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Abstract

Given a stream of points in a metric space, is it possible to maintain a constant approximate clustering
by changing the cluster centers only a small number of times during the entire execution of the algorithm?

This question received attention in recent years in the machine learning literature and, before our
work, the best known algorithm performs O(k?) center swaps (the O(-) notation hides polylogarithmic
factors in the number of points n and the aspect ratio A of the input instance). This is a quadratic increase
compared to the offline case — the whole stream is known in advance and one is interested in keeping
a constant approximation at any point in time — for which O(k) swaps are known to be sufficient and
simple examples show that Q(klog(nA)) swaps are necessary. We close this gap by developing an
algorithm that, perhaps surprisingly, matches the guarantees in the offline setting. Specifically, we show
how to maintain a constant-factor approximation for the k-median problem by performing an optimal
(up to polylogarithimic factors) number O(k) of center swaps. To obtain our result we leverage new
structural properties of k-median clustering that may be of independent interest.
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1 Introduction

Detecting the clustering structure of real-world data is a basic primitive used in a wide range of data analysis
tasks such as community detection, spam detection, computational biology and many others. Many different
formulations of clustering problems have been proposed and studied throughout the years. Among these,
the geometric versions of the problem has attracted a lot of attention for their theoretical and practical
importance. In those problems we are given as input n points in a metric space and a distance oracle and we
want to compute a clustering that minimizes an £,-objective function, such as the k-means, the k-median or
the k-center objective.

Due to their relevance, the problems have been extensively studied and many algorithms [1} [3} |4} 6]
8, 28, 127, 131]] and heuristics [32] have been proposed to solve the classic offline version of the problem.
Furthermore they have been also extensively studied in the classic streaming and online setting setting where
points are inserted in the instance sequentially. For those problems different techniques have been used in
the Euclidean R? setting 11} (13, [14, [16} 24| 23] and in the general metric space setting [10, (17, [35]. In
particular in the first case the algorithms are mostly based on coreset constructions. By contrast, in general
metric spaces the algorithms are mostly based on adaptive sampling.

Inspired by real world applications where datasets continuously evolve in time, we study the consistent
k-median problem in general metric spaces where points are inserted on the fly. In this problem we are
interested in efficiently maintaining a valid solution that is a good approximation of the optimal solution
and that is consistent. In particular given a stream of insertions, we are interested in designing an algorithm
that maintains a constant-factor approximation at any time while minimizing the total number of changes in
consecutive solutions.

Consistency of the solution is of importance from both a theoretical and a practical point of view and in
recent years it received a lot of attention in the machine learning literature [12} 26, 30]. In fact, in various
applications the computed cluster centers are used in other downstream tasks. In this case, changes in the
solution might result in costly recomputations.

To formally capture the notion of consistency we use the same definition as in [30] where the consistency
of a clustering is measured by the number of times the cluster centers are modified during the entire execution
of the algorithm. Intuitively, this definition makes sense because it captures the number of times in which
the clustering changes its underlying structure defined by its cluster centers.

For the consistent k-clustering problem Lattanzi and Vassilvitskii [30] presented a first constant-factor
approximation algorithm that executes at most k2 - polylog(n, A) changes, where A is the aspect ratio
of input points. A simplified version of their algorithm intuitively works as follows: First they run the
Meyerson’s sketch [10}[35] to compress the stream down to O(k - polylog(n, A)) weighted point insertions
and afterwards, for each point that is inserted in the weighted instance, they compute a solution using any
constant-factor approximation algorithm. Moreover, they also show that, even if the stream of insertions is
known in advance, any algorithm that maintains c-approximate solutions requires at least Q(% - (log.(%) +
logc(%)) changes. Finally, they also prove that if the stream of insertions is known in advance, one can
design a constant-factor approximation algorithm with & - polylog(n, A) changes in the solution. Guo
et al. [19] study consistent k-clustering with outliers. Their algorithm is based on local search and requires
at most O(k?(log nA)?) changes.

A natural open question left is to close the gap between the agnostic and the setting with knowledge
of the future. In this paper we solve this question by providing the first consistent k-median algorithm that
maintains a constant-factor approximation at any point in time by only changing the centers k- polylog(n, A)
times.

Our Results We introduce a novel approach for the consistent k-median problem in metric spaces. We
present a constant-factor approximation algorithm with a total of & - polylog(n, A)) changes in the consecu-



tive solutions. Our approach is tight (up to a polylogarithmic factor) due to the above explained lower-bound.
Moreover, surprisingly, our result shows that knowing the future is not a key information for this problem
by achieving the same number of changes as in the offline setting with full knowledge of the future (up to
a polylogarithmic factor). To obtain our result we leverage new structural properties of k-median clustering
and we introduce a new concept of robust centers that may be of independent interest. Maintaining a robust
solution enables us to change the solution a little even for adversarial point insertions. More precisely, in
our algorithm, we first use the Meyerson’s sketch [35] and get a stream of & - polylog(n, A) weighted points.
Afterwards we show that for each insertion we change the center of the maintained robust solution at most
polylog(n, A) times on average, instead of k - polylog(n, A) of the previous work. In order to achieve this,
we establish a strong relationship between the input points and the metric space. We change the position of
the centers of the solution so that they have a better local coverage despite the fact that this might increase
the cost of the clustering. This enables us to be more consistent in the future, whilst it increases the solution
cost by a small factor.

Extensions to Other Problems. For simplicity, we state our result for the classic k-median problem,
although it is not hard to extend our results for general p-norms for constant p > 1. In fact, it has already
been noted that the Meyerson sketch can be extended to this setting [30] and our reductions only use basic
geometric properties as triangle inequalities so all our proofs can be adapted to work in general p-norms.
Furthermore, for the same reason, our result can also be extended to work in )\—metricﬂ for constant \.

Further related works Interestingly, we note here that our notion of consistency is also closely related to
the notion of recourse in online algorithms. In this setting, one seeks better online algorithms to compute
optimal or approximate solutions for combinatorial problems by allowing the algorithm to make a limited
number of changes to the online solution. The first problem studied in this setting was the classic online
Steiner tree problem introduced by [25] for which it is possible to design better algorithms by allowing a
small recourse as shown in several papers [[18, 21} 29} [33]]. After this result several other classic optimization
problems have been studied in this setting as online scheduling [2, 13} 36} 37,38, online flow [22}139], online
matching [S]] and online set cover [20].

2  Overview of Our Approach

The starting point of our approach are two basic observations that allow us to reduce our problem to an
equivalent simpler formulation that we will then solve efficiently. This reduction is not new, in fact it has
been first observed in [30] (although in this paper we need to strengthen it slightly for our result).

The first observation is that we can divide the stream in log(nA) phases so that in each phase the
cost of an optimal solution does not change too much. In particular, after each insertion we compute an
a-approximate solution (for o < 3, using for example [6]). Now, when the current approximation cost
increases by a factor 6 in comparison to the cost at the beginning of a phase, we know that the value
of the optimum solution has increased by at least a factor 2 and at most a factor 18 so we restart a new
phase. The second is that within a phase with high probability we can reduce the problem with n point
insertions to a problem where only & - polylog(n, A) weighted points are inserted to the instance. This
can be achieved using a standard sketching tool, the Meyerson’s sketch [10, 35]]. This technique results in
losing a constant-factor in the approximation ratio but it provides a way to transform any constant-factor
approximation algorithm that makes on average C' changes to the cluster centers for each weighted point
insertion to a constant approximation an algorithm that makes C'k - polylog(n, A) changes in total. Note

! X\-metrics are metrics where the triangle inequality hold only with an additional multiplicative X factor.



that this automatically results in a constant approximation algorithms that makes k2 - polylog(n, A) and it
is the key idea behind the algorithm presented in [30].

Now we can turn our attention to the main technical contribution of the paper. Assuming that the cost of
the optimal solution is stable we want to design an algorithm that maintains a constant approximation and
makes on average polylog(n, A) changes to the cluster centers to handle insertions of weighted points.

Let V be the set of centers in the optimal clustering at the end of the phase and let I/ be the set of cluster
centers computed by the algorithm. Now suppose that at any point in time during the execution of a phase
we have that every center in U/ can be paired with a center in V so that the paired centers are close to each
other but they are far away from all the other centers. Then in this setting we would expect future point
insertions in the phase to modify the clustering structure only minimally. Intuitively, this is true because the
cost of the optimal solution does not increase too much and so the clustering induced by the centers in I/ is
fairly stable and centers exchange only points in their peripheries. In fact, in this setting we can essentially
reduce the problem to solving a set of disjoint 1-median problems.

Unfortunately this approach does not generalize to more complex instances where the clustering struc-
ture is not as neat. In fact, at any point in time we will have that only a (possibly empty) subset of points
in U can be paired with a center in V so that the paired centers are close to each other but they are far away
from all other centers. We refer to those pairs as well-separated pairs (for a formal definition please refer to
[Definition 7.2). To tackle this more challenging setting we prove a few key structural lemmas. From a high
level perspective, our first key observation is that if the current set of centers is composed by k — ¢ well-
separated pairs then it is possible to obtain another set of centers that has cost a constant time larger than
the initial set of centers but that uses €2(¢) less centers. Informally, we prove such a statement by carefully
constructing a fractional solution that opens all centers forming well-separated pairs and centers that are
close to many optimal centers completely but opens only fractionally centers that are not close to multiple
optimum centers (for more details refer to [Section 7.T). Intuitively, this is true because we can show that
centers that are not part of well-separated pairs have other centers in their proximity and so we can charge
points in their cluster partially to other centers.

Thanks to the previous observation we can design an algorithm as follows: given a current solution
reduce the number of centers as much as possible without increasing the cost of the induced clustering more
than a constant factor. Suppose that in this way, we can reduce the number of centers by ¢’ € Q(¢). After
this step, we can easily insert ¢ new points and open them as new centers. In this way we can handle ¢/
insertions without increasing the cost of the solution. Unfortunately we cannot use this algorithm on its own
to solve the problem because ¢’ may be 0 and the cost of the solution may increase too much in subsequent
iterations. To tackle this issues we prove our second structural lemma where we show that after adding
¢ + 1 points to the current instance we can find a set of O(¢ + 1) centers swaps such that the solution
obtained after those swaps is a S-approximation for the optimal clustering for a fixed constant 5. The main
idea to prove such a lemma is to show that one can construct a S-approximation by keeping all the centers
that are in well-separated pairs and for which no additional point has been added to their induced cluster,
and by swapping all other centers. One key idea in this context is to identify a set of robust centers for the
clusters. The main idea behind this notion is that we want our centers to be good centers for our clustering
at different scalesE] so that small changes in the periphery of our clusters do not affect their quality (for a
formal definition and more details please refer to Section ). Interestingly, we can show in Section [] that
for any cluster it is possible to find a center that is a “good” center for the cluster at any scale. Furthermore
in Section [6| we then show that those centers are robust meaning that they do not need to be updated often
unless their clusters change significantly.

Combining these two observations we can define our update algorithm, EpochAlgorithm. It is called
repeatedly in each phase until the phase is finished. EpochAlgorithm starts with a set of centers ¢/ such

*Interestingly, we note that this notion is somehow related to the notion of center used for prefix clustering in [34].



that: i) &/ has a constant approximation ratio for the current set of points P, ii) all centers in U are robust.
Then EpochAlgorithm removes from I/ as many center as it can without significantly increasing the cost
of the clustering. This set can be executed using an LP based algorithm (for more details please refer to
[Section 9.2)). Suppose that the algorithm removes £’ centers. For the next ¢ insertions, the algorithm inserts
the inserted points as centers in the instance. Then an additional point is added, EpochAlgorithm finds
O(¢) good centers swaps and performs them using another LP-based algorithm described in In
this way we obtain a new good solution and the last step of EpochAlgorithm is to make the new solution
robust by robustifying the centers.

Roadmap. We start by introducing some basic notation in Then we introduce the notion of
robust center and few basic properties of robust centers in After formally defining the notion of
robust center we give a formal description of our EpochAlgorithm in[Section 5] Then in[Section 6]and [Sec-|
[tion 7)we bound the number of changes in cluster centers and the approximation factor for EpochAlgorithm,
respectively. Then in we present our complete algorithm (with the preprocessing steps) and in
Section 9| our algorithms for reducing the number of centers and finding a good set of swaps. Finally, for
completeness, in we show how the Meyerson sketch can be used in our problem to reduce the
size of the input instance.

3 Preliminaries and Formal Statement of the Main Result

In the consistent k-median problem, we are given a stream o = (01, 02, ..., 0y) consisting of n insertions
of points and we are interested in maintaining a good and consistent solution to the k-median problem at
any point in time. More formally, we want to maintain a solution that is a constant-factor approximation
while the number of changes in the solution is minimized throughout the execution of the algorithmﬂ

Given any two points z; and xo, we assume to have access to a metric distance oracle that returns
the distance between x; and z5. We denote this distance by dist(x1,x2). By scaling, we assume that the
smallest non-zero distance is 1 and we let A denote the largest distance. We thus have that A equals the
ratio between the largest distance to the smallest non-zero distance, which is often referred to as the aspect
ratio. For a set S of points and a point =, we also let dist(z, S) = minycg dist(z, y) be the distance from x
to the closest point in S. By convention, dist(x, ) = A, i.e., we let the distance from a point to the empty
set equal the largest possible distance. We remark that our algorithm does not needed to know the value of
n, A in advance although for the sake of simplicity, we assume that we know these values (we explain how
one can remove such assumption in[Section g).

Given a set P of points and a subset &/ C P of at most k points, we refer to the points in I/ as centers. A
clustering is an assignment of points to centers. For a set of centers I/ and a set P of points, we let the cost
of the clustering induced by U/ be

cost(U, P) = Z dist(x,U) .
zeP
In the case that the input points P are weighted, by w(x) we denote the weight of the point x for x € P and
we define the cost of the clustering induced by U/ to be
cost(U, P) = Z w(z) - dist(z,U) .
zeP

We also extend the notion of weights to sets, i.e., w(P) = Y pw(x). The k-median problem on input P
asks for a set U of k centers that minimizes cost({, P) among all sets of k centers. We say that an algorithm

3We emphasize that the algorithm has no knowledge of the points ¢;11, 0i42, ..., oy at time 4.



ALG maintains an a-approximate clustering, if at any point in time the clustering induced by ¢/ computed
after an insertion has cost at most a-times the optimal solution to the k-median problem. Formally, let P;
be the set of points in our instance after the first ¢ insertions of the stream, i.e., P; = {o1,...,0;}. Then we
say that ALG maintains an a-approximate solution if

cost(U;, P;) < a- OPT(P;) foralli=1,2,...,n,

where U; denotes the centers computed by ALG after the i-th insertion and OPT(Q) denotes the value of
an optimal clustering of points in Q.

The main focus of this paper is in developing an algorithm that maintains a constant approximation at
any point in time by keeping the set of centers as stable as possible. This notion of stability is formally
captured by the consistency of the center set, which is the summation of the number of changes in the
consecutive sets of centers produced by the clustering algorithm. Formally,

> Ui \ Ui

1<i<n—1

In this work we present a constant approximate algorithm with & - polylog(n, A) number of changes in the
solution, matching the lower bound on the number of changes up to polylogarithmic factors.

Theorem 3.1. There exists an algorithm that given a stream of points 0 = (01,09, ...,0y), outputs a set
of at most k centers U; after the i-th insertion for all 1 < i < n so that with probability at least 1 — #

1. U; induces a constant approximation clustering, i.e., forany 1 <i <n

cost(U;, {o1,09,...0;}) <O(1) - OPT(P).
2. The total number of changes in consecutive center sets is at most k - polylog(nA).

> WUiva \Us| < k- polylog(n, A)).

1<i<n

4 Robust Centers

One of the key concept in our analysis is the notion of robust centers. Robust centers are not necessarily
optimal centers, but they are robust to changes in the cluster structure. This notion is central in our algorithm,
as we aim to find a stable set of k£ centers. To get an intuition behind our definition, consider a cluster
in an approximately optimal solution that at a specific point in time has a rather blurry structure, e.g.,
many points in different location are good candidate centers. After few additional insertions the cluster
structure may develop and concentrate, for example the cluster may grow, shrink, merge or split, but at its
current state, it is not clear what will happen. In this setting an optimal solution with knowledge of future
insertions would pick a center that is good for the current point set and good after inserting future points
(see[Fig. Ta). Unfortunately, our algorithm cannot predict how an optimal consistent clustering would look
without knowing the future. Nevertheless, we can select our centers so that they are stable to small changes
in the clusters. To this end, we say that a center is robust when it is locally optimal on different scales, i.e.,
we optimize centers so that they minimize the assignment cost of close points better than the assignment
cost of points far away. Intuitively, this makes sense because points that are far away from the center are
potentially prone to moving between clusters. Again, an algorithm cannot tell a priori what far away means
because the scale of concentration of a cluster is unknown. Therefore, robust centers are optimized for
(exponentially) growing distances.
Before formalizing this intuition we introduce few basic definitions.
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Figure 1: Consider the two initial choices for a single center in the left clustering (red circle, blue square).
Both are good choices and, depending on the metric, the blue center might have the smaller cost, but the red
center is robust. However, if points are inserted and points accumulate in the upper and the lower part, it may
be necessary to split the cluster. In this case, the red center is better off in terms of consistency: while the
blue solution needs to change two centers (the initial blue center and a new center, depicted in the middle),
the red solution only needs to add a center at the top (depicted on the right); the original red center is already
a good choice. @] Consider a (sub-)sequence of a robust tuple: p; (green triangle), p;—1 and p;_2 (blue
square), and p;_3 (red circle). Since Ball(p;_1, 1Oi_1) (second inner blue circle) has large average cost, we
have p; 1 = p;_2. The Ball(p;_2, 10°~2) has small average cost, so p;_» is chosen optimally inside it.

Definition 4.1. For a center u and a set of points P, we define the average cost of assigning the points in P
to u by

cost(u, P)

avgcost(u, P) = P
w

Definition 4.2. For a set of points P, a point u € P, and r > 0, we define Ballp(u,r) = {p € P :
dist(u, p) < r} to be the points of P contained in the ball of radius r centered at .

When the set P of points is clear from the context, we simplify notation and write Ball(u, r) instead of
Ballp(u, 7).

Let U be a set of centers for a point set P, for u € U consider a subset of points that is assigned to this
center, say, P’ = Ballp(u, dist(u,U \ {u})/2). Now, imagine that after few insertion the set of centers
changes and so the ball’s radius decreases. Now we may need to move the center within the ball to a new
optimal position, furthermore we can imagine that this could happen multiple times during the execution
of the algorithm. Intuitively (e.g., for Euclidean distances), a center is attracted by accumulations of points
in its current ball. To obtain a robust center we define our centers recursively so that they are good centers
at different scale and so that they are not sensitive to accumulation of points in the boundary of the current
ball. To do this we first discretize the shrinking process of the ball and consider exponential steps when
decreasing its radius. Then we do not move the center when the average cost indicates that many of the
points within the ball lie close to its boundary. This case indicates that, intuitively, there is no concentration
of points close to the center that attracts it. See for an example. More formally,



Definition 4.3. For an integer t > 0, we say that a tuple (po,pi,...,pt) of t + 1 points is t-robust with
respect to a point set P if, for everyi € {1,2,...,t},

b if avgcost(p;, Ballp(p;, 107)) > 10¢/5,
bzt = arg Ming,epaii, (p,,101) ost(p, Ballp(ps, 10%))  otherwise.

We also say that a point/center u € P is t-robust if there is a tuple (u, p1, .. ., pt) that is t-robust.

Interestingly toward the end of this section we will prove that pg is an approximately good center for
any ball Ballp(p;, 10%).

For simplicity, we also write that (pg, p1,...,p:) is t-robust without explicitly stating that it is with
respect to P when there is no ambiguity. In particular, the point set will be fixed to be P throughout this
section.

Before proving two basic properties of ¢-robust tuples, we describe a simple algorithm MakeRobust (¢, p)
that, on input an integer ¢ > 0 and a point p € P, outputs a t-robust tuple (pg, p1, - . . , p) With p, = p. The
steps of MakeRobust (¢, p) are as follows:

o Letp, =p.
e For ¢ from t to 1, select p;_; such that

i if avgcost(p;, Ball(p;, 10%)) > 10%/5,
bit arg minp,egai(p,,101) cost(p, Ball(p;, 10%)) otherwise.

° Output (p07p1) e apt)'

By definition, we have that (pg, p1,...,p:) is a t-robust tuple with p = p;. We proceed to prove basic
properties of t-robust tuples that will allow us to analyze our main algorithm that will repeatedly make calls
to MakeRobust.

We start with a simple observation that bounds the distance from pg to the other points.

Lemma 4.4. Let (po,p1, - . .,pt) be a t-robust tuple and let B = Ball(p;,107). For every j = 1,...,t,
dist(pj_1,p;) < 107 /2, B;_1 C By, and  dist(po,pj) < 107/2.

Proof. By the definition of a t-robust tuple, we have dist(p;_1,p;) = 0 if avgcost(p;, B;) > 107/5.
Otherwise, by the selection of p;_1, cost(pj—1, B;) < cost(p;, B;) and so

100 10/
— + 5 > avgeost(p;, B;) + avgcost(pj_1, Bj)

5
= Z uljz(g)) (dist(p, pj) + dist(p, pj—1))
pEB; /
> dist(p;, pj—1) p%;j 1:1)((2—;))

Hence, we have dist(p;_1,p;) < 2107 < 10/2 forall j = 1,2,...,t. It follows that any point ¢ € Bj_;
is also in B; since by the triangle inequality dist(q, pj) < dist(q, pj—1)+dist(pj_1,p;) < 10771 +107/2 <
107. Hence Bj_1 C Bj. Finally, we again use the triangle inequality to conclude

J J j

. . 2 2107t -2 ,

dist(po, pj) < E dist(pi—1,pi) < £ g 10" = E g <107/2.
i=1 i=1



The following lemma will be used to bound the cost of the center pg of a ¢-robust tuple in our analysis
and it intuitively says that pg is a “good” center for any subset of P.

Lemma 4.5. Let (po, p1, - - -, pt) be a t-robust tuple. Fori € {0,1, ...t} and a subset P’ C P of the points
that contains Ball(p;, 10%), i.e., Ball(p;, 10°) C P’, we have

3

cost(pg, P') < 3 - cost(p;, P') .

Proof. For brevity, let B; = Ball(p;, 107) for j = 1,2,...,t. As (po, p1,. - -, pt) is t-robust, we have
cost(p;, B;) > cost(pj—1, Bj) forj=1,...,t (1)

Furthermore, a point ¢ € P\ B; has distance at least 10/ from p; and we have dist(po,p;) < 107/2 by
Lemma.4] Therefore, (by the triangle inequality)

. 2 .
w(q)dist(pj, q) > gw(q)dlst(pg, q) forany ¢ € P\ B;. ()

Repeatedly applying the Inequalities (I)) and () and using By C By C --- C B; C P’ (by|Lemma 4.4) give
us

cost(p;, P') = cost(p;, B;) + cost(p;, P’ \ B;)

2
> cost(pi—1, B;) + gcost(po, P'\ By)
2
= COSt(pi_l, Bi—l) + COSt(pi_l, B; \ Bi—l) + gCOSt(pQ, P’ \ B;)
2 2
> cost(pi_2, Bi—1) + gcost(po, Bi\ Bi_1) + gcost(po, P\ B;)

2
= cost(pi—2, Bi—1) + gcost(po, P'\ B;_1)

2
> cost(po, B1) + gCOSt(poa P'\ By)

5 Description of EpochAlgorithm

In this section we describe EpochAlgorithm, the main new algorithm in our approach. We assume that
o the stream is compressed into 9] (k) insertions of weighted points; and
e the insertions change the value of an optimum clustering by at most a factor of 18.

These assumptions are without loss of generality and follows from the application of known techniques
as described in the overview. Indeed, by losing at most a constant-factor in the approximation guarantee
and poly-logarithmic factors in the consistency, we can achieve the first assumption by an adaptation of
Meyerson’s sketch (similar to what was previously used for this problem in [30]); and we can achieve the
second assumption by restarting the algorithm every time the value of an optimum clustering increases by



a constant-factor (which can happen at most O(log(nA) times). For a more formal description of this
reduction please refer to

The compressed stream is now divided into epochs. In each epoch we call EpochAlgorithm which
takes as input the final clustering produced during the last epoch (or an initial solution if we consider the
first epoch). In order to guarantee a constant approximate solution along with an amortized poly-logarithmic
number of changes in the solution, we require that the set of input centers in each call to EpochAlgorithm
has the following properties.

Definition 5.1. We call a set of centers U bounded-robust if it has the following two properties.
1. U is a 100-approximate solution.
2. Each center u € U is t-robust where t is the smallest integer such that 10t > dist(u,U \ {u})/200.

In the first epoch, we construct an initial bounded-robust solution to the point set as follows: we first
obtain a 10-approximate solution WV to the initial point set using one of the known constant-factor approxi-
mation algorithms for k-median; and we then robustify the centers of WV as follows:

While there is a center w € VV that violates the second condition of bounded-robust, i.e., it is not
t-robust for the smallest integer ¢ such that 10* > dist(w, W \ {w})/200:

1. Obtain ¢'-robust tuple (wg, w1, ..., wy) = MakeRobust(t', w) with wy = w for smallest
integer ¢’ such that 10*" > dist(w, W \ w)/100.

2. Remove w and add wyq to the set of cluster centers.

We refer to the above procedure that makes every center in YV robust as Robustify (W). We prove that
MakeRobust is called at most once for each center (see[Lemma 6.1)) and so the above procedure terminates
with a set of cluster centers that satisfies the second condition of For the analysis, we
may actually assume that MakeRobust is also called at least (i.e., exactly) once for each center. That the
procedure satisfies the first condition follows from the fact that the cost is only increased by a factor 3/2 by
robustifying the cluster centers in W (see[Lemma 7.3).

Let /(") denote the bounded-robust cluster centers obtained for the initial point set P(?). EpochAlgorithm
first detects the number of centers, ¢, that can be removed from the current solution I/ ) without affecting
the quality of the approximation too much; then it handles ¢ 4 1 insertions, i.e., produces ¢ + 1 solutions
U(l), U(Q)7 ce U+ for point sets P(l), P(Q), ce P+ where P denotes the set of points obtained
from P(9) after i weighted insertions. The last step ensures that the set of centers /("1 is bounded-robust
and is thus a valid initial solution in the next epoch where EpochAlgorithm is called with U as the
“UO)-solution and P+ as the “P(0) point set. EpochAlgorithm is repeatedly called in this way until
all insertions are considered in the compressed stream.

We proceed to describe the steps of EpochAlgorithm in detail when given as input a set /(9 of
bounded-robust centers of points P(?):

Step 1: Removing Centers. In this preprocessing step, we remove all the centers that are not necessary
in our solution. Basically we remove ¢ centers while increasing the cost of the solution by a factor at most
O(1). More precisely, if we let £* be the largest value such that it is possible to remove ¢* centers from
U while increasing the cost by at most a factor ¢ = 228000. Then we find a solution of size at most
k — ¢ with £ > ¢* and cost at most 3¢ - cost(U(?), P(0)). The details of this step is described in
. In short, we use the standard LP to find the value of £ and then we apply known algorithmic
techniques for the k-median problem.



Step 2: Handling Insertions. From the preprocessing step, we know that the size of the current solution
is at most k£ — £. This enables us to simply open the next ¢ point that are inserted as centers, so the cost of
the solution does not increase. We refer to the clustering and the set of points after the ¢-th insertion as I/ @)
and P for 1 < ¢ < ¢, respectively. Then, we consider one more insertion, i.e., the point set P | After
this insertion the cost of the solution may increase significantly and furthermore the current solution may
not be t-robust. We address both issues in the next step.

Step 3: Swapping Center and Robustify. In this postprocessing step, the first goal is to find a set of O (¢+
1) swaps that minimizes the objective function. This enables us to bound the approximation ratio of our
approach and prove that it is a 100-approximate solution. To that end, for ¢ = 5¢+5, we use an LP-rounding
procedure that swaps 4¢' elements from 2/(?) and produces W. We show that W is a 13-approximate solution
with respect to the cost of an optimum solution Wopr that swaps at most ¢’ centers, with probability at least
1 — (n + A)'0. The details of this procedure is described in|Section 9.1 (Theorem 9.1).

Finally, we make the solution bounded-robust so that it can be used in the next EpochAlgorithm
using MakeRobust. More precisely, we robustify the cluster centers in W to obtain U“+1) by calling
Robustify (W) as we did for the initial solution (described in the gray box above).

Having described our main algorithm we proceed to its analysis. In the next section, we first bound the
number of changes to the solution we make, i.e., the consistency. Then in[Section 7| we bound the cost of
the maintained solution. In particular, we show that ¢/ (¢+1) is indeed a bounded-robust solution and thus a
valid input to the next call to EpochAlgorithm.

6 Bound on the Number of Changes

We analyze the consistency, i.e., the number of changes made to the maintained solution. As we will see, the
number of changes essentially boils down to analyzing the number of calls to MakeRobust in Robustify.
We first observe that Robustify calls MakeRobust at most once for each center. This implies that the
procedure terminates and it is also a fact that will be used in the cost analysis. We then proceed to the main
part of this section, which is the consistency analysis.

6.1 Robustify Makes a Center Robust At Most Once

We start by showing that Robustify calls MakeRobust at most once for each center. This guarantees that
Robustify terminates and it will later also be used to bound the cost of the clustering.

Lemma 6.1. Consider a set W of centers. If Robustify (W) calls MakeRobust for center w € W and thus
replaces w by wq, then it makes no subsequent call to MakeRobust for center wy.

Proof. The statement follows intuitively due to the following. When a call to MakeRobust on center
w is made, it is with the smallest ¢ such that 10* > dist(w, W \ {w})/100. Center w is then replaced
by a nearby center wg and, for wp to be selected in a subsequent iteration, it must be that at that point
dist(wo, W \ {wo})/200 > 10, i.e., other centers are now more than a factor 2 further away from wy
than they were for w. This cannot happen since calls to MakeRobust only changes the position of centers
relatively little, see|Lemma 4.4

We proceed with the formal proof. Suppose toward contradiction that there is a center w € WV such that
Robustify (W) calls MakeRobust for center w, which is replaced by wyg, and then in a subsequent iteration
makes a call to MakeRobust for center wy.
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We consider the first pair w, wg for which this happens. Let YW’ be the set of centers when MakeRobust
is called for w and let w’ € W'\ {w} be a center such that dist(w, W'\{w}) = dist(w, w’). Then Robustify
calls MakeRobust (¢, w) where t is selected to be the smallest integer such that 10° > dist(w, w’)/100. In

particular, we have 10° < dist(w, w’)/10 and so by
dist(wp, w) < 10%/2 < dist(w, w’)/20.

Now let W be the set of centers when MakeRobust is called for wg, then we have that either w’ € W"
or W contains the center wy, that replaced w’ via a single call to MakeRobust. These two cases are
exhaustive since w and wq was the first pair such that an additional call for wg was made. In the first case,

21
dist(wg, W) < dist(wp, w") < dist(wg, w) + dist(w, w’) < Q—Odist(w,w')

which contradicts that wg was selected in the while-loop in Robustify since we have that wy is ¢-robust with
10" > dist(w, w')/100 and thus 10° > dist(wg, W"),/200.

The second case is similar but we need in addition to argue that dist(w(,w’) < dist(w,w")/10.
To see this note that Robustify calls MakeRobust(t',w’) with a ¢’ such that 10 < dist(w’, wp)/10.

Hence, says that dist(w},w’) < 10* /2 < dist(w’,wp)/20 which in turn is upper bounded by
(dist(wp, w) 4 dist(w, w")) /20 < dist(w, w’)/10. We thus have in the second case that

dist (wo, W) < dist(wo, wp) < dist(wp, w) + dist(w, w") + dist(w’, wy)
< dist(w, w") /20 + dist(w, w’) + dist(w, w")/10
23
= %dist(w, w'),
which contradicts that wg was selected in the while-loop in Robustify in the same way as in the previous
case.

O]

6.2 Consistency Analysis

In this section we focus on analyzing the consistency of the algorithm. Recall that m = 5(k) denotes the
number of weighted insertions in our compressed stream.

Theorem 6.2. The number of changes to the maintained solution is at most O(m(log A)?).

We use the following notation. Let E denote the total number of epochs. We use the convention that we

subscript quantities in the call of EpochAlgorithm during the e-th epoch by e. So, for 1 < e < F, the set

of centers Z/léo) denotes the initial solution to point set Pe(o) in the call to EpochAlgorithm at the start of the

e-th epoch, and Llél), lee(z), . ,Z/{e(eEH) denote the solutions produced to point sets Pe(l), PESQ), cee Pe(e"‘ﬂ)
during this run of EpochAlgorithm. With this notation, we have Uéeﬁﬂ) =U 6(931 and Pe(ZEH) = Pe(g)l for
e=1,2,..., F — 1. Moreover, the consistency equals
E ¢
o> EINUD 3)
e=1 =0

The consistency Zfezo |Z/le(i+1) \Z/léi)| of epoch e is at most £, + |Z/lé£e+1) \nge)| since EpochAlgorithm
opens up exactly one center fori = 1,2, ..., £. We further have

U INUE) < UESDNUL 4 UONUE = UESDNUL |+ O(Le)

11



This allows us to upper bound [Eq. (3)|by

E E
S (EAINUO + 0()) < 3 UESINUO| + O(m),
e=1

e=1

where we used that 7 | (£, + 1) = m.

To analyze |u§’55“) \ Z/{e(o) |, recall that EpochAlgorithm constructs Z/{gﬁl) in two steps: it first ob-
tains an intermediate solution W, by swapping 4¢, = 20(¢. + 1) centers from L[e(o); and it then calls
Robustify (W,) to obtain ulet,

We distinguish two kind of centers in L{ééﬁ'l) \ Z/{e(o), the updated centers and the new centers. To this
end, consider a center w € W, N Uéo). Ifwé¢ u&“), then w was replaced by a new center wy via call to
MakeRobust in the Robustify procedure. We will say that w is the parent of wg and we say that wq is an
updated center. Those centers in UE(ZSH) \ Ue(o) that are not updated (i.e., without a parent) are referred to
as new centers. In addition the centers in the initial solution computer for the first epoch, are also classified
as new centers.

It will be convenient to think of these centers as elements of chains formed as follows. Consider the
graph that has a vertex for each center in Z/le(eﬁl) \L{éo) for each epoch 1 < e < F and there is an arc from «
to ug if w is the parent of ug. We remark that the graph may have multiple vertices for a single center, if that
center was added and removed from the solution multiple times. As each vertex has at most one parent and
it is the parent of at most one center, we have the graph forms a collection of paths. We refer to these paths
as chains. Moreover, if we consider a chain (uy, us, . . ., us) then u; is a new center (without a parent), ;41
replaced u; via a call to MakeRobust fori = 1,2,...,s — 1, and u; is not the parent of any center.

By definition, we have that ) le ]UG(EEH) \ Z/{e(o)] equals the number of vertices in the above-described
graph. Or equivalently, and this is the viewpoint that we take, it equals the total lengths of the chains. We
start to bound the number of chains.

Lemma 6.3. The total number of chains (or equivalently, new centers) is at most 20 - m.

Proof. Consider an epoch e. We have that a center in W, N Z/le(o) is either in Z/{G(ZH) or it is the parent

of an updated center in U/ (¢+1) 1t follows that the number of new centers in L{e(éeﬂ) \ L{éo) is at most

\L{e(g"’ﬂ)] —|We ﬂUéO)\. Now W, is obtained from /") by performing at most 40, = 20(¢. + 1) swaps and
0 [We nul” | > k—20(¢.+1). Hence, we can upper bound the number of new centers in Yttt \Z/{éo) by
20(¢. + 1). It follows that the number of new centers across all epochs is upper bounded by 20 > eE:l (Le +
1) = 20 - m. Note that chains can start only in new centers by the definition of new centers. O

We now give certain properties that must hold when Robustify calls MakeRobust for a center w and
then replaces it. To this end, we use the following corollary of [Definition 4.3| and [Lemma 4.4] to identify
points that get inserted and invalidate the robustness guarantees maintained by the algorithm.

Corollary 6.4. Consider a point set P, and suppose that the center w € P is t-robust. Then u is t-robust
for every superset P' D P of points satisfying Ballp(u,2 - 10') = Ballp:(u,2 - 10%), i.e., P'\ P does not
contain any point within distance 2 - 10 from w.

Proof. Let pp = w and let (po,p1,...,p) be a t-robust sequence with respect to P. Then
andimply that (po, p1, - - - , pt) is also a t-robust sequence with respect to P’ if Ballp(p;, 10%) =
Ballps(pt, 10%). The statement now follows from [Lemma 4.4 which says that dist(po, p;) < 10¢/2 and thus
any point in a ball of radius 10 around p; is contained in a ball of radius 2 - 10¢ around pg = u. O
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For a center u that is in one of the maintained solutions, define the integer t(u) as follows. If u is a new
center, let ¢(u) = 0. Otherwise if  is an updated center, then we let ¢(u) be the integer ¢ used in the call to
MakeRobust (¢, u") by Robustify when it replaced u’s parent u’ by w.

Now consider an updated center ug with parent u. Let f be the epoch when u joined the solution for the
last time before u( replaced u and let e be the epoch when it was replaced. As Robustify replaced u with
ug, at least one of the following two cases must hold:

e Center u is not ¢(u)-robust with respect to the bigger point sets Pe(éeﬂ)

must then be a pointin p € PgEH) \ P](ff ) Within distance 2 - 101%) from u. We say that the point
p invalidates the center w in this case.

. By the above corollary, there

e The integer t(u) is too small: When w = w is selected in the while-loop of Robustify, we have
104®) < dist(w, W\ {w})/200. Then u is obtained via a call to MakeRobust(#', u) where ¢’ is the
smallest integer such that 10°" > dist(w, W \ {w})/100. In particular, (ug) = t' > t 4 1. In this
case, we say that the updated center ug increased its robustness.

We first bound the number of updates that increases the robustness in terms of the number of new centers
and other updated centers. We then bound the number of updated centers that were invalidated by points.

Lemma 6.5. The number of updated centers that increased their robustness is at most O(log A) times the
number of new centers plus the number of updated centers that were invalidated by points.

Proof. Consider a chain (ug,u1, ..., us). We have that ug is a new center. The statement now follows by
observing that we cannot have a subsequence of updated centers u;, u; 1, ..., u; so that everyone increases
their robustness j —i > log A. Indeed, in that case, we have ¢(u;) > j —i > log A which is a contradiction
because for any center u we have that 10"(*) is at most the maximum distance A. Therefore a chain of length
s must include at least | s/log(A)] centers that are invalidated by points and for which the robustness is not
increased. O

Lemma 6.6. The number of updated centers that were invalidated by points is at most m - log A.

Proof. The stream consists of m point insertions so it is sufficient to prove that each point p invalidates
at most log A many updated centers. We bound the number of centers that are invalidated by a point p
introduced in epoch e, i.e., p € Pe(eﬂ) \ Pe(ﬁl). Let i be the number of centers in W, N Z/le(o) that are
invalidated by p, and let (u;);c,, be the sequence of these centers ordered in decreasing order by the epoch
that they were added to the maintained solution: letting e; equal the first epoch when u; € Z/{e(”l)
the sequence so thate; > e;41 fore =1,2, ... u— 1.

This ordering guarantees that when w; replaced its parent u} via a call to MakeRobust then u;;1 was
already in the solution and so

, we order

%

10804 < dist(ug, uiq1)/10  forie {1,2,...,pu—1}.
In addition, as p invalidates u;, we have
dist(p,u;) < 2- 10%(wi) fori e {1,2,...,u}.
It follows that for ¢ € {1,2,...,u— 1}
10141 > dist(p, uiy1) > dist(us, uiy1) — dist(p,u;) > 10 - 101%) — 2. 101) > 8. 104w

We can now conclude the proof by observing that due to the bounded aspect ratio A, p < log A. O

13



Equipped with the above lemmas, we can complete the proof of [Theorem 6.2] [Lemma 6.3| says that
there are O(m) new centers and says that there are at most O(m log A) number of updated
centers that were invalidated by points. Combining this with yields that the total number of new
and updated centers is at most O(m(log A)?). As the number of new and updated centers is equal to the
consistency, this completes the proof of the theorem.

7 Cost Analysis of EpochAlgorithm

Recall that EpochAlgorithm runs during ¢+1 steps and and maintains sets of centers (9, ¢/ ... y/(¢+1)
for the point sets P(O), P(l), ey PUH1) We bound their costs as follows, recall that ¢ = 228000.

Theorem 7.1. On input a bounded-robust set of centers U of point set P(0), EpochAlgorithm produces
sets of centers UV . UP) | ... . UED) of the point sets PO, POV PUHD satisfying:

o the clustering induced by U is a (6 - 100 - ¢)-approximate clustering for PO fori =1,2,...,¢;
and

o UHY s a bounded-robust set of centers for PU+1).

The first part of the theorem follows easily: As /() is a bounded-robust set of centers of P(©) it is a
100-approximation. Now EpochAlgorithm drops ¢ centers from ¢/(?) while increasing the cost by at most
a factor 3 - ¢. The cost of the solutions UV, 4D ... U® does not change (since the newly arrived points
are opened as centers) and thus they remain (2 - 3 - 100 - ¢)-approximate solutions. The factor 2 is due to the
fact that the value of an optimum solution can at most go down by a factor of 2 by introducing new points.

The remaining part of this section is thus devoted to proving the second part of the theorem, i.e., that
U*+1) is a bounded-robust set of centers for P(é*1). Recall that Step 3 of EpochAlgorithm calls Robustify
(W) procedure which repeatedly call MakeRobust until every center in v € W is t-robust with 10° >
dist (u, W\ {u}) /100. Therefore it suffice to showing that 2/(“*1) induce a 100-approximate clustering of
p+1)

An important concept for bounding the cost of /(1) is the notion of well-separated pairs. To simplify
notation, we let I denote 2/(?) throughout this section. We also let V' be a fixed optimal solution to P(¢+1).

Definition 7.2. Select v = 2000. We say that centers uw € U,v € V form a well-separated pair if
dist (u, U \ {u}) >~ - dist(u, v) and dist (v, V' \ {v}) > 7 - dist(u,v) .

Informally, v € U and v € V form a well-separated pair if they are isolated in the sense that they
are much closer to each other than the distance to any other center. In particular, by definition, if « and
v form a well-separated pair, then v must be the closest center to u in V and v must be the closest center
to v in U (see [Fig. 2a). We can therefore partition the centers in &/ U V into the well-separated pairs
(u1,v1), (u2,v2), ..., (Uk—m,Vk—m) and the remaining centers wug_,, 11, ..., Uk, Vk—mt1,-- -,V that do
not form a well-separated pair with any center. In we prove the following lemma which relates
the number of well-separated pairs with the number of centers we can drop from ¢/ without increasing the
cost too much.

Lemma 7.3. Suppose that the number of well-separated pairs is k — m. Then there exists a clustering
U' C U with at most k — |m /4] centers and whose cost is bounded by

cost (L{', P(O)) < 6 (cost (Z/{,P(O)> + cost (V, P(O))> .
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Figure 2: Each figure shows two sets of centers I/ (red circles) and V (blue squares). For each center
u € U, Ball(u, dist(u,U \ {u})/7) is depicted, and similarly for centers v € V (for this figure only, we
assume v = 4). Therefore (u,v) € U x V is a well-separated pair if and only if u lies within the ball of
v and vice versa. The upper two pairs are well-separated, the lower centers are not well-separated.
Fractional assignment: the case that y,,, = 1/2 and there is a center u,, € U \ {u;} such that dist (u,, u;,) <

P
7 - dist(up, vp). Fractional assignment: the case that 3, = 1/2 and the previous case |(b){does not hold.

By the assumption that the value of an optimum clustering increases by at most a factor 18 during an
epoch, we have, by the optimality of V, that cost (V, P (0)) is within a factor of 18 of the cost of an optimal
clustering of P(). It follows that 67 (cost (U, P)) + cost (V, P©)) < (67 (184 1))cost (U, P(V)). As
¢ = 228000 = 6+ - 19, this implies that Step 1 of EpochAlgorithm removes ¢ > |m/4| centers where m
is the number of centers of I/ that does not form a well-separated with a center in ).

During Step 3, EpochAlgorithm creates an intermediate clustering YV whose cost is 13-approximate
with respect to the cost of an optimum solution Wopr that swaps atmost ¢/ =40+ 4+ +1>m+/{+1
centers. We now bound the cost of such an optimum solution Wopr to be at most 3 times the cost of an
optimum clustering of P+, Let V(v) be the points in PUH1) that are closest to center v € V in the
clustering V. We say that a center v € U is good if

e it forms a well-separated pair with a center in ); and
e V(v) C PO je., the center v is not closest to any of the new points in the considered epoch.

The number of centers of U/ that are bad, i.e., not good, is at most the number of centers that do not form well-
separated pairs (/n many) plus the number of centers that form a well-separated pair with a center v € V such
that V(v) N (P(”l) \ P(O)) # () (at most £ + 1 many). Denote the good centers of U by u1, us, ..., uy and
index the centers of V = {vy,v9, ..., vk} so that u; form a well-separated pair with v; for i € {1,...,g}.
Then the clustering {u;, ..., ug, Vg41, ..., vy} is obtained from I by doing k — g < m+ ¢ +1 < ¢ swaps.
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It follows that the cost of Wopr is bounded by the cost of this solution and so

cost (W,P(”l))) < 13- cost (WOPT, P(Z‘H)))

k

Zcost(ui,V(vi))—i- Z cost(vy, V(vy))
i=1

i=g+1
k

Z 3 - cost(vi, V(v;)) + Z cost(vi, V(v;))
i=1

i=g+1

=39 - cost <V, P(“‘l)) ,

where the first inequality follows from and the last inequality is due to the following lemma
which we prove in

Lemma 74. Ifu € U,v € V form a well-separated pair and V(v) C pO),
cost(u, V(v)) < 3 - cost(v, V(v)).

Now EpochAlgorithm obtains &/ (¢*1) by calling MakeRobust on centers in WW. We bound the cost of
U by the following lemma.

Lemma 7.5. For any clustering W, let U be the result of Robustify (W) procedure described in
for a set of points P. We have

cost(U, P) < ;cost()/\/, P).

Proof. By Robustify makes at most one call to MakeRobust per center. Let wy, . . . wy, denote
the centers of YW and let w, . . ., wfc denote the centers of I/ where w; was obtained by a call to MakeRobust
on w; or wg- = wj if no such call was made. Further index the centers in the order in which the calls to
MakeRobust were made, putting those centers last for which no call was made.

With this notation, EpochAlgorithm calls MakeRobust on center w; with input parameter ¢; selected
to be the smallest integer so that

104 > dist(wy, {w], . .. W1, Wig1, ., we})/100.

This implies that 10% < dist(w;, w})/10 for any ¢ < j and 10% < dist(w;, w;)/10 for any i > j.

says that dist(w;,w}) < 10% /2. Hence, for two centers w; and w; with i < j,
+- . / . . / . +: 11 .
10 - 10% < dist(w;, w;) < dist(w;, w;) + dist(w;, w;) < dist(w;, wj) + 10" /2 < TOdlSt(wi’wj) )

where the last inequality follows as by the properties of the ordering, i.e., t; < t;. If we let W(w;) be the
points of P assigned to center w; in the clustering W = {w1, wa, . .., wy}, it follows that Ball(w;, 10%) C
W(w;) since 10 < dist(w;, w;)/2 for any i # j. We can therefore apply [Lemma 4.5 (with P’ = W (w;))
to bound the increase of the cost by

cost(U, P) Zcost Zcost wj, W(w;)) = ;COSt(W, P).
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By the above lemma, we conclude

cost (U(“l),P@H)) < g

- cost (W, P(Hl))) < 100 - cost (V,P(Hl)) )

ie., that UHD) is a 100-approximate solution. As aforementioned this implies that U is bounded-
robust which in turn implies It remains to prove [Lemma 7.3|and [Lemma 7.4] which we do in
[Section 7.1|and [Section 7.2| respectively.

7.1 Proof of Lemma 7.3 Relating Non-Well-Separated and Removed Centers

Let £k — m be the number of well-separated pairs in &/ and V. We prove [Lemma 7.3| i.e., that there is a
clustering U/’ C U obtained from U by removing at least |m /4| centers and whose cost is bounded by

cost (L{', P(O)) < 6 <cost (L{, P(O)) + cost (V, P(0)>> .

On a very high level, the reason why the above holds is that if centers are not too far away from each
other then we can safely close some of them. The formal proof strategy is as follows. We define a feasible
solution (y, =) to the standard LP relaxation with the potential center locations ¢/ and point set P such that

® Lueulu <k —m/4
o the cost is bounded by >, 7/ e p Tupdist(u, p) < 2y (cost (U, P(O)) + cost (V, P(O))).

To this end, let us recall the standard LP relaxation for the weighted k-median problem. In the following LP,
w(p) represents the weight of the point p for any p € P,

min Z Typ - w(p) - dist(u, p) “4)
ueU,peP
St Zyup < Yy YVuelU,pe P 5
D a1 Vpe P (6)
uelU
Sk )
4
ueU
Tup, Yu = 0 VueUd,pe P (3

then follows because the integrality gap of the standard LP relaxation is known to be at most
3 [[7]. We proceed to describe the fractional opening of the centers (the setting of y), the fractional assign-
ment of points to centers (the setting of x), and we then analyze the cost of the solution.

Fractional Opening of Centers. Let 7 : )V — U be the function that maps each center V to its closest
center in I/ (breaking ties arbitrarily). Partition I/ into U; and Ur, where U contains those centers u € U
that satisfies at least one of the following conditions:

e y forms a well-separated pair with one center in V;

o |77l (u)| > 2.
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So U contains those centers u € U that does not form a well-separated pair and |7~ (u)| < 1. We define
a solution to the standard LP in which every center v € U is integrally opened ¥y, = 1 and each center
u € U is fractionally opened y,, = 1/2.

We now show that ), v, < k —m/4. Each center u € U that forms a well-separated pair with a
center v € V has |71 (u)| > 1 since u must be the closest center to v in /. In addition, as there are k — m
well-separated pairs in total, we get

k= W) =k —m+2- (U] = (k—m)),
u€eUs

and so [Ur| < k —m/2. Wethushave >,y <k —m/2+1/2-m/2 =k —m/4 as required.
Fractional Assignment of Points. Each point p € P is assigned as follows. Let v, € V be the closest
center to p in V and let u,, = m(v,) be the closest center in I/ to v,. We distinguish three cases:

e If y,, = 1 then assign point p to u,, i.e., set x,,, = 1. This assignment costs w(p) - dist(uy, p).

e Ify,, = 1/2 and there is a center u;, € U \ {u;} such that dist(u,, u;,) < 7 - dist(uy, vp), then assign

p equally to u, and u;, Le., set Ty,p = Tyrp = 1/2 (see|Fig. 2b)). This assignment costs

w(p) (dist(p, up) + dist(p, up) + dist(uy, u;))

(p) (dist(p,up) + %dist(up,vp)) .

1 1
§w(p) (dist(p, up) + dist(p, u;)) < S
w

IN

e If y,, = 1/2 and the previous case does not hold, then since u,, v, does not form a well-separated
pair, there is a center v, € V' \ {v,} such that dist(vy,v;,) < v - dist(uy, v,) (see[Fig. 2c). We assign
p equally to up and uj, = 7(v},), i.e., We set Ty, = Ty, = 1/2. This assignment costs

1
5 (dist(p, up) + dist(p, uy,)) < zw(p)(dist(p, up) + dist(p, up) + dist(up, v)) + dist(v;,, u7))
(dist(p, up) + dist(p, up) + dist(up, v,) + dist(v;,, up))
dist(p, up) + dist(uy, vp))

dist(p, up) + dist(up, vp) + dist(vy,v;,))

dist(p, up) + (7 + L)dist(up, vp)) -

—

In the third case, we have u, # uJ, since w(v,) = u, and |71 (u,)| < 1 since y,, = 1/2 and therefore
u, € Up. We have thus that each point is fractionally assigned one unit and that x,,;, < y,, for all u € U/ and
p € P. In other words, z is a feasible fractional assignment of the points.

Bounding the Cost. By the above calculations, the cost of assigning a point p € V(v) is always at most
w(p) (dist(p, up) + (v + 1)dist(up, vp)), with equality in the third case. We thus have that the total cost is
upper bounded by

Z w(p) (dist(p, up) + (v + 1)dist(up, vp)) < Z w(p) (dist(p, vp) + (v + 2)dist(up, vp))
peEP pEP

= cost (V, P(O)) +(v+2) Z w(p)dist(up, vp) -

peEP
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To bound the last term, for a point p € P, let u,, denote its closest center in {/. Then by the definition of
up, = m(vp) and the triangle inequality,

dist(up, vp) < dist(uy, v,) < dist(uy, p) + dist(p, vp) -
We thus have

Z w(p)dist(up, vy) < Z w(p) (dist(uy, p) + dist(p, vp)) = cost <Z/{, P(0)> + cost <V, P(O))
peEP peEP

and the cost of the fractional solution is at most
cost (V, P(O)> +(v+2) (cost (L{, P(O)) + cost (V, P(0)> ) < 2y (cost (Z/l, P(0)> + cost (V, P(0)>) ,

as required.

7.2 Proof of Lemma 7.4;: Cost of Well-Separated Pairs

In this section we prove i.e., the statement that if ©w € U, v € V form a well-separated pair and
V(v) € PO then

cost(u, V(v)) < 3 - cost(v, V(v)) .

The statement is trivial if dist(u, v) = 0 so we assume throughout that dist(u,v) > 1.
Since U is a bounded-robust solution, we have that u is ¢-robust where ¢ is the smallest integer such that

10" > dist(u, U \ {u})/100 > (7/100) - dist(u, v) = 20 - dist(u, v), 9)

where the second inequality holds because u and v form a well-separated pair and the equality is due to the
selection of 7y = 2000. Select ¢* to be the integer that satisfies 20 - dist(u, v) < 10°" < 10 - 20 - dist(u, v).
As t* < t, there is a t*-robust tuple (pg, p1, ..., ps) with t* > 1 and py = u. Let B; = Ball(p;, 10°) for
1=0,1,...,t*. We shall use the following simple fact:

Claim 7.6. Foreveryi=0,1,...,t*, B; C V(v).
Proof of claim. Consider a point ¢ € B;. We have
dist(q,v) < dist(q, p;) + dist(p;, u) + dist(u, v)
= dlSt(Q>p2) + dlSt(plvp(]) + dlSt(uv U)
< 10" +10%/2 + 10" /20
<2-10"

)

where, for the penultimate inequality, we used ¢ € B;, [Lemma 4.5| and the selection of ¢*. That ¢ € V(v)
and thus B; C V(v) now follows because u and v form a well-separated pair and so by the selection of ¢*
(specifically, that 10! < 200dist(u, v))

dist(v, V \ {v}) > 2-10? - dist(u,v) > 10" > 2. dist(q, v).
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We divide the remaining part of the proof of the lemma into two cases. Suppose first that avgcost(pg=, By ) >

10*" /5. We then have p;«_1 = py+ and so

dist(v, p=) = dist(v, p=—1) < dist(v, po) + dist(po, pr+—1)

= dist(u, v) + dist(po, pe=—1)

< 10" /20 + 10" /20

<10 /10, (10)
where the penultimate inequality holds by the selection of t* and because dist(pg,pi—1) < 10*" /20 by
Hence, since avgcost(pg«, By<) > 108" /5 > 2 - dist(v, p;+) and By« C V(v) (by the above
claim),

cost(v, V(v)) = cost(v, By ) + cost(v, V(v) \ Byx)
= w(By) - avgeost(v, Byx) 4 cost(v, V(v) \ Byx)
w(By+) - (avgeost(py, By ) — dist(v, pg=)) + cost(v, V(v) \ By+)
avgcost (pgx, Byx)
2

v

v

w(Bt*) .

- cost(pg, V(v)) 7
- 2
where the last inequality holds because any point ¢ € V(v) \ By~ has

+ cost(v, V(v) \ Bg+)

dist(q,v) > dist(ps+, q) — dist(pg=, v) > 108" — dist(pgx, v) > dist(pe=, v)

where the first inequality follows by triangle inequality, second inequality follows since ¢ € V(v) \ By,
and last inequality holds due to[Eq. (T0)] We can therefore conclude the proof of the lemma in this case by

applying which says that cost(pg, V(v)) < (3/2) - cost(p}, V(v)).

It remains to consider when avgcost (py, By+) < 10Y" /5. We then have

«_1 = arg min cost(p, Byx).
pre—1 = arg min cost(p, By-)

Therefore, since Bi= C V(v) (by the above claim)
cost(pg—1, V(v)) = cost(pe—1, B ) + cost(pp—1, V(v) \ Bg+)
< cost(v, Bg#) + cost(p—1, V(v) \ By+)

where the last inequality follows since v € By from[Eq. (9)] To bound the second term, we use
to obtain

diSt(q,pt*_l) 2 diSt(q,pt*) — diSt(pt* 7Pt*—1) Z 10t* — 10t*/2 for any q € V('U) \ BZ s

and
dist(v, pp—1) < dist(v, u) + dist(u, pgx—1)
= dist(v, u) + dist(pg, pr+—1)
<10 /20 + 10" /20 < 10" /10.
Hence,

dist(pex—1,q) < dist(pe<—1,q) < 10t /2 <o
dist(v,q) — dist(pg—1,q) — dist(pg—_1,v) — 10" /2 — 10" /10 —
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and so
cost(pp—1, V(v)) < cost(v, Bp_1) + cost(pp—1, V(v) \ Bp—1) < 2 - cost(v, V(v)).
We can thus also conclude this case by applying which give us cost(u, V(v)) < 3-cost(v, V(v)).

8 Consistent k-Clustering Algorithm and Analysis

In this section we present our consistent algorithm. One of the ingredients used in this algorithm is Meyer-
son’s sketch. In this work we use a modified version of the Meyerson’s sketch presented in [35]]. Intuitively,
Multi-Meyerson’s sketch is an algorithm that produces a weighted instance of size k - polylog(n, A) that
any constant approximate solution of this instance is also a constant approximate solution for the original
instance. These properties are explained more precisely in the following theorem. Notice that in this the-
orem, the elements are inserted one by one and there is no need to have access to the entire stream at the
beginning.

Theorem 8.1. [Multi-Meyerson’s procedure] Given a set of initial points P' and a stream of insertions of
points o' = (01, 0%,...0},) such that

180PT(P') > OPT(P' U {d},d},...coh}),

Multi-Meyerson’s procedure finds a weighted initial solution P and a stream of insertions of weighted points
o = (01,02, ...0¢). The stream is built on the fly, and satisfies the following properties with probability at

least 1 — m.

1. The length of the produced stream o is small,

t < k- polylog(n,A).

2. Forany1 < j <t let (01,09,...0;) be the points on the stream o after the j-th insertion of stream
o'. Let U be a set of centers inducing an a-approximate solution for the weighted instance defined by
PU{o1,09,...0:}, thenU is also a O(a + 1)-approximate solution for P' U {07}, 05, ...05}. Le,

cost(U, P'U{d},05,...07}) < O(a+1) - OPT(P' U {0},09,...05}).

3. The weights are positive integers and the total sum of the weights is at most 2n.

A full description of the Multi-Meyerson procedure along with a formal proof for this theorem is pre-
sented in

Our algorithm first runs the Multi-Meyerson procedure, therefore we need to detect when the cost of the
optimum solution increases. To that end, independent from Meyeson’s sketch we compute an c-approximate
solution (for o« < 3) for the entire instance after each insertion. Afterwards when it increases by a factor
6, we get that the value of the optimum solution has increased by a factor at least 2 and at most 18. In this
case restart the Multi-Meyerson procedure. This results in at most log(nA) restarts of this algorithm and
guarantees the condition in is satisfied.

At the beginning of each run of the Multi-Meyerson procedure we compute a bounded-robust solution by
simply finding a 3-approximate solution for the the initial points produced by the Multi-Meyerson procedure.
Then we make it robust, as explained in |Section 5[ By |Lemma 7.5| we lose a factor % in this step, therefore
the resulting solution is a %—approximate solution. We pass it to EpochAlgorithm as the initial solution.
We keep running EpochAlgorithm until the stream o is finished, where each call to it uses the last solution
created by the previous call. Notice that we know that the final solution created by EpochAlgorithm is
bounded-robust. Let us now analyze the approximation ratio and the total number of the changes in the
solution.
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Approximation Ratio. Notice that the only place that we output a solution is in EpochAlgorithm which

we showed that is a constant approximate algorithm in Combining it with we

get that the solution produced is indeed a constant approximate solution throughout the algorithm.

Consistency of the Solution. At the beginning of each run of Multi-Meyerson, we compute a new solution
which might result in £ changes compared to the previous solution. Therefore the total changes caused by it
is at most k log(nA). The rest of the changes happens during the EpochAlgorithm, and by [Theorem 6.2 we
get that the total number of changes is at most a factor O(log2 A) more than the total length of the streams
which is k - polylog(n, A) by therefore we conclude that the total number of the changes is
at most k - polylog(n, A).

Success Probability. The algorithm is successful if no error happens in the following three steps.

1. Swapping the centers: The probability that this step fails is also at most m from [Theorem 9.1
and is called at most O(n log(nA)) times.

2. Multi-Meyerson procedure: The probability that this step fails is at most m from Theorem 8.1
and is called at most O(log(nA)?) times.

Putting together these two properties results in

Theorem 3.1. There exists an algorithm that given a stream of points 0 = (01,09, ...,0y), outputs a set
of at most k centers U; after the i-th insertion for all 1 < i < n so that with probability at least 1 — #

1. U; induces a constant approximation clustering, i.e., forany 1 <i <n

cost(U;, {o1,02,...0:}) < O(1) - OPT(F;).
2. The total number of changes in consecutive center sets is at most k - polylog(nA).

Z {Uis1 \Ui| < k- polylog(n, A)) .

1<i<n

Removing the Assumption that A and »n are Known in Advance. Throughout this paper, we assumed
that we know the value of the A and n in advance. This knowledge is not necessary in order to run our
algorithm. Notice that we can keep track of both n and A during the execution of the algorithm. When
one of them increases by a constant factor, we restart our algorithm from the scratch. This results losing a
constant factor in approximation guarantee, a polylog(n, A) factor in total number of changes in consecutive

center sets, and the success probability becomes 1 — O(%)

9 LP-based Algorithm for Swapping and Removing Centers
In this section we design two LP-based algorithms for the following tasks:

Swapping Centers. Compute a set of & centers that differs from an input set of centers in at most O(¥)
centers and such that the cost of their induced clustering is a constant-factor approximation to the best
possible clustering whose centers differ in at most £ from the input set of centers.
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Removing Centers.
proximation to the input instance.

Compute a minimal subset of the input centers that achieves a constant-factor ap-

Throughout this section we assume that the instance is not weighted and we copy the points according
to their weights. Notice that from [Theorem 8.1|we know that the weights of the points are positive integers

with total summation of at most 2n.

9.1 LP-based Algorithm for Swapping Centers

In this section we show

Theorem 9.1. There exists an algorithm that given a set of centers U, a set of points P and a parameter ¢,

finds a new set of centers V with probability at least 1 —

1. These two sets of centers differ in at most 4¢ cen

U\

m, such that

ters, i.e.,

V| < 4.

2. The cost of V is at most a factor 13 larger than the best set of centers VV that differs with V in at most

{ centers.
cost(V, P) < 13-

To this end, we us the following LP-relaxation, wh

x(i, 7)dist(z, j)

i,jEP

st x(i,7) <yl(i)
Zl’(i,]) >1
i€P
Yoyl <k
i€P
(i) > y(i) — yo(4)
> (i) <t
i€EP

v(i), (i, 5),y(i) = 0

min

t(W, p).
W:\u\mgzcos( P

ere g is equal to one if ¢ € U and zero otherwise.

(1)

Vi,j € P (12)
VjeP (13)
(14)

Vie P (15)
(16)

Vi,j € P (17)

Intuitively, [Eq. (IT)| minimizes the cost of the solution. [Eq. (12)] ensures that a center is open before a
point is assigned to it. ensures that all the point are assigned to a center. [Eq. (14)|ensures that there
are at most k open centers. [Eq. (15)|and|Eq. (16)|ensure that the solution found is at most a value ¢ different
from the initial solution yo. Together with[Eq. (17)|that ensure all the variables are positive, gives that

Z max{0, y(7)

ieP

We refer to the optimum solution of the above LP

—yo(i)} <2

as y*, z* and w* and let OPT denote its cost. One

can observe that for any set of centers J such that [/ \ W| < ¢, we have

cost(W, P)

> OPT. (18)

Afterwards we use the rounding procedure described in [9]] over the y* and x* fractional solution and obtain

a random solution y and z. Therefore, we get that
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Lemma 9.2 (Restated from [9]]). There is a rounding procedure that opens at most k centers and the prob-
ability that i is open is exactly y*(i). Moreover, in expectation, the cost of the solution is at most a factor
3.25 more than the fractional solution z*.

Using Markov’s inequality, we get that with probability at least 3 /4

> max{0,y(i) — yo(i)} < 44,

i€P
and similarly we get that with probability at least 3/4

cost(y, P) <3.25-4 Z (i,7)dist(i,7) < 13- OPT.
i,jEP

Combining with [Eq. (18)| we get that for any set of centers W such that [/ \ W| < ¢,
cost(y, P) < 13cost(W, P).

Therefore, by applying the union bound we get that the solution has both above properties with probability
at least 1/2. By repeating the rounding algorithm O(log(n + A)) times, we can boost the probability to

1
1= Graym:

9.2 LP-based Algorithm for Polynomial Time Removing Centers
In this section we show that

Theorem 9.3. There exists an algorithm that given a set of centers U, a set of points P and a parameter
c > 1, finds a set of centers V such that

1. V C U such that
cost(V, P) < 3¢ - cost(U, P).

2. For any set of centers W C U such that cost(W, P) < c - cost(U, P), we have

VI < Wl

We use the classic LP for the k-median problem with parameter ¢ that controls the size of the solution.

min Z x (i, 7)dist(7, j) (19)
i€U,jeP
st x(i,7) <y(i) VieU,VjeP (20)
> i, f) > 1 VjeP 1)
=
> yli)<k—t (22)
=
(i, 7),y(i) > 0 Vi,jepP (23)

Intuitively, minimizes the cost of the solution. ensures that a center is open before a
point is assigned to it. ensures that all the point are assigned to a center. [Eq. (14)|ensures that there

are at most k — £ open centers. [Eq. (17)]ensures that all the variables are positive.

24



Given a value ¢, we try all possible k& values of ¢ and return the largest one such that the cost of the above
LP is at most a factor ¢ away from the cost of the optimum solution (denoted by OPT). After the value / is
fixed, we can use any algorithm for the k-median problem with the number of centers equal to & — ¢, set of
point P and set of potential centers U. Therefore we get a 3-approximate solution V such that, [V| < k — ¢
and cost(V, P) < 30PT < 3¢ - cost(U, P).

We know that there exist no fractional solution that has size less than k£ — ¢ and cost less than ¢ -
cost(U, P), therefore there exist no such a integral solution as well. This means that any solution YW C U
such that cost(W, P) < ¢ - cost(U, P), we get that [W| > k — (. Therefore,

VI <k—t< W
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Multi-Meyerson Procedure

We first present Meyerson’s sketch which depends on an estimate of the optimum solution. Our approach is
logically the same as [35] but not identical. Then we prove that it has the desired guarantees in expectation,
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and use Markov inequality to achieve that the properties are preserved with constant probability. The guar-
antees needed here are slightly stronger than the ones used in previous works, but the proof techniques are
similar. Next, we boost the probability to 1 — 1/n'? by running copies of Meyerson’s sketch. In this step
we need to be extra careful with the weights of the points in the instance as it is important that the weights
are only increasing. Specifically, we prove the following:

Theorem 8.1. [Multi-Meyerson’s procedure] Given a set of initial points P’ and a stream of insertions of
points o' = (01, 0%,...0},) such that

180PT(P') > OPT(P' U {0y, 0%,...0u}),
Multi-Meyerson’s procedure finds a weighted initial solution P and a stream of insertions of weighted points

o = (01,09,...01). The stream is built on the fly, and satisfies the following properties with probability at

least 1 — m

1. The length of the produced stream o is small,

t < k-polylog(n,A).

2. Forany1 < j <t let {01,009,...0;) be the points on the stream o after the j-th insertion of stream
o’. LetU be a set of centers inducing an a-approximate solution for the weighted instance defined by
PU{01,09,...0:}, thenU is also a O(« + 1)-approximate solution for P' U {0, 03,...0%}. Le,

cost(U, P' U{0d},09,...07}) < O(a+1) - OPT(P' U {0},09,...05}).

3. The weights are positive integers and the total sum of the weights is at most 2n.

We describe the Multi-Meyerson Procedure and prove its correctness in the following subsections.

A.1 Meyerson’s Sketch

Meyerson’s sketching operates on a guess of an optimum solution denoted by GOPT. We can use many of
the known algorithms for the k-median problem to achieve a GOPT such that

OPT(P') < GOPT < 30PT(P).

Let us start by describing Meyerson’s sketch and its analysis. For sake of simplicity, we add the point in
the set P = {p}, ... p‘/ P,‘} to the beginning of stream ¢’ in arbitrarily order resulting in

U/ =< pll7 P 7p‘/P/|70-i7 . e 70';5/ > .
Description of Meyerson’s Sketch. The algorithm maintains a solution S, i.e., a set of centers .S where
initially S = (). Then the Meyerson’s sketch as follows:
Insertion of point x: We open z with probability h, < min{1,dist(z, S)%} (where dist(z, ) is

defined to be co). If x is opened, we add it to S and assign it to itself. Otherwise we assign x to the
closest open center in S denoted by f,.
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Analysis of Meyerson’s Sketch. For completeness we start by analyzing the performance of Meyerson’s
Sketch. Note that the analysis is similar to the analysis presented in [35)]. We first bound the size of the
dynamic set .S after all insertions, i.e., after insertion of ag/. We let OPT; denote the value of the optimum
solution after i-th insertion for 1 < ¢ < m and where m is the length of the stream, i.e., m = t' + ]P’ |
Moreover, we let P/ and S; denoted the set of points and the solution maintained by the Meyerson’s sketch
after ¢-th insertion for 1 < ¢ < m.

Lemma A.1. We have

OPT,,
< = . .
E[|Sn.|] < Bk, where 3 (1 +4 GOPT) E(log A +1)

Proof. Let C* indicate the clusters of an optimum solution after insertions, i.e., of an optimal clustering
P/.. 'We partition the points according to C*. Consider a center ¢* € C* and let P(c*) be the sub-
set of points that is served by ¢* in the optimum solution. Moreover, recall that avgcost(c*, P(c*)) =
cost(c*, P(c*))/|P(c*)|. Now partition the points P(c*) as follows: Let P(c*,0) = {x € P(c*)|dist(z,c*) <
avgcost(c*, P(c*))} be those points of P(c*) whose distance to ¢* is at most the average cost of the cluster,
and similarly, let P(c*,i) = {z € P(c*)|2" tavgcost(c*, P(c*)) < dist(z, c*) < 2favgceost(c*, P(c*))}.
Notice that the total number of partitions that we have is k(log A + 1), since all the non zero pairwise
distances are in [1, A]. Now consider one of the cluster centers ¢* and a partition P(c*,4). The expected
summation of h, value for z € P(c*,7) before we open a center is one. Moreover, if a point y .« ;) is opened

in this partition then for any point afterwards, h, < dist(z, y(cw))% Let us bound dist(z, y(c+ 4)-
By triangular inequality we have:

dist(, Y+ 5)) < dist(z, c*) + dist(y(e 5), ¢*)
< dist(z, c*) + 2dist(x, ¢*) 4 avgcost(c*, P(c*))
= 3dist(z, ¢*) + avgcost(c*, P(c")), (24)

where the last inequality follows since by assumption x and y(.~ ;) are always in the same partition, so if
x € P(c*,0) then dist(y(c« 4, ") < avgeost(c*, P(c*)) otherwise dist(y .« ;), ") < 2dist(w, ¢*). Hence,

E[|S|] = B[ k]

zeP

<) Efh,

zeP

k(logA+1)

< *

(c* ) z€P(c* i)
< Z 1+ Z (3dist(zx, ") + avgcost(c”, P(C*)))k(lggoAp;l)

(c* i) xeP(c* i)

k(log A +1)

_ Mesa T 4
< (k(log A +1) + 40P Ty, =5 o)

= Bk.

We proceed to analyze the expected cost of the solution that is maintained by Meyerson’s sketch.
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Lemma A.2. For1l < j < m we have
E[ Y dist(z, fz)] < 4OPT; + GOPT,
z€P!
J
where f, is set when x is inserted as described above.

Proof. We also inherit the notations from the previous proof Now consider one of the cluster
centers ¢* and the partition P(c*, 7). Similar to the previous lemma the expected summation of the costs of

points before we open a center is %. Moreover, let y.~ ;) be the first point opened in this partition

then for any point inserted afterwards in this partition, dist(z, f;) < dist(z, y(~ ;). Hence,

E[Z dist(z, f2)] Z Z Eldist(z, f2)]

TEP] (c*,i) xeP(c* i)

Z Z dlSt $ » Y(ex z))]

(c*,i) xeP(c* i)

GOPT . X % *
< (Z Wlog A+ 1) + e];* ') (3dist(z, ¢*) + avgeost(c*, P(c*)))

< GOPT + (30PT; + OPT}),

where the third inequality follows from [Eq. (24) U

A.2 Extending Meyerson’s Sketch to Multi-Meyerson

In this section we show that we can achieve similar bounds as the previous section with high probability.
To this end, we first show the properties that one can achieve by running copies of Meyerson’s sketch.
Afterwards we use this approach and present the Multi-Meyerson procedure.

Recall that OPT|p/) < GOPT < 30PTp/| and from the condition of we have OPT,, <
180PT)ps|. In what follows, we assume that this condition is satisfied. Therefore we get the following two
bounds on GOPT.

Observation A.3. For |P'| < j < m, we have
GOPT < 60PT);.

Proof. This follows since adding new points can decrease the cost of the solution by at most a factor 2, since
it gives new options to open as centers. Therefore

GOPT < 30PT|p < 3-20PT; < 60PT;.

Observation A.4. GOPT > %SOPTm

Proof. Follows by combining GOPT > OPT p/ and the assumption from Theorem 8.1 O

From [Observation A.3|and [Lemma A.2|we get
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Lemma A.5. For |P'| < j < m with probability at least 3 /4

> dist(z, fz) < 4(40PT; + GOPT) < 400PT;.

/
J:EPj

Proof. The first inequality follows by applying markov inequality on[Lemma A.2] and the second inequality
follows from [Observation A.3 O

Similarly, from [Observation A.4|and [Lemma A.1|by applying markov bound we get

Lemma A.6. With probability at least 3/4,
|S| < 4Bk, where f = (1 +4-18)k(log A + 1).

In order to achieve high probability, we run ¢ = O(log(n + A)) copies of Meyerson’s sketch in parallel.
Let S;O), S j(l), R ](-q) denote the set maintained by the copies after the j-th insertion of the stream o’. Also

let for any point = the point that it’s assigned to in the i-th copy be féi)
Using [Lemma A.6land [Lemma A.5|

Lemma A.7. With probability 1 — mfor any |P| < j <'m, there exist a1 < i < q such that
LY e pr dist(z, fi) < 400PT;.
J

2. 1817 < 292k(log A +1).

Proof. The first property follows from[Lemma A.5] The second property follows from and the
observation that ]S | < |S | The probability follows from the number of repetitions (simple product of

complementary events). O

We are ready to explain the construction of the output set P and the stream ¢ and analyze its perfor-
mance.

Multi-Meyerson Procedure. We start with an empty stream o and additional vector of weights w(x)
where w(x) is the weight of the point z. Notice that the weight of point  when inserted to the stream is
not necessary equal to w(x), since w(z) is dynamic and changes over the time but the weight of an inserted
point cannot be changed. Moreover we might insert a point to the stream multiple times with different
weights. For each point z that is insert (on the stream o’ ﬂ we append it to o with weight 1 if it is added to
S for at least one 1 < i < ¢ for which the current | S| < 292k(log A + 1). In this case we let w(z) = 1
as well. Otherwise, we find the closest point y € ¢ to = and increase the weight of y by one. We assign x
to y and let f, = y. Now if w(y) = 2¢ for some value £, we insert y to the stream with weight 2¢. When
the first | P’| insertions are done, we let P = o, clear o and continue the algorithm as before. This step does
not logically effect the algorithm. Basically it is dividing the created stream into initial solution and output
stream.

*Recall that we added the point P’ to the beginning of the o’
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Proof of Let us start by bounding the length of the stream. We have ¢ copies of the Meyer-
son’s sketch and each inserts at most 292k (log A + 1) centers with weight 1 to the stream. The reason is that
we skip adding the points added by the sketches with size more than 292k(log A + 1). Therefore in total
we have O(gk(log A + 1)) points with weight 1. Moreover, each point that is inserted can be re-inserted at
most logn + 1 times, since it is inserted at most once for each power of two and the highest power of two is
at most log n. Therefore we get that the length of the stream is upper bounded by

k - polylog(n, A).

We now analyze the quality of the solution. Let us focus on a value r, such that, | P’| < r < m and fix
the state of the algorithm and the variables after the r-th insertion of o’ stream. We first observe that, for
any point y on the stream, the number of points that are assigned to it is equal to w(y), as we increase w(y)
anytime we assign a point to y. We let v(y) be the summation of weights of the point y currently on the
stream. Select integer £ > 1 such that 2/=! < w(y) < 2¢ — 1, by the description of the algorithm we get

that ‘
v(y)= Y 2=2'-1
1<i<t
Therefore,
w(y) < v(y) < 2w(y). (25)

This results in the third property in this theorem.
From we get that with probability 1 — m, there exist a copy of the Meyerson’s sketch
that has a good approximation ratio and a small size. Without loss of generality we assume that the copy is

S©) and for any z, the point that it’s assigned to is ngO). Observe that size |S(V)| < 292k(log A + 1), so all

the points in S(©) are part of the stream. Therefore, dist(z, f,) < dist(z, féo)). The cost of each point x is
the cost to the closest center in &/ which is by triangular inequality at most

dist(z,U) < dist(z, fz) + dist(f,U) .
Therefore the total cost is

cost(U, P.) = Z dist(z,U)
zEeP)

< Z dist(z, fy) + dist(fz,U)

zEeP)

< Z dist(, £ + dist(f,, U)
zeP!

< Z dist(:c,féo)) + Z dist(fz,U)

z€EP] zeP]

< 400PT, + Y _ dist(f,U)
xEP).

where the last inequality follows from[Lemma A.7, now we use the weights to simplify the second term. To
this end let P, = P U o, denote the union of the output set P and current output stream ¢. Recall that for
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any set (), OPT(Q) is the optimum solution for the instance Q.

cost(U, P' Z dist(z,U)
zEP)]

< 400PT, + Y dist(fs,U)
zEP)

< 400PT, + Y _ dist(y,U) - w(y)
yGPr

< 400PT, + Y _ dist(y,U) - v(y)
yeP,

< 400PT, + acost(OPT(F;), P;)
< 400PT, + acost(OPT(P.), ;)
< 400PT, + a Y _ dist(y, OPT(P))) - v(y)

yeP,
< 400PT, +a Y _ dist(y, OPT(P))) - 2w(y)

yEP,

< 400PT, + « Z Z (dist(fr, x) + dist(z, OPT(P))))

YEPr x| fo=y
< 400PT, +a Y 2(dist(fs,z) + dist(z, OPT(P))))

xEP!
< (2004 1)400PT, + o Y _ 2dist(z, OPT(F)))

z€P]

(2ac + 1)400PT, + 200PT,

<
< 82a +400PT, ,

where the second inequality follows by rearranging the terms, the third inequality follows from
the fourth inequality follows from [Theorem 8.1]since the clustering U/ is a-approximate, the fifth inequality
follows since the cost of any clustering for points in P, is more than the cost of an optimum clustering
OPT(P,) for it, the sixth inequality follows by definition of cost, seventh inequality follows by m
eighth inequality follows by triangle inequality and rearranging the terms. This concludes the analysis of
the quality of the solution and therefore the entire proof.
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