
Fully Dynamic k-Center Clustering in Low Dimensional Metrics

Gramoz Goranci∗ Monika Henzinger† Dariusz Leniowski† Christian Schulz‡

Alexander Svozil†

Abstract

Clustering is one of the most fundamental problems in
unsupervised learning with a large number of applica-
tions. However, classical clustering algorithms assume
that the data is static, thus failing to capture many
real-world applications where data is constantly chang-
ing and evolving. Driven by this, we study the metric
k-center clustering problem in the fully dynamic set-
ting, where the goal is to efficiently maintain a cluster-
ing while supporting an intermixed sequence of inser-
tions and deletions of points. This model also supports
queries of the form (1) report whether a given point is
a center or (2) determine the cluster a point is assigned
to. We present a deterministic dynamic algorithm for
the k-center clustering problem that provably achieves
a (2 + ε)-approximation in nearly logarithmic update
and query time, if the underlying metric has bounded
doubling dimension, its aspect ratio is bounded by a
polynomial and ε is a constant. An important feature
of our algorithm is that the update and query times are
independent of k. We confirm the practical relevance of
this feature via an extensive experimental study which
shows that for large values of k, our algorithmic con-
struction outperforms the state-of-the-art algorithm in
terms of solution quality and running time.

1 Introduction

The massive increase in the amount of data produced
over the last few decades has motivated the study of dif-
ferent tools for analysing and computing specific prop-
erties of the data. One of the most extensively studied
analytical tool is clustering, where the goal is to group

∗Department of Computer Science, University of Toronto,
Canada.
†Theory and Application of Algorithms, University of Vienna,

Austria.
‡Faculty of Mathematics and Computer Science, Heidelberg

University, Germany.
‡The research leading to these results has received funding

from the European Research Council under the European Unions
Seventh Framework Programme (FP/2007–2013) / ERC Grant
Agreement no. 340506. and from the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15–003.

the data into clusters of “close” data points. Cluster-
ing is a fundamental problem in computer science and
it has found a wide range of applications in unsuper-
vised learning, classification, community detection, im-
age segmentation and databases (see e.g. [15, 39, 41]).

A natural definition of clustering is the k-center
clustering, where given a set of n points in a metric
space and a parameter k ≤ n, the goal is to select k
designated points, referred to as centers, such that their
cost, defined as the maximum distance of any point to
its closest center, is minimized. As finding the optimal
k-center clustering is NP-hard [31], the focus has been
on studying the approximate version of this problem.
For a parameter α ≥ 1, an α-approximation to the k-
center clustering problem is an algorithm that outputs k
centers such that their cost is within α times the cost of
the optimal solution. There is a simple 2-approximate
k-center clustering algorithm by Gonzalez [19] that runs
in O(nk) time; repeatedly pick the point furthest away
from the current set of centers as the next center to be
added. The problem of finding a (2 − ε)-approximate
k-center clustering is known to be NP-hard [19].

In many real-world applications, including social
networks and the Internet, the data is subject to
frequent updates over time. For example, every second
about thousands of Google searches, YouTube video
uploads and Twitter posts are generated [1]. However,
most of the traditional clustering algorithms are not
capable of capturing the dynamic nature of data and
complete reclustering from scratch is used to obtain
desirable clustering guarantees.

To address the above challenges, in this paper we
study the dynamic variant of the k-center clustering
problem, where the goal is to maintain a clustering
with small approximation ratio while supporting an
intermixed update sequence of insertions and deletions
of points with a small time per update. Additionally, for
any given point we want to report whether this point is
a center or determine the cluster this point is assigned
to. When only insertions of points are allowed, also
known as the incremental setting, Charikar et al. [7]
designed an 8-approximation algorithm with O(k log k)
amortized time per point insertion. This result was

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited143

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

later improved to a (2+ε)-approximation by McCutchen
and Khuller [38]. Recently, Chan et al. [4] studied
the model that supports both point insertions and
deletions, referred to as the fully-dynamic setting. Their
dynamic algorithm is randomized and achieves a (2+ε)-
approximation with O(k2 · ε−1 · log ∆) update time per
operation, where ∆ is the aspect ratio of the underlying
metric space, i.e., the ratio of the largest and smallest
distance in the metric space.

In many practical applications, real-world cluster-
ing instances lie on low dimensional manifolds (cf. [43])
and a natural question is whether one can exploit this
structural property to obtain faster algorithms. To an-
swer this question, we study the k-center clustering
problem for “low-dimensional” general metrics spaces.
More specifically, we consider the well-studied notion of
doubling dimension [22, 33, 42, 37, 6, 12, 2]. The dou-
bling dimension of a metric space is bounded by κ if
any ball of radius r in this metric can be covered by 2κ

balls of radius r/2 [33]. This notion can be thought of
as a generalization of the Euclidean dimension since Rd
has doubling dimension Θ(d). The opposite is not true
and in fact, the family of metrics with bounded dou-
bling dimension is notably larger than that of bounded-
dimensional Euclidean metrics [34, 36, 35, 17].

The k-center clustering problem has been studied
in the low dimensional regime from both the static and
dynamic perspective. Feder and Greene [13] showed
that if the input points are taken from Rd, there is
a 2-approximation to the optimal clustering that can
be implemented in O(n log k) time. They also showed
that computing an approximation better than 1.732
is NP-hard, even when restricted to Euclidean spaces.
For metrics of bounded doubling dimension Har-Peled
and Mendel [26] devised an algorithm that achieves a
2-approximation and runs in O(n log n) time. In the
dynamic setting, Har-Peled [24] implicitly gave a fully-
dynamic algorithm for metrics with bounded doubling
dimension that reports a (2 + ε)-clustering at any time
while supporting insertion and deletions of points in
O(poly(k, ε−1, log n)) time, where poly(·) is a fixed-
degree polynomial in the input parameters.

One drawback shared by the above dynamic algo-
rithms for the k-center clustering is that the update time
is dependent on the number of centers k. This is par-
ticularly undesirable in the applications where k is rela-
tively large. A prominent example where this is justified
is learning features from image data [9], where it is ob-
served that increasing k leads to siginficant gains in the
accuracy of their prediction model. Other applications
where k is large include [18] and [14]. Unfortunately, the
dependency on k seems inherent in the state-of-the-art
dynamic algorithms; for example, the algorithm due to

Chan et al. [4] requires examining the set of current cen-
ters upon insertion of a point, while the algorithm due
to Har-Peled [24] employs the notion of coresets, which
in turn requires dependency on the number of centers.

Taking cue from the discussion above, a natural
question is whether the dependency on k is necessary or
is just an artifact of the current algorithmic techniques.

Open Question 1. Are there fully-dynamic al-
gorithms for the k-center clustering problem with
running time independent of k while still guaran-
teeing a (2 + ε)-approximation ratio?

Even if we are able to come up with an algorithm
with provable guarantees, in order to be competitive
with the current approaches to dynamic k-center clus-
tering, the new feature of our algorithm should trans-
late in lower update times in benchmark instances from
practice.

Open Question 2. Do algorithms with provable
update time independent of the number of centers
k achieve a speed-up compared to the state-of-
the-art dynamic k-center algorithms in benchmark
instances?

In this paper we answer the first algorithmic question
in the affirmative.

Theorem 1.1. Let ε > 0. There is a determinis-
tic, fully-dynamic algorithm for the k-center clustering
problem, where points are taken from a metric space
with doubling dimension κ and aspect ratio ∆, such
that the cost of the maintained solution is within a
factor (2 + ε) to the cost of the optimal solution and
the insertions and deletions of points are supported in
O((2/ε)O(κ) log ∆ log log ∆·ln ε−1) update time. For any
given point, queries about whether this point is a center
or reporting the cluster this point is assigned to can be
answered in O(1) and O(log ∆), respectively.

For bounded doubling dimension metrics, which in-
clude d-dimensional Euclidean spaces and other metrics
that usually appear in practice, our algorithm achieves
nearly logarithmic update and query time in the pa-
rameters of the problem. Since by construction our al-
gorithm is deterministic, it works against an adaptive
adversary (i.e., updates are allowed to depend on prior
decisions made by the algorithm). This is in contrast
to the state-of-the art algorithm by Chan et al. [4] that
only works against an oblivious adversary who must fix
the sequence of updates before the dynamic algorithm
starts.

To answer the second open question, we perform an
extensive experimental study of a variant of our algo-
rithm, where we replace navigating nets with the closely

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited144

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

related notion of cover trees, one of the pioneering data
structures for fast nearest-neighbour search [3, 32]. We
compare our results against the implementation of Chan
et al. [4], which is the state-of-the-art algorithm for the
problem. Our findings answer the open question in the
affirmative: the proposed algorithm has a significant ad-
vantage in running time and solution quality for larger
values of k, as suggested by our theoretical results. An-
other upside of the presented algorithm in constrast to
Chan et al. [4] is that we do not need to know lower and
upper bounds on the maximum and minimum distance
between any two points that are ever inserted when ini-
tializing the algorithm. In a practical scenario these
values might be unknown. This would, in the worst
case, force Chan et al. [4] to choose MAX DOUBLE and
MIN DOUBLE as upper and lower bounds respectively
to guarantee correctness. Consequently, their running
time for each update might be significantly slower in
practice. We compare running times assuming that
these values are precomputed for the respective datasets
as it was assumed in their paper. Still, our algorithm
outperforms Chan et al. [4] for large k in terms of run-
ning time as their algorithm has a quadratic dependence
on k. Regarding solution quality, both algorithms ob-
tain (2 + ε) approximations of the optimal solution but
for ε > 0.5 we always obtain a better solution quality
in the experiments. Most significantly, our experiments
show that when one is willing to sacrifice only about
25% of solution quality we are orders of magnitudes
faster than Chan et al. [4] even for smaller values of
k.

1.1 Related work For an in-depth overview of clus-
tering and its wide applicability we refer the reader
to two excellent surveys [39, 23]. Here we briefly dis-
cuss closely related variants of the k-center clustering
problem such as the kinetic and the streaming model.
In the kinetic setting, the goal is to efficiently main-
tain a clustering under the continuous motion of the
data points. Gao et al. [17] showed an algorithm that
achieves an 8-approximation factor. Their result was
subsequently improved to a (4+ε) guarantee by Friedler
and Mount [16]. In the streaming setting Cohen-Addad
et al. [11] designed a (6 + ε)-approximation algorithm
with an expected update time of O(k2 · ε−1 · log ∆).
However, their algorithm only works in the sliding win-
dow model and does not support arbitrary insertions
and deletions of points. Another important result in
the streaming setting is [21] where the authors imple-
ment the first single pass constant approximation algo-
rithm for k-median, which was subsequently improved
in [8]. Kale [29] studied streaming algorithms for a gen-
eralization of the k-center clustering problem, known as

the matroid center problem where he gives a (7 + ε)-
approximate solution in one pass with space depending
on the rank of the matroid.

Recently and independently of our work, Schmidt
and Sohler [40] gave an 16-approximate fully-dynamic
algorithm for the hierarchical k-center clustering with
O(log ∆ log n) and O(log2 ∆ log n) expected amortized
insertion and deletion time, respectively, and O(log ∆+
log n) query time, where points come from the discrete

space {1, . . . ,∆}d with d being a constant. This result
implies a dynamic algorithm for the k-center clustering
problem with the same guarantees. In comparison with
our result, our algorithm (i) achieves a better and an
almost tight approximation, (ii) is deterministic and
maintains comparable running time guarantees, and (iii)
applies to any metric with bounded doubling dimension.
For variants of facility location, k-median and k-means,
clustering, Cohen-Addad et al. [10] and Henzinger and
Kale [27] obtain fully dynamic algorithms with non-
trivial running time and approximation guarantees for
general metric spaces.

1.2 Technical overview In the static setting, a
well-known approach for designing approximation algo-
rithms for the k-center clustering problem is exploiting
the notion of r-nets [25]. Given a metric space (M,d),
and an integer radius r ≥ 0, an r-net Yr ⊆ M is a set
of points, referred to as centers, satisfying (a) the cov-
ering property, i.e., for every point x ∈ M there exists
a point y ∈ Yr within distance at most r and (b) the
separating property, i.e., all distinct points y, y′ ∈ Yr
are at distance larger than r.

Consider O(ε−1 · log ∆) many r-nets of the metric
space (M,d) with different values of r such that r is
a power of (1 + ε). The union over all such r-nets
naturally defines a hierarchy Π. Chan et al. [4] show
that the smallest r in Π such that |Yr| ≤ k yields a
feasible k-center clustering whose cost is within (2 + ε)
to the optimal one.

A natural attempt to extend the above static al-
gorithm to the incremental setting is to maintain the
hierarchy Π under insertions and deletion of points. In
fact, Chan et al. [4] follow this idea to obtain a sim-
ple incremental algorithm that has a linear dependency
on the number of centers k. We show how to remove
this dependency on k in metrics with bounded doubling
dimension and maintain a similar hierarchy under inser-
tion and deletion of points. Concretely, our algorithm
uses navigating nets, which is a hierarchy of r-nets de-
fined over metric subspaces of M . Navigating nets were
introduced by Krauthgamer and Lee [33] to build an
efficient data structure for the nearest-neighbor search
problem. We observe that the navigating nets data

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited145

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

structure can be extended to a fully dynamic algorithm
for the k-center clustering problem with an update time
independent of k. While navigating nets remove the de-
pendency on the number of clusters, they only guarantee
an 8-approximation of the dynamic k-center clustering
problem. We improve the approximation factor from 8
to (2 + ε) by maintaining a carefully defined collection
of navigating nets, while increasing the running time by
a factor of O(ε−1 ln ε−1). The definition of this care-
fully defined collection of navigating nets is inspired by
a technique first used for incremental streaming algo-
rithms [38].

Similar hierarchical structures have been recently
employed for solving the dynamic sum-of-radii cluster-
ing problem [28] and the dynamic facility location prob-
lem [20]. In comparison to our result that achieves a
(2 + ε)-approximation, the first work proves an approx-
imation factor that has an exponential dependency on
the doubling dimension while the second one achieves a
very large constant. Moreover, while our data structure
supports arbitrary insertions of points, both works sup-
port updates only to a specific subset of points in the
metric space.

2 Preliminaries

In the k-center clustering problem, we are given a
set M of points equipped with some metric d and
an integer parameter k > 0. The goal is to find a
set C = {c1, . . . , ck} of k points (centers) so as to
minimize the quantity φ(C) = maxx∈M d(x,C), where
d(x,C) = minc∈C d(x, c). Let OPT denote the cost of
the optimal solution.

In the dynamic version of this problem, the set M
evolves over time and queries can be asked. Concretely,
at each timestep t, either a new point is added to M ,
removed from M or one of the following queries is made
for any given point x ∈ M : (i) decide whether x is a
center in the current solution, and (ii) find the center c
to which x is assigned to. The goal is to maintain the set
of centers C after each client update so as to maintain
a small factor approximation to the optimal solution.

Let dmin and dmax be lower and upper bounds on the
minimum and the maximum distance between any two
points that are ever inserted. For each x ∈M and radius
r, let B(x, r) be the set of all points in M that are within
distance r from x, i.e., B(x, r) := {y ∈M | d(x, y) ≤ r}.

3 Fully dynamic k-center clustering using
navigating nets

In this section, we present a fully-dynamic algorithm for
the k-center clustering problem that achieves a (2 + ε)-
approximation with a running time not depending on
the number of clusters k. The first component of

our algorithm is to use a nearest neighbor search data
structure called “navigating nets” (Krauthgamer and
Lee [33]). Unfortunately, this technique by itself only
guarantees an 8-approximation, which does not suffice
to obtain the claimed (2+ε)-approximation factor. The
second part of our construction is a seemingly unrelated
scaling argument by McCutchen and Khuller [38] used
in in the context of incremental streaming algorithms.
Our work is the first to apply this argument together
with the nearest neighbor search data structures.

We start by reviewing notation from [33].
r-net. Let (X, d) be a metric space. For a given

parameter r > 0, a subset Yr ⊆ X is an r-net of X if
the following properties hold:

1. (separating) Distinct x, y ∈ Yr have d(x, y) ≥ r.

2. (covering) X ⊆
⋃
y∈Yr B(y, r).

3.1 Navigating Nets Given a metric space (M,d)
which evolves over time with parameters dmin and dmax

we define Γ := {αi : i ∈ Z} as the set of scales of (M,d)
for some α > 1. We define an r-net for all r ∈ Γ as
follows: For all r < dmin, we define Yr := M as a trivial
r-net of M . For r > dmin, define Yr to be an r-net
of Yr/α. Note that Yr is a subset of Yr/α and contains
a point with distance ≤ r to every point in Yr/α. A
navigating net Π is defined as the union over all Yr for
r ∈ Γ. We refer to the elements in Yr as centers. Note
that for every scale r > dmax the set Yr contains only one
element due to the separating property. A navigating
net Π keeps track of (i) the smallest scale rmax defined
by rmax = min{r ∈ Γ : ∀r′ ≥ r, |Yr′ | = 1}, and (ii) the
largest scale rmin defined by rmin = max{r ∈ Γ : ∀r′ ≤
r, Yr′ = M}. All scales r ∈ Γ such that r ∈ [rmin, rmax]
are referred to as nontrivial scales. Figure 1 illustrates
an example of a navigating net.

3.2 Navigating nets with differing base dis-
tances In what follows, we describe how to obtain a
(2 + ε)-approximation for the k-center clustering prob-
lem by maintaining navigating nets in parallel. This
technique was originally introduced by McCuthen and
Khuller [38] for improving the approximation ratio of
the incremental doubling algorithm for the k-center
problem due to Charikar et al. [7].

The key idea behind the construction is that in-
stead of maintaining one navigating net, we maintain
m ≥ 1 navigating nets with differing base distances.
The constant m depends on the desired approximation
factor: For a better approximation, we maintain more
navigating nets. We define m later on. The navigat-
ing nets differ only in the corresponding set Γ which is
used to define them. More concretely, for each integer

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited146

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Y22

Y21

Y20 = M
101 2 3 4 5 6 7 8 9

3 5 9

5

Figure 1: An example for a navigating net with M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} where d is Euclidean and α = 2.
Consequently, Γ = {2i : i ∈ Z}. In the navigating net, the nontrivial scales are given by {20, 21, 22}. Consequently,
rmax = 22, rmin = 20.

1 ≤ p ≤ m, let Γp = {αi+(p/m)−1 | i ∈ Z+}.
Let Y pr := M for all r ≤ dmin and for all r ∈ Γp,

let Y pr be an r-net of Y pr/α. A navigating net Πp is

defined as the union over all Y pr for r ∈ Γp. Similarly,
we maintain rpmax and rpmin, such that rpmax = min{r ∈
Γp | ∀r′ ≥ r, |Y pr′ | = 1} and rpmin = max{r ∈ Γp | ∀r′ ≤
r, Y pr′ = M}, respectively. By definition of Γp, there is
an αj/m−1-net of αj/m−2 for all positive integers j.

We next show how to maintain a k-center solution
for the set of points M using the family of navigating
nets {Πp}mp=1. For each navigating net Πp 1 ≤ p ≤ m,
define i∗p = i + (p/m) − 1 to be the index such that

the αi
∗
-net Y p

α
i∗p

has at most k centers and Y p
α
i∗p−1 has

more than k centers. We will omit from now on the
p from i∗p if it is clear from context which navigating

net i∗p belongs to. Define costp = α
α−1α

i∗ for all
1 ≤ p ≤ m. We compare the costs of all navigating
nets and pick the navigating net p∗ with minimal cost

p∗ = arg min1≤p≤m costp. The set of centers Y p
∗

αi∗
is the

output k-center solution.
The next lemma proves that every point x ∈ M is

within a distance costp = α
α−1α

i∗ of a center in Y p
αi∗

.

Lemma 3.1. For 1 ≤ p ≤ m and x ∈ M there is a
center c ∈ Y p

αi∗
such that d(x, c) ≤ costp.

Proof. By construction, the set Y p
αi∗

is an αi
∗
-net of

Y p
αi∗−1 and all elements of Y p

αi∗−1 are within distance αi
∗

to a center in Y p
αi∗

. Similarly, the elements of Y p
αi∗−2 are

within distance αi
∗

+ αi
∗−1 to a center in Y p

αi∗
and so

on. Note that the set Y p
rpmin

contains all points currently

in M and thus the distance of every point in M to
some center in Y p

αi∗
forms a geometric series. Formally,

let x ∈ M be arbitrary and let c be its ancestor in
Y p
αi∗

. Then the distance between c and x is bounded as

follows:

d(x, c) ≤ αi
∗

+ αi
∗−1 + αi

∗−2 + · · ·+ rpmin

≤ αi
∗
∞∑
i=0

(
1

α

)i
= αi

∗ α

α− 1
= costp.

The above lemma shows an upper bound for the output

k-center solution Y p
∗

αi∗
, i.e., φ(Y p

∗

αi∗
) ≤ costp∗ . The next

lemma proves that costp∗ has the desired approximation
guarantee, i.e., costp∗ ≤ (2 + ε)OPT.

Lemma 3.2. If α = 2/ε = O(ε−1) and m ≥ ε−1 ln 2 +
ε−1 ln ε−1 = O(ε−1 ln ε−1) then costp∗ ≤ (2 + ε)OPT.

Proof. We set p∗ = arg min1≤p≤m costp, where costp∗ =
α
α−1α

i∗ = α
α−1α

j/m−1 for some j ∈ Z. For comparison,

consider level α̂ = α(j−1)/m−1 and the corresponding

α̂-net Y p̂α̂ . Note that we returned Y p
∗

αi∗
instead of Y p̂α̂

as a solution even though αi∗ > α̂. Consequently,
|Y p̂α̂ | > k ≥ |Y p∗αi∗ |. Because |Y p̂α̂ | > k, at least two

points c1, c2 ∈ Y p̂α̂ are assigned to the same center c∗ in

the optimal solution. By the separation property of Y p̂α̂
we get that d(c1, c2) ≥ α̂. Using the triangle inequality
we obtain

2OPT ≥ d(c1, c
∗) + d(c∗, c2)

≥ d(c1, c2) ≥ α̂ = α(j−1)/m−1

and thus OPT ≥ α(j−1)/m−1/2. To obtain the desired
approximation we compare our result with costp∗ :

costp∗

OPT
≤

α
α−1α

j/m−1

α(j−1)/m−1/2
=

2αj/m+1

(α− 1) · α(j−1)/m

=
2α(j−1)/m · α1/m+1

(α− 1) · α(j−1)/m
=

2α

(α− 1)
m
√
α.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited147

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

It remains to show that 2 α
(α−1)

m
√
α ≤ 2(1+ε)·(1+ε). Set

α = 2/ε. Clearly, α = O(ε−1) and α
α−1 = 1+ ε

2−ε ≤ 1+ε

because 0 < ε ≤ 1. Moreover note that α1/m ≤
(1 + ε) iff 1/m log1+ε α ≤ 1. The latter holds for any
m ≥ ε−1 ln 2 + ε−1 ln ε−1, which in turn implies that
m = O(ε−1 ln ε−1).

3.3 Fully dynamic k-center clustering In this
section, we present the details of the data structure
presented in Section 3.2.

The metric spaces that we consider throughout our
running time analysis satisfy the following property.

Definition 3.1. (Doubling Dimension) The dou-
bling dimension of a metric space (M,d) is said to be
bounded by κ ≥ 0 if any ball B(x, r) in (M,d) can be
covered by 2κ balls of radius r/2.

The key idea for obtaining a data structure which
has update time independent of k is to implement
navigating nets [33], where the running time of the
insertion and deletion operation depends on κ1.

3.3.1 Data structure Our data structure (1) main-
tains m navigating nets and (2) answers queries about
our current solution to the given k-center clustering
problem.

For (1) we use the data structure described in [33]:
Given ε, we set α = 2/ε and m = ε−1 ln 2 + ε−1 ln ε−1.

Let 1 ≤ p ≤ m and αi ∈ Γp: For the navigating net
Πp we do not store the sets Y pαi explicitly. Instead, for
every nontrivial scale αi ∈ Γp and every x ∈ Y pαi we store
the navigation list Lpx,αi which contains nearby points

to x in the αi−1-net Y pαi−1 , i.e., Lpx,αi = {z ∈ Y pαi−1 :

d(z, x) ≤ ψ ·αi} where ψ ≥ 4 (this is mandatory to make
navigating nets work [33, Section 2.1]). Additionally, for
each x ∈ M and each 1 ≤ p ≤ m, we store the largest
scale β ∈ Γp such that Lpx,β = {x} but we do not store
any navigation list Lpx,α where α ∈ Γp and α < β.

For (2), i.e., answering queries, we also maintain the
reverse information. Specifically, for every x in M and
nontrivial scale αi we maintain Mp

x,αi which contains

all the points in the αi+1-net Y pαi+1 whose navigation
list contains x, i.e., Mp

x,αi = {y ∈ Y pαi+1 : x ∈ Lpy,αi+1}.
We maintain each Mp

x,αi in a min-heap data structure,

where each element y ∈ Mp
x,αi is stored with the

distance d(x, y). It is well known that constructing such
a min-heap takes O(|Mp

x,αi |) time and the insert and
delete operations can be supported in logarithmic time
in the size of Mp

x,αi . Let y be the closest point to x

1Krauthgamer and Lee [33] denote the doubling dimension κ
of S with dim(S).

in Mp
x,αi . The min-heap allows us to extract y in O(1)

time.
Additionally, we maintain a counter cpαi = |Y pαi | for

each scale αi ∈ Γp and navigating net Πp 1 ≤ p ≤ m
and for each navigating net Πp 1 ≤ p ≤ m, we
maintain the largest scale αi

∗
such that cp

αi∗
≤ k and

cp
αi∗+1 > k. We store costp∗ = min1≤p≤m

α
α−1α

i∗ and
p∗ = arg min1≤p≤m costp.

3.3.2 Preprocessing Consider the construction of a
single navigating net Πp. We start by inserting the |M |
points using the routine described in [33, Chapter 2.5]
whose running time is O((2/ε)O(κ) log ∆ log log ∆). Ad-
ditionally we construct the lists Mp

x,αi for every 1 ≤ p ≤
m, x ∈ M and scale αi. We do this during the insert
operation which takes care of the lists Lpx,αi . Due to

Lemma 2.2 in [33] and by the choice of α = 2/ε every
navigation list has size O((2/ε)O(κ)). By Lemma 2.3
in [33] every navigating net has only O(log ∆) non-
trivial scales. Consequently, the sum of all navigation
lists in a navigating net Πp is of size

∑
x,αi |L

p
x,αi | =

O(|M |(2/ε)O(κ) log ∆). Notice that
∑
x,αi |L

p
x,αi | =∑

x,αi |M
p
x,αi | because the sets Mp

x,αi store the reverse

information of the sets Lpx,αi . Since there are m =

O(ε−1 ln ε−1) navigating nets, the latter yields a con-
struction time of O(|M |(2/ε)O(κ) log ∆ log log ∆ ln ε−1).

3.3.3 Handling Point Updates and Queries To
handle point insertions and deletions in the m navigat-
ing nets, we invoke the routines described in [33, Chap-
ters 2.5–2.6] for all the navigating nets. We review them
here for the sake of completeness.

Inserting a point q into a navigating net Πp.
To insert a point q into Πp we decide for each Y pr ,
r ∈ Γp whether to include q or not. For r = rpmin,
insert q into Y pr because it contains all points in M .
From then on, consider the next level r = r · α and
insert q when d(q, Y pr) ≥ r until d(q, Y pr) ≤ r. Notice
that this procedure guarantees that Y pr is an r-net of
Y pr/α. To implement the query d(q, Y pr) ≥ r efficiently

using navigation lists we construct a small set Zpr ⊆ Y pr
containing all points close to q. Instead of computing
the distance from q to all elements in Y pr we compute
d(q, Zpr). We compute the sets Zpr for r ∈ Γp as follows:
Initially, set r = rpmax and Zpr = {ytop} where ytop is the
only element in Y p

rpmax
.

1. Zpr/α = {y ∈
⋃
z∈Zpr L

p
z,r | d(q, y) ≤ d(q, Zpr) + r}.

2. If r/α > rpmin: set r = r/α and go to step 1.
Otherwise terminate.

For Zpr we obtain the following properties:

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited148

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Lemma 3.3. For all nontrivial scales r ∈ Γp, the set Zpr
contains {x ∈ Y pr | d(q, x) ≤ ψr}.

Proof. By induction on r starting from r = rpmax. Base
case is trivial, as Zpr = Y pr . Assume for the induction
step that Zpr contains {x ∈ Y pr | d(q, x) ≤ ψr}. Let
y ∈ Y pr/α be arbitrary and d(q, y) ≤ ψ · r/α. Because

Y pr is an r-net of Y pr/α, there is a y′ ∈ Y pr such that

d(y, y′) ≤ r. Note that Zpr contains y′ by the induction
hypothesis and trivially, the navigation list of y′ also
contains y as Lpy′,r = {z ∈ Y pr/α : d(z, y′) ≤ ψ · r}. Note

that d(q, y) ≤ d(q, y′) + r ≤ d(q, Zpr) + r and thus we
include y in Zpr/α in Step 1.

Lemma 3.4. For all r, |Zpr | ≤ (2/ε)
O(κ)

Proof. Again by induction on r starting from r = rpmax.
The inital set Zpr has size one, so consider any set
Zpr/α constructed in step 1. Let ∆Zp

r/α
be the aspect

ratio of Zpr/α. Note that Zpr/α ⊆ Y pr/α and due to the

separating property any two points have distance at
least r/α from each other. Also, for all y ∈ Zpr/α we

have d(q, y) ≤ ψr+r due to Lemma 3.3 and step 1. The

aspect ratio ∆Zp
r/α

is 2(ψr+r)
r/α . Thus, Zpr/α is contained

in a ball of radius 2(ψr + r) ≤ 2∆Zp
r/α
r/α centered at

any point of Zpr . Applying the definition of doubling
dimension O(log(∆Zp

r/α
)) times, yields that the ball has

size r/(2α). Each of these balls can cover at most one
element in Zpr/α by the fact that any two points have

distance at least r/α from each other. The number of
balls is |Zpr/α| = (2/ε)O(κ) because α = O(1/ε).

Remember that we implemented Y pr using navigation
lists: To construct the navigation list Lpq,r for all r where
q ∈ Y pr/α we use the set Zpr/α to determine the elements

which are within distance ψ ·r. Then we insert q into all
navigation lists Lpy,r where y, q ∈ Y pr/α and d(q, y) ≤ ψ·r.
The running time for a point insertion can thus be
characterized by the product of the size of the lists Zpr
(O((2/ε)

O(κ)
), Lemma 3.4), the number of nontrivial

scales (O(log ∆), Lemma 2.3 in [33]) and the time
needed to insert a new navigation list for a point into a
balanced search tree of height log ∆ (O(log log ∆)). We
obtain a running time of O((2/ε)O(κ) log ∆ log log ∆) for
inserting a point.

Deleting a point q from a navigating net
Πp. Deleting a point is done similarly to inserting
a point: First, find all navigation lists Lpy,r which
contain q and delete q using the sets Zpr . Note that
when we delete q from Y pr , Y pr might not be an r-net
of Y pr/α anymore. In this case, we add points from

Y pr/α to Y pr until Y pr satisfies the covering property

again. All of these operations can again be implemented
efficiently with the sets Zpr . We obtain a running
time of O((2/ε)O(κ) log ∆ log log ∆) for deleting a point.
In summary, the time for handling a point insertion
and a point deletion in a single navigating net is
O((2/ε)O(κ) log ∆ log log ∆) (Theorem 2.5 in [33]). Since
we maintain m = O(ε−1 ln ε−1) navigating nets, the
overall time to handle a point insertion or deletion is
O((2/ε)O(κ) log ∆ log log ∆ · ln ε−1).

Queries. We also keep track of the counters cpαi
and sets Mp

x,αi when we handle the insertion and
deletions of points in the navigating nets. While
updating the counters cpαi we simultaneously keep track

of αi
∗

for all navigating nets and maintain p∗.
We next discuss the query operations that our data

structure supports. First, we answer the query whether
a given point x ∈ M is a center by simply checking

if the list Lp
∗

x,αi∗
exists. Second, given a point x ∈ M

we return its corresponding center in Y p
∗

αi∗
as follows:

First we check if x is a center. If not, we consider

Lp
∗

x,β = {x}. Note that β = αi for some i. Then we

repeatedly determine the navigation list Lp
∗

y′,αi+1 where

y′ is the center in Y pαi+1 which contains x within radius

αi+1 using the min-heap Mp∗

x,αi+1 . Then we increase
i by 1 until i = i∗ − 1. Once we arrive at the list

Lp
∗

y′′,αi∗−1 we return y′′ as the center x is assigned

to. We finally analyze the running time of the query
operations. It is straightforward to see that maintaining
the counters cpαi , α

i∗ , p∗, β and min-heaps Mp
x,αi in all

navigating nets can also be done in the same time per
update. Determining if a point x ∈M is a center can be
done in O(1). Determining the center of a given point
x ∈M takes O(log ∆) time because there are O(log ∆)
nontrivial scales (Lemma 2.3 in [33]) and thus there are
O(log ∆) iterations in the lookup algorithm until the
scale αi

∗
is reached.

The correctness of the maintained hierarchies fol-
lows from the correctness in [33]. Due to Lemma 3.2

the set Y p
∗

αi∗
is a feasible solution to the k-center problem

whose cost is guaranteed to be within (2 + ε) times the
optimum cost. Combining the above guarantees yields
Theorem 1.1.

4 Empirical Analysis

In this section, we present the experimental evaluation
for our k-center algorithm. We implemented the al-
gorithm described in the previous sections using cover
trees [3, 32], which is a fast variant of navigating nets.
The cover tree maintains the same invariants as navigat-
ing nets, except that for a point at a certain level in the
hierarchy, we store exactly one nearby point one level

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited149

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

up, instead of a set of points that are nearby. Beygelz-
imer et al. [3] show that all running time guarantees can
be maintained for metric spaces with bounded expan-
sion constant. This in turn implies that using a collec-
tion of cover trees yields a (2+ε)-approximation for the
k-center clustering problem. The expansion constant
of M is defined as the smallest value c ≥ 2 such that
|B(p, 2r) | ≤ c|B(p, r) | for all p ∈ M and r > 0. Our
algorithm maintains O(ε−1 ln ε−1) cover trees. To ob-
tain the current centers of a cover tree, we traverse the
tree top-down and add all distinct points until we have
k points. Due to the nesting property of the cover tree,
i.e., every point which appears in some level i appears
in every lower level j < i in the tree [3], we are guaran-
teed to add all nodes of the desired level Y pi∗ described in
Section 3.2. From now on we call our algorithm ACov.2

We compare our algorithm against the algorithm
of Chan et al. [4] which is the state-of-the-art approach
for the fully dynamic k-center problem in practice.

4.1 The algorithm of Chan et al. [4] To gain some
intuition into the state-of-the art algorithm in practice,
we give a brief summary of the algorithm described
in Chan et al. [4]: The algorithm maintains a clustering

for each r ∈ Γ := {(1 + ε)
i

: dmin ≤ (1 + ε)
i ≤ dmax, i ∈

N}. Their algorithm is a (2 + ε)-approximation of the
optimal solution and has an average running time of

O(k2 · log(∆)
ε) per update. Note that the algorithm needs

dmin and dmax as input and that it is not guaranteed
that these values are available in practice. In contrast,
ACov does not need these parameters. For our empirical
analysis we provided these special parameters to the
algorithm of Chan et al. [4]. For arbitrary instances one
would initialize dmin, dmax with the minimum/maximum
value for the type double respectively to guarantee the
correctness of their algorithm. From now on, we call
their algorithm ACGS.

4.2 Setup We implemented the cover tree in C++
and compiled it with g++-7.4.0. We executed all of
our experiments on a Linux machine running on an
AMD Opteron Processor 6174 with 2.2GHz and 256GB
of RAM. In our experiments we evaluate ACGS and
ACov with the following pairwise combinations of ε ∈
{0.1, 0.5, 1, 4} and k ∈ {20, 50, 100, 200}. In total, we
perform 10 different runs for each test instance and com-
pute the arithmetic mean of the solution improvement
and speedup on this instance. When further averaging
over multiple instances, we use the geometric mean in
order to give every instance a comparable influence on
the final score. To measure the solution quality of an

2Source code and data sets: http://bit.ly/2S4WvJL

algorithm at any timepoint i we query for the current
set of centers Ci. We do not directly compute the ob-
jective function value φ(Ci), since this is an expensive
operation and it is not usually needed in practice. Af-
ter the termination of the two algorithms we compute
the objective function of the k-center solution φ(Ci) in
order to compare the solutions of the two competing al-
gorithms ACov and ACGS. Hence, the running times of
both algorithms include the time to perform the point
insertions/deletions and the queries (obtaining the cen-
ters of the solution), but not computing the objective
function.

4.3 Instances and Update Sequences To com-
pare the performance of the two algorithms, we use the
instances of Chan et al. [4] with Euclidean distance and
add an additional random instance.

• Twitter. The twitter data set [5] is introduced
in Chan et al. [4] and consists of 21 million geo-
tagged tweets. Our experiments consider only the
first 200k tweets without duplicates.

• Flickr. The Yahoo Flickr Creative Commons 100
Million (YFCC100m) dataset [44] contains the
metadata of 100 million pictures posted on Flickr.
Unfortunately, we were not able to obtain the full
dataset but used a search engine to build a subset
of the dataset [30]. This subset entails 800k points
with longitude and latitude.

• Random. This dataset consists of 2 million points
created as follows: First, we sampled 100 points
(x, y) uniformly at random for −1 ≤ x, y ≤ 1.
Then, for each such point (x, y), we sampled an-
other 20000 points using a normal distribution with
(x, y) as mean and a variance of 0.001 respectively.

We use the following update sequences on the data sets
inserting at most 200k points:

• Sliding Window. In the sliding window query, a
point is inserted at some point in time t and will be
removed at time t+W where W is the window size.
We chose a sliding window of size 60k following the
implementation of Chan et al. During the update
sequence we perform a query every 2000 insertions.
Therefore, we perform 100 queries in total.

• Random Insertions/Deletions. We further distin-
guish between three concrete types of update se-
quences with 30% deletions, 10% deletions and 5%
deletions. Points are inserted uniformly at random
and deleted uniformly at random from the set of
points already inserted. The chance to perform a
query is 0.05%. The chance to insert a point at

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited150

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

any given timestep is given by 1− the respective
deletion percentage above −0.0005.

4.4 Results and Interpretation We now evaluate
the performance of ACov and compare it ACGS. In
Table 1 we present the geometric mean speedup of
ACov over ACGS. Here, both algorithm use the same
parameter ε and have the same number of centers k.
First of all, note that the empirical results reinforce
the theoretical results: The larger k and ε are in our
experiments, the larger the speedups of ACov become
when compared to the algorithm ACGS. The running
time of our algorithm ACov does not depend on k
whereas in contrast each updates of ACGS depends
quadratically on k on average. Moreover, speedups
improve for larger values of ε since the running time
of ACov has a multiplicative factor of O(ε−1 ln ε−1) and
ACGS’s running time includes a better factor O(ε−1).
For example, when k is as large as 200, ACov is faster
than ACGS for all values of ε. In contrast, when ε = 1,
ACov has better speedups than ACGS already for small
values of k like k = 50. When k = 20, ACGS is faster
than ACov.

We proceed to compare the solution quality when
both algorithm use the same parameter ε and also use
the same number of centers k. In Table 1 we present
the geometric mean solution improvement of ACov over
ACGS for this case. ACov gives better solutions for
all instances as soon as ε ≥ 0.5. Generally speaking,
the larger ε gets, the larger is our improvement in
the solution: For ε = 0.5 our algorithm gives 10–12%
better solutions. Setting ε = 1 we already obtain 12–
36% better solutions and finally, when setting ε = 4
we obtain 7–114% better solutions. For ε = 0.1 our
solutions are about 3–4% worse than the solutions of
ACGS. We conclude that our algorithm has a significant
advantage in running time and solution quality for
slightly larger values of k and ε.

We now fix the value of ε in our algorithm to
1 and 4 and compare it with ACGS for all values of
ε. Table 2 presents the geometric mean speedup of
the results and the geometric mean improvement in
solution quality for the case that we fix ε = 1 in our
algorithm. Notice that we obtain a speedup of at least
one magnitude when k ≥ 50 comparing to ACGS with
ε = 0.1 while sacrificing only 9–12% in solution quality
over ACGS. Most significantly, ACov is faster thanACGS

with ε = 0.5 and k ≥ 50 while also obtaining better
solution quality. Similarly, we set ε = 4 for ACov

and compare the results to ACGS for all values of ε
again. The resulting geometric mean speedups and the
geometric mean solution improvement is presented in
Table 3. When comparing to ACGS with ε = 0.1 we

Table 1: Top: Geometric mean speedup of our algo-
rithm ACov over ACGS. Bottom: Geometric mean im-
provement in solution quality of ACov over ACGS. Both
algorithms use the same ε and k. Higher numbers are
better.

ε → 0.1 0.5 1.0 4.0
k ↓
20 0.02 0.14 0.32 0.72
50 0.10 0.59 1.34 3.05
100 0.33 2.01 4.45 10.32
200 1.15 7.66 17.74 39.60

20 0.97 1.12 1.27 1.07
50 0.97 1.10 1.36 1.46
100 0.96 1.12 1.12 2.14
200 0.96 1.12 1.19 1.28

Table 2: Top: Geometric mean speedup over ACGS

when fixing ε = 1 for our algorithm ACov. Bottom:
Geometric mean improvement in solution quality when
fixing ε = 1 for ACov. Higher numbers are better.

ε → 0.1 0.5 1.0 4.0
k ↓
20 2.48 0.55 0.32 0.14
50 10.01 2.27 1.34 0.62
100 32.17 7.51 4.45 2.08
200 130.01 29.60 17.74 8.35

20 0.91 1.08 1.27 1.18
50 0.90 1.05 1.36 1.72
100 0.89 1.06 1.12 2.52
200 0.88 1.06 1.19 1.54

Table 3: Top: Geometric mean speedup over ACGS

when fixing ε = 4 for for our algorithm ACov. Bottom:
Geometric mean improvement in solution quality when
fixing ε = 4 ACov. Higher numbers are better.

ε → 0.1 0.5 1.0 4.0
k ↓
20 12.09 2.70 1.58 0.72
50 48.69 11.07 6.54 3.05
100 159.11 37.17 22.03 10.32
200 616.51 140.38 84.13 39.60

20 0.83 0.98 1.16 1.07
50 0.76 0.89 1.16 1.46
100 0.76 0.90 0.95 2.14
200 0.74 0.88 0.99 1.28

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited151

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

obtain speedups of one order when k ≤ 50 and two
orders when k ≥ 100 while sacrificing at most 26% of
the solution quality.

5 Conclusion

We developed a fully dynamic (2 + ε) approximation
algorithm for k-center clustering with running time
independent of the number of centers k. Our algorithm
maintains multiple hierarchies (so called navigating
nets), so that each hierarchy stores sets of points
which evolve over time through deletions and insertions.
Roughly speaking, each of these hierarchies maintains
the property that points residing on the same level are
at least separated by a specific distance. This allows us
to obtain k-center solutions with an approximation of
(2 + ε). Maintaining the navigating nets can be done
in time independent of k. Lastly, we conducted an
extensive evaluation of this algorithm which indicates
that our algorithm outperforms the state-of-the-art
algorithms for values of k and ε suggested by theory.
In this case, our algorithm obtains significant speedups
and improvements in solution quality. An interesting
direction for future research includes parallelization
of the two algorithms as well as implementing the
streaming algorithms by Schmidt and Sohler [40, 38]
and Charikar et al. [7].

References

[1] Internet live stats. https://www.internetlivestats.

com/one-second, 2020. Accessed: 2020-07-20.
[2] Yair Bartal, Lee-Ad Gottlieb, and Robert

Krauthgamer. The traveling salesman problem:
Low-dimensionality implies a polynomial time approx-
imation scheme. SIAM J. Comput., 45(4):1563–1581,
2016.

[3] A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In ICML. ACM, 2006.

[4] T.-H. Hubert Chan, Arnaud Guerqin, and Mauro
Sozio. Fully dynamic k -center clustering. In Inter-
national World Wide Web Conference (WWW), pages
579–587, 2018.

[5] T.-H. Hubert Chan, Arnaud Guerqin, and
Mauro Sozio. Fully dynamic k -center cluster-
ing GitHub Repository. https://github.com/

fe6Bc5R4JvLkFkSeExHM/k-center, 2018.
[6] T.-H. Hubert Chan and Shaofeng H.-C. Jiang. Reduc-

ing curse of dimensionality: Improved PTAS for TSP
(with neighborhoods) in doubling metrics. In Robert
Krauthgamer, editor, SODA, pages 754–765. SIAM,
2016.

[7] Moses Charikar, Chandra Chekuri, Tomás Feder, and
Rajeev Motwani. Incremental clustering and dynamic
information retrieval. SIAM J. Comput., 33(6):1417–
1440, 2004. announced at STOC’97.

[8] Moses Charikar, Liadan O’Callaghan, and Rina Pani-
grahy. Better streaming algorithms for clustering prob-
lems. In Lawrence L. Larmore and Michel X. Goemans,
editors, STOC, pages 30–39. ACM, 2003.

[9] Adam Coates and Andrew Y. Ng. Learning feature
representations with k-means. In Neural Networks:
Tricks of the Trade - Second Edition, volume 7700 of
Lecture Notes in Computer Science, pages 561–580.
Springer, 2012.

[10] Vincent Cohen-Addad, Niklas Hjuler, Nikos Parot-
sidis, David Saulpic, and Chris Schwiegelshohn. Fully
dynamic consistent facility location. In Conference
on Neural Information Processing Systems (NeurIPS),
pages 3250–3260, 2019.

[11] Vincent Cohen-Addad, Chris Schwiegelshohn, and
Christian Sohler. Diameter and k-center in sliding win-
dows. In International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 19:1–19:12,
2016.

[12] Hu Ding, Fan Yang, and Mingyue Wang. On metric
DBSCAN with low doubling dimension. In Christian
Bessiere, editor, IJCAI, pages 3080–3086. ijcai.org,
2020.

[13] Tomás Feder and Daniel H. Greene. Optimal algo-
rithms for approximate clustering. In Symposium on
Theory of Computing (STOC), pages 434–444, 1988.

[14] Sergio Mourelo Ferrandez, Timothy Harbison, Troy
Weber, Robert Sturges, and Robert Rich. Optimiza-
tion of a truck-drone in tandem delivery network using
k-means and genetic algorithm. Journal of Industrial
Engineering and Management (JIEM), 9(2):374–388,
2016.

[15] Santo Fortunato. Community detection in graphs.
Physics Reports, 486(3):75 – 174, 2010.

[16] Sorelle A. Friedler and David M. Mount. Approxima-
tion algorithm for the kinetic robust k-center problem.
Comput. Geom., 43(6-7):572–586, 2010.

[17] Jie Gao, Leonidas J. Guibas, and An Thai Nguyen. De-
formable spanners and applications. Comput. Geom.,
35(1-2):2–19, 2006.

[18] Yong Ge, Hui Xiong, Chuanren Liu, and Zhi-Hua Zhou.
A taxi driving fraud detection system. In Diane J.
Cook, Jian Pei, Wei Wang, Osmar R. Zäıane, and
Xindong Wu, editors, ICDM, pages 181–190. IEEE
Computer Society, 2011.

[19] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theor. Comput. Sci., 38:293–306,
1985.

[20] Gramoz Goranci, Monika Henzinger, and Dariusz Le-
niowski. A tree structure for dynamic facility location.
In European Symposium on Algorithms (ESA), pages
39:1–39:13, 2018.

[21] Sudipto Guha, Nina Mishra, Rajeev Motwani, and
Liadan O’Callaghan. Clustering data streams. In
FOCS 2000, pages 359–366. IEEE Computer Society,
2000.

[22] Anupam Gupta, Robert Krauthgamer, and James R.
Lee. Bounded geometries, fractals, and low-distortion

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited152

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

embeddings. In FOCS, pages 534–543, 2003.
[23] Pierre Hansen and Brigitte Jaumard. Cluster analysis

and mathematical programming. Math. Program.,
79:191–215, 1997.

[24] Sariel Har-Peled. Clustering motion. Discret. Comput.
Geom., 31(4):545–565, 2004.

[25] Sariel Har-Peled. Geometric Approximation Algo-
rithms. American Mathematical Society, USA, 2011.

[26] Sariel Har-Peled and Manor Mendel. Fast construc-
tion of nets in low-dimensional metrics and their ap-
plications. SIAM J. Comput., 35(5):1148–1184, 2006.
announced at SoCG’04.

[27] Monika Henzinger and Sagar Kale. Fully-Dynamic
Coresets. In ESA 2020, volume 173, pages 57:1–57:21,
2020.

[28] Monika Henzinger, Dariusz Leniowski, and Claire
Mathieu. Dynamic clustering to minimize the sum of
radii. Algorithmica, 82:3183–3194, 2020.

[29] Sagar Kale. Small space stream summary for matroid
center. In APPROX-RANDOM, pages 20:1–20:22,
2019.

[30] Sebastian Kalkowski, Christian Schulze, Andreas Den-
gel, and Damian Borth. Real-time analysis and vi-
sualization of the yfcc100m dataset. In Proceedings of
the 2015 workshop on community-organized multimodal
mining: opportunities for novel solutions, pages 25–30,
2015.

[31] O. Kariv and S. L. Hakimi. An algorithmic approach
to network location problems. i: The p-centers. SIAM
Journal on Applied Mathematics, 37(3):513–538, 1979.

[32] Thomas Kollar. Fast nearest neighbors. Technical
report, MIT, 2006.

[33] Robert Krauthgamer and James R. Lee. Navigating
nets: simple algorithms for proximity search. In
Symposium on Discrete Algorithms (SODA), pages
798–807, 2004.

[34] T. Laakso. Ahlfors Q-regular spaces with arbitrary
Q > 1 admitting weak poincar inequality. Geometric
And Functional Analysis, 10:111–123, 04 2000.

[35] Tomi J Laakso. Plane with A∞-weighted metric not
bilipschitz embeddable to Rn. Bulletin of the London
Mathematical Society, 34(6):667–676, 2002.

[36] Urs Lang and Conrad Plaut. Bilipschitz embeddings of
metric spaces into space forms. Geometriae Dedicata,
87(1-3):285–307, 2001.

[37] Yi Li and Philip M. Long. Learnability and the
doubling dimension. In NIPS, pages 889–896, 2006.

[38] Richard Matthew McCutchen and Samir Khuller.
Streaming algorithms for k-center clustering with out-
liers and with anonymity. In APPROX-RANDOM,
pages 165–178, 2008.

[39] Satu Elisa Schaeffer. Graph clustering. Computer
Science Review, 1(1):27–64, 2007.

[40] Melanie Schmidt and Christian Sohler. Fully dynamic
hierarchical diameter k-clustering and k-center. CoRR,
abs/1908.02645, 2019.

[41] Jianbo Shi and Jitendra Malik. Normalized cuts
and image segmentation. IEEE Trans. Pattern Anal.

Mach. Intell., 22(8):888–905, 2000.
[42] Kunal Talwar. Bypassing the embedding: algorithms

for low dimensional metrics. In STOC, pages 281–290,
2004.

[43] Joshua B Tenenbaum, Vin De Silva, and John C
Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–
2323, 2000.

[44] Bart Thomee, David A. Shamma, Gerald Friedland,
Benjamin Elizalde, Karl Ni, Douglas Poland, Damian
Borth, and Li-Jia Li. The new data and new
challenges in multimedia research. arXiv preprint
arXiv:1503.01817, 2015.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited153

D
ow

nl
oa

de
d

08
/0

4/
21

 to
 1

94
.9

6.
6.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 11
 10
 11

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 11
 0
 1

 1

 HistoryList_V1
 qi2base

