we maintain O(log n) versions of the
data-structure of lemma 5.125.12, where in each copy we sample 2w columns uniformly at random and 0-out
the remaining columns, then with high probability for every pair i, j with n/2w+1 ≤ c ≤ n/2w successors
there exists a copy of the data-structure with a single witness of i on a shortest path to j.

Finally, to address the fact that the number of witnesses is unknown and can vary for each pair, we
maintain O(log n) editions of the sparsification above for every w ∈ {1 · · ·O(log n)}, that is, for every
possible bound over the number of witnesses. In this manner, whenever we query the successor for a given
pair i, j, we query each of the O(log3 n) data-structures of theorem 5.115.11 for the entry i, j, and obtain a set
P of O(log2 n) potential successors (log n column samplings per witness-exponent guess). Then, we query
the original distance matrix adjMsj for each s ∈ P , and output any one of them with distance dsj = dij − 1
(a successor) and with an edge Ais = 1. By construction, we find a successor whp as we check every
possible range of the number of successors (parametrized by w), and we always verify the output solution.
This takes overall Õ(Dnκ) to find a successor on any shortest path i, j of length ≤ D. �

Now that we have shown how to support successor queries, we formalize our statement on short path
finding.

Theorem 5.14 (Successor Queries and Short Paths). For any parameters κ ∈ (0, 1), D < n, and an un-
weighted graph G = (V,E) subject to edge insertions and deletions, there is a dynamic, randomized
data-structure PDκ that supports the following operations:

• Ins/Delete(e) Inserts/Deletes edge e ∈ E in worst case time O
(
Dnω(1,1,κ)−κ +Dn1+κ).

• Short Distance/Successor Query(i, j) Returns the distance d ≤ D and a successor on any short,
shortest i→ j path in worst case time O(Dnκ) and is correct whp.
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• Short Path Queries(i, j) Returns a shortest i→ j path of length d ≤ D by repeatedly finding succes-
sors in worst case O(dDnκ) time, and is correct whp.

with pre-processing time O(Dn2) on empty graphs and O(Dnω) otherwise.

Proof. We maintain the polynomial matrix inverse data-structure DDκ of Theorem 5.95.9, in addition to the
data-structure of Lemma 5.135.13. At each edge update, we update each of the polylog copies of the data-
structure of Theorem 5.115.11, including at most a single entry update to E and to A per copy, per update. To
support Short Path Queries of a given pair of vertices i, j of distance d ≤ D, we simply sequentially query
the successor s of i, and recurse on i← s while maintaining the path. This takes time Õ(d×Dnκ). �

In the next sections, we apply PDκ as a black box to the problems of Exact and Approximate Dynamic
APSP.

5.4 Exact Fully Dynamic Unweighted APSP

In this section we explain how to use our short path finding black box PDκ of Theorem 5.15.1 to construct
the first subquadratic time update and path query algorithm for Exact Dynamic APSP. PDκ allows us to query
short length d ≤ D paths in O(dDnκ) time, such that it only remains to show how to construct long, up
to linear length paths. The construction follows that of the all pairs shortest distances algorithm of [7575].
We can use the path decomposition technique to sample a hitting set H ⊂ V of size Õ(n/D) that whp
hits every length D/2 path in G by Fact 5.55.5. In this manner, any i to j shortest path can be decomposed
into consecutive subpaths l1 · · · lk · · · lO(n/D) of D/2 vertices, s.t. whp there is a vertex uk ∈ H in the
hitting set in each one of those subpaths uk ∈ lk∀k. It follows that there exists a subpath decomposition
i → u1, u1 → u2 · · · → j of the shortest path from i to j where whp the distance between each adjacent
pair (uk, uk+1) is ”short”, that is, less than D, and can be queried efficiently.

This effectively reduces the question to finding the hitting set vertices in a path from arbitrary i to j.
At every edge update, we use Corollary 5.105.10 to explicitly maintain the H ×H submatrix of the inverse in
O(n2/D) time, s.t. we can access the H ×H matrix of distances DD

H,H between any pair of vertices in H
if they are ≤ D apart in O(1) time. We can use these current distances to construct the induced, weighted
graph G′ = (H,E′, DD

H,H), and compute the APSP via Floyd-Warshall’s algorithm on the induced G′

in O(|H|3) = O(n3/D3) time. The key idea in constructing long paths is that the hitting set lemma
guarantees that on any long shortest path, each pair of hitting set vertices on said path are at most D nodes
away whp and thus between vertices in H the shortest distance in G′ is also the shortest distance in G.
Floyd-Warshall’s algorithm therefore not only with high probability gives us the correct distances DH,H

between any p, q ∈ H , as it also maintains the paths p, u1 · · · , uk, · · · q of hitting set vertices in G′ between
any p, q ∈ H .

At each path query between arbitrary i, j ∈ V , we first check if the distance is short dij ≤ D using
PDκ of theorem 5.15.1, and if not, we compute the distance between i and j by performing the following
minimization over the last and first hitting set vertices p, q in the path i→ p · · · q → j:

Dij = min{DD
ij , min

p,q∈H

(
DD
ip +DH,H(p, q) +DD

qj

)
} (16)

where the terms in the inner minimization correspond to the distances i → p ∈ G, p  q ∈ G′ and
q → j ∈ G respectively. We note that it takes time O(|H|2) = Õ(n2/D2) to perform the minimization,
which requires both a row and a column query to DDκ , in particular to the distances (i,H) and (H, j), s.t.
the total runtime of the distance query is O(|H|2 + |H|Dnκ) = Õ(n2/D2 + n1+κ).
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Note additionally that finding the first and last hitting set vertices p, q in a i, j path also gives us all the
hitting set vertices p, u1, u2 · · · q ∈ H on the path, due to the successor information inG′. It follows now that
whp each pair of adjacent uk, uk+1 are less than 2×D/2 = D nodes apart, and thus we can perform short
path queries between all the adjacent pairs uk, uk+1 ∈ H using PDκ in Õ(Dnκ

∑
k duk,uk+1

) = Õ(Dn1+κ)
time; this is equivalent to the runtime of O(n) successor queries. Overall, the long path query takes time

Õ

(
Dn1+κ + n2/D2

)
(17)

Putting all the ingredients together gives us a worst case update time of

O
(
Dnω(1,1,κ)−κ +Dn1+κ + n3/D3 + n2/D

)
(18)

due to the update time of theorem 5.15.1, the Floyd-Warshall step, and corollary 5.105.10 respectively. Finally,
the initialization time is dominated by that of initializing Theorem 5.15.1. We conclude this description with a
formal statement on the main result of this subsection:

Theorem 5.15 (Subquadratic, Unweighted APSP). For any κ ∈ (0, 1), D ∈ [n], and an unweighted graph
G = (V,E) subject to edge insertions and deletions, there is a dynamic, randomized data-structure that
supports the following operations:

• Ins/Del(e) Inserts/Deletes edge e ∈ E in worst case time

O
(
Dnω(1,1,κ)−κ +Dn1+κ + n3/D3 + n2/D

)
(19)

• Distance Query(i, j) Returns the distance from i to j whp, in worst case time

O(n2/D2 + n1+κ) (20)

• Path Query(i, j) Returns a shortest path from i to j whp, in worst case time

O(n2/D2 +Dn1+κ) (21)

The values of D and κ above establish a trade-off between update and path query runtimes, and we allot
the remainder of this section for a discussion on the sub and super quadratic algorithms we can construct
with this trade-off. Three cases worth mentioning are that of minimal update time, minimal path query time,
and minimal path query subject to subquadratic update time.

Minimal Update Time If we optimize first over κ in the update time, picking the optimum κ = κ∗ ≈
.529, and then optimizing over D s.t. D = nµ and µ = 2−κ∗

4 ≈ .368, then we obtain the first fully dynamic
exact APSP algorithm with subquadratic time update and path query, in O(n1.897) time for both operations.

Minimal Path Query Time we can establish super quadratic update time but efficient path query al-
gorithms by first optimizing over D in the path query expression. The path query runtime is optimized
if we pick D = n

1−κ
3 , s.t. the runtime is O(n

4+2κ
3 ). The update time for any 0 < κ ≤ .313 is now

O(n2(nκ + n
1−4κ

3 )), which itself establishes a trade-off over κ, and allows for O(n2.332) update time and
O(n1.334) path query.

Minimal Path Query subject to Subquadratic Updates We can also establish slightly subquadratic update
time algorithms, but with efficient path query times. It suffices to first pick the minimum D that allows for
a subquadratic update time, D = n1/3+δ/3∀δ > 0 s.t. updates are performed in O(n1/3+δ/3+ω(1,1,κ)−κ +
n2−δ), and then finding the minimum κ s.t. the updates are still subquadratic. By numerical optimization
we find κ′ ≈ .334, s.t. the runtime of path query is O(n1.667), while the update time is O(n1.999).
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6 Algebraic fully dynamic spanner algorithm

The goal of this section is to prove the following theorem.

Theorem 6.1. For any constant 0 < ε ≤ 1, given an undirected, unweighted fully dynamic graph, there is
an algorithm to maintain a (1 + ε, no(1))-spanner of size n1+o(1) with preprocessing time Õ(nω) (or Õ(n2)
if the input graph is empty) and worst update time n1+κ

∗+o(1) = O(n1.529) with high probability against an
oblivious adversary.

Internal Data Structures. In order to obtain this result, we use two internal data structures. We first
use a data structure A that maintains the distance matrix and corresponding shortest paths in a graph G,
restricted to a set of sources S. The algorithm is randomized and uses fast matrix multiplication internally.
It is a corollary of Theorem 5.15.1, and follows simply by querying the data structure of Theorem 5.15.1 for every
pairwise distance in S.

Corollary 6.2. Let κ be such that 0 < κ ≤ κ∗ < 0.529 and let D be a distance parameter in [1, nκ].
Suppose we are given a set of vertices S. Then the data structure from Theorem 5.15.1 can maintain for
any arbitrarily small δ > 0, for all pairs of nodes s, t ∈ S, a shortest path between s and t as long as
dist(s, t) ≤ D (and can check if dist(s, t) > D), with high probability against an oblivious adversary,
with initialization time Õ(Dnω) (for a nonempty initial graph) or Õ(n2) (for an empty initial graph) and
worst-case update time Õ(Dnω(1,1,κ)−κ + |S|2D2nκ).

If the depth threshold D = no(1), the size of the subset |S| = O(
√
n) and we pick the parameter

κ = κ∗ ≈ .529 to minimize the update time as in 5.15.1, the update time becomes n1+κ
∗+o(1) = O(n1.529).

Further, we use an algorithm B to maintain a spanner of G with high multiplicative error efficiently.

Theorem 6.3 (see [4848], Theorem 1.4). Given an unweighted, undirected fully dynamic graph, there exists
an algorithm B that maintains a spanner with multiplicative stretch log n and expected size O(n log n) that
has expected update time O(log3 n) against an oblivious adversary.

The Algorithm. Equipped with these two powerful data structures, let us state the algorithm that gives
Theorem 6.16.1. Let k =

√
log n, let ε′ = ε

20(k+1) , and let b =
(
logn
ε′

)
. We sample sets V = A0 ⊇ A1, · · · ⊇

Ak ⊇ Ak+1 = ∅ where Ai for i ∈ [1, k] is obtained by sampling each vertex in V with probability
n−i/k log n (and to make the sets nesting add it to all Aj where j ≤ i). We maintain two data structures
dynamically during the sequence of edge insertions and deletions:

1. For γ = bκ · kc, we run A on graph G with fixed source set Aγ and depth threshold 1
8 lognb

k+1.

2. Further, we run B on G and let G̃ be the log n-approximate spanner.

Let ci,j =
∑j

y=i+1 b
y. Initially, and after an edge update we construct the spanner H from scratch as

follows: We say that a ∈ A` \ A`+1 is active if for no j > ` there exists a vertex a′ ∈ Aj \ Aj+1 with
distG̃(a, a′) ≤ c`,j/4. Note that we are using distances in G̃ and not in G for this definition. Note that all
vertices in Ak are active at all times. In order to determine which vertices are active, we run the following
process. We begin by labeling all vertices as active. We then run for each i from k down to 0, a BFS
algorithm on the spanner G̃ to depth bi from every vertex in Ai \ Ai+1 that is still labelled active. We then
deactivate each vertex v in V \Ai for which we found a vertex a ∈ Ai\Ai+1 that is close enough to establish
that v cannot be active. We then construct our spanner H which is initially empty by adding edges from two
sources:
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1. We add all edges from G̃ to H .

2. For any two vertices a, a′ ∈ Ai \ Ai+1 that are active, we add the shortest path πa,a′,G to H if
distG(a, a′) ≤ 1

8 lognb
i+1, that is, if their distance in G is small. To compute these paths πa,a′,G, we

distinguish two cases. If i ≥ γ, then we pose a path reporting query to A. For i < γ, we run from
every such active vertex a BFS on G to depth 1

8 lognb
i+1.

As we will show, the approximation factor of the spanner always holds and the sparsity holds with high
probability. If the spanner becomes too dense, we reinitialize the algorithm.

Spanner Approximation. In the following, we prove that H indeed forms a (1 + ε, no(1)) spanner. The
basic idea behind the proof is the following: let s and t be two vertices and we want to analyze distH(s, t)
in comparison to distG(s, t). There are basically two cases: If s is “close” to an active vertex a inAi\Ai+1,
i.e. at distance at most di for some di, and there is a vertex v that is at distance ∼ 4di log n/ε from s on the
path from s to t, such that v is “close” to an active vertex a′ in Ai \ Ai+1, then we can use the spanner G̃
to get from s to a and from a′ to t and have that the shortest path between a and a′ is in H by part (2) of
its construction. It is not hard to see that this detour only implies a (1 + ε)-multiplicative error. Otherwise,
we do not have a vertex within distance ∼ 4di log n/ε that is close to any active vertex in Ai \ Ai+1. We
can then repeat the same argument for level i − 1 along the path segment from s of length ∼ 4di log n/ε
and we are ensured that we eventually reach a level where vertices are active and where we get a good
approximation. This allows us to subsume the additive error from higher levels into multiplicative error for
a series of segments of lower levels.

To formalize this concept, fix a value i ∈ [1, k] and let us say a vertex a is ≥ i-far if (1) a ∈ A` \ A`+1

for some ` ∈ [0, i− 1] and (2) for no j ≥ i there is a vertex a′ ∈ Aj \Aj+1 with distG̃(a, a′) ≤ bj − 1
2c`,i.

Observe that the distance requirement is formulated with regard to the multiplicative spanner G̃. Note that
as Ak+1 = ∅, every vertex is trivially ≥(k + 1)-far.

Lemma 6.4. For any ` ∈ [0, k − 1] every vertex a ∈ A` \A`+1 that is ≥(`+ 1)-far is active.

Proof. Let a be ≥ (` + 1)-far. It follows that for no j ≥ ` + 1 there exists a vertex a′ ∈ Aj \ Aj+1 with
distG̃(a, a′) ≤ bj − 1

2c`,`+1. Note that bj − 1
2c`,`+1 = bj − 1

2b
`+1 ≥ 1

2b
j ≥ 1

4(bj+1 − 1)/(b− 1) ≥ 1
4c`,j ,

where the second inequality holds since b−1 ≥ b/2. Thus, for no j > i, there exists an vertex a′ ∈ Aj\Aj+1

with distG̃(a, a′) ≤ 1
4c`,j , so a is active. �

Equipped with this notion, we can prove the following lemma. It immediately implies that H is a
(1 + ε, no(1))-spanner since every vertex is ≥(k + 1)-far.

Lemma 6.5. For any shortest s-t path πs,t in G where every vertex v ∈ πs,t \ {s, t} is ≥ i-far for some
0 < i ≤ k + 1, we have

distH(s, t) ≤ (1 + 20iε′)distG(s, t) + bi ≤ (1 + ε)distG(s, t) + no(1).

Proof. As ε ≤ 1 it follows that ε′ ≤ 1/20. Let us prove the claim by induction on i.
Base case i = 1: Let v1 be the vertex right after s and let v2 be the vertex right before t on πs,t,G.

As every vertex v on πs,t,G \ {s, t} is ≥ 1-far, it follows by the definition of ≥ 1-far that v belongs to
A0 \ A1. That is, all vertices on πv1,v2,G belong to A0 \ A1. Furthermore, by Lemma 6.46.4 it follows that
each such vertex v is active. Thus the shortest path from v to all vertices in A0 \ A1 at distance at most

1
8 lognb ≥ 1 are included in H and, in particular, all edges of πG(v1, v2) belong to H . As H contains G̃,
distH(s, v1) ≤ log n and distH(v2, t) ≤ log n. Finally, distG(v1, v2) ≤ distG(s, t) + 2. Thus it follows
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that distH(s, t) ≤ distG(v1, v2) + 2 log n ≤ distG(s, t) + 2 log n+ 2 ≤ distG(s, t) + (log n)/ε′, where
the last inequality holds since ε′ ≤ 1/20.

Inductive step i 7→ i+ 1, for i ≥ 1: As every vertex v in πs,t,G \{s, t} is≥(i+1)-far, every such vertex
must belong to A` \A`+1 for some ` ≤ i.

Let the set C consist of the vertices on πs,t that are ≥(i+ 1)-far but not ≥ i-far. In other words, a vertex
v ∈ πs,t is in C if and only if there is a vertex a ∈ Ai \Ai+1, with distG̃(v, a) ≤ bi− 1

2c`,i (possibly a = v).
(Note that C might be empty.) We prove the following claim for vertices in C.

Claim 6.6. For any vertex v ∈ C, there exists a vertex a ∈ Ai \Ai+1 at distance at most 1
4b
i in G̃, such that

a is active.

Proof. Let ` be such that v ∈ A` \ A`+1. If ` = i, then v is active by Lemma 6.46.4 and, thus, the claim
follows. If ` < i, then let a ∈ Ai \ Ai+1 be the vertex closest to v among all vertices in Ai \ Ai+1. As v is
≥(i+ 1)-far, we know that

1. distG̃(v, a) ≤ bi − 1
2c`,i, and

2. for no j ≥ i+ 1 there exists a vertex a′ ∈ Aj \Aj+1 with distG̃(v, a′) ≤ bj − 1
2c`,i+1.

Recall that b ≥ 5, which implies that b − 1 ≥ 2b/3. Suppose for contradiction that a is not active. If a
is not active there must exist a vertex a′ ∈ Ap \ Ap+1 with p > i such that distG̃(a, a′) ≤ ci,p/4. But this
implies that

distG̃(v, a′) ≤ distG̃(v, a) + distG̃(a, a′) ≤ bi − 1

2
c`,i +

1

4
ci,p

= bi +
1

2
bi+1 +

1

4

bp+1 − bi+1

b− 1
− 1

2
c`,i+1 ≤ bi +

1

2
bi+1 +

3

8

bp+1 − bi+1

b
− 1

2
c`,i+1

≤ 5

8
bi +

7

8
bp − 1

2
c`,i+1 ≤ bp −

1

2
c`,i+1.

This gives a contradiction to the assumption that v is ≥ (i+ 1)-far. �

To prove the lemma we partition πs,t by constructing a sequence of vertices

t0 = s, s1, t1, s2, t2, . . . , sh−1, th−1, sh = t

iteratively as follows: for each sg with g ≥ 1, let sg be the first vertex on the path πs,t(tg−1, t] that is in C or
if there is no such vertex, we set sg = t and h = g and end the sequence. If the sequence does not end with
sg, let tg with g ≥ 1 be the farthest vertex from sg on π[sg, t] ∩ BG(sg,

1
10 lognb

i+1) that is in C. Note that
such a vertex always exists since sg ∈ π[sg, t] ∩BG(sg,

1
10 lognb

i+1) ∩ C. (If sg is the only such vertex then
tg = sg.)

Clearly, the path πs,t is partitioned by the path segments πs,t[tg−1, sg] for 1 ≤ g ≤ h and the segments
πs,t[sg, tg] for 1 ≤ g < h. Observe that for the former kind of segments, we have that the internal path
vertices of a piece πs,t[tg−1, sg], i.e. the vertices in πs,t(tg−1, sg), are not in C by definition. Thus, we have
that all such vertices are ≥ i-far (since by assumption every vertex on πs,t is ≥ i + 1-far and every vertex
in C is not ≥ i-far but none of the vertices on πs,t(tg−1, sg) are in C). By the sub-path property of shortest
paths it holds that πs,t(tg−1, sg) is a shortest path between tg−1 and sg. Hence, we can invoke the induction
hypothesis on πs,t(tg−1, sg), with leads to the following statement

distH(tg−1, sg) ≤ (1 + 20iε′)distG(tg−1, sg) + bi. (22)
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For the path segments of the form πs,t[sg, tg], claim 6.66.6 shows that there exist vertices a and a′ at
distance at most 1

4b
i in G̃ from sg and tg respectively that are in Ai \Ai+1 and are active. Then since

distG(a, a′) ≤ distG̃(a, sg) + distG(sg, tg) + distG̃(tg, a
′)

≤ 1

4
bi +

1

10 log n
bi+1 +

1

4
bi

≤ 1

8 log n
· bi+1,

we have that the shortest path πa,a′ from a to a′ is in H , i.e., that distH(a, a′) = distG(a, a′). By applying
the triangle inequality to G and the fact that distG(x, y) ≤ distG̃(x, y) (which follows from the fact that
G̃ is a spanner of G) it follows that

distH(a, a′) = distG(a, a′) ≤ distG(a, sg) + distG(sg, tg) + distG(tg, a
′) ≤ 1

2
bi + distG(sg, tg).

Since G̃ ⊆ H , it holds that distH(sg, a) ≤ distG̃(sg, a) ≤ 1
4b
i. The same holds for distH(a′, tg). We,

thus, have that

distH(sg, tg) ≤ distH(sg, a) + distH(a, a′) + distH(a′, tg) ≤ bi + distG(sg, tg). (23)

Finally, let us prove that we did not partition the path into many segments: we claim that

h ≤
⌈

10 log n · distG(s, t)

bi+1

⌉
which can be seen from carefully studying the requirements to pick given sg the next tg and sg+1, which
stipulate that each sg and sg+1 are at distance at least 1

10 lognb
i+1.

We now combine our insights and the fact that ε′ ≤ 1/20, and take the sum over the path segments. This
gives

distH(s, t) =
h∑
g=1

distH(tg−1, sg) +
h−1∑
g=1

distH(sg, tg)

≤
h∑
g=1

(
(1 + 20iε′)distG(tg−1, sg) + bi

)
+

h−1∑
g=1

(
bi + distG(sg, tg)

)
≤

h∑
g=1

(1 + 20iε′)distG(tg−1, sg) +
h−1∑
g=1

distG(sg, tg) + h
(
bi + bi

)
≤ (1 + 20iε′)distG(s, t) +

⌈
distG(s, t)

bi+1

⌉
· 20 log n · bi

≤ (1 + 20iε′)distG(s, t) + 20 log n · ε′ · distG(s, t)

log n
+ 20 log nbi

≤ (1 + 20(i+ 1)ε′)distG(s, t) + bi+1

≤ (1 + ε)distG(s, t) + no(1)

as required. �

34



Sparsity. In order to prove sparsity, let us establish the following key claim. The claim is in fact slightly
more powerful than necessary, however, this power will be exploited when bounding the running time.

Claim 6.7. For any vertex v, and for any i ≤ k there are at most O(n1/k log n) active vertices in Ai \Ai+1

in

BG̃

(
v,

1

8
bi+1

)
with high probability. Further, if a vertex v ∈ Ai \Ai+1 is active, we have |BG̃

(
v, 18b

i+1
)
| ≤ n(i+1)/k with

high probability.

Proof. Let us observe that for any vertex v ∈ V , if
∣∣BG̃(v, 18b

i+1)
∣∣ ≥ n(i+1)/k there exists at least one

vertex a in Ai+1 that hits BG̃(v, 18b
i+1) with high probability.

We now claim that if there is such a vertex a, no vertex a′ in BG̃(v, 18b
j+1) ∩ Aj is active for any

j ≤ i. To see this let us assume for the sake of contradiction that there exists such a vertex a′. Now,
let us first consider the case that the vertex a is active. Then, the distance between a and vertex a′ is
distG̃(a, v)+distG̃(v, a′) ≤ 1

8b
i+1+ 1

8b
i+1 = 1

4b
i+1 ≤ 1

4cj,i+1 which implies that amust have deactivated
a′ and therefore leads to a contradiction.

Now, let us consider the case, where a is not active. Then, there exists a vertex a′′ ∈ A` \ A`+1 that is
active and with ` > i + 1 such that distG̃(a, a′′) ≤ 1

4ci+1,`. Such a vertex exists by definition if a is not
active so we have that a′′ is well-defined.

But then we have by the triangle inequality that

distG̃(a′, a′′) ≤ distG̃(a′, v) + distG̃(v, a) + distG̃(a, a′′)

≤ 1

8
bj+1 +

1

8
bi+1 +

1

4
ci+1,`

≤ 1

4
cj,`

where we use in the last inequality that cj,` =
∑`

y=j+1 b
y =

∑i+1
y=j+1 b

y+
∑`

y=i+2 b
y =

∑i+1
y=j+1 b

y+ci+1,`

and since i ≥ j we have that
∑i+1

y=j+1 b
y ≥ bi+1. This implies that a′ cannot be active since a′′ is close

enough to a′ to deactivate it during the algorithm. This again leads to a contradiction and thereby completes
the proof of our claim that a′ is not active.

Finally, we conclude that we have for any vertex v and level i, that either
∣∣BG̃(v, 18b

i+1)
∣∣ < n(i+1)/k

in which case we have by a straightforward application of a Chernoff bound that with high probability at
most O(n1/k log n) of these vertices are sampled into Ai. Thus, there can also be only O(n1/k log n) active
vertices from Ai in the ball.

Otherwise
∣∣BG̃(v, 18b

i+1)
∣∣ ≥ n(i+1)/k, so by the above claim we have that some vertex a in Ai+1 hits

the ball BG̃(v, 18b
i+1) which results in all vertices in the ball that are in Aj \Aj+1 to be deactivated for any

j ≤ i, and in particular for i. This proves the first part of the claim.
For the second part of the claim, observe that the contrapositive of the above claim with a′ = v implies

that there exists no active vertex a′′ in Ai+1 in the ball BG̃(v, 14ci,i+1) ⊆ BG̃(v, 18b
i+1), since ci,i+1 = bi+1.

Further, by the contrapositive of our initial observation, we have that then |B(v, 18b
i+1)| < n(i+1)/k. �

A special case of the claim is that each vertex a ∈ Ai \ Ai+1 has Õ(n1/k) active vertices in its ball
B(a, 18b

i+1) that are in Ai \ Ai+1. Thus, if a is active itself this gives an upper bound on the number of
paths that are included in H due to a (if a is not active no paths are added). Since the maximum such path
length at any level is 1

8b
k+1, we have that there are only Õ(n1+1/kbk+1) = n1+o(1) edges in H due to paths.
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The spanner G̃ that is additionally added to H contains only Õ(n) edges which is subsumed in the previous
bound.

Running Time. To bound the running time, observe that in order to determine which vertices are active,
we run for each i ≤ k, a BFS to depth 1

8b
i+1 from every active vertex in Ai \ Ai+1 on G̃. By Claim 6.76.7,

each vertex v ∈ V is only explored by Õ(n1/k) active vertices on each level. There are only
√

log n levels,
so each vertex v ∈ V is only explored by Õ(n1/k) active vertices in total. Thus, every edge incident to
each vertex v in G̃ is only explored Õ(n1/k) times. Since G̃ has only Õ(n) edges, and since each BFS runs
linearly in the number of edges explored, we can bound the total running time by Õ(n1+1/k), for each i, and
thus also for all values i.

After determining which vertices are active, it remains to bound the time to compute the paths between
any two active vertices a, a′ ∈ Ai \Ai+1 for some i. For i ≥ γ, we can simply check the distances between
any pair of such vertices (even the ones that are non-active) by looking up their shortest paths in A and
inserting them into H if the criterion is satisfied. We will calculate the running time of A at the end. For
any active vertex a ∈ Ai \ Ai+1, where i < γ, we further run a BFS on G to depth 1

8 lognb
i+1. We observe

that since G̃ is a log n-spanner of G, we have for every v ∈ V that

BG̃(v,
1

8 log n
bi+1) ⊆ BG(v,

1

8
bi+1).

By Claim 6.76.7 we have again that each vertex v is only explored Õ(n1/k) times during these executions of
BFS. Using the second fact of Claim 6.76.7, we further have that each BFS from an active vertex a ∈ Ai \Ai+1

only explores at most n(i+1)/k vertices. But this in turn implies that each vertex v that is strictly contained
in such a ball BG(a, 1

8 lognb
i+1) has degree bounded by n(i+1)/k. Since we explore only for i < γ, we

therefore have that each explored vertex has degree at most nγ/k ≤ nκ. Putting everything together, during
all BFS explorations, we scan every vertex at most Õ(n1/k) times while the number of edges present at the
vertex is at most nκ and since we have n vertices, the total time required for all explorations can be bounded
by O(n · n1/k · nκ) = n1+κ+o(1).

Finally, we have to account for the data structures used. While the running time of B is subsumed in
our previous bound, we have that A has worst-case update time Õ(nδ(nω(1,1,κ)−κ + (n1−γ/k)2nκ)) for any
constant κ ≤ κ∗ and δ > 0 by Corollary 6.26.2 since |S| = n1−γ/k = n1−κ+o(1). Setting κ = κ∗ and δ = 0.01,
the size |S| = o(

√
n) and thus we obtain worst-case update time O(n1+κ

∗+o(1)) = O(n1.529).

7 Applications

Let ε > 0 be an arbitrarily small constant. In this section we give two applications of the data structures
developed in the previous sections, namely fully dynamic (1 + ε)-approximate all-pairs shortest paths with
path reporting and (2 + ε)-approximate fully dynamic Steiner tree. Both algorithms are the first algorithms
that take sub-quadratic worst-case time for these problems.

7.1 Fully dynamic approximate all-pairs shortest paths with path reporting
In this subsection we give a fully dynamic data structure that reports (1 + ε)-approximate all-pairs

shortest paths in sub-quadratic worst-case time. Note that all previous such data structure were only able to
report the distance, i.e. the length of the paths, but not the actual paths.

Theorem 7.1. Let ε > 0 be an arbitrarily small constant. There exists an algorithm that maintains (1 + ε)-
approximate all-pairs shortest-path in worst-case time n1+κ

∗+o(1) = O(n1.529) per edge update, in worst-
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case time n1+o(1) per path reporting query and per distance reporting query with high probability against
an oblivious adversary. The preprocessing time is nω+o(1) if the initial graph is non-empty and Õ(n2) if the
initial graph is empty.

Proof. We maintain the following data structure:
(1) We maintain the fully dynamic path reporting data structure given in the statement of Theorem 5.15.1

on G with D = 2no(1)/ε and κ = κ∗ < 0.529.
(2) We maintain for G the fully dynamic (1 + ε/2, no(1))-spanner from Theorem 6.16.1.
To answer a distance reporting query we first ask a distance query with parameter D in (1). This gives

us the exact answer if the distance is less than D. Otherwise we run a static shortest path algorithm on the
spanner that we maintain in (2). As the spanner has at most n1+o(1) edges this takes time n1+o(1). Note that,
by the choice of D, the shortest path on the spanner gives a (1 + ε)-approximation of the shortest path in G
as (1 + ε/2)dist(s, t) + no(1) ≤ (1 + ε)dist(s, t) for dist(s, t) ≥ D = 2no(1)/ε. Thus a distance query
returns a (1 + ε)-approximate answer and takes time nκ+o(1)/ε+ n1+o(1) = n1+o(1).

To answer a path reporting query between two nodes s and t we first ask a distance query with parameter
D in (1). If the distance is less than D, we ask a path reporting query in (1) in time O(D2nκ

∗
) = o(n).

Otherwise, we execute a static shortest path algorithm on the spanner that we maintain in (2). Thus a path
reporting query returns a (1 + ε)-approximate shortest path and takes time n1+o(1) time. �

If we increase the preprocessing time to O(n2.621), and the update time to O(n1.843), we can reduce the
cost of a distance reporting query even further.

Corollary 7.2. Let ε > 0 be an arbitrarily small constant. There exists an algorithm that maintains (1 + ε)-
approximate all-pairs shortest-path in worst-case time O(n1.843+o(1)) per edge update, in worst-case time
O(n1+o(1)) per path reporting query, and in worst-case time O(n.45) per distance reporting query with
high probability against an oblivious adversary. The preprocessing time is nω+o(1) if the initial graph is
non-empty and Õ(n2) if the initial graph is empty.

Proof. Additionally maintain a fully dynamic (1 + ε)-approximate APSP data structure from [8282], which
takes worst-case time O(n1.843) per edge update and worst-case time O(n0.45) per distance query. It speeds
up the distance reporting queries and, in combination with theorem 7.17.1, leads to the result. �

7.2 Steiner trees with terminal vertex and edge updates
In this section we give a further application of the data structure of the previous section. Assume we are

given an (unweighted) graphG = (V,E) with a dynamically changing edge set and a dynamically changing
terminal set S ⊆ V. A Steiner tree TS for a vertex set S is a tree that (1) is a subgraph of G, (2) spans S,
and (3) has the minimum number of edges. A β-approximate Steiner tree is a tree which fullfils conditions
(1) and (2), and the weight of the tree is at most a factor β larger than the weight of the edges of a minimum
Steiner tree.

A 2-approximate Steiner tree can be found as follows: Construct a weighted graph G̃ that consists of a
clique on the vertices of S such that each edge (u, v) has length distG(u, v), i.e., the length of the shortest
path between u and v in G. Find an MST T̃S in G̃. Its weight w(T̃S) gives a 2-approximation of the value
OPT of the optimal Steiner tree, i.e. OPT ≤ w(T̃S) ≤ 2OPT. The reason is as follows: Consider an
Eulerian tour E(TS) of the optimal Steiner tree TS in G. It traverses every edge twice and, thus, has length
2OPT . Now replace the subpath between two consecutive terminal vertices u and v of E(TS) by an edge.
Note that the length of this subpath is at least distG(u, v) and that there is an edge (u, v) in G̃ with length
distG(u, v). Thus E(TS) induces a cycle in G̃ whose length is at most 2OPT . As the minimum spanning
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tree T̃S in G̃ has a weight that is at most the length of this cycle, its weight is at most 2OPT. Note that if
the weights in G̃ are between distG(u, v) and (1 + ε/2)distG(u, v) for some arbitrarily small ε > 0, then
the weight of T̃S is at most (2 + ε)OPT. To construct the corresponding approximate Steiner tree replace
each edge in T̃S by a shortest path in G between its endpoints and compute a tree T̃ ′S in the resulting graph.
The weight of T̃ ′S is at most the weight of T̃S .

We consider the following dynamic changes to the input: (i) edge insertions and deletions and (ii)
additions and removals from S. In the fully dynamic unweighted Steiner tree problem the goal is to maintain
a Steiner tree after each modification to the input. In the β-approximate fully dynamic unweighted Steiner
tree problem the goal is to maintain an β-approximate Steiner tree after each modification of the input. Note
that we want to maintain an actual tree, not just the value of the β-approximate Steiner tree. We show the
following result.

Theorem 7.3. Let ε > 0 be an arbitrarily small constant. There exists an algorithm that solves the (2 +
ε)-approximate fully dynamic unweighted Steiner tree problem with high probability against an oblivious
adversary, in worst-case time O(n1.529 + s2 · n1+o(1)) per edge update and in worst-case time sn1+o(1) per
vertex addition to or removal from S, where s is the current size of S. The preprocessing time is nω+o(1) if
the initial graph is non-empty and Õ(n2) if the initial graph is empty.

Proof. By our discussion before the theorem it suffices to maintain the graph G̃ whose edge weights are
a (1 + ε/2)-approximation of the length of their endpoints in G and a minimum spanning tree in G̃. To
build the actual Steiner tree, we need to replace then each edge in this spanning tree into the corresponding
shortest path in G.

For convenience, we denote by A(ε, n), the additive error of a (1 + ε, no(1))-spanner as maintained in
Theorem 6.16.1, i.e. Theorem 6.16.1 maintains a (1 + ε, A(ε, n))-spanner. From this, it is also easy to see that
A(ε, n) = no(1) for any constant ε > 0.

Now, we describe the data structures to maintain the necessary information for updating our Steiner tree
approximation:

(1) We maintain the fully dynamic path reporting data structure given in the statement of Theorem 5.15.1
on G with D = 4A(ε/4, n)/ε and κ = κ∗ < 0.529.

(2) We maintain the fully dynamic (1 + ε/4, A(ε/4, n))-spanner from theorem 6.16.1.
(3) We maintain a |S| × |S| array that contain the (1 + ε/4)- approximate all-pairs shortest path lengths

between any pair of terminals.
(4) We maintain the graph G̃ and a fully dynamic minimum spanning tree data structure from G̃ that

takes no(1) deterministic worst-case update time [3333].
To answer a distance query we first ask a distance query with parameter D in (1). This gives us the

exact answer if the distance is less than D. Otherwise we run a static shortest path algorithm on the spanner
that we maintain in (2). As the spanner has at most n1+o(1) edges this takes time n1+o(1). Note that, by the
choice of D, the shortest path on the spanner gives a (1 + ε/2)-approximation of the shortest path in G as
(1 + ε/4)dist(s, t) +A(ε/4, n) ≤ (1 + ε/2)dist(s, t) for dist(s, t) ≥ D = 4A(ε/4, n)/ε. Thus a distance
query returns a (1 + ε/2)-approximate answer and takes time nκ

∗+o(1)/ε+ n1+o(1) = n1+o(1).
To answer a path reporting query between two nodes s and t we first ask a distance query with parameter

D in (1). If the distance is less than D, we ask a path reporting query in (1). Otherwise, we execute a
static shortest path algorithm on the spanner that we maintain in (2). Thus a path reporting query returns a
(1 + ε/2)-approximate shortest path and takes time n1+o(1) + nκ

∗+o(1)/ε = n1+o(1) time.
After each update to either E or S we update data structures (1) - (4) as described below. Then we build

the approximate Steiner Tree T̃ ′S (in G) from T̃S as described above, executing s− 1 path reporting queries.
This takes time s · n1+o(1), which as we will see is subsumed by the runtime of updating (4).

38



We are left with describing how we update (1) - (4). Each edge update leads to the corresponding update
in (1) and (2). Then we recompute G̃ from scratch using O(s2) distance queries and compute its minimum
spanning tree as well as the dynamic MST data structure from scratch. Afterwards we build T̃ ′S as described
above. This takes total time n1+κ

∗+o(1) + s2 · n1+o(1).
If a vertex v is added to S, we compute the distance in the spanner from v to all nodes in S, add an edge

from v to every vertex in S with the corresponding length to G̃, and update its dynamic MST data structure.
This takes time sn1+o(1). Afterwards we build T̃ ′S as described above.

If a vertex is removed from S, we remove its incident edges from G̃ and its dynamic MST data structure.
This takes time sn1+o(1). Afterwards we build T̃ ′S as described above. �

At the cost of increasing the preprocessing time to O(n2.621) we can additionally maintain a fully dy-
namic (1 + ε/2)-approximate APSP data structure from [8282], which takes worst-case time O(n1.843) per
edge update and worst-case time O(n0.45) per distance query. It speeds up the distance query and leads to
the following result.

Theorem 7.4. Let ε > 0 be an arbitrarily small constant. There exists an algorithm that solves the (2 +
ε)-approximate fully dynamic unweighted Steiner tree problem with high probability against an oblivious
adversary in worst-case time O(n1.843+o(1) + s2 · n0.45 + s · n1+o(1)) per edge update, in worst-case time
sn1+o(1) per vertex addition to or removal from S, where s is the current size of S. The preprocessing time
is O(n2.621).

8 Combinatorial dynamic spanner algorithms

In this section, we present our combinatorial algorithms to maintain (1 + ε, β)-spanners in dynamic
graphs. We first present a simple algorithm to maintain a spanner in a partially dynamic graph, then show
how to extend the construction to obtain near-linear update time in fully dynamic graphs. Finally, we present
a deterministic algorithm to maintain a emulator with large additive error in partially dynamic graphs.

8.1 A Simple Partially Dynamic Spanner
In this section, we prove the following theorem.

Theorem 8.1. For any constant 0 < ε ≤ 1, given an undirected, unweighted partially dynamic graph, we
can maintain a (1 + ε, no(1))-spanner of size n1+o(1) in total time m1+o(1) with high probability against an
oblivious adversary.

The Algorithm. For k =
√

log n, we sample sets V = A0 ⊇ A1, · · · ⊇ Ak ⊇ Ak+1 = ∅ where Ai
for i ∈ [1, k] is obtained by sampling each vertex in V with probability n−i/k log n (and to make the sets
nesting add it to all Aj where j ≤ i).

Let ε′ = ε/8. Throughout the algorithm, we say for each a ∈ Ai\Ai+1 that a is active if and only if there
is no vertex a′ ∈ Aj for j > i, with dist(a, a′) ≤ ε′−(j+1) − ε′−(i+1). Thus, all vertices in Ak are always
active. In the decremental algorithm, once a vertex becomes active, it remains active for the rest of the
algorithm, and in the incremental algorithm, once a vertex becomes inactive it remains inactive for the rest
of the algorithm. Further, for each active vertex a ∈ Ai \ Ai+1, we maintain the ball Ba = B(a, ε′−(i+1)).
Otherwise, we let Ba = ∅. A similar definition of active nodes was introduced by Chechik [3131] for an
emulator construction.
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In order to obtain the spanner, it suffices to take the union of the shortest-path trees maintained from
each vertex a ∈ V , truncated at depth ra, i.e. the spanner is defined at all stages by

H =
⋃

a∈V,b∈Ba

πa,b

We maintain these shortest-path trees using the ES-tree data structure.

Spanner Approximation. At any stage, for an arbitrary shortest path πs,t from s to t, we can expose a
path in H that approximates πs,t as follows.

Let i be chosen to be the smallest index such that B(s, 2ε′−(i+1)) ∩ Ai+1 = ∅. First we show that s
is within distance at most 2ε′−i of an active vertex of Ai. Then, we have i ≤ k since Ak+1 = ∅. By a
straightforward application of the Chernoff bound it follows that |B(s, 2ε′−(i+1))| ≤ n(i+1)/k with high
probability, since otherwise Ai+1 would likely hit B(s, 2ε′−(i+1)). Further, observe that by minimality of
i, there exists some vertex a in B(s, 2ε′−i) ∩ Ai \ Ai+1, i.e. there exists some vertex a ∈ Ai at distance at
most 2ε′−i from s. Now, observe that B(a, ε′−(i+1)) ∩ Ai+1 ⊆ B(s, 2ε′−(i+1)) ∩ Ai+1 = ∅ by the triangle
inequality. Thus a is active.

Now, we distinguish two scenarios:

1. if t ∈ Ba: then we can use the paths πs,a ◦πa,t with combined weight less than 2ε′−(i+1) ≤ 2ε′−(k+1),

2. otherwise, let s′ be the vertex in Ba ∩ πs,t that is closest to t. As t 6∈ Ba it holds that distG(a, s′) =
ε′−(i+1).As distG(s, a) ≤ 2ε′−i and ε′ ≤ 1/4, it follows by the triangle inequality that distG(s, s′) ≥
ε′−(i+1) − 2ε′−i ≥ ε′−(i+1)/2. By the triangle inequality it holds that distG(s′, a) ≤ distG(s, s′) +
distG(s, a) ≤ distG(s, s′) + 2ε′−i. Thus, we have that the path πs,a ◦ πa,s′ has weight at most
distG(s, s′)+4ε′−i = distG(s, s′)+8ε′ ·(ε′−(i+1)/2) ≤ (1+8ε′)distG(s, s′) = (1+ε)distG(s, s′).

If we are in the first scenario, we are done. Otherwise, we can recurse on πs′,t. Aggregating all of the path
segments from the recursion, we derive

distH(s, t) ≤ (1 + ε)distG(s, t) + 2ε′−(k+1).

Since this worked with high probability, and we only have a polynomial number of shortest paths to consider
(namely n2 shortest paths after each of the at most m edge deletions), we can take a union bound over all
these shortest paths and obtain overall correctness with high probability.

Sparseness of the Spanner. Pick any i ∈ [0, k − 1]. Let us observe that for any vertex v ∈ V , as long as

|B(v, ε′−(i+1))| ≥ n(i+1)/k

we have that at least one vertex a′′ ∈ Ai+1 hits B(v, ε′−(i+1)) with high probability. Further, while a′′ is in
B(v, ε′−(i+1)), we claim that no vertex in B(v, ε′−(i+1))∩Ai is active. For the sake of contradiction assume
that there exists such a vertex in a′, then by the triangle inequality, we have

dist(a′, a′′) ≤ dist(v, a′′) + dist(v, a′) ≤ 2ε′−(i+1) < ε′−(i+2) − ε′−(i+1)

But that implies that a′ should not be active. This implies that vertices in B(v, ε′−(i+1)) ∩ Ai can only
become active after |B(v, ε′−(i+1))| < n(i+1)/k. But then with high probability |B(v, ε′−(i+1)) ∩ Ai| =
O(n1/k log2 n) (again by using a Chernoff bound). Note that vertices in B(v, ε′−(i+1)) ∩ Ai are the only
nodes ofAi in whose balls v can lie. Thus, each vertex v, only ever participates inO(n1/k log2 n) many balls
rooted at vertices in Ai. Thus, the total size of the spanner can be upper bounded by Õ(n1+1/k) = n1+o(1).
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Correctness of the Algorithm. While the rest of the algorithm is rather straightforward, we show that
by maintaining the balls B for all active nodes we can maintain for every vertex whether it should become
active (in the case of a decremental algorithm) or inactive (in the case of an incremental algorithm).

Consider a vertex a and let i be such that a ∈ Ai \ Ai+1. Consider the maximal layer j such that there
exists a vertex a′ ∈ Aj \ Aj+1, i < j, at distance dist(a, a′) ≤ ε′−(j+1) − ε′−(i+1). We will show below
that a′ is active. Then clearly we have a ∈ Ba′ and a′ can therefore inform a that it cannot become active
yet. This suffices for an incremental algorithm since vertices only go from active to inactive. We argue next
that this also suffices for a decremental algorithm (where vertices only go from inactive to active).

When a′ informs a that a cannot be active, we say that a′ invokes a block on a. This block stays in
effect until a′ revokes it, which happens when dist(a, a′) grows above ε′−(j+1) − ε′−(i+1). By maintaining
Ba′ , we can detect when dist(a, a′) grows above ε′−(j+1) − ε′−(i+1) because if a ∈ Ba′ , then dist(a, a′) is
explicitly maintained, and if a leaves Ba′ then we can detect this and conclude that dist(a, a′) has grown
above ε′−(j+1) − ε′−(i+1). In summary, we determine the status of a by setting a to be active if and only if
no other vertex has invoked a block on a (and not revoked it).

To show that a′ is active, assume by contradiction that a′ is inactive. It follows that there has to be a
vertex a′′ ∈ A` \A`+1 for j < ` at distance at most ε′−(`+1) − ε′−(j+1) to a′. But by the triangle inequality,
we would have

dist(a, a′′) ≤ dist(a, a′) + dist(a′, a′′) ≤ ε′−(j+1) − ε′−(i+1) + ε′−(`+1) − ε′−(j+1) = ε′−(`+1) − ε′−(i+1)

contradicting that a′ was a vertex satisfying our constraint with maximal index j.

Total Time. Finally, let us bound the total time. Constructing the set Ai takes time O(n1+o(1)). We have
already shown that each vertex is in at most O(n1/k log2 n) balls over the course of the algorithm. Since
each edge only participates in balls containing both of its endpoints, we have that each edge is in at most
O(n1/k log2 n) balls.

Since ES-trees run in time O(mr), each edge is scanned at most O(mr) times for each of the at most
O(n1/k log2 n) balls it is in. Each ball has radius at most ε′−(i+1), so an analysis over all levels and balls
shows that the total update time can be bound by∑

i≤k
m ·O(n1/k log2 n) · ε′−(i+1) = Õ(m1+1/

√
lognε′−(

√
logn+1)) = m1+o(1).

Note that this also bounds the total number of changes that can occur to the spanner during all deletions as
we always explicitly construct the spanner.

8.2 A Simple Determininstic Fully Dynamic Spanner
Although the efficiency of the previous algorithm crucially depends on randomness and the non-adaptiveness

of the adversary, Roditty, Thorup and Zwick showed in [7272] that the construction given above can be effi-
ciently derandomized in the static setting. Thus, there exist a static algorithm, that runs in time m1+o(1) that
computes a (1 + ε, no(1))-spanner deterministically. Rerunning this algorithm after every update yields the
following theorem.

Theorem 8.2. For any constant 0 < ε ≤ 1, given an undirected, unweighted graph G = (V,E) undergoing
vertex updates, we can deterministically maintain a (1+ε, no(1))-spanner of size n1+o(1) with preprocessing
time m1+o(1) +O(n) and worst update time m1+o(1).

We point out that a similar result can likely be obtained by using the randomized construction by Elkin
and Zhang [4545] which can be derandomized using the deterministic sparse neighborhood covers [1313].
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8.3 Partially Dynamic Algorithms to Maintain Emulators/Spanners with High Additive Er-
ror

In this section, we prove the following theorems.

Theorem 8.3. Given a partially dynamic unweighted graph G = (V,E), a multiplicative approximation
parameter ε > 0, and an additive approximation parameter α ≥ 0, there exists a deterministic algorithm
that can maintain an n1+o(1)-edge (1 + ε, nα+o(1))-emulator H of G in total time O(mn1−α+o(1)).

Theorem 8.4. Given a partially dynamic unweighted graph G = (V,E), a multiplicative approximation
parameter ε > 0, and an additive approximation parameter α ≥ 0, there exists a randomized algorithm
that can maintain an n1+o(1)-edge (1 + ε, nα+o(1))-emulator H of G in total time O(mn1−α+o(1)). The
algorithm works against an adaptive adversary.

In order to implement a data structure as required by the theorem above, we heavily rely on the following
result from [5050] which we extend to incremental graphs.

Definition 8.5 (Refining and Coarsening). Given a universe U and a collection C of disjoint subsets of U
undergoing changes, we say that C is refining if every set C ∈ C is a subset of a set C ′ contained in an
earlier version of C. We say that C is coarsening if every set C ∈ C is a superset of a set C ′ contained in an
earlier version of C.

Theorem 8.6 (see [5050], Definition 4.3, Lemma 4.1). Given a decremental/incremental unweighted graph
G = (V,E), a parameter µ and 0 < ε ≤ 1, then there exists a deterministic algorithm that maintains

• a refining/coarsening collection of pairwise-disjoint vertex sets C = {C1, C2, . . . , Ck} where any set
Ci has diam(G[Ci]) ≤ 4(1/ε)

√
logn

⌈
|E(Ci)|
µ

⌉
and k ≤ m/µ, and

• a graphH that forms a subgraph ofG such that for every shortest path πs,t inG with πs,t∩(
⋃
iCi) =

∅, we have
distG(s, t) ≤ distH(s, t) ≤ (1 + ε)distG(s, t) +O((1/ε)

√
logn)

and we have that |H| = n1+o(1).

The algorithm runs in total time O(nµ(1/ε)1/
√
logn +m log2 n).

Proof. Let ε′ = ε/4. We say a vertex v ∈ V , is µ-heavy if the graph G induced by vertices in the ball
B(v, (1/ε′)

√
logn) contains more than µ edges. Otherwise, we say v is µ-light. We further maintain a graph

Gheavy that is the graph G induced by the vertices w ∈ V that are in the ball of some µ-heavy vertex v ∈ V .
That is, a vertex w is in Gheavy if it is either µ-heavy or has some vertex v in its ball to depth (1/ε′)

√
logn

that is µ-heavy. We let C be the set of connected components in Gheavy. Here, we point out that a slightly
modified ES-tree can be used to maintain when a vertex transitions from being µ-heavy to µ-light (or vice
versa) and while a vertex is µ-light, we can maintain its shortest path tree truncated at depth (1/ε′)

√
logn

explicitly. For partially dynamic graphs this modified ES-tree can be implemented in time O(µ(1/ε′)
√
logn)

per vertex, thus we can maintain the ES-trees in total update time n1+o(1)µ.
Now, consider the diameter d of some component Ci ∈ C at any stage in G[Ci]. Let u and v be two

vertices inCi at distance d inG. Observe that we then have at least dd/(4(1/ε′)
√
logn)e vertices inCi that are

at distance at least 4(1/ε′)
√
logn from each other. Since each vertex in Ci is at distance at most (1/ε′)

√
logn

to a µ-heavy vertex, we can thus find dd/(4(1/ε′)
√
logn)e vertices that have disjoint balls and are µ-heavy.

Thus, we derive the upper bound on the diameter d ≤ 4(1/ε′)
√
logndE(Ci)

µ e, by the pigeonhole principle. It
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is straightforward to see that µ-heavy vertices in different components have mutually disjoint balls, so we
derive the bound on the number of components by another application of the pigeonhole principle, i.e. we
derive that there are at most m/µ connected components in C at any stage since each component contains at
least one µ-heavy vertex.

It is further not hard to see that whenG is a decremental graph, thenGheavy is a decremental graph since
the number of vertices in a ball to fixed radius can only decrease over time, as does the degree of each vertex.
Thus, it is straightforward to maintain in O(m log2 n) time the components in Gheavy using a connectivity
data structure (see [5757, 8787]). For incremental graphs, Gheavy is incremental and the same argument applies.
This also implies that C is refining in decremental graphs and coarsening in incremental graphs.

To maintain H , we maintain greedily for each i ≤
√

log n, a maximal set Ai of active vertices at level i
such that

1. every vertex in Ai is µ-light, and

2. every vertex a ∈ Ai has |B(a, (1/ε′)i+1)| ≤ n(i+1)/
√
logn and |B(a, (1/ε′)i)| ≥ ni/

√
logn, and

3. any two vertices a, a′ ∈ Ai are at distance more than (1/ε′)i from each other.

We then maintain H as the union of the shortest path trees of vertices in Ai, for every i, truncated at depth
(1/ε′)i+1.

Since each vertex joins Ai at most once and leaves it again once, it is straightforward to see that each
Ai can be maintained in time O(n) using the information from the ES-trees from µ-light vertices. Also,
the spanner can be maintained in total time n1+o(1)µ since µ-light vertices have at most µ edges in their
truncated shortest-path tree.

To see that for every shortest path πs,t in G with πs,t ∩ (
⋃
iCi) = ∅, we have

distG(s, t) ≤ distH(s, t) ≤ (1 + ε′)distG(s, t) +O((1/ε′)
√
logn)

we can construct πs,t by observing that s is a µ-light vertex and by the pigeonhole principle, there exists
an index i such that |B(s, (1/ε′)i+1)| ≤ n1/

√
logn|B(s, (1/ε′)i)|. But then either s is in Ai (in which case

we set a′ = s), or there is another vertex a′ ∈ Ai at distance at most (1/ε′)i from s. And, from this vertex
a′, there is a shortest path tree up to depth (1/ε′)i+1 in H . If t is contained in the shortest path tree, then
we are done since the path from s to a′ to t is only of length no(1). Otherwise, let s′ be the vertex on πs,t
that is farthest from s and still in the truncated shortest path tree of a′. Then, distG(a′, s) = (1/ε′)i+1.
Thus, by the triangle inequality, distG(s, s′) ≥ (1/ε′)i+1 − (1/ε′)i. Thus, the path from s to a′ to s′ in H
is a (1/ε′)i+1+(1/ε′)i

(1/ε′)i+1−(1/ε′)i ≤ (1 + 4ε′)-multiplicative approximation of the path in G. We can then repeat for the
path πs′,t. We thus derive multiplicative error of a (1 + 4ε′) = (1 + ε) on the entire path and an additive
error of no(1) induced by the last segment. To see that H never contains more than n1+o(1) edges, observe
that active vertices a′ in Ai, for any level i, have disjoint balls B(a′, (1/ε′)i+1) of size at least ni/

√
logn

and adds at most n(i+1)/
√
logn edges to H . Thus, we can amortize the number of edges added over the

number of vertices in its ball and obtain straight-forwardly that the total number of edges in H is at most∑
i n

1+1/
√
logn = n1+o(1). �

Let us now give the description of our algorithm.
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Algorithm. We maintain the data structure from Theorem 8.68.6 with µ = mn−α. Our emulator consists of
the graph H from Theorem 8.68.6 augmented with additional edges as described next.

Let us say a vertex v ∈ V is C-incident if there is a connected component Ci ∈ C with a vertex w ∈ Ci
such that there exists an edge (v, w) ∈ E. In particular, vertices in some Ci are C-incident. Let Cinc be
the set of all vertices that are C-incident. We maintain a connectivity data structure as described in [5757, 8787]
on the graph G[Cinc] and obtain connected components D = {D1, D2, . . . }. It is not hard to see that D is
refining in decremental graphs and coarsening in incremental graphs. Further, each connected component
Di in G[Cinc] consists of at least one connected component Ci ∈ C and its adjacent vertices from Cinc, and
each vertex of Cinc belongs to exactly one connected component of D.

Now consider some connected component Di which contains components Ci1 , Ci2 , . . . , Cik for some

k ≥ 1, and let wi =
∑

j≤k 2(1/ε)
√
logn

⌈
|E(Cij )|

µ

⌉
. We maintain for each such component Di a balanced

binary spanning tree Ti over the vertices (this tree is not a subgraph of G but rather an arbitrary tree over the
vertex set of a component), add the tree Ti to the spanner H , and give each edge in Ti weight 2dlgwie (that
is the wi rounded up to the nearest power of 2). This completes the description of the algorithm.

Emulator Approximation and Sparsity. For the approximation ratio, consider any shortest path πs,t in
G. Since H \

⋃
i Ti forms a subgraph of G and since each edge in Ti for some i has weight larger than the

distance of its endpoints by Theorem 8.68.6, we have that the path is not underestimated in H .
Let G/D be the graph G after contracting each Di into a supernode. Observe that since the vertex sets

of each Di are mutually disjoint, there is a one-to-one correspondence between sets Di and supernodes in
G/D. We also use Di to denote the supernode corresponding to the connected component Di ∈ D.

Consider the shortest path π′s,t from s to t in G/D. The path π′s,t clearly has smaller weight than πs,t in
G. Let d1, d2, . . . , dj be the supernodes on π′s,t (in the order that they appear on π′s,t) that correspond to a
connected component D1, D2, . . . , Dj in D respectively.

Letting d0 = s and dj+1 = t, we have that every path segment π′s,t[di, di+1] for 0 ≤ i ≤ j is a
(1 + ε, no(1))-approximate path segment even after remapping the first and last edge on the path segments
again to a vertex in G (i.e. to the endpoint that the edges have in G instead of G/D).

For each supernode di corresponding to a connected componentDi inD, we have that the two endpoints
in G that intersect between π′s,t and Di are connected by a path in Ti consisting of O(log n) edges since Ti
is balanced. If the supernode Di contains connected components Ci1 , Ci2 , . . . , Cik , then each edge on this

path has weight wi ≤ 2 ·
∑

j≤k 2(1/ε)
√
logn

⌈
|E(Cij )|

µ

⌉
.

We can now obtain an approximate path in H for πs,t by taking the union of the path segments and
by adding the exposed paths in the in the trees spanning the connected components D. Since there are at
most m/µ supernodes by Theorem 8.68.6 and since each component Ci ∈ C is fully contained in exactly one
supernode, we have that the total weight of the path from s to t inH is at most (1+ε)distG(s, t)+m

µ n
o(1) ≤

(1 + ε)distG(s, t) + nα+o(1). The sparsity of n1+o(1) follows by the bound on H in Theorem 8.68.6 and the
sparsity of the trees Ti.

Running time. The running time of the connectivity data structure can be bound by Õ(m). In decremental
graphs, the time to maintain the balanced binary trees over the connected components D takes time at
most Õ(m) as whenever a connected component splits into two connected components, we can remove the
vertices of the smaller connected component from its tree T and repair T and then build a separate tree T ′

for the smaller component. Because each vertex that leaves T has degree at most 3, both of these operations
can be performed in time Õ(k), where k is the number of vertices of the smaller connected component.
For incremental graphs, when we moerge two connected components, we merge the corresponding trees by
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destroying the smaller tree and adding each of its vertices to the larger tree.
The edge weights wi can be maintained using the binary tree and since each edge weight in a component

can only decrease (increase), and then decreases (increase) by a factor 2 the running time of these operations
can be again bound by Õ(m). Thus, the total update data is dominated by the data structure in Theorem 8.68.6
which runs in time mn1−α+o(1), as desired.

A Randomized Algorithm for Spanners with High Additive Error. Recently, Bernstein et al. [2020]
presented a fully-dynamic algorithm, with amortized update time Õ(1) that maintains an (Õ(1), 0)-spanner
of G of sparsity Õ(n) that is randomized but works against an adaptive adversary. It is straight-forward to
see that using Theorem 8.68.6 in conjunction with the above spanner, we can reuse the arguments from the
approximation analysis of the emulator to derive Theorem 8.48.4.
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the o(n) barrier. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristopher Moore, ed-
itors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, volume 28 of LIPIcs, pages 1–16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[8] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–1181, 1999.

[9] Donald Aingworth, Chandra Chekuri, and Rajeev Motwani. Fast estimation of diameter and shortest
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