
JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.1 (1-17)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A topological perspective on distributed network algorithms ✩

Armando Castañeda a,1, Pierre Fraigniaud b,2, Ami Paz c,∗,3, Sergio Rajsbaum a,4,
Matthieu Roy d, Corentin Travers e,5

a UNAM, Mexico
b CNRS and Univ. de Paris, France
c CS Faculty, Univ. of Vienna, Austria
d CNRS, France
e Univ. of Bordeaux and CNRS, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 February 2020
Received in revised form 5 September 2020
Accepted 10 October 2020
Available online xxxx
Communicated by C. Lenzen

Keywords:
Distributed computing
Distributed graph algorithms
Combinatorial topology

More than two decades ago, combinatorial topology was shown to be useful for analyzing
distributed fault-tolerant algorithms in shared memory systems and in message passing
systems. In this work, we show that combinatorial topology can also be useful for analyzing
distributed algorithms in failure-free networks of arbitrary structure. To illustrate this, we
analyze consensus, set-agreement, and approximate agreement in networks, and derive
lower bounds for these problems under classical computational settings, such as the local

model and dynamic networks.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Context and objective

A breakthrough in distributed computing was obtained in the 1990’s, when combinatorial topology, a branch of Mathe-
matics extending graph theory to higher dimensional objects, was shown to provide a framework in which a large variety of
distributed computing models can be studied [10,35,47]. Combinatorial topology provides a powerful arsenal of tools, which
considerably expanded our understanding of the solvability and complexity of many distributed problems [4,13,14,36]. We
refer to the book by Herlihy et al. [31] for an extended and detailed description of combinatorial topology applied to dis-
tributed computing, in a wide variety of settings.

In a nutshell, combinatorial topology allows us to represent all possible executions of a distributed algorithm, along
with the relations between them, as a single mathematical object, whose properties reflect the solvability of a problem.
Combinatorial topology was primarily used to study failure-tolerant distributed computing in the context of shared memory

✩ Some of the results in this paper were presented in an invited talk in SIROCCO 2019 conference [12].

* Corresponding author.
E-mail address: ami.paz@univie.ac.at (A. Paz).

1 Supported by UNAM-PAPIIT IN108720.
2 Supported by ANR projects DESCARTES and FREDA. Additional support from INRIA project GANG.
3 Supported by the Austrian Science Fund (FWF): P 33775-N, Fast Algorithms for a Reactive Network Layer.
4 Supported by UNAM-PAPIIT IN109917 and 106520.
5 Supported by ANR projects DESCARTES and FREDA.
https://doi.org/10.1016/j.tcs.2020.10.012
0304-3975/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tcs.2020.10.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ami.paz@univie.ac.at
https://doi.org/10.1016/j.tcs.2020.10.012
http://creativecommons.org/licenses/by-nc-nd/4.0/

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.2 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
and message passing systems, but not in the context of failure-free systems in which the presence of a network connecting
the processing elements needs to be taken into account. However, a large portion of the study of distributed computing
requires to take into account the structure of the network connecting the processors, e.g., when studying locality [44]. This
paper is a first attempt to approach distributed network computing through the lens of combinatorial topology.

The base of the topological approach for distributed computing consists of modeling all possible input configurations
(resp., output configurations) as a single object called input complex (resp., output complex), and specifying a task as a rela-
tion between the input and output complexes. Moreover, computation in a given model results in a topological deformation
that modifies the input complex into another complex called the protocol complex. The fundamental result of combinatorial
topology applied to distributed computing [31] is that a task is solvable in a computational model if and only if there exists
a simplicial map, called a decision map, from the protocol complex to the output complex, that agrees with the specification
of the task. In other words, for every input configuration, (1) the execution of the algorithm leads the system into one or
many configurations, forming a subcomplex of the protocol complex, and (2) the decision map should map every configu-
ration in this subcomplex (i.e., each of its simplexes) into a configuration of the output complex, that is legal for the given
input configuration, with respect to the specification of the task.

Understanding the power and limitation of a distributed computing model with respect to solving a given task requires
to understand under which condition the decision map exists. This requires to understand the nature of topological defor-
mations of the input complex resulting from the execution of an algorithm, and the outcome of this deformation, i.e., the
protocol complex. That is, one needs to establish the connections between the distributed computing model at hand, and
the topological deformations incurred by the input complex in the course of a computation under this model.

The connections between the computational models and the topological deformations are now well understood for sev-
eral distributed computing models. For instance, in shared-memory wait-free systems, the protocol complex results from the
input complex by a series of specific subdivisions of its simplexes. The impossibility result for consensus in shared-memory
wait-free systems is a direct consequence of this fact, as the input complex of consensus is connected, subdivisions maintain
connectivity, but the output complex of consensus is not connected — this prevents the existence of a decision map, in-
dependently of how long the computation proceeds. Similarly, in shared-memory t-resilient systems, the protocol complex
results from the input complex not only by a series of specific subdivisions, but also by the appearance of some holes in
the course of the computation. These holes enable the existence of a decision map in the case of (t + 1)-set-agreement, but
are not sufficient to enable the existence of a decision map for consensus, as long as t ≥ 1. And indeed, the FLP result [24]
implies that consensus is not solvable in asynchronous systems even in the presence of at most one failure.

This paper addresses the following issues: What is the nature of the topological deformations incurred by the input
complex in the context of network computing, i.e., when nodes are bounded to interact only with nearby nodes according
to some graph metric? And, what is the impact of these deformations on the ability to solve tasks efficiently (e.g., locally)
in networks? As a first step towards answering these questions in general, we tackle them in the framework of synchronous
failure-free computing, which is actually the framework in which most studies of distributed network computing are con-
ducted [44].

1.2. Our results

The main contribution of this paper is in studying the topological model of distributed computing in networks. In partic-
ular, we show that the protocol complex involves deformations that were not observed before in the context of distributed
computing, deformations which we call scissor cuts. These cuts depend on the structure of the underlying network govern-
ing the way the information flows between nodes. We show that understanding the scissor cuts is useful for deriving lower
bounds on agreement tasks. For this purpose, we model the way information flows between nodes in the network by the
so-called information-flow graph, and establish tight connections between structural properties of this graph, and the ability
to solve agreement tasks in the network. For instance, we show that if the domination number of the information-flow
graph is at least k + 1, then the protocol complex is at least (k − 1)-connected, and if the protocol complex is at least
(k − 1)-connected, then k-set agreement is not solvable.

Our results apply to a rather general model: we assume a dynamic graph, i.e., a sequence (Gt)t≥1 of graphs on the same
set of nodes, where the graph Gt represents the communication links that can be utilized in round t . To analyze the state
of the system after r rounds, we study the question of which nodes may have heard from which other nodes: a message
from a node u could have arrived to a node v if there is a temporal path from u to v , i.e., a sequence ui0 , . . . , ui� of nodes
with 1 ≤ i0 < i1 < · · · < i� ≤ r such that ui0 = u, ui� = v , and (ui j , ui j+1) ∈ E(Gi j) for every j = 0, . . . , � − 1. The information
flow graph represents these relations, for a given r, by having a node for each node of the system, and an edge between
two nodes that have a temporal path between them.

In this model, we take rather strong assumptions on the knowledge of the processes. In the know-all model that we use,
processing nodes are assumed to have structure awareness, that is, every process is given the (possibly evolving) structure of
the network, the position it occupies in this network, and the positions occupied by all the other processes in the network.
It follows that our results imply lower bounds for solving agreement problems in weaker models, such as the classical local

model, as well as dynamic networks.
For instance, a consequence of our results is that, in the local model, solving k-set agreement in a network requires at

least r rounds, where r is the smallest integer such that the r-th power of the network has domination number at most k
2

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.3 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
(two nodes are adjacent in the r-th power of a graph if their distance in the graph is at most r). Similarly, we show that
solving k-set agreement against a dynamic network adversary A requires at least r rounds, where r is the smallest integer
such that, for every sequence of graphs (Gt)1≤t≤r produced by A, this sequence has “temporal” dominating number at most
k, i.e., there is a set S of at most k nodes such that each node v in the graph has a node s ∈ S with a temporal path from s
to v in (Gt)1≤t≤r .

Applying the topological approach to network computing also yields fine grained results. We show that for every instance
of the know-all model with n nodes, and for every ε < 1

n−1 , if consensus is not solvable in r rounds, then ε-approximate
agreement is also not solvable in r rounds. This bound is tight, in the sense that there exist an instance of the know-all

model and a value r where consensus is not solvable in r rounds, while 1
n−1 -approximate agreement is solvable in r rounds.

1.3. Related work

The deep connections between combinatorial topology and distributed computing were concurrently and independently
identified in [10,35] and [47]. Since then, numerous outstanding results were obtained using combinatorial topology for var-
ious types of tasks, including agreement tasks such as consensus and set-agreement [46], and symmetry breaking tasks such
as renaming [4,13,14]. A recent work [2] provides evidence that topological arguments are sometimes necessary. All these
results are obtained in the asynchronous shared memory model with crash failures, but combinatorial topology can also be
applied to Byzantine failures [42]. Works on message passing models consider only complete communication graphs [21,34].
Recent results show that combinatorial topology can also be applied in the analysis of mobile computing [1], demonstrat-
ing the generality and flexibility of the topological framework applied to distributed computing. The book [31] provides an
extensive introduction to combinatorial topology applied to distributed computing.

In contrast, distributed network computing has not been impacted by combinatorial topology. This domain of distributed
computing is extremely active and productive this last decade, analyzing a large variety of network problems in the local

model [44], capturing the ability to solve tasks locally in networks. (The congest model has also been subject of tremendous
progresses, but this model does not support full-information protocols, and thus is out of the scope of our paper). We refer
to [6,7,11,17,23,26,27,30,48] for a non exhaustive list of achievements in this context. However, all these achievements were
based on an operational approach, using sophisticated algorithmic techniques and tools solely from graph theory. Similarly,
the existing lower bounds on the round-complexity of tasks in the local model [5,11,29,38,41] were obtained using graph
theoretical arguments only. The question of whether adopting a higher dimensional approach by using topology would help
in the context of local computing, be it for a better conceptual understanding of the algorithms, or providing stronger
technical tools for proving lower bounds, is, to our knowledge, entirely open.

Similarly to (static) distributed network computing, the fundamental research on dynamic networks [8,15,16,40]
has rarely been impacted by combinatorial topology. Relevant works in this framework study consensus [22,39], set-
agreement [9,28] and approximate agreement [18,19,25]. Recently, techniques of point set topology [3] were used to char-
acterize the solvability of consensus in the message adversary model [43]. We also refer to [20,37,45] which analyze
distributed computation in a model where all processes broadcast messages at each round, but the recipients of these
messages are defined by a graph which may change from round to round. The information-flow graph introduced and ana-
lyzed in our paper can be viewed as an abstraction of computation in dynamic networks, since the information-flow graph
contains a summary of how information was transmitted among processes in the network during some interval of time.

2. The KNOW-ALL model

In this section, we describe the know-all model of computation, and show that this model is stronger than classical
distributed computing models, including the local model and dynamic graphs. That is, any lower bound for the know-all

model implies lowers bounds for these classical models.

2.1. Definition of the model

We consider a set of n synchronous fault-free processes, with distinct names from the set [n] = {1, . . . , n}.

Definition 2.1. An instance of the know-all model is a sequence G = (Gt)t≥1 of n-node directed graphs, with nodes labeled
by the integers in [n]. We identify this sequence with a computational model of n processes, where each process is a priori
given its name p ∈ [n] and the sequence G of graphs. The computation in this model proceeds in synchronous rounds,
where at round t process p can transmit information to process q only if the graph Gt contains the arc (p, q).

In the know-all model, every process is thus given the complete knowledge of the communication patterns occurring
at any time: the communication graph, the names of the processes, and their locations. The only uncertainty is regarding
the inputs to the processes. Hence, this model is particularly suited for studying input-output tasks, as defined next, such as
consensus and list coloring. On the other hand, other classical tasks such as (� + 1)-coloring are trivial in this model.
3

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.4 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
Input-output tasks. An input-output task (I, O , F) in the n-process know-all model is described by a set I of input values,
a set O of output values, and a mapping

F : In → 2On

specifying, for every n-tuple of input values, the set of possible legal n-tuples of output values. The input of a process p ∈ [n]
consists solely of a value in(p) ∈ I , and its output is a value out(p) ∈ O . While all the problems considered in this work
allow any combination of input values, there are other problems in the literature which do not allow this, and assume, e.g.,
unique input values, or an initial proper node coloring. In these cases, an algorithm solving the task is not obliged to provide
any guarantees, and accordingly, we will map any such tuple of input values to all tuples of output values.

Fix n ≥ 2, an input-output task (I, O , F), and an instance G = (Gt)t≥1 of the know-all model. Given an n-tuple of
input values in I with each process p ∈ [n] having input in(p) ∈ I , an r-round protocol consists of having the processes
synchronously communicate over the graphs G1, . . . , Gr , and then having each process decide on an output value in O
based on the information received in these r rounds of communication. Such a protocol solves the task (I, O , F) if for every
n-tuple of input values in I , the values produced by the processes form an n-tuple of output values in O which is legal by
F . If such a protocol exists, we say that the task (I, O , F) is solvable in r rounds in G.

Flooding protocol. A distributed algorithm solving a task has two components: a communication protocol � enabling each
process to gather information about the inputs of other processes, and a decision function f that maps the gathered informa-
tion to an output value. Without loss of generality, in the know-all model, we can consider solely flooding communication
protocols: at round t , every process p ∈ [n] sends all the name-input pairs it is aware of to all its out-neighbors in Gt ,
that is, it sends the pair (p, in(p)), and all the pairs it has received in the previous rounds. After a certain number of
communication rounds, the process takes a decision based on the set of pairs it is aware of.

In general, a distributed algorithm in our setting could be much more sophisticated, and have each process send more
information, or take a decision, e.g., based on the time when each message arrived or on knowledge regarding messages
received by other processes. The most general form of such algorithms is full-information protocols, in which at every
round t = 1, . . . , r, every process sends its entire history to all its neighbors. While this stands in contrast with flooding
protocols defined above, where each process only sends the name-input pairs it is aware of, the following lemma shows
that considering only flooding protocols does not restrict the power of the know-all model. At the heart of its proof lies
the fact that in the know-all model, each process knows the entire topology of the network in each round, including the
names of the processes and their locations, and thus the decision function f can depend on this information.

Lemma 2.2. Every input-output task solvable in r rounds in the know-all model is also solvable in r rounds using a flooding protocol.

Proof. Let (I, O , F) be an input-output task solvable in r rounds in the know-all model G = (Gt)t≥1 using some algorithm
(�, f). Then (I, O , F) is also solvable in r rounds using the full-information protocol, so it is enough to consider the case
where � is the full-information protocol.

Let us execute the flooding protocol for r rounds. Since every process is aware of the sequence of directed graphs Gt ,
1 ≤ t ≤ r, it can reconstruct the sequence of messages it would have received in the full-information protocol �, based
on the messages received during the execution of the flooding protocol. It follows that every process is able to apply the
decision function f of the algorithm (�, f) after r rounds. �

Thanks to Lemma 2.2, in order to analyze algorithms in the know-all model, we can focus on the information-flow graph,
which describes the execution of a flooding protocol in the know-all model, defined as follows.

Definition 2.3. Let G = (Gt)t≥1 be an instance of the know-all model, and let r ≥ 0. The information-flow graph associated
to G after r rounds is the directed graph G≤r whose n nodes are labeled by integers in [n], and there is an arc (p, q) from
p to q in G≤r if and only if q receives the pair (p, in(p)) when flooding in G for r rounds, i.e., there is a temporal path from
p to q of length at most r.

2.2. Relation to other models

Recall that, in the local model [44], the n processes synchronously communicate using a fixed (possibly directed) com-
munication graph G , which is unknown to the processes. Every process is given a distinct identifier taken from some range
of integers. As the execution goes by, the processes learn the topology of G . More precisely, after r rounds of communica-
tion, each process is aware of its r-neighborhood in G , including the identifiers of the processes in this neighborhood, and
their possible inputs. A protocol solving a given task in the local model is an r-round protocol if every process makes a
decision in at most r rounds, for every assignment of inputs and identifiers to the processes.

Property 2.4. If an input-output task is solvable in r rounds in the local model with communication graph G , then it is
solvable in r rounds in the know-all model G = (Gt)t≥1 with Gt = G for t ≥ 1.
4

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.5 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
In the framework of dynamic networks, an adversary A is a collection of infinite sequences (Gt)t≥1 of directed graphs
on the same set [n] of vertices, representing processes. When the execution of a protocol starts, the adversary picks any
of the sequences (Gt)t≥1 ∈ A, and the processes synchronously communicate following the graphs in the sequence, that is,
at round t ≥ 1 processes exchange messages along the edges of Gt . A protocol solves a task in r rounds against a dynamic
network adversary A if, for every (Gt)t≥1 ∈ A, the protocol solves the task in (Gt)t≥1.

Property 2.5. If an input-output task is solvable in r rounds against a dynamic network adversary A, then, for every G =
(Gt)t≥1 ∈ A, the task is solvable in r rounds in the know-all model G.

3. The topology of computing in the KNOW-ALL model

In this section, we describe the protocol complex related to distributed computing in the know-all model, and establish
a necessary and sufficient condition for input-output task solvability in this model. Most of the topological notions we
use are routinely applied for studying distributed systems, as described in the book [31]. The reader unfamiliar with these
notions may read the brief recap in Appendix A, which contains the topological notions required for the statement of our
results.

One exception to this is a new type of mappings, which we define next. Recall that, given a simplex σ of a complex A,
the star of σ in A, denoted St(σ , A), is the sub-complex of A induced by all its facets containing σ .

We say that a mapping f :A → 2B is a spreading map if, for every simplex σ ∈A,

f (σ) ⊆
⋃

φ ∈St(σ ,A)

f (φ).

Note that every carrier map f : A → 2B is a spreading map, because carrier maps enforce that f (σ) ⊆ f (φ) whenever
σ ⊆ φ. However, a spreading map does not need to be a carrier map, as the image of a simplex σ = φ′ ∩ φ′′ may have its
image spread partially in f (φ′), and partially in f (φ′′), with f (σ) � f (φ′).

While computation in asynchronous, crash-prone systems is modeled using carrier maps (specifically, subdivisions), the
computation in the know-all model is modeled by a different type of spreading maps, which we call scissor cuts. These
are defined below.

3.1. The protocol complex of the know-all model

Given a distributed computing task (I, O , F) to be solved in the know-all model, two complexes play a major role
in this framework, the input complex, denoted by I , and the output complex, denoted by O. The input complex I is the
pseudosphere �({1, . . . , n}, I), with the set of facets

{{(1, v1), . . . , (n, vn)} : ∀i ∈ [n], vi ∈ I
}
.

The set of all facets of the output complex O is

{{(1, v ′
1), . . . , (n, v ′

n)} : ∀i ∈ [n], v ′
i ∈ O , and ∃v ∈ In, (v ′

1, . . . , v ′
n) ∈ F (v)

}
.

Note that the output complex includes only combinations of output values that are legal with respect to the problem at
hand. Note also that the input and output complexes do not depend on the communication medium considered, and that
both complexes are pure—all their facets have the same dimension.

For instance, in the case of binary consensus in an n-process system (see Fig. 1), the set of facets of the input complex is
{{(1, v1), . . . , (n, vn)} : ∀i ∈ [n], vi ∈ {0,1}}.

This complex is topologically equivalent to the (n − 1)-dimensional sphere Sn−1. (Formally, the topological spaces are home-
omorphic, that is, there is a continuous bijection from |I| to Sn−1, whose inverse is continuous as well.) The output complex
of binary consensus is composed of two disjoints (n − 1)-facets, τ0 and τ1, defined by

τ0 = {(1,0), . . . , (n,0)}, and τ1 = {(1,1), . . . , (n,1)}.
One can rephrase the operational definition (I, O , F) of input-output task in the framework of combinatorial topology as

follows: a task (I, O, �) is simply described by a carrier map

� : I → O,

i.e., a map that sends each simplex of the input complex I to a subcomplex of the output complex O. For a given facet
σ = {(1, v1), . . . , (n, vn)} ∈ I , the set of facets in �(σ) is defined by
5

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.6 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 1. Impact of the information-flow graph on the protocol complex for binary consensus with three processes. Labels next to vertices are input and
output values, in the input and output complexes respectively, or views in protocol complexes. A view “xyz” labeling a vertex means that the process
corresponding to this vertex knows the input values x from process ◦, y from process •, and z from process •. A question mark in a label indicates that
the process does not know the corresponding input value.

{(1, v ′
1), . . . , (n, v ′

n)} ∈ �(σ) ⇐⇒ (v ′
1, . . . , v ′

n) ∈ F (v1, . . . , vn). (1)

The carrier map � of binary consensus maps every input (n − 1)-facet σ containing both input values 0 and 1 to the two
(n − 1)-facets τ0 and τ1, and maps each (n − 1)-facet σb with a unique input value b ∈ {0, 1} to the output (n − 1)-facet τb .

In any distributed computing model, in each point in time during the execution of a communication protocol, one can
define a complex whose vertices are pairs (p, w) where w is the state of process p, i.e., its view of the computation. A
set of vertices with distinct process names forms a protocol simplex if there is a protocol execution where those processes
collect those views. All possible protocol simplexes make up the protocol complex.

In the know-all model, we can identify the view of each process with the set of inputs it is aware of. Due to synchrony
and absence of failures, in an instance of the know-all model with information-flow graph G≤r , each input simplex in I
results in a single execution, that leads to a unique simplex in the protocol complex P associated with G≤r . The following
fact is a direct consequence of the definition of the information-flow graph.

Lemma 3.1. Let G be an instance of the know-all model, let r ≥ 0, and let (I, O, �) be a task. The protocol complex P associated
with G and I after r rounds, is the pure (n − 1)-dimensional complex whose facets are all the sets of the form {(1, w1), . . . , (n, wn)}
for which there exists a facet {(1, v1), . . . , (n, vn)} of I such that, for i = 1, . . . , n, the view wi satisfies

wi = {(j, v j) : i = j or (j, i) ∈ E(G≤r)}.
The function
 : I →P maps each facet of I to a single facet of P , satisfying

({(1, v1), . . . , (n, vn)}) = {(1, w1), . . . , (n, wn)}.

Notation. Given a view w = {(j1, v j1), . . . , (jk, v jk)}, we denote by names(w) = { j1, . . . , jk} the set of processes whose
names appear in w , and by values(w) = {v j1 , . . . , v jk } the multiset of values appearing in w .

An important point stated in Lemma 3.1 is that the facets of the input complex I are preserved in the protocol complex
P , i.e., there is a one-to-one correspondence between the facets of these two complexes. This phenomenon is an important
and interesting consequence of the fact that the system we study is not prone to asynchrony or failures, making the com-
putation deterministic. However, while the facets of I and P remain in a one-to-one correspondence, their intersections
may not possess this property: two facets intersecting on a face of some dimension in I may correspond to two facets
intersecting only in a face of a lower dimension in P (but not of a higher dimension). We thus use the terminology “scissor
cuts” for describing the transformation of I into P by
.

Terminology. In the know-all model, the spreading map
 : I → P can be interpreted as a consequence of a sequence of
topological deformations, which we call scissor cuts. This mapping is a special type of spreading map, defined for colored
complexes. Specifically,
 maps each facet of I to a single facet of P , and it maps every simplex σ ∈ I to the set

(σ) = {τ ∈
(φ) : φ is a facet of I, σ ⊆ φ, and names(τ) = names(σ)}.
Example. Fig. 1 displays two illustrations of the protocol complex for binary consensus, for two different information-flow
graphs on three processes: the consistently directed cycle G≤r = C3, and the directed star G≤r = S3 whose center has
two out-neighbors. Process names are omitted, and instead are represented by the colors of the circles (◦, •, and •). The
number of vertices in the protocol complexes depends on the information-flow graph. Let us focus first on process ◦. A
vertex (◦, v) in the input complex yields two vertices in the protocol complex for C3, depending on the input value received
from process •. Instead, a vertex (◦, v) in the input complex yields a single vertex in the protocol complex for S3 because,
according to this information-flow graph, process ◦ receives no inputs from other processes. On the other hand, every vertex
(•, v) in the input complex yields two vertices in both protocol complexes. This is because, in both information-flow graphs,
6

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.7 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
C3 and S3, process • receives the input from process ◦. Similarly, every vertex (•, v) in the input complex yields two vertices
in both protocol complexes, because, in both information-flow graphs, process • receives the input from another process,
from process • in C3 and from process ◦ in S3.

An important property of scissor cuts is that they are not arbitrary, but preserve a lot of the structure of the input
complex. In fact, they can be understood by considering only cuts occurring between adjacent facets. To get an intuition
of this property, let us consider the input complex I on Fig. 1, and let σ0 = {(◦, 0), (•, 0), (•, 0)}. Let σ1, σ2, σ3 be the
three facets of I of the form {(◦, x), (•, y), (•, z)} with x + y + z = 1, and let σ4, σ5, σ6 be the three facets of I of the
form {(◦, x), (•, y), (•, z)} with x + y + z = 2. Note that, for 1 ≤ i ≤ 3, σi shares an edge with σ0, while, for 4 ≤ i ≤ 6, σi
only shares a vertex with σ0. In fact, we have

⋃6
i=1(σ0 ∩ σi) = ⋃3

i=1(σ0 ∩ σi), which is the empty triangle formed by the
edges and nodes of σ0. Now, let us consider the protocol complexes for C3 and for S3. In both cases, the cuts preserve the
latter equality, that is, we also have

⋃6
i=1

(

(σ0) ∩
(σi)

) = ⋃3
i=1

(

(σ0) ∩
(σi)

)
. This property is not coincidental, but

systematically holds, as shown below.

Lemma 3.2. Let 1 ≤ s ≤ t be integers. Let σ0, σ1, . . . , σt be different facets of I such that, for every i ∈ {1, . . . , s}, σi is sharing an
(n − 2)-face with σ0 . If

⋃t
i=1(σ0 ∩ σi) = ⋃s

i=1(σ0 ∩ σi) then
⋃t

i=1

(

(σ0) ∩
(σi)

) = ⋃s
i=1

(

(σ0) ∩
(σi)

)
.

Proof. It is sufficient to show that, for every s + 1 ≤ i ≤ t ,
(σ0) ∩
(σi) ⊆ ⋃s
j=1

(

(σ0) ∩
(σ j)

)
whenever
(σ0) ∩
(σi) �=

∅. So, let us consider a facet σi ∈ I such that
(σ0) ∩
(σi) �= ∅, and let (p j, w j) ∈
(σ0) ∩
(σi). Let pk ∈ names(w j), i.e., pk
is either an in-neighbor of p j in G≤r , or pk = p j . Let xk be the input of pk , so (pk, xk) ∈ w j . Since (p j, w j) ∈
(σ0) ∩
(σi), it
holds that (pk, xk) ∈ σ0 ∩σi . By assumption, σ0 ∩σi ⊆ ⋃s

j=1(σ0 ∩σ j), so there exists � ∈ {1, . . . , s} such that σ0 ∩σi ⊆ σ0 ∩σ� .
It follows that (pk, xk) ∈ σ0 ∩σ� . As a consequence, (pk, xk) is in the view of p j in
(σ�). Therefore, (p j, w j) ∈
(σ0) ∩
(σ�).
We conclude that
(σ0) ∩
(σi) ⊆
(σ0) ∩
(σ�), as desired. �
3.2. Topological characterization of task solvability

So far, we have proceeded in two parallel paths. The first, operational path, was about algorithms in the know-all

model, where information propagates between processes according to some information-flow pattern G≤r (cf. Section 2).
The second, topological path, relates the inputs of processes defined by an input complex, their views modeled in the
protocol complex, and their desired outputs, appearing in the output complex (cf. Section 3.1). The connection between
these paths is established in the next lemma, which directly follows from the definitions.

Lemma 3.3. A task (I, O , F) is solvable in r rounds in the know-all model G if and only if, for the topological formulation (I, O, �) of
the task, there exists a chromatic simplicial map δ :P →O satisfying δ(
(σ)) ∈ �(σ) for every facet σ ∈ I , where P is the protocol
complex associated with G and I after r rounds.

The simplicial map δ : P → O is called a decision map. If δ(i, wi) = (i, v ′
i), then the corresponding algorithm specifies

that process i with view wi outputs f (i, wi) = v ′
i .

Example. Let us consider Fig. 1 again. The protocol complex for S3 is disconnected, while for C3 it is 0-connected (i.e.,
path-connected). The presence of a universal node ◦ (dominating all other nodes) in the information-flow graph S3 results
in all processes becoming aware of the input of the process corresponding to that node. Therefore, the protocol complex
for S3 is split into two subcomplexes, the one corresponding to process ◦ with input 0, and the other corresponding to
process ◦ with input 1. Similarly, the protocol complex for the complete graph K3 with bidirectional edges (not depicted
in Fig. 1), is entirely disconnected, i.e., composed of eight pairwise non-intersecting facets, because there is no uncertainty
under the complete information-flow graph, as every process receives the input of every other process.

Since the protocol complex for S3 is disconnected, consensus is solvable in this graph. To see why, consider δ that
maps every vertex (p, 0 ∗ ∗) of the protocol complex to vertex (p, 0) of the output complex, and every vertex (p, 1 ∗ ∗) of
the protocol complex to vertex (p, 1) of the output complex. This is a chromatic simplicial map, and thus, by Lemma 3.3
consensus is solvable. In contrast, there is no such mapping δ : P → O for the protocol complex P corresponding to C3,
because P is 0-connected. Let us consider the path ((◦, 1?1), (•, ?01), (•, 00?)) in the protocol complex for C3. Vertex
(◦, 1?1) must be mapped to vertex (◦, 1) in the output complex because (◦, 1?1) belongs to a facet with all processes
having input value 1. Similarly, vertex (•, 00?) must be mapped to vertex (•, 0) because (◦, 00?) belongs to a facet with
all processes having input value 0. If a mapping δ maps (•, ?01) to (•, 1), then the simplex {(•, ?01), (•, 00?)} is mapped
to {(•, 1), (•, 0)}, which is not a simplex of O. The same occurs if (•, ?01) is mapped to (•, 0), as {(◦, 1), (•, 0)} is not a
simplex of O. Thus, there is no simplicial map δ, and, by Lemma 3.3, consensus is not solvable.

4. Connectivity and domination

In this section, we establish a connection between a given instance of the know-all model, the structure of the
information-flow graph resulting from this instance, and the topology of the protocol complex induced by the information-
7

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.8 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
flow graph. In particular, we show that, assuming that the input complex I is a pseudosphere (which is the case, e.g., for
consensus and k-set agreement), if the information-flow graph has large domination number, then the protocol complex
is highly connected. Later in the paper, we show that high connectivity is an obstacle to solving agreement tasks in the
know-all model, as was shown in the past for several other models of computation.

Recall that a dominating set of a directed graph G is a set of nodes D ⊆ V (G) such that, for every node v ∈ V (G) \ D ,
there exists a node u ∈ D such that (u, v) ∈ E(G). The domination number of a digraph G , denoted γ (G), is the minimum k
such that G has a dominating set of size k. Also recall that, for k ≥ 1, a complex is k-connected if for every 1 ≤ k′ ≤ k, any
continuous map from the k′-dimensional sphere to a geometric realization of the complex can be extended to a continuous
map from the (k′ + 1)-dimensional disk.

We now state and prove one of our main technical contributions.

Theorem 4.1. Let G be an instance of the know-all model, r be a positive integer, and (I, O, �) be a task. If γ (G≤r) > k, then the
protocol complex P associated with G and I after r rounds is at least (k − 1)-connected.

The rest of this section is dedicated to the proof of Theorem 4.1. This proof exemplifies the nature of the scissor cuts
produced by
 on I , resulting in P .

Let I be the set of input values of the task (I, O, �). If |I| = 1, then Theorem 4.1 holds as the protocol complex P is a
single simplex of dimension n − 1. From this point on, we therefore assume that |I| > 1.

We begin by presenting another important property satisfied by the scissor cuts. It relates the “depth of the cuts”
applied to I with the connectivity of the resulting complex P . Later we will see that the domination number of the
information-flow graph is precisely the “depth of the cut”. To get an intuition of the property, let us again consider Fig. 1.
Let σ0 = {(◦, 0), (•, 0), (•, 0)} ∈ I , and let σ1 = {(◦, x), (•, y), (•, z)} be one of the facets of I with x + y + z = 1. In the case
of the protocol complex for C3, for every choice of σ1, we observe that
(σ0) ∩
(σ1) is a single node, i.e., a simplex of
dimension 0. On the other hand, in the case of the protocol complex for S3,
(σ0) ∩
(σ1) may either be an edge, or the
empty set, depending on the choice of σ1. The lemma below provides a lower bound on the dimension of
(σ0) ∩
(σ1),
as a function of the domination number of the information-flow graph.

Lemma 4.2. Let t ≥ 1, and let σ0, . . . , σt be a sequence of t + 1 different facets of I such that, for every 1 ≤ i ≤ t, σi shares an
(n − 2)-face with σ0 . Then, for every k such that γ (G≤r) > k,

⋂t
i=0
(σi) is of dimension at least k − t.

Proof. Consider the simplex S = ⋂t
i=0
(σi) (this is a simplex since each
(σi) is a simplex, and so is their intersection).

In order to show that S is of dimension at least k − t , we can restrict our attention to t ≤ k, as the dimension of a simplex
cannot go below −1.

For every i, 1 ≤ i ≤ t , let pi be the process whose identity does not appear in σ0 ∩ σi , i.e., pi /∈ names(σ0 ∩ σi). Since σ0
and σi share an (n − 2)-face, pi is uniquely defined.

First, we show that the set

D = names(S) ∪ {p1, . . . , pt}
is a dominating set of G≤r . Let q be a process in [n] \ D (if no such process exists, D = [n], which is trivially a dominating
set). Since, in particular, q /∈ names(S), we get that q has different views in the executions
(σ0) and
(σi), for some
i ∈ {1, . . . , t}. As σ0 and σi share an (n − 2)-face, only the process pi is able to distinguish between the two corresponding
input configurations. Hence, there is a directed edge from pi to q in G≤r . Therefore, D is a dominating set for G≤r .

The fact that D is a dominating set for G≤r implies that

|S| + |{p1, . . . , pt}| ≥ |D| ≥ k + 1.

It follows that |S| ≥ k + 1 − |{p1, . . . , pt}| ≥ k + 1 − t , from which we conclude that the dimension of S is at least k − t . �
Lemmas 3.2 and 4.2 are actually the key facts enabling us to prove that if the domination number of G≤r is large, then

the protocol complex after r rounds has high connectivity.
Recall that the d-skeleton skeld K of a complex K is the complex composed of all the faces of K of dimension at most d.

The proof also uses the concept of shellable complexes, defined as follows.

Definition 4.3. Let K be a pure complex of dimension d. K is shellable if there is an ordering φ1, . . . , φr of its facets such
that, for every 1 ≤ t ≤ r − 1, the complex Kt = (⋃t

i=1 φi
) ∩ φt+1 is a pure subcomplex of dimension d − 1 of skeld−1 φt+1.

Such a sequence φ1, . . . , φr of facets is called a shelling order of K.

One simple example of a shellable complex is that of a complex defined by the boundary of a single simplex, or any
subcomplex of such complex; in this case, any order of the facets is a shelling order, as formally stated next.
8

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.9 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
Lemma 4.4 (Theorem 13.2.2 in [31]). Let σ be a simplex of dimension d, and let K be a pure (d − 1)-dimensional subcomplex of
skeld−1 σ . Then K is shellable, and any sequence of its facets is a shelling order of K.

Another typical example of a shellable complex is a pseudosphere.

Lemma 4.5 (Theorem 13.3.6 in [31]). The pseudosphere �({1, . . . , n}, I) is shellable.

To get an intuition of why a pseudosphere is shellable, let us consider the input complex displayed on Fig. 1, which
is the pseudosphere �({1, 2, 3}, {0, 1}). Set φ1 as the lower facet (triangle) {(◦, 0), (•, 0), (•, 0)}. Set φ2, φ3, and φ4 as the
three facets {(◦, 0), (•, 0), (•, 1)}, {(◦, 0), (•, 1), (•, 0)}, and {(◦, 1), (•, 0), (•, 0)}, in arbitrary order. Then set φ5, φ6, and φ7
as the three facets {(◦, 0), (•, 1), (•, 1)}, {(◦, 1), (•, 1), (•, 0)}, and {(◦, 1), (•, 0), (•, 1)}, in arbitrary order. Finally, set φ8
as {(◦, 1), (•, 1), (•, 1)}. This is one of the many shelling orderings establishing that �({1, 2, 3}, {0, 1}) is shellable. How-
ever, note that picking φ1 = {(◦, 0), (•, 0), (•, 0)} and φ2 = {(◦, 0), (•, 1), (•, 1)} cannot be a part of any shelling order of
�({1, 2, 3}, {0, 1}), neither can the choice φ1 = {(◦, 0), (•, 0), (•, 0)} and φ2 = {(◦, 1), (•, 1), (•, 1)}. Lemma 4.5 implies that
the input complex I = �({1, . . . , n}, I) is a pure (n − 1)-dimensional complex that is shellable.

The lemma below is the core of the technical part of the proof of Theorem 4.1. It can be thought as a finer version of
Lemma 13.4.2 in [31].

Lemma 4.6. Let A be a pure shellable complex of dimension d, and let B be any complex. Let f be an onto mapping from the facets of
A to the facets of B. Fix an integer � ≥ 0 such that f satisfies the following two properties:

P1: For every two integers s, t satisfying 1 ≤ s ≤ t, and every sequence σ0, σ1, . . . , σt of t + 1 different facets of A where, for
every i ∈ [s], σi shares a (d − 1)-face with σ0 and

⋃t
i=1(σ0 ∩ σi) = ⋃s

i=1(σ0 ∩ σi), it holds that
⋃t

i=1

(
f (σ0) ∩ f (σi)

) =⋃s
i=1

(
f (σ0) ∩ f (σi)

)
;

P2: For every t ≥ 0, and for every sequence σ0, σ1, . . . , σt of t +1 different facets of A where each σi , i ≥ 1, shares a (d −1)-face
with σ0 , the complex

⋂t
i=0 f (σi) is of dimension at least � − t + 1.

Then, B is �-connected.

Observe that the two properties assumed in the statement of Lemma 4.6 hold for the scissor cuts, where A = I , B =P ,
and f =
, as established in Lemmas 3.2 and 4.2. The proof of Lemma 4.6 uses two known facts from combinatorial
topology. First, a subcomplex of a boundary complex of a simplex is shellable (Lemma 4.4 above). Second, in order to
show that a complex is well connected, we can present a cover of it by two subcomplexes, such that they both have high
connectivity, and so does their intersection. This latter fact is a simple corollary of the so-called Nerve Lemma, and is stated
next.

Lemma 4.7 (Corollary 10.4.3 in [31]). Let K and L be two �-connected complexes such that K∩L is (� − 1)-connected. Then, K∪L
is �-connected.

In order to prove Lemma 4.6, we need one more notation, of petals, which is used only in the proof of this lemma. Given
a shelling order φ1, . . . , φr of a shellable d-dimensional complex K, the complex Kt = (⋃t

i=1 φi
) ∩ φt+1 = ⋃t

i=1(φi ∩ φt+1) is
a subcomplex of the boundary complex of φt+1, and as such, it can be represented as a union of the complexes induced by
some (d − 1)-faces τ1, . . . , τs of φt+1. Moreover, each τ j , 1 ≤ j ≤ s, is a face of a facet φi j of

⋃t
i=1 φi for some 1 ≤ i j ≤ t , i.e.,

φt+1 and φi j share the (d − 1)-face τ j . In short,

Kt =
t⋃

i=1

(φi ∩ φt+1) =
s⋃

j=1

τ j =
s⋃

j=1

(φi j ∩ φt+1).

We call the set S = {i1, . . . , is} the petals of φt+1. More precisely:

Definition 4.8. Given a shelling order φ1, . . . , φr of a pure shellable complex K of dimension d, and an index t ∈ {1, . . . , r −
1}, a petal of φt+1 is a facet φi , 1 ≤ i ≤ t , for which φi ∩ φt+1 is of dimension d − 1. A minimal covering set of petals of φt+1 is
a set P ⊆ {1, . . . , t} of indices that have the following properties.

1. Covering:
⋃

i∈P (φi ∩ φt+1) = ⋃t
i=1(φi ∩ φt+1).

2. Petals: For each i ∈ P , φi ∩ φt+1 is a petal.
3. Minimal: For each i, i′ ∈ P such that i �= i′ , φi ∩ φt+1 �= φi′ ∩ φt+1.

We now have all the ingredients to prove Lemma 4.6.
9

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.10 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
Proof of Lemma 4.6. The proof is by induction on �. For each �, we will apply induction on the length m of a shelling order
of A.

– For � = 0, we need to prove that B is 0-connected. We do so by induction on the length of a shelling order of A. So, let
us fix a shelling order φ1, . . . , φm of A. We have B = ⋃m

i=1 f (φi) because f is an onto mapping from the facets of A to the
facets of B.

• The base case is m = 1, that is, B = f (φ1). In this case, B is a simplex. Thus, it is c-connected for every c, and in
particular it is 0-connected.

• For the inductive step, with m ≥ 2, let us assume that properties P1 and P2 hold for A, B, f and � = 0, and that the
lemma holds for m − 1. Next, we apply Lemma 4.7 in order to prove that B = (⋃m−1

i=1 f (φi)
) ∪ f (φm) is 0-connected.

To this end, we prove that (1)
⋃m−1

i=1 f (φi) is 0-connected, (2) f (φm) is 0-connected, and (3) their intersection (⋃m−1
i=1 f (φi)

) ∩ f (φm) is (−1)-connected.

Consider the subcomplex
⋃m−1

i=1 φi of A, the subcomplex
⋃m−1

i=1 f (φi) of B, and the mapping f between their facets.
Note that since properties P1 and P2 hold for A, B, f , and � = 0, they also hold for the subcomplexes defined above.
Since the lemma holds for m −1, we conclude that

⋃m−1
i=1 f (φi) is 0-connected. We also have that f (φm) is 0-connected,

as it is a simplex.
For the intersection, let φ j , 1 ≤ j ≤ m − 1, be a petal of φm , i.e., φ j ∩φm is of dimension d − 1. Such a φ j exists since the
sequence φ1, . . . , φm is a shelling order. By Property P2 with σ0 = φm , σ1 = φ j , and t = 1, the complex f (φ j) ∩ f (φm)

is of dimension at least 0, and, specifically, it is non-empty. This implies that
⋃m−1

i=1

(
f (φi) ∩ f (φm)

)
is also non-empty,

i.e., (−1)-connected, as desired.

– For the inductive step, from � − 1 to �, where � ≥ 1, let us assume that the statement of the theorem holds for � − 1,
and consider a shelling order φ1, . . . , φm of A. Our aim is to show that B = ⋃m

i=1 f (φi) is �-connected. As in the base case
� = 0, we proceed by induction on the length m of the shelling order.

• The base case is m = 1. Again, since f (φ1) is a simplex, it is �-connected.
• For the inductive step, with m ≥ 2, let us assume as before that properties P1 and P2 hold for A, B, f , and �, and that

the lemma holds for m − 1. We follow the same outline of proof, that is, we show that (1)
⋃m−1

i=1 f (φi) is �-connected,
(2) f (φm) is �-connected, and (3) their intersection

(⋃m−1
i=1 f (φi)

)∩ f (φm) is (� −1)-connected. Lemma 4.7 then implies
that B = (⋃m−1

i=1 f (φi)
) ∪ f (φm) is �-connected, as desired.

As in the case � = 0, by considering the subcomplexes
⋃m−1

i=1 φi ,
⋃m−1

i=1 f (φi), and the mapping f between their facets,
and using the induction hypothesis for � and m − 1, we conclude that

⋃m−1
i=1 f (φi) is �-connected. We also have that

f (φm) is �-connected, as it is a simplex.

We now show that
(⋃m−1

i=1 f (φi)
)

∩ f (φm) is (� − 1)-connected. To this end, we define new simplicial complexes A′, B′ ,
and a mapping f ′ between their facets. Let P be a minimal covering set of petals of φm . That is,

m−1⋃
i=1

(φi ∩ φm) =
⋃
i∈P

(φi ∩ φm) ,

with each intersection φi ∩φm on the right hand side (i ∈ P) being a distinct simplex of dimension d −1. By Property P1,
we have that

m−1⋃
i=1

(
f (φi) ∩ f (φm)

) =
⋃
i∈P

(
f (φi) ∩ f (φm)

)
.

Let A′ = ⋃
i∈P (φi ∩ φm) and B′ = ⋃

i∈P (f (φi) ∩ f (φm)) be the right hand sides of the two above equalities. Note that
A′ is pure of dimension d − 1 and is a subcomplex of the boundary complex of φm , thus it is shellable by Lemma 4.4.
By the last equality, it is sufficient to show that B′ is (� − 1)-connected. Consider the mapping f ′ from the facets of A′
to those of B′ defined by

f ′(φi ∩ φm) = f (φi) ∩ f (φm)

for every i ∈ P . This mapping is onto by the definition of A′ and B′ . We now use Lemma 4.6 for A′, B′, f ′, d′ = d − 1,
and �′ = � − 1, which is applicable by the induction hypothesis.
To show that Property P1 holds for A′, B′, f ′ , and d′ (P1 does not depend on �′), let us consider two integers 1 ≤ s′ ≤ t′ ,
and a sequence φi0 ∩ φm, . . . , φit′ ∩ φm of different facets of A′ where, for every j ∈ [s′], φi j ∩ φm shares a (d − 2)-face
with φi0 ∩ φm , and
10

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.11 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
t′⋃
j=1

(
(φi0 ∩ φm) ∩ (φi j ∩ φm)

) =
s′⋃

j=1

(
(φi0 ∩ φm) ∩ (φi j ∩ φm)

)
.

For each j ≥ 1, the fact that i0 and i j are different petals of φm implies that φi0 ∩ φm �= φi j ∩ φm . Hence, the right hand
side is a union of simplices of dimension exactly d − 2, making it a pure complex of dimension d − 2.
We claim that {φi1 , . . . , φit′ } = {φi1 , . . . , φis′ }. Assume otherwise, i.e., there is a facet φi′ with i′ ∈ {i1, . . . , it′ } such that
φi′ �= φi j for each 1 ≤ j ≤ s′ . Since the complex in the right hand side is pure of dimension d − 2, the equality implies
that φi0 ∩ φm ∩ φi′ is a facet there, i.e., φi0 ∩ φm ∩ φi′ = φi0 ∩ φm ∩ φi j for some 1 ≤ j ≤ s′ . As φi0 , φi′ , and φi j are
distinct petals of φm , their three intersections with φm , namely φi0 ∩ φm, φi′ ∩ φm , and φi j ∩ φm , are distinct simplices
of dimension d − 1. The intersection of these three simplices must thus be of dimension at most d − 3. However,
the equality φi0 ∩ φm ∩ φi′ = φi0 ∩ φm ∩ φi j implies that φi0 ∩ φm ∩ φi′ ∩ φi j = φi0 ∩ φm ∩ φi′ , where the left hand side
has dimension at most d − 3 and the right hand side has dimension d − 2, a contradiction. Hence, {φi1 , . . . , φit′ } ={φi1 , . . . , φis′ }, as claimed.
Applying f completes the proof of P1. Indeed, we have

t′⋃
j=1

f (φi j) =
s′⋃

j=1

f (φi j),

hence

f (φi0) ∩ f (φm) ∩
t′⋃

j=1

f (φi j) = f (φi0) ∩ f (φm) ∩
s′⋃

j=1

f (φi j),

so

t′⋃
j=1

(
f (φi0) ∩ f (φm) ∩ f (φi j)

) =
s′⋃

j=1

(
f (φi0) ∩ f (φm) ∩ f (φi j)

)
,

which implies

t′⋃
j=1

(
f ′(φi0 ∩ φm) ∩ f ′(φi j ∩ φm)

) =
s′⋃

j=1

(
f ′(φi0 ∩ φm) ∩ f ′(φi j ∩ φm)

)
,

completing the proof of Property P1.
To show that Property P2 also holds for A′, B′, f ′, d′ , and �′ , let us fix t′ ≥ 0, and consider a sequence φi0 ∩φm, . . . , φit′ ∩
φm of t′ + 1 facets of A′ , i.e., i j ∈ P for every j = 0, . . . , t′ . For each 1 ≤ j ≤ t′ , the facet φi j ∩ φm shares a (d − 2)-face
with φi0 ∩φm (this is the assertion in P2, but in our specific case this is true for any choice of a sequence, since φi0 and
φi j are petals of φm). We have

t′⋂
j=0

f ′(φi j ∩ φm) =
t′⋂

j=0

(
f (φi j) ∩ f (φm)

) =
(t′⋂

j=0

f (φi j)
)

∩ f (φm).

To show that this intersection is of dimension at least �′ − t′ + 1, we use the assumption that Property P2 holds in the
original setting, with A, B, f , d, and �. We apply P2 with t = t′ + 1, and with the sequence φm, φi0 , . . . , φit′ of t + 1
facets of A, where φm is the facet intersecting all the other t facets. Note that, for every 0 ≤ j ≤ t′ , φi j shares a (d − 1)-
face with φm since φi j is a petal of φm . Property P2 then assures that the above intersection is of dimension at least
� − t + 1 = �′ − t′ + 1. As a consequence, Property P2 also holds for A′, B′, f ′, d′ , and �′ .
By induction, the theorem holds for A′, B′, f ′, d′ , and � −1. Therefore, B′ is (� −1)-connected. It follows that

⋃m
i=1 f (φi)

is �-connected, which completes the induction step.

This completes the proof of Lemma 4.6. �
To complete the proof of Theorem 4.1, observe that Lemmas 3.2 and 4.2 guarantee that the two assumptions in the

statement of Lemma 4.6 hold for � = k − 1, and thus Lemma 4.6 shows that P is (k − 1)-connected, as desired.

5. Applications to agreement tasks

In this section, we show how to use topology to derive lower bounds and impossibility results in the context of dis-
tributed network computing, with implications to classical models such as the local model and dynamic networks. We
11

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.12 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
start by studying the classical agreement task of consensus, and a relaxed problem called k-set agreement, where pro-
cesses may decide on up to k different values. We then move our attention to a different variant of consensus, approximate
agreement, where decision values must all reside in a small range.

5.1. Consensus and set-agreement

Let k ≥ 1. Recall that, in the k-set agreement task, the processes must agree on at most k of the input values. It is known
that, in the context of asynchronous shared memory computing, the level of connectivity of the protocol complex is closely
related to the ability to solve k-set agreement (see, e.g., [32,33,36]). We show that this also holds in the know-all model.

To illustrate this result, let us assume that the protocol complex P is 0-connected (path connected), i.e., for every pair
of vertices in P there is a sequence of edges of P forming a path connecting these two vertices. Then, consensus, i.e.,
1-set agreement, cannot be solved. (This is, e.g., the case of the protocol complex for C3 in Fig. 1, while the protocol
complex for S3 is not 0-connected.) To see this, assume consensus can be solved, and let (p, w) be a vertex in the protocol
complex representing an execution for a process p that decides 0, and (p′, w ′) a vertex where p′ decides 1. Such vertices
exist because in the execution with all inputs equal to b ∈ {0, 1}, processes must decide b. The protocol complex P is 0-
connected, so there is a path in P connecting (p, w) and (p′, w ′). Each vertex in this path has a binary decision value, and
so, some edge along that path must have one endpoint deciding 0 and the other endpoint deciding 1. This edge is in a facet
whose outputs contain both 0s and 1s, contradicting the specification of consensus. Theorem 5.1 below uses a generalization
of the above argument to higher-dimensional connectivity, in order to study the time complexity of solving k-set agreement
in instances of the know-all model.

More specifically, Theorem 5.1 states that, for any instance G of the know-all model, if the information-flow graph G≤r

associated with G after r rounds has a domination number γ (G≤r) larger than k, then k-set agreement is not solvable in
G in r rounds. It is not hard to prove this statement when the number of input values is at least the number of processes.
Indeed, assume, for the purpose of contradiction, that there exists an algorithm A solving k-set agreement in r rounds in
G with γ (G≤r) > k. Consider an input assignment in, where all input values in(p), p ∈ [n], are distinct. Let S be the set of
output values produced by A, and let P be the set of processes with input values in S . We have |P | = |S| ≤ k < γ (G≤r),
hence there is a process q /∈ P which does not hear from any node in P , and produces some output value v . Let p ∈ P be
the process with input v , and consider another input assignment in′ , where all inputs are the same, excepted for the input
of p which is replaced by some v ′ �= v . Since there is no edge (p, q) in G≤r , the process q does not distinguish in′ from in,
and outputs v in in′ as well. This output is incorrect, as v has not been proposed in in′ , and therefore k-set agreement is
not solvable in G in r rounds. This reasoning cannot be applied when the number of input values is less than the number
of processes, and in particular when the number of input values is k + 1 < n (e.g., for binary consensus among at least three
processes). Theorem 5.1 says that k-set agreement remains unsolvable even in this case.

Theorem 5.1. Let G be an instance of the know-all model, and r ≥ 0. If γ (G≤r) > k, then k-set agreement is not solvable in r rounds
in G.

The proof of Theorem 5.1 uses Sperner’s Lemma, which essentially states that every Sperner coloring with d + 1 colors
of a subdivision of a d-dimensional simplex contains a cell of that subdivision whose vertices are colored by d + 1 distinct
colors. The proof is also based on the notion of simplicial approximation (see Chapter 3.7 in [31]).

Definition 5.2. Let A and B be simplicial complexes. A carrier map χ :A → 2B has a simplicial approximation if there exists
a subdivision DivA of A, and a simplicial map g : DivA→ B such that, for every simplex σ of A, g(Divσ) is a subcomplex
of χ(σ).

A crucial point is that high-connectivity implies the existence of simplicial approximation.

Lemma 5.3 (Theorem 3.7.7(2) in [31]). Let A and B be simplicial complexes. Let χ :A→ 2B be a carrier map such that, for every
d-dimensional simplex σ of A, the subcomplex χ(σ) is (d − 1)-connected. Then χ has a simplicial approximation (Div, g).

Proof of Theorem 5.1. By Theorem 4.1, if γ (G≤r) > k then the protocol complex P is at least (k − 1)-connected. Thus, to
establish Theorem 5.1 it is sufficient to show that if the protocol complex P for G≤r is at least (k − 1)-connected, then k-set
agreement is not solvable in r rounds in G. In fact, we show something slightly different: we first apply Theorem 4.1 to
show that for every non-empty set J of input values, the subcomplex of P induced by J is at least (k − 1)-connected, and
then prove that if all these subcomplexes are (k − 1)-connected then k-set agreement is not solvable.

Let us fix the information-flow graph G≤r with domination number at least k + 1. Let I be a set of at least k + 1
distinct values, and let I denote the corresponding input complex. That is, I is the pseudosphere �({p1, . . . , pn}, I), and P
denotes the protocol complex for the input complex I and the graph G≤r . For any subset J ⊆ I , we are interested in the
subcomplex of P that arises when processes are given only inputs from J . Let P[J] denote this subcomplex. The following
claim strengthens the statement of Theorem 4.1.
12

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.13 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
Claim 5.4. If G≤r has domination number at least k + 1, then, for every non-empty J ⊆ I , P[J] is at least (k − 1)-connected.

To establish the claim, let I[J] be the input complex I restricted to values in J . Note that I[J] is the pseudosphere
�({p1, . . . , pn}, J), and, for a task where I[J] is the input complex, P[J] is the corresponding protocol complex. Theo-
rem 4.1 immediately implies that P[J] is at least (k − 1)-connected, as claimed.

For completing the proof of Theorem 5.1, it is therefore sufficient to show the following.

Claim 5.5. If, for every non-empty J ⊆ I , P[J] is at least (k − 1)-connected, then k-set agreement is not solvable.

We proceed by proving this claim, inspired by a classical construction used for proving impossibility of k-set agreement
in asynchronous, failure-prone distributed models (see, e.g., [31, Theorem 10.3.1]). The proof goes roughly as follows. We
first observe that the existence of an algorithm for k-set agreement implies the existence of a simplicial map f from
the protocol complex P to the boundary of the simplex σI with vertex set I . Second, we use the assumption that every
subcomplex P[J] is at least (k − 1)-connected to derive the existence of a simplicial approximation g : DivσI → P of χ ,
where χ is the carrier map mapping every face σ J of σI to the subcomplex P[J]. Combining f and g results in a simplicial
map h = f ◦ g from DivσI to the boundary ∂σI of σI . We then show that h is a Sperner coloring of DivσI from which we
derive a contradiction by applying Sperner’s Lemma.

Let σI be the simplex of dimension k with vertex set I , and let ∂σI be its boundary complex, that is, the complex of
dimension k −1 whose facets correspond to the subsets of size k of I . Each face of σI corresponding to a set J ⊆ I of values,
and is denoted by σ J . We emphasize that σI and σ J are merely simplices with vertices labeled by the elements on I and
J , which we use in order to apply Sperner’s Lemma. These simplices are not labeled with process names, and unlike the
other simplicial complexes in this paper, they do not model the distributed system in hand.

Let us assume, for the purpose of contradiction, that k-set agreement is solvable. An algorithm for k-set agreement with
set of input values I implies a coloring of the vertices of P with values in I such that, for every simplex of P ,

1. the set of colors assigned to the vertices of that simplex is of size at most k, and
2. for any set J ⊆ I of colors, all the nodes in P[J] are colored with colors from J .

The first property yields from the fact that processes must not output more that k values in an execution, and the second
property holds because processes may only decide on values that were proposed. In other words, there exists a simplicial
map

f : P → ∂σI

such that, for every non-empty subset J ⊆ I ,

f (P[J]) ⊆ ∂σI ∩ 2 J .

Let us define the carrier map

χ : σI → 2P

by

χ
(
σ J

) = P[J]
for every σ J ⊆ σI . By the assumption of the claim, for every nonempty σ J ⊆ σI , the subcomplex χ(σ J) is (k − 1)-connected.
Therefore, by Lemma 5.3, the carrier map χ has a simplicial approximation, that is, there exists a subdivision Div σI of σI ,
together with a simplicial map

g : DivσI → P,

such that, for every simplex σ J ⊆ σI , we have g(Divσ J) ⊆ χ(σ J). Let us now consider the composition h = f ◦ g of simplicial
maps. We have

h : DivσI → ∂σI .

The map h can be viewed as a coloring of DivσI with the vertices of ∂σI such that each simplex in DivσI is colored with
at most k colors. Moreover, for each simplex σ J ⊆ σI , we have

h(Divσ J) = f (g(Divσ J)) ⊆ f (χ(σ J)) = f (P[J]).
From the definition of f , it follows that each simplex in Divσ J is colored by h with values appearing in σ J . Therefore, h is a
Sperner coloring of DivσI . By Sperner’s lemma, there exists a simplex τ of DivσI , of dimension k, colored with all the k + 1
colors. This is a contradiction, because τ is then mapped by h to σI , which is not in the domain ∂σI of h. This completes
the proof of Claim 5.5, and of the theorem. �
13

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.14 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
Theorem 5.1 implies that, in particular, consensus solvability requires the information-flow graph to contain a universal
node, i.e., a node that dominates all the other nodes.

Remark. Observe that the converse of Theorem 5.1 also holds, i.e., if γ (G≤r) ≤ k then k-set agreement is solvable in r
rounds in the know-all model G. The algorithm performs as follows. Let D be a dominating set for G≤r , with |D| ≤ k. Since
D is dominating, every process p receives the input value of at least one process in D , and can decide on such a value as
an output. In total, at most |D| ≤ k values are decided.

Theorem 5.1, together with Properties 2.4 and 2.5, have implications for more traditional computational models:

Corollary 5.6. In the local model, any algorithm that solves k-set agreement in a network G requires at least r rounds, where r is the
smallest integer such that γ (Gr) ≤ k.

Corollary 5.7. In the dynamic network model, any algorithm that solves k-set agreement against an adversary A requires at least
r rounds, where r is the smallest integer such that, for every G ∈ A, γ (G≤r) ≤ k.

5.2. Approximate agreement

Approximate agreement is the agreement task asking processes to output values that are as close as possible to each
other, and, if all processes are given the same input value, then all processes should output that value. Specifically, let the
input values be in {0, 1}, let ε > 0, and let k ≥ 1/ε be an integer. Then ε-approximate agreement asks the n processes to
output values

v ′
1, . . . , v ′

n ∈
{

0,
1

k
,

2

k
, . . . ,

k − 1

k
,1

}

such that |v ′
i − v ′

j | ≤ ε for every i, j. The associated input complex I is the same binary pseudosphere as for binary
consensus, and the output complex can be defined by its facets: a facet for each set of output values satisfying |v ′

i − v ′
j | ≤ ε

for all i, j. The carrier map � maps the all-b input value facet to the all-b output value facet, for every b ∈ {0, 1}, and maps
every other input facet to all the output facets.

Of course, if consensus can be solved, then ε-approximate agreement can be solved with any ε . The main point for
studying approximate agreement is to determine the smallest ε for which ε-approximate agreement is solvable, under the
assumption that consensus is not solvable. In the proof of the next theorem, we show how topological arguments enable to
resolve this problem easily in the know-all model, i.e., even when the communication between the processes is constrained.

Theorem 5.8. Let G be an instance of the know-all model, and let r ≥ 0. If consensus is not solvable in r rounds in G, then for every
ε < 1

n−1 , ε-approximate agreement is also not solvable in r rounds in G.

Proof. Recall that, by Theorem 5.1, consensus is solvable in r rounds in G if and only if G≤r has a dominating node. We
show that no graph G≤r without dominating node is able to solve ε-approximate agreement for ε < 1

n−1 . For 0 ≤ j ≤ n, let
σ j be the facet of I defined by

σ j = {(pi,1) | i ≤ j} ∪ {(pi,0) | i > j},
i.e., with 1 as the input for the first j processes, and 0 for the rest. The facets σ j and σ j+1 share an (n − 2)-face. The
mapping
 is not necessarily simplicial, so the images of σ j and σ j+1 under
 may not share such a face; nevertheless,
we show that their images under
 do intersect. Consider the sequence of facets σ0, . . . , σn in the input complex, and its
image
(σ0), . . . ,
(σn) in the protocol complex. Note that two consecutive simplexes, σ j−1 and σ j , differ only in the input
of p j . Since G≤r has no universal nodes, there is a process pk which does not receive messages from p j , and thus there
is a node (pk, v ′

k) in the protocol complex that is shared by both
(σ j−1) and
(σ j). Applying the same argument for all
values of j = 1, . . . , n, we find that the image (
(σ0), . . . ,
(σn)) in the protocol complex is path-connected, in the sense
that every two consecutive facets intersect.

Assume that a protocol solves ε-approximate agreement for some ε < 1
n−1 . It follows from Lemma 3.3 that there is a

simplicial map δ : P → O satisfying δ(
(σ)) ∈ �(σ) for every σ ∈ I . Since δ is simplicial, the image of (
(σ0), . . . ,
(σn))

under δ, which is δ(
(σ0)), . . . , δ(
(σn)), is also path-connected.
For every σ j , let V j denote the possible output values for the processes in δ(
(σ j)). The definition of approximate

agreement limits the domains V j , and specifically, since

δ(
(σ0)) = {(pi,0), i = 1, . . . ,n},
we have V 0 = {0}, and similarly Vn = {1}. For all other values of 0 < j < n, ε-approximate agreement imposes V j of range
≤ ε . Furthermore, V j ∩ V j+1 �= ∅ for every j ≥ 0 since every two consecutive facets δ(
(σ j)) and δ(
(σ j+1)) share a vertex.
14

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.15 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
Achieving the desired contradiction is now simple. Each output value vi at a vertex of δ(
(σ0)) must satisfy vi = 0. By
connectivity, at least one such vertex is shared with δ(
(σ1)), and thus every value v ′

i at a vertex of δ(
(σ1)) must satisfy
v ′

i ≤ ε . By induction, every value v ′
i at a vertex of δ(
(σ j)) must satisfy v ′

i ≤ jε . Hence, every output value v ′
i at a vertex of

δ(
(σn−1) must satisfy v ′
i ≤ (n − 1)ε < 1. Once again, by connectivity there is a vertex (pi, v ′

i) in δ(
(σn−1) ∩ δ(
(σn)). We
have thus showed that the vertex (pi, v ′

i) ∈ δ(
(σn)) has output value v ′
i < 1, which is a contradiction for the specification

of approximate agreement. �
Theorem 5.8, together with Properties 2.4 and 2.5, have implications for more traditional computational models.

Corollary 5.9. In the local model, any algorithm that solves ε-approximate agreement in a network G, with ε < 1
n−1 , requires at least

r rounds, where r is the smallest integer such that Gr has a dominating vertex.

Corollary 5.10. In the dynamic network model, any algorithm that solves ε-approximate agreement against an adversary A, with
ε < 1

n−1 , requires at least r rounds, where r is the smallest integer such that for every G ∈ A, G≤r has a dominating vertex.

Remark. The bound in Theorem 5.8 is tight in the sense that there exists an instance G of the know-all model for which
consensus is impossible, while 1

n−1 -approximate agreement is solvable. We show that there exists an information-flow
graph G≤r with no universal node, for which 1

n−1 -approximate agreement is solvable. G≤r is simply obtained from a com-
plete graph (each edge corresponds to two arcs oriented in opposite directions), from which all arcs in a single directed
Hamiltonian cycle are removed. Indeed, this digraph has no universal node since every node has out-degree n − 2. The

1
n−1 -approximate agreement algorithm is straightforward: each process chooses as output value the average of all the input
values it sees. For correctness, let us consider an input assignment with z input values 0, and n − z input values 1. Each
process sees n − 1 input values, out of which either n − z − 1 or n − z inputs are equal to 1, and thus the outputs are in the
range [

n − z − 1

n − 1
,

n − z

n − 1

]
,

whose width is 1
n−1 .

6. Conclusion and further work

We have demonstrated that combinatorial topology is applicable to distributed network computing. Of course, this is just
a first step, and further work will require to incorporate the specific features of different distributed network models, in
order to capture the characteristics of each of them. For instance, fully capturing the popular local model requires removing
the structure awareness assumption, and studying the details of how the protocol complex evolves round after round.

Incorporating asynchrony and failures into network computing, from a topological perspective, requires understanding
the topological impact of simultaneously subdividing the facets, introducing holes resulting from t-resiliency, and introduc-
ing scissor cuts resulting from the presence of a network. This is definitely technically challenging, but our paper shows
that there are no conceptual obstacles preventing us from addressing these questions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The authors are thankful to Eli Gafni for fruitful discussions about solving k-set agreement in the know-all model, to
Ran Gelles for discussions of carrier maps and scissor cuts, and to the reviewers of TCS journal for their help in improving
the presentation of our results.

Appendix A. Basic topological concepts

A simplicial complex is a finite set V along with a collection K of nonempty subsets of V closed under containment
(i.e., if A ∈ K and ∅ �= B ⊂ A, then B ∈ K). An element of V is called a vertex of K, and the vertex set of K is denoted by
V (K) = V . Each set in K is called a simplex. A subset of a simplex is called a face of that simplex. The dimension dimσ of
a simplex σ is one less than the number of elements of σ , i.e., |σ | − 1. We use “d-face” as shorthand for “d-dimensional
face”. A simplex σ in K is called a facet of K if σ is not contained in any other simplex. Note that a set of facets uniquely
defines a simplicial complex. The dimension of a complex is the largest dimension of any of its facets. A complex is pure if
15

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.16 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
all its facets have the same dimension. For two complexes K and L, if K ⊆ L, we say K is a subcomplex of L. When clear
from the context, we refer to the union of one or more simplexes as a complex. Such a complex should be understood as
encompassing those simplexes together with all of their faces. In particular, we sometimes use a simplex σ as shorthand
for the complex defined by its power set, i.e., the complex formed by σ and all its faces.

The d-skeleton of a complex K, denoted skeld K, is the subcomplex of K composed of all the faces of K of dimension
at most d. If the complex K is composed of a single d-simplex and all its faces, the boundary complex of K is its (d − 1)-
skeleton.

Let K and L be complexes. A vertex map is a function h : V (K) → V (L). If h also carries simplexes of K to simplexes of
L, it is called a simplicial map. We add one or more labels to the vertices, where a labeling is a mapping λ : V → D , for some
arbitrary domain D . In this paper, we always have the labeling names(·), which associates each vertex with a unique name
in {1, . . . , n}. In all the complexes we consider, each simplex is properly colored by these names: if u and v are distinct
vertices of a simplex σ , then names(u) �= names(v). In this case we say that the complexes are chromatic (with respect to
the names labeling). A simplicial map h is chromatic if it preserves names, i.e., names(h(v)) = names(v) for any vertex v . In
this paper, all simplicial maps between chromatic complexes are chromatic. By extension, given any simplex σ , we denote
by names(σ) the set of names of the vertices appearing in σ .

Given two complexes K and L, a carrier map � maps each simplex σ ∈ K to a subcomplex �(σ) of L, such that for
every two simplexes τ and τ ′ in K that satisfy τ ⊆ τ ′ , we have �(τ) ⊆ �(τ ′).

Roughly speaking, a geometric realization |K| of a simplicial complex K is a geometric object defined as follows. Each
vertex in V (K) is mapped to a point in a Euclidean space, such that the images of the vertices are affinely independent.
Each simplex is represented by a polyhedron, which is the convex hull of points representing its vertices. Fig. 1 displays the
geometric representations of several simplicial complexes.

Let k be a positive integer. We say that a complex has a hole in dimension k if the k-sphere Sk embedded in a geometric
realization of the complex cannot be continuously contracted to a single point within that realization. Informally, a complex
is k-connected if it has no holes in dimension k. More formally, a complex K is k-connected if every continuous map
h : Sk → |K| can be extended to a continuous map h′ : Dk+1 → |K| where Dk+1 denotes the (k + 1)-disk. In dimension 0,
this property simply states that any two points can be linked by a path, i.e., the complex is path-connected. In dimension 1,
it states that any loop can be filled into a disk, i.e., the complex is simply connected. By convention, a (−1)-connected
complex is just a non-empty complex, and every complex is d-connected for every d < −1.

Finally, given a set I , a pseudosphere �({1, . . . , n}, I) is the (n − 1)-dimensional complex defined as follows: (1) every
pair (i, v) with i ∈ {1, . . . , n}, and v ∈ I is a vertex, and (2) every {(1, v1), . . . , (n, vn)} with vi ∈ I for every i ∈ [n] is a facet.
Pseudospheres offer a convenient way to describe all possible initial configurations when each process input is an arbitrary
value from I .

References

[1] Manuel Alcantara, Armando Castañeda, David Flores-Peñaloza, Sergio Rajsbaum, The topology of look-compute-move robot wait-free algorithms with
hard termination, Distrib. Comput. 32 (3) (2019) 235–255.

[2] Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, Leqi Zhu, Why extension-based proofs fail, in: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC, 2019, pp. 986–996.

[3] Bowen Alpern, Fred B. Schneider, Defining liveness, Inf. Process. Lett. 21 (4) (1985) 181–185.
[4] Hagit Attiya, Armando Castañeda, Maurice Herlihy, Ami Paz, Bounds on the step and namespace complexity of renaming, SIAM J. Comput. 48 (1) (2019)

1–32.
[5] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, Jukka Suomela, Lower bounds for maximal matchings and maximal

independent sets, in: 60th IEEE Symposium on Foundations of Computer Science, FOCS, 2019.
[6] Leonid Barenboim, Michael Elkin, Uri Goldenberg, Locally-iterative distributed (δ + 1)-coloring below Szegedy-Vishwanathan barrier, and applications

to self-stabilization and to restricted-bandwidth models, in: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC,
2018, pp. 437–446.

[7] Leonid Barenboim, Michael Elkin, Seth Pettie, Johannes Schneider, The locality of distributed symmetry breaking, in: 53rd IEEE Symposium on Foun-
dations of Computer Science, FOCS, 2012, pp. 321–330.

[8] Sandeep Bhadra, Afonso Ferreira, Computing multicast trees in dynamic networks and the complexity of connected components in evolving graphs, J.
Internet Serv. Appl. 3 (3) (2012) 269–275.

[9] Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, Kyrill Winkler, Gracefully degrading consensus and k-set agreement in directed dynamic
networks, Theor. Comput. Sci. 726 (2018) 41–77.

[10] Elizabeth Borowsky, Eli Gafni, Generalized FLP impossibility result for t-resilient asynchronous computations, in: Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, STOC, 1993, pp. 91–100.

[11] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, Jara Uitto, A lower bound for the dis-
tributed Lovász local lemma, in: 48th ACM Symposium on Theory of Computing, STOC, 2016, pp. 479–488.

[12] Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, Corentin Travers, A topological perspective on distributed network
algorithms, in: Structural Information and Communication Complexity - 26th International Colloquium, SIROCCO, 2019, pp. 3–18.

[13] Armando Castañeda, Sergio Rajsbaum, New combinatorial topology bounds for renaming: the lower bound, Distrib. Comput. 22 (5–6) (2010) 287–301.
[14] Armando Castañeda, Sergio Rajsbaum, New combinatorial topology bounds for renaming: the upper bound, J. ACM 59 (1) (2012) 3.
[15] Arnaud Casteigts, Paola Flocchini, Emmanuel Godard, Nicola Santoro, Masafumi Yamashita, On the expressivity of time-varying graphs, Theor. Comput.

Sci. 590 (2015) 27–37.
[16] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro, Time-varying graphs and dynamic networks, Int. J. Parallel Emerg. Distrib. Syst.

27 (5) (2012) 387–408.
[17] Yi-Jun Chang, Wenzheng Li, Seth Pettie, An optimal distributed (� + 1)-coloring algorithm?, in: 50th ACM Symposium on Theory of Computing, STOC,

2018, pp. 445–456.
16

http://refhub.elsevier.com/S0304-3975(20)30583-1/bibD76CFEAACF48F82EFDDAA618EE818ED0s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibD76CFEAACF48F82EFDDAA618EE818ED0s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib7215B90DE0066DDB5D861DD4BFF10CC9s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib7215B90DE0066DDB5D861DD4BFF10CC9s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibB1706A5ABAC2874D69FEBEFAF7C56CCDs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib10D4D0ABC99C6D770715FF0EB8A6FADBs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib10D4D0ABC99C6D770715FF0EB8A6FADBs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib9DB98DD2C15AFC0759366F55103F371Es1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib9DB98DD2C15AFC0759366F55103F371Es1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib78E59129CA41E1F44A8AA547EE2F8ED7s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib78E59129CA41E1F44A8AA547EE2F8ED7s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib78E59129CA41E1F44A8AA547EE2F8ED7s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib3952796197FCEFEE4119101BD3A12EF2s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib3952796197FCEFEE4119101BD3A12EF2s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib5A840D88CD34A4C97A60A23285B1F87Bs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib5A840D88CD34A4C97A60A23285B1F87Bs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib632A64842DDC7AF434D0953D4CC3FBCFs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib632A64842DDC7AF434D0953D4CC3FBCFs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibF1979ED10865A3E6C3D38FEC75124A2Cs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibF1979ED10865A3E6C3D38FEC75124A2Cs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibDC7F557BC6454E46CDF15567571E2B9Cs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibDC7F557BC6454E46CDF15567571E2B9Cs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibE559AF37F731671930BD141D2F5384A5s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibE559AF37F731671930BD141D2F5384A5s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib4AC0614E6EC1193B23EC45598D872DDDs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib90DECED8A3DE11891EF57F127C8ACCC6s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib5D9507761FBFF95D77BF49DCC37255BFs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib5D9507761FBFF95D77BF49DCC37255BFs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib50EF8F4A772D9A6EE5C2F55F877A8C58s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib50EF8F4A772D9A6EE5C2F55F877A8C58s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibF5A48BB1489310DD59F3E684007BF4FAs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibF5A48BB1489310DD59F3E684007BF4FAs1

JID:TCS AID:12667 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.17 (1-17)

A. Castañeda, P. Fraigniaud, A. Paz et al. Theoretical Computer Science ••• (••••) •••–•••
[18] Bernadette Charron-Bost, Matthias Függer, Thomas Nowak, Approximate consensus in highly dynamic networks: the role of averaging algorithms, in:
Automata, Languages, and Programming - 42nd International Colloquium, ICALP, 2015, pp. 528–539.

[19] Bernadette Charron-Bost, Matthias Függer, Thomas Nowak, Fast, robust, quantizable approximate consensus, in: 43rd International Colloquium on
Automata, Languages, and Programming, ICALP, 2016, pp. 137:1–137:14.

[20] Bernadette Charron-Bost, André Schiper, The heard-of model: computing in distributed systems with benign faults, Distrib. Comput. 22 (1) (2009)
49–71.

[21] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, Mark R. Tuttle, Tight bounds for k-set agreement, J. ACM 47 (5) (2000) 912–943.
[22] Etienne Coulouma, Emmanuel Godard, Joseph G. Peters, A characterization of oblivious message adversaries for which consensus is solvable, Theor.

Comput. Sci. 584 (2015) 80–90.
[23] Manuela Fischer, Mohsen Ghaffari, Fabian Kuhn, Deterministic distributed edge-coloring via hypergraph maximal matching, in: 58th IEEE Annual

Symposium on Foundations of Computer Science, FOCS, 2017, pp. 180–191.
[24] Michael J. Fischer, Nancy A. Lynch, Mike Paterson, Impossibility of distributed consensus with one faulty process, J. ACM 32 (2) (1985) 374–382.
[25] Matthias Függer, Thomas Nowak, Manfred Schwarz, Tight bounds for asymptotic and approximate consensus, in: Proceedings of the 2018 ACM Sym-

posium on Principles of Distributed Computing, PODC, 2018, pp. 325–334.
[26] Mohsen Ghaffari, An improved distributed algorithm for maximal independent set, in: 27th ACM-SIAM Symposium on Discrete Algorithms, SODA,

2016, pp. 270–277.
[27] Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, On the complexity of local distributed graph problems, in: 49th ACM Symposium on Theory of Computing,

STOC, 2017, pp. 784–797.
[28] Emmanuel Godard, Eloi Perdereau, k-Set agreement in communication networks with omission faults, in: 20th International Conference on Principles

of Distributed Systems, OPODIS, 2016, pp. 8:1–8:17.
[29] Mika Göös, Juho Hirvonen, Jukka Suomela, Linear-in-� lower bounds in the LOCAL model, Distrib. Comput. 30 (5) (2017) 325–338.
[30] David G. Harris, Johannes Schneider, Hsin-Hao Su, Distributed (� + 1)-coloring in sublogarithmic rounds, in: 48th ACM Symposium on Theory of

Computing, STOC, 2016, pp. 465–478.
[31] Maurice Herlihy, Dmitry Kozlov, Sergio Rajsbaum, Distributed Computing Through Combinatorial Topology, Morgan Kaufmann, 2013.
[32] Maurice Herlihy, Sergio Rajsbaum, Set consensus using arbitrary objects, in: Proceedings of the Thirteenth Annual ACM Symposium on Principles of

Distributed Computing, PODC, 1994, pp. 324–333.
[33] Maurice Herlihy, Sergio Rajsbaum, Algebraic spans, Math. Struct. Comput. Sci. 10 (4) (2000) 549–573.
[34] Maurice Herlihy, Sergio Rajsbaum, Mark R. Tuttle, An axiomatic approach to computing the connectivity of synchronous and asynchronous systems,

Electron. Notes Theor. Comput. Sci. 230 (2009) 79–102.
[35] Maurice Herlihy, Nir Shavit, The asynchronous computability theorem for t-resilient tasks, in: 25th ACM Symposium on Theory of Computing, STOC,

1993, pp. 111–120.
[36] Maurice Herlihy, Nir Shavit, The topological structure of asynchronous computability, J. ACM 46 (6) (1999) 858–923.
[37] Fabian Kuhn, Nancy A. Lynch, Rotem Oshman, Distributed computation in dynamic networks, in: 42nd ACM Symposium on Theory of Computing,

STOC, 2010, pp. 513–522.
[38] Fabian Kuhn, Thomas Moscibroda, Roger Wattenhofer, Local computation: lower and upper bounds, J. ACM 63 (2) (2016) 17.
[39] Fabian Kuhn, Yoram Moses, Rotem Oshman, Coordinated consensus in dynamic networks, in: 30th ACM Symposium on Principles of Distributed

Computing, PODC, 2011, pp. 1–10.
[40] Fabian Kuhn, Rotem Oshman, Dynamic networks: models and algorithms, SIGACT News 42 (1) (2011) 82–96.
[41] Nathan Linial, Locality in distributed graph algorithms, SIAM J. Comput. 21 (1) (1992) 193–201.
[42] Hammurabi Mendes, Christine Tasson, Maurice Herlihy, Distributed computability in Byzantine asynchronous systems, in: 46th Symposium on Theory

of Computing, STOC, 2014, pp. 704–713.
[43] Thomas Nowak, Ulrich Schmid, Kyrill Winkler, Topological characterization of consensus under general message adversaries, in: Proceedings of the

2019 ACM Symposium on Principles of Distributed Computing, PODC, 2019, pp. 218–227.
[44] David Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia, PA, 2000.
[45] Sergio Rajsbaum, Michel Raynal, Corentin Travers, The iterated restricted immediate snapshot model, in: 14th Int. Conference on Computing and

Combinatorics, COCOON, 2008, pp. 487–497.
[46] Dimitris Sakavalas, Lewis Tseng, Network topology and fault-tolerant consensus, in: Synthesis Lectures on Distributed Computing Theory, 2019.
[47] Michael E. Saks, Fotios Zaharoglou, Wait-free k-set agreement is impossible: the topology of public knowledge, in: 25th ACM Symposium on Theory of

Computing, STOC, 1993, pp. 101–110.
[48] Jukka Suomela, Survey of local algorithms, ACM Comput. Surv. 45 (2) (2013) 24.
17

http://refhub.elsevier.com/S0304-3975(20)30583-1/bibA3FB5D1BE7B59DE72D4398E3CC147688s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibA3FB5D1BE7B59DE72D4398E3CC147688s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib76B0A5C46B62FA6383E58DCD91AD078Es1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib76B0A5C46B62FA6383E58DCD91AD078Es1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibFFBFF54170933A094054BE2A84D607A2s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibFFBFF54170933A094054BE2A84D607A2s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib4845B9E35544B2390AC6A61DDAB62B33s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib77CB88C9CF653AE4351BB8C6A71BD62Es1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib77CB88C9CF653AE4351BB8C6A71BD62Es1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib552B8E571AFE6D8A6F3658D443A3A3D7s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib552B8E571AFE6D8A6F3658D443A3A3D7s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibBCB3F710B93793CAE47548DE36742FEFs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib5D05CDCEF9B47215D8744D963FA4FFD3s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib5D05CDCEF9B47215D8744D963FA4FFD3s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib0547F70D6241E8D4E01DBBB3283EFC4Bs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib0547F70D6241E8D4E01DBBB3283EFC4Bs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib9A18B8FDC7F805D1985A6CF49CF6AE72s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib9A18B8FDC7F805D1985A6CF49CF6AE72s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib7DD0E73001F841A1BB77007D0B25F12Fs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib7DD0E73001F841A1BB77007D0B25F12Fs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib7B5271FC8F03FC3E406F325B53EF82E7s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibF72E959F242D70748B1D15E1C29BB32Bs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibF72E959F242D70748B1D15E1C29BB32Bs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibEBCFF6899E866F315795BE6E5DEC0093s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibC1C757FB8D26C6105493708EA0055E7Cs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibC1C757FB8D26C6105493708EA0055E7Cs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibB40BA700D07FA61A1F8F23613148A513s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib58910B9EB6A6AE87D1C7B29867BA0967s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib58910B9EB6A6AE87D1C7B29867BA0967s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib4A50676A0E8AEF737FA19951FFDF72EFs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib4A50676A0E8AEF737FA19951FFDF72EFs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibD1DC29E12026CE799B3B462910198F40s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibB108C7C01B8B75DB52EFACACBAB3C295s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibB108C7C01B8B75DB52EFACACBAB3C295s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib7B4BC55D52C333EBEBC552B446BB2D84s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib1E97003ABE1AB869928FE79424AA431Ds1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib1E97003ABE1AB869928FE79424AA431Ds1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib3E64B8813E25A721FAFFFC19283A0111s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib5A40693DE032B6492D827FB410B0B9CBs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib40A1B54D90282597B9628C8E684A3308s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib40A1B54D90282597B9628C8E684A3308s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib0232C290F40B55A30BFDE9D04C6648ADs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib0232C290F40B55A30BFDE9D04C6648ADs1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib9717C4CD1EBE3E7294F13C1961E5CB14s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib6B17B7962DEAAD45F74BD71770F61773s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib6B17B7962DEAAD45F74BD71770F61773s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bibB5EE118F99087B24794C543A6B62CCC1s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib0DC67D0591ECC4A22D7064AC54E21F00s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib0DC67D0591ECC4A22D7064AC54E21F00s1
http://refhub.elsevier.com/S0304-3975(20)30583-1/bib33BD88A1FB44BBF3DF8EDD3A96054965s1

	A topological perspective on distributed network algorithms
	1 Introduction
	1.1 Context and objective
	1.2 Our results
	1.3 Related work

	2 The KNOW-ALL model
	2.1 Definition of the model
	2.2 Relation to other models

	3 The topology of computing in the KNOW-ALL model
	3.1 The protocol complex of the know-all model
	3.2 Topological characterization of task solvability

	4 Connectivity and domination
	5 Applications to agreement tasks
	5.1 Consensus and set-agreement
	5.2 Approximate agreement

	6 Conclusion and further work
	Declaration of competing interest
	Acknowledgements
	Appendix A Basic topological concepts
	References

