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Abstract. Various kinds of dynamic routing architectures are used in
today’s service- and cloud-based architectures, including sidecar-based
routing, routing through a central entity such as an event store, or archi-
tectures with multiple dynamic routers. We propose an analytical model
of request loss during router and service crashes, as well as an empirical
validation of that model. The comparison of the empirical data to the
predicted values by our model shows a low enough and converging error
rate for using the model during system architecting. Our model predicts
that, having the same crash probability, decentralized routing results in
losing a higher number of requests in comparison to more centralized
approaches. To the best of our knowledge, our study is the first to em-
pirically study the reliability trade-off in such architectural decisions.

1 Introduction

Many distributed system architecture patterns [3, 10, 15] have been suggested
for dynamic routing [8]. Some dynamic routing architectures require a single
dynamic request routing decision, e.g., when using load balancing. More complex
request routing decisions or combinations of decisions, such as routing to the
right branch of a company or checking for compliance to privacy regulations,
often require multiple runtime checks during one sequence of requests.

In our prior work [1], we studied representative service- and cloud-based sys-
tem architecture patterns for dynamic request routing. A typical cloud native
architecture pattern is the sidecar pattern [10,12] in which the sidecar of each ser-
vice handles incoming and outgoing traffic [6]. In contrast, a central entity, e.g.,
an API Gateway, an event streaming platform [15], or any kind of central service
bus [3], can be used to process the request routing decisions. These two extremes
are often combined and multiple routers are used; this is called dynamic routers
in this paper. Consider an API Gateway, two event streaming platforms, and a
number of sidecars, all making routing decisions in a cloud-based architecture.

At present, the impacts of such architectures and their different configura-
tions on system reliability have not been studied. More is known about other
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qualities relevant for this decision. For instance, our prior work [1] has shown that
more distributed approaches for dynamic data routing offer a better performance
compared to more centralized solutions. As reliability is a core consideration in
service and cloud architectures [14], a reasonably accurate failure prediction for
the feasible architecture design options in a certain design situation would help
architects to better design system architectures considering quality trade-offs.
RQ1: What is the impact of choosing a dynamic routing architecture, in partic-
ular central entity, sidecar-based, or dynamic routers, on system reliability?
RQ2: How can we predict this impact when making architectural design decisions
regarding system reliability?

We model request loss during router and service crashes in an analytical
model based on Bernoulli processes; request loss is used as the externally visible
metric indicating the severity of the crashes’ impacts. The model abstracts cen-
tral entities, dynamic routers, and sidecars in a common router abstraction. To
validate our analytical model, we designed an experiment in which we studied
36 representative experimental cases (i.e., different experiment configurations)
for the three kinds of architectures Our results show that the error is constantly
reduced with a higher number of experimental runs, converging at a prediction
error of 8.1%. Given the common target prediction accuracy of up to 30% in
the cloud performance domain [11] these results are more than reasonable. Our
model predicts and our experiment confirms that more decentralized routing
results in losing a higher number of requests than more centralized approaches.

2 Related Work and Background

2.1 Related Work

Architecture-Based Reliability Prediction. To predict the reliability of a
system and to identify reliability-critical elements of its system architecture,
various approaches such as fault tree analysis or methods based on a continuous
time Markov chain have been proposed [17]. Architecture-based approaches, like
ours, are often based on the observation that the reliability of a system does not
only depend on the reliability of each component but also on the probabilistic
distribution of the utilization of its components, e.g., a Markov model [4].

Empirical Reliability or Resilience Assessment. Today many software
organizations use large-scale experimentation in production systems to assess
the reliability of their systems, which is called chaos/resilience engineering [2].
A crucial aspect in resilience assessment of software systems is efficiency [13].
To reduce the number of experiments needed, knowledge about the relationship
of resilience patterns, anti-patterns, suitable fault injections, and the system’s
architecture can be exploited to generate experiments [18].

Service-Specific Reliability Studies. Some related works introduce service-
specific reliability models, e.g., Wang et al. [19] propose a discrete time Markov
chain model for analyzing system reliability based on constituent services. Grassi
and Patella [7] propose an approach for reliability prediction that considers the
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Fig. 1: Dynamic Routing Architecture Patterns (adapted from [1])

decentralized and autonomous nature of services. However, none of these ap-
proaches studies and compares major architecture patterns in service and cloud
architectures; they are based on a very generic model about the notion of service.

2.2 Background: Dynamic Routing Architecture Patterns

Central Entity (CE). In a CE architecture, as shown in Figure 1, the central
entity manages all request flow decisions. One benefit of this architecture is
that it is easy to manage, understand, and change as all control logic regarding
request flow is implemented in one component. However, this introduces the
drawback that the design of the internals of the central entity component is a
complex task. CE can be implemented utilizing an API Gateway, an event store,
an event streaming platform [15], or a service bus [3].

Sidecar Architecture (SA). Figure 1 presents an SA example. Sidecars [6,
10, 12] offer benefits whenever decisions need to be made structurally close to
the service logic. One advantage of this architecture is that, in comparison to
the central entity service, it is usually easier to implement sidecars since they
require less complex logic to control the request flow; however, it is not always
possible to add sidecars, e.g., when services are off-the-shelf products.

Dynamic Routers (DR). Figure 1 shows a specific dynamic router [8]
configuration. One benefit of using DR is that dynamic routers can use local
information regarding request routing amongst their connected services. For in-
stance, if a set of services are dependent on one another as steps of processing
a request, DR can be used to facilitate the dynamic routing; nonentheless, dy-
namic routers introduce an implementation overhead regarding control logic,
deployment and so on since they are usually distributed on multiple hosts.

3 Model of Request Loss During Crashes

We use the common term router for all request flow control logic.
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3.1 Definition of Internal and External Loss

In Figure 1 routers and services send internal requests amongst one another to
complete the processing of one external request received from clients. In case
of a crash, external requests will not be processed fully. We define external and
internal loss as the number of lost external and internal requests, respectively.

Internal Loss. In case of a crash, per each external loss, the internal loss
is the total number of internal requests (IRT ) minus the ones that have been
executed. Let ILc, ELc and nexec

c be the internal and external loss, and the
number of executed internal requests for the crash of a component c:

ILc = ELc · (IRT − nexec
c ) (1)

Note that IRT and nexec
c need to be parameterized based on the application. An

example of this parameterization is given in Section 4.
External Loss. Let dc be the expected average downtime after a component

c crashes and cf the incoming call frequency, i.e., the frequency at which external
requests are received. Then, the external loss per crash of each component c is:

ELc = dc · cf (2)

3.2 Bernoulli Process to Model Request Loss

In this section, we model request loss based on Bernoulli processes [17]. We only
model the crash of routers and services in Figure 1 because we assume an API
Gateway is stable and reliable. Moreover, a crash of a Client results in external
requests not being generated; as a result, external requests are not lost. Hence,
from now on, we use the common term components for all routers and services.

Number of Crash Tests. During T , all components can crash with certain
failure distributions. Here, T should be interpreted as the time interval in which
these failure distributions are observed (e.g., failure distributions of a day or a
week). We model this behavior by checking for a crash of any of the system’s
components every crash interval CI. That is, our model “knows” about crashes
in discrete time intervals only, as it would be the case, e.g., if the Heartbeat
pattern [9] is used for checking system health. Let ncrash be the number of times
we check for a crash of components during T , i.e., the number of crash tests:

ncrash = b T
CI
c (3)

Expected Number of Crashes. Each crash test is a Bernoulli trial in
which success is defined as “component crashed”. Assuming CI > dc (justifiable
because when a component crashes it cannot crash again) all ncrash crash tests
of a component c are independent. The binomial distribution of each Bernoulli
process gives us the number of successes. Let Pc be the crash probability of a
component c every time we check for a crash and E[Cc] the expected number of
its crashes, i.e., the expected value of its binomial distribution during T :

E[Cc] = ncrash · Pc (4)
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Total Internal and External Loss. The total internal loss (ILT ) is the
sum of internal loss per crash of each component. Let C be the set of all compo-
nents that can crash, i.e., routers and services. Using Equations (1) to (4):

ILT =
∑
c∈C

E[Cc] · ILc = b T
CI
c · cf ·

∑
c∈C

Pc · dc · (IRT − nexec
c ) (5)

The total external loss (ELT ) is the sum of external loss per crash of each
component. Using Equations (2) to (4):

ELT =
∑
c∈C

E[Cc] · ELc = b T
CI
c · cf ·

∑
c∈C

Pc · dc (6)

Total Number of Crashes. The total number of crashes (CT ) is the sum of
the expected number of crashes of each component. Using Equations (3) and (4):

CT =
∑
c∈C

E[Cc] = b T
CI
c ·
∑
c∈C

Pc (7)

4 Empirical Validation

4.1 Experimental Planning

Goals. We aim to empirically validate our model’s accuracy with regard to the
number of crashes as well as the total external and internal loss represented
by Equations (5) and (6). We realized these architectures using a prototypical
implementation, instantiated and ran them in a cloud infrastructure, measured
the empirical results, and compared the results with our model.

Technical Details. We used a private cloud with three physical nodes, each
having two identical Intel® Xeon® E5-2680 CPUs. On top of the cloud nodes
we installed Virtual Machines (VMs) with eight CPU cores and 60 GB system
memory running Ubuntu Server 18.04.01 LTS. Docker containerization is used
to run the cloud services which are implemented in Node.js. We utilized five
desktop computers to generate load, each hosting an Intel®Core™i3-2120T CPU
@ 2.60GHz, 8GB of system memory which run Ubuntu 18.10. They generate load
using Apache JMeter which sends HTTP version 1.1 requests to the cloud nodes.

Specific Model Formulae. In our example configurations each service re-
ceives an internal requests, processes it and sends it back either to a router or the
API gateway, so we can calculate IRT based on the number of services (nserv):

IRT = 2nserv + 1 (8)

In order to calculate nexec
c , we need to differentiate between service and router

crashes. In case of a service crash, all internal requests up until the last router
will be executed. Let scrashed be the label number of the crashed service:

nexec
c = 2scrashed − 1 (9)
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In case of a router crash, we need to know the allocation of routers (A) which is
a set indicating the number of directly linked services of each router. Let rcrashed
be the label number of the crashed router :

nexec
c = 2

rcrashed∑
r=1

Ar−1 (10)

Experimental Cases. We chose different levels for cf and nserv to study
their effects on ILT . We selected cf based on a study of related works, e.g., [5,16],
as 10, 25, 50, and 100 requests per second. Based on our experience and a survey
on existing cloud applications in the literature and industry [1], the number of
cloud services which are directly dependent on each other in a call sequence is
usually rather low. As a result, we chose 3, 5, and 10 as values for nserv. We
simulated a node crash by separately generating a random number for each cloud
component. If the generated random number for a component was below its crash
probability, we stopped the component’s Docker container and started it again
after a time interval d = 3 seconds. We chose T = 10 minutes, during which we
checked for a crash for all components simultaneously every CI = 15 seconds
resulting in ncrash = 40 (Equation (3)). Each component had a uniform crash
probability of 0.5%; akin to the related works we chose a relatively high crash
probability to have a high enough likelihood to observe a few crashes during T .

Data Set Preparation. For each experimental case, we instantiated the
architectures and ran the experiment for exactly ten minutes (excluding setup
time). We studied three architectures, three levels of nserv and four levels of
cf , resulting in a total of 36 experimental cases; therefore, a single run of our
experiment takes exactly six hours (36×10 minutes) of runtime. Since our model
revolves around expected values in a Bernoulli process, we repeated this process
200 times (1200 hours of runtime) and report the arithmetic mean of the results3.

4.2 Results

Experimental Results Analysis. Based on Equation (5), ILT is a model ele-
ment that incorporates crashes of all components and it includes all model views,
e.g., architecture configurations, expected average downtime, etc. Therefore, we
conduct our analysis mainly based on ILT . It can be observed from Table 1 that
when we keep nserv constant, increasing cf results in a rise of ELT (predicted by
Equation (6)) in all cases, which leads to a higher value of ILT (Equation (5)).

Since in our experiment, we instantiated the DR architecture with three
dynamic routers, it is interesting to consider the experimental case of nserv = 3.
In this case, SA and DR have the same number of components, i.e., routers
and services. Note that SA uses a sidecar per each cloud service; as a result
with nserv = 3, we will also have three sidecars. The difference between the two
architectures in this experimental case is that in DR dynamic routers are placed

3 The data of this study is published as an open access data set for supporting repli-
cability: https://zenodo.org/record/4008041, doi:10.5281/zenodo.4008041

https://zenodo.org/record/4008041
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Arch. nserv cf CT ELT ILT CT ELT ILT σ(ILT )
Model Experiment

CE

3

10 0.800 24.000 114.000 0.760 23.395 98.960 118.552
25 0.800 60.000 285.000 0.620 47.435 228.975 292.389
50 0.800 120.000 570.000 0.705 106.370 480.235 608.635
100 0.800 240.000 1140.000 0.725 218.130 1045.000 1216.765

5

10 1.200 36.000 246.000 1.165 36.405 236.575 236.536
25 1.200 90.000 615.000 1.110 85.400 608.040 574.267
50 1.200 180.000 1230.000 1.115 172.085 1155.550 1173.295
100 1.200 360.000 2460.000 1.040 317.585 2223.655 2101.272

10

10 2.200 66.000 786.000 1.920 62.000 720.190 616.778
25 2.200 165.000 1965.000 2.125 171.290 2063.305 1711.931
50 2.200 330.000 3930.000 2.160 344.765 4223.665 3458.119
100 2.200 660.000 7860.000 1.960 590.665 6853.500 6567.047

DR

3

10 1.200 36.000 162.000 1.075 32.505 153.045 175.952
25 1.200 90.000 405.000 1.225 92.745 452.160 466.814
50 1.200 180.000 810.000 1.225 182.595 882.695 916.540
100 1.200 360.000 1620.000 1.130 328.925 1477.405 1470.332

5

10 1.600 48.000 306.000 1.670 51.995 319.210 301.989
25 1.600 120.000 765.000 1.760 135.105 816.895 686.709
50 1.600 240.000 1530.000 1.790 270.540 1597.535 1324.199
100 1.600 480.000 3060.000 1.635 490.990 2909.115 2353.168

10

10 2.600 78.000 930.000 2.525 82.255 921.610 495.543
25 2.600 195.000 2325.000 2.355 187.715 2181.590 1275.035
50 2.600 390.000 4650.000 2.205 345.350 4043.070 2508.002
100 2.600 780.000 9300.000 2.375 741.870 8544.700 5022.780

SA

3

10 1.200 36.000 162.000 1.140 34.910 170.265 186.911
25 1.200 90.000 405.000 1.230 93.265 435.685 452.190
50 1.200 180.000 810.000 1.215 181.305 883.510 911.088
100 1.200 360.000 1620.000 1.185 345.950 1634.850 1844.829

5

10 2.000 60.000 390.000 1.795 55.745 350.055 244.898
25 2.000 150.000 975.000 1.795 138.910 891.525 647.402
50 2.000 300.000 1950.000 1.715 261.740 1716.095 1284.733
100 2.000 600.000 3900.000 1.790 528.420 3385.240 2633.592

10

10 4.000 120.000 1380.000 3.900 127.715 1443.040 773.632
25 4.000 300.000 3450.000 3.745 306.745 3477.305 1979.270
50 4.000 600.000 6900.000 3.860 617.375 7140.655 4262.114
100 4.000 1200.000 13800.000 3.870 1232.770 14072.910 8287.361

Table 1: Results of the Model and the Experiment

on a different VM than their directly linked services, but in SA sidecars are
placed on the same VM as their corresponding cloud services. For this reason,
it can be observed that the reported values for SA and DR closely resemble
each other when we have different values of cf but keep nserv constant at three.
Considering the cases with five or ten cloud services, we almost always observe
higher ILT when we change the architecture from a CE to a DR or from a DR to
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Number of Runs CT (%) ELT (%) ILT (%)
50 12.919 12.307 13.946
100 9.416 8.492 9.593
150 8.326 7.426 8.731
200 8.081 7.097 8.105

Table 2: Prediction Error of Experimental Runs

an SA but keep the same configurations, i.e., constant nserv and cf . It is because
in our experiment, CE has only one control logic component (the central entity),
DR has three (dynamic routers), and SA has nserv (sidecars). Consequently, the
number of crashes corresponding to control logic components goes up from CE
to DR and then to SA. This increases CT , which results in losing more requests.

5 Discussion and Conclusions

Evaluation of the Prediction Error. We measure the prediction error by
calculating the Mean Absolute Percentage Error (MAPE) [17]. Let modeli and
empiricali be the result of the model, and the measured empirical data for
experimental case i, respectively. ncase is the number of cases (36 in this study).

MAPE =
100%

ncase
·
ncase∑
i=1

∣∣∣∣modeli − empiricali
empiricali

∣∣∣∣ (11)

Table 2 reports prediction error measurements of our model for a different
number of runs. As the table shows, with a higher number of experimental runs
the prediction error is reduced, which indicates a converging error rate. After 200
runs, the final prediction error regarding ILT is 8.1%. As mentioned before, the
common target prediction accuracy in the cloud performance domain is 30% [11].

Threats to Validity. While injecting crashes is a commonly taken approach
(see Section 2.1), a threat remains that measuring internal and external loss
based on these crashes might not measure reliability well, e.g., cascading effects of
crashes [14] are not covered in our experiment. We collected an extensive amount
of data to validate our model; however, we did so in limited experiment time
and with injected crashes, simulated by stopping Docker containers. We avoided
factors such as other load on the experiment machines; much of the related
literature takes a similar approach. To increase internal validity we decided not
to run the experiment on a public cloud where, e.g., other load on the experiment
machines might have had a significant impact on the results. As a consequence,
there is the threat that generalization to a public cloud setting might be limited.
As our private cloud setting uses very similar hardware and software stacks as
many public cloud offerings, we believe this threat to be small. As the statistical
method to compare our model’s predictions to the empirical data, we used the
MAPE metric as it is widely used and offers good interpretability in our research
context. To mitigate the threat that this statistical method might have issues
we double-checked three other error measures, which led to similar results.
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Conclusions. We investigated the impact of architectural design decisions
on system reliability. Regarding RQ1, our study concludes that more decen-
tralized routing results in losing a higher number of requests in comparison to
more centralized approaches. Regarding RQ2, we derived an analytical model
for predicting request loss in the studied architectures and empirically validated
this model using 36 representative experimental cases. Our results indicate that
with a higher number of experimental runs the prediction error is constantly
reduced, converging at a prediction error of 8.1%.
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