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Abstract: The heterogeneous graphical Granger model (HGGM) for causal inference among processes
with distributions from an exponential family is efficient in scenarios when the number of time
observations is much greater than the number of time series, normally by several orders of
magnitude. However, in the case of “short” time series, the inference in HGGM often suffers
from overestimation. To remedy this, we use the minimum message length principle (MML) to
determinate the causal connections in the HGGM. The minimum message length as a Bayesian
information-theoretic method for statistical model selection applies Occam’s razor in the following
way: even when models are equal in their measure of fit-accuracy to the observed data, the one
generating the most concise explanation of data is more likely to be correct. Based on the dispersion
coefficient of the target time series and on the initial maximum likelihood estimates of the regression
coefficients, we propose a minimum message length criterion to select the subset of causally connected
time series with each target time series and derive its form for various exponential distributions.
We propose two algorithms—the genetic-type algorithm (HMMLGA) and exHMML to find the
subset. We demonstrated the superiority of both algorithms in synthetic experiments with respect to
the comparison methods Lingam, HGGM and statistical framework Granger causality (SFGC). In the
real data experiments, we used the methods to discriminate between pregnancy and labor phase
using electrohysterogram data of Islandic mothers from Physionet databasis. We further analysed the
Austrian climatological time measurements and their temporal interactions in rain and sunny days
scenarios. In both experiments, the results of HMMLGA had the most realistic interpretation with
respect to the comparison methods. We provide our code in Matlab. To our best knowledge, this is
the first work using the MML principle for causal inference in HGGM.

Keywords: Granger causality; graphical Granger model; overestimation; information theory;
minimum message length

1. Introduction

Granger causality is a popular method for causality analysis in time series due to its computational
simplicity. Its application to time series with non-Gaussian distributions can be, however, misleading.
Recently, Behzadi et al. in [1] proposed the heterogeneous graphical Granger Model (HGGM)
for detecting causal relations among time series with distributions from the exponential family,
which includes a wider class of common distributions. HGGM employs regression in generalized
linear models (GLM) with adaptive Lasso penalization [2] as a variable selection method and applies
it to time series with a given lag. This approach allows one to apply causal inference among time
series, also with discrete values. HGGM, using penalization by adaptive Lasso, showed its efficiency
in scenarios when the number of time observations is much greater than the number of time series,
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normally by several orders of magnitude—however, on “short” time series, the inference in HGGM
suffers often from overestimation.

Overestimation on short time series is a problem which also occurs in general forecasting problems.
For example, when forecasting demand for a new product or a new customer, there are usually very
few time series observations available. For such short time series, the traditional forecasting methods
may be inaccurate. To overcome this problem in forecasting, Ref. [3] proposed to utilize a prior
information derived from the data and applied a Bayesian inference approach. Similarly for another
data mining problem, a Bayesian approach has shown to be efficient for the clustering of short time
series [4].

Motivated by the efficiency of the Bayes approaches in these problems on short time series,
we propose to use the Bayesian approach called minimum message principle, as introduced in [5] to
causal inference in HGGM. The contributions of our paper are the following:

(1) We used the minimum message length (MML) principle for determination of causal connections
in the heterogeneous graphical Granger model.

(2) Based on the dispersion coefficient of the target time series and on the initial maximum likelihood
estimates of the regression coefficients, we proposed a minimum message length criterion to select
the subset of causally connected time series with each target time series; Furthermore, we derived
its form for various exponential distributions.

(3) We found this subset in two ways: by a proposed genetic-type algorithm (HMMLGA), as well as
by exhaustive search (exHMML). We evaluated the complexities of these algorithms and provided
the code in Matlab.

(4) We demonstrated the superiority of both methods with respect to the comparison methods
Lingam [6], HGGM [1] and statistical framework Granger causality (SFGC) [7] in the synthetic
experiments with short time series. In the real data experiments without known ground truth,
the interpretation of causal connections achieved by HMMLGA was the most realistic with respect
to the comparison methods.

(5) To our best knowledge, this is the first work applying the minimum message length principle to
the heterogeneous graphical Granger model.

The paper is organized as follows. Section 2 presents definitions of the graphical Granger causal
model and of the heterogeneous graphical Granger causal model as well as of the minimum message
length principle. Our method including the derived criteria and algorithm are described in Section 3.
Related work is discussed in Section 4. Our experiments are summarized in Section 5. Section 6
is devoted to the conclusions and the derivation of the criteria from Section 3 can be found in
Appendices A and B.

2. Preliminaries

To make this paper self-contained and to introduce the notation, we briefly summarize the basics
about graphical Granger causal model in Section 2.1. The heterogeneous graphical Granger model,
as introduced in [1], is presented in Section 2.2. Section 2.3 discusses the strengths and limitations of
the Granger causal models. The idea of the minimum message length principle is briefly explained
in Section 2.4.

2.1. Graphical Granger Model

The (Gaussian) graphical Granger model extends the autoregressive concept of Granger causality
to p ≥ 2 time series [8]. Let xt

1, . . . , xt
p be the time instances of p time series, t = 1, . . . , n. As it is

common, we will use bold font in notation of vectors or matrices. Consider the vector auto-regressive
(VAR) models with time lag d ≥ 1 for i = 1, . . . , p

xt
i = XLag

t,d β′i + εt
i (1)



Entropy 2020, 22, 1400 3 of 21

where XLag
t,d = (xt−d

1 , . . . , xt−1
1 , . . . , xt−d

p , . . . , xt−1
p ) and βi be a matrix of the regression coefficients and

εt
i be white noise. One can easily show that XLag

t,d β′i = ∑
p
j=1 ∑d

l=1 xt−l
j βl

j.

Definition 1. One says time series xj Granger–causes time series xi for a given lag d, denote xj → xi,
for i, j = 1, . . . , p if and only if at least one of the d coefficients in j-th row of βi in (1) is non-zero.

The solution of problem (1) has been approached by various forms of penalization methods in the
literature, e.g., Lasso in [8], truncated Lasso in [9] or group Lasso [10].

2.2. Heterogeneous Graphical Granger Model

The heterogeneous graphical Granger model (HGGM) [1] considers time series xi, for which their
likelihood function belongs into the exponential family with a canonical parameter θi. The generic
density form for each xi can be written as

p(xi|XLag
t,d , θi) = h(xi) exp(xiθi − ηi(θi)) (2)

where θi = XLag
t,d (β∗i )

′ (β∗i is the optimum) and ηi is a link function corresponding to time series xi.
(The sign ′ denotes a transpose of a matrix). The heterogeneous graphical Granger model uses the idea
of generalized linear models (GLM, see e.g., [11]) and applies them to time series in the following form

xt
i ≈ µt

i = ηt
i (X

Lag
t,d β′i) = ηt

i (
p

∑
j=1

d

∑
l=1

xt−l
j βl

j) (3)

for xt
i , i = 1, . . . , p, t = d + 1, . . . , n each having a probability density from the exponential family;

µi denotes the mean of xi and var(xi|µi, φi) = φivi(µi) where φi is a dispersion parameter and vi is a
variance function dependent only on µi; ηt

i is the t-th coordinate of ηi.
Causal inference in (3) can be solved as

β̂i = arg min
βi

n

∑
t=d+1

(−xt
i (X

Lag
t,d β′i) + ηt

i (X
Lag
t,d β′i)) + λiR(βi) (4)

for a given lag d > 0, λi > 0, and all t = d + 1, . . . , n with R(βi) to be the adaptive Lasso
penalty function [1]. (The first two summands in (4) correspond to the maximum likelihood estimates
in the GLM).

Definition 2. One says, time series xj Granger–causes time series xi for a given lag d, denote xj → xi,
for i, j = 1, . . . , p if and only if at least one of the d coefficients in j-th row of β̂i of the solution of (4) is
non-zero [1].

Remark 1. Non-zero values in Definitions 1 and 2 are in practice, distinguished by considering values bigger
than a given threshold, which is a positive number “close” to zero.

For example, Equation (4) for the Poisson graphical Granger model [12] where for each i = 1, . . . , p
ηt

i := exp is considered, can be written as

β̂i = arg min
βi

n

∑
t=d+1

(−xt
i (X

Lag
t,d β′i) + exp(XLag

t,d β′i)) + λiR(βi). (5)
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Equation (4) for the binomial graphical Granger model can be written as

β̂i = arg min
βi

n

∑
t=d+1

(−xt
i (X

Lag
t,d β′i) + log(1 + exp(XLag

t,d β′i))) + λiR(βi) (6)

and finally Equation (4) for the Gaussian graphical Granger model reduces to the least squares error
of (1) with a R(βi) to be adaptive Lasso penalty function. The heterogeneous graphical Granger
model can be applied to causal inference among processes, for example in climatology, e.g., Ref. [1]
investigated the causal inference among precipitation time series (having gamma distribution) and
time series of sunny days (having Poisson distribution).

2.3. Granger Causality and Graphical Granger Models

Since its introduction, Granger causality [13] has faced criticism, since it e.g., does not take
into account counterfactuals, [14,15]. In defense of his method, Granger in [16] wrote: “Possible
causation is not considered for any arbitrarily selected group of variables, but only for variables for
which the researcher has some prior belief that causation is, in some sense, likely.” In other words,
drawing conclusions about the existence of a causal relation between time series and about its direction
is possible only if theoretical knowledge of mechanisms connecting the time series is accessible.

Concerning the graphical causal models, including the Granger ones, Lindquist and Sobel in [17]
claim that (1) they are not able to discover causal effects; (2) the theory of graphical causal models
developed by Spirtes et al. in [18] makes no counterfactual claims; and (3) causal relations cannot
be determined non-experimentally from samples that are a combination of systems with different
propensities. However, Glymour in [19] argues that each of these claims are false or exaggerated.
For arguments against (1) and (3), we refer the reader to [19]. We focus here only to his arguments to
(2). Quoting Glymour, claims about what the outcome would be of a hypothetical experiment that
has not been done are one form of counterfactual claims. Such claims say that if such and such were
to happen then the result would be thus and so—where such and such has not happened or has not
yet happened. (Of course, if the experiment is later done, then the proposition becomes factually true
or factually false.) Glymour argues that it is not true that the graphical model framework does not
represent or entail any counterfactual claims and emphasizes that no counterfactual variables are used
or needed in the graphical causal model framework. In the potential outcomes framework, if nothing
is known about which of many variables are causes of the others, then for each variable, and for each
value of the other variables, a new counterfactual variable is required. In practice that would require an
astronomical number of counterfactual variables for even a few actual variables. To summarize, as also
confirmed by a recent Nature publication [20], if the theoretical background of investigated processes
is insufficient, graphical causal methods (Granger causality including), to infer causal relations from
data rather than knowledge of mechanisms, are helpful.

2.4. Minimum Message Length Principle

The minimum message length principle of statistical and inductive inference and machine learning
was developed by C.S. Wallace and D.M. Boulton in 1968 in the seminal paper [5]. Minimum message
length principle is a formal information theory restatement of Occam’s razor: even when models are not
equal in goodness of fit accuracy to the observed data, the one generating the shortest overall message
is more likely to be correct (where the message consists of a statement of the model, followed by a
statement of data encoded concisely using that model). The MML principle selects the model which
most compresses the data (i.e., the one with the “shortest message length”) as the most descriptive for
the data. To be able to decompress this representation of the data, the details of the statistical model
used to encode the data must also be part of the compressed data string. The calculation of the exact
message is an NP hard problem, however the most widely used less computationally intensive is the
Wallace–Freeman approximation called MML87 [21]. MML is Bayesian (i.e., it incorporates prior beliefs)
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and information-theoretic. It has the desirable properties of statistical invariance (i.e., the inference
transforms with a re-parametrisation), statistical consistency (i.e., even for very hard problems,
MML will converge to any underlying model) and efficiency (i.e., the MML model will converge
to any true underlying model about as quickly as is possible). Wallace and Dowe (1999) showed in [22]
a formal connection between MML and Kolmogorov complexity, i.e., the length of a shortest computer
program that produces the object as output.

3. Method

In this section, we will describe our method in detail. First, in Section 3.1, we will derive a fixed
design matrix for HGGM, so that the minimum message length principle can be applied. In Section 3.2,
we propose our minimum message length criterion for HGGM. The exact forms of the criterion for
various exponential distributions are derived in Section 3.3. Then, we present our two variable selection
algorithms and their computational complexity in Sections 3.4 and 3.5.

3.1. Heterogeneous Graphical Granger Model with Fixed Design Matrix

We can see that the models from Section 2 do not have fixed matrices. Since the MML principle
proposed for generalized linear models in [23] requires a fixed design matrix, it cannot be directly
applied to them. In the following section, we will derive the heterogeneous graphical Granger
model (3) with a fixed lag d as an instance of regression in generalized linear models (GLM) with a
fixed design matrix.

Consider the full model for p variables xt
i and lag d ≥ 1 (be an integer) corresponding to the

optimization problem (3). To be able to use the maximum likelihood (ML) estimation over the regression
parameters, we reformulate the matrix of lagged time series XLag

t,d from (1) into a fixed design matrix

form. Assume n− d > pd and denote xi = (xd+1
i , xd+2

i , . . . , xn
i ). We construct the (n− d) × (d × p)

design matrix

X =


xd

1 . . . x1
1 . . . xd

p . . . x1
p

xd+1
1 . . . x2

1 . . . xd+1
p . . . x2

p
...

...
...

...
...

...
...

xn−1
1 . . . xn−d+1

1 . . . xn−1
p . . . xn−d+1

p

 (7)

and the 1 × (d × p) vector βi = (β1
1, . . . , βd

1, . . . , β1
p, . . . , βd

p). We can see that problem

x′i ≈ µi = ηi(Xβ′i) (8)

for i = d + 1, . . . , n is equivalent to problem (3) in the matrix form where µi = (µd+1
i , . . . , µd+1

i ) and
link function ηi operates on each coordinate.

Denote now by γi ⊂ Γ = {1, . . . , p} the subset of indices of regressor’s variables and ki := |γi|
its cardinality. Let βi := βi(γi) ∈ R1 × (d × ki) be the vector of unknown regression coefficients with a
fixed ordering within the γi subset. For illustration purposes and without lack of generality, we can
assume that the first ki indices out of p vectors belong to γi. Considering only the columns from matrix
X in (7), which correspond to γi, we define the (n− d) × (d × ki) matrix of lagged vectors with
indices from γi as

Xi := X(γi) =



xd
1 . . . x1

1 . . . xd
ki

xd−1
ki

. . . x1
ki

xd+1
1 . . . x2

1 . . . xd+1
ki

xd
ki

. . . x2
ki

xd+2
1 . . . x3

1 . . . xd+2
ki

xd+1
ki

. . . x3
ki

...
...

...
...

...
...

...
...

xn−1
1 . . . xn−d+1

1 . . . xn−1
ki

xn−2
ki

. . . xn−d+1
ki


(9)
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The problem (8) for explanatory variables with indices from γi is expressed as

x′i ≈ µi = E(x′i|Xi) = ηi(Xiβ
′
i). (10)

with βi := βi(γi) to be a 1 × (dki) matrix of unknown coefficients and ηi operates on each
coordinate. Wherever it is clear from context, we will simplify the notation βi instead of βi(γi) and Xi
instead of X(γi).

3.2. Minimum Message Length Criterion for Heterogeneous Graphical Granger Model

As before, we assume for each xt
i , where i = 1, . . . , p, t = d + 1, . . . , n to have a density from the

exponential family; furthermore, µi to be the mean of xi and var(xi|µi, φi) = φivi(µi) where φi is a
dispersion parameter and vi a variance function dependent only on µi. In the concrete case, for Poisson
regression, it is well known that it can be still used in over- or underdispersed settings. However,
the standard error for Poisson regression would not be correct for the overdispersed situation. In the
Poisson graphical Granger model, it is the case when, for the dispersion of at least one time series
holds φi 6= 1. In the following, we assume that an estimate of φi is given. Denote Γ the set of all subsets
of covariates xi, i = 1, . . . , p. Assume now a fixed set γi ∈ Γ of covariates with size ki ≤ p and the
corresponding design matrix Xi from (9). Furthermore, we assume that the targets xi are independent
random variables, conditioned on the features given by Xi, so that the likelihood function can be
factorized into the product p(xi|βi, Xi, γi) = ∏n−d

t=1 p(xt
i |βi, Xi, γi). The log-likelihood function Li has

then the form Li := log p(xi|βi, Xi, γi) = ∑n−d
t=1 log p(xt

i |βi, Xi, γi). Since Xi is highly collinear, to make
the ill-posed problem for coefficients βi (8) a well-posed one, we could use regularization by the ridge
regression for GLM (see e.g., [24]). Ridge regression requires an initial estimate of βi, which can be
set as the maximum likelihood estimator of (10) obtained by the iteratively reweighted least square
algorithm (IRLS). For a fixed λi > 0, for the ridge estimates of coefficients β̂i,λi

holds

β̂i,λi
= arg min

βi∈R1 × dki {−Li + λiβ
′
iΣiβi}. (11)

In our paper however, we will not use the GLM ridge regression in form (11), but we apply
the principle of minimum description length. Ridge regression in the minimum description length
framework is equivalent to allowing the prior distribution to depend on a hyperparameter (= the ridge
regularization parameter). To compute the message length of HGGM using the MML87 approximation,
we need the negative log-likelihood function, prior distribution over the parameters and an appropriate
Fisher information matrix, similarly as proposed in [23], where it is done for a general GLM regression.
Moreover, [23] proposed the corrected form of Fisher information matrix for a GLM regression with
ridge penalty. In our work, we will use this form of ridge regression and apply it to the heterogeneous
graphical Granger model. In the following, we will construct the MML code for every subset of
covariates in HGGM. The derivation of the criterion can be found in Appendix A.

The MML criterion for inference in HGGM. Assume xi, i = 1, . . . , p be given time series of length n
having distributions from exponential family, and for each of them, the estimate of the dispersion parameter
φ̂i is given. Consider β̂i be an initial solution of (8) with a fixed d ≥ 1 achieved as the maximum likelihood
estimate. Then

(i) the causal graph of the heterogeneous graphical Granger problem (8) can be inferred from the solutions
of p variable selection problems, where for each i = 1, . . . , p, the set γ̂i of Granger–causal variables to xi
is found;

(ii) For the estimated set γ̂i holds

γ̂i = arg min
γi∈Γ
{HMML(xi, Xi, γi)} = arg min

γi∈Γ
{I(xi, β̂i, φ̂i, λ̂i, Xi, γi) + I(γi)} (12)
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where I(xi, β̂i, φ̂i, λ̂i, Xi, γi) = minλi∈R+{MML(xi, β̂i, φ̂i, λi, Xi, γi)} and
MML(xi, β̂i, φ̂i, λi, Xi, γi) is the minimum message length code of set γi. It can be expressed as

MML(xi, β̂i, φ̂i, λi, Xi, γi) = −Li +
1
2

log det(X′iWiXi + λiΣi) (13)

+ ki
2 log( 2π

λi
) +( λi

2φ̂i
)β̂
′
iΣi β̂i +

1
2 log(n− d) − ki+1

2 log(2π) + 1
2 log((ki + 1)π) where |γ̂i| = ki, Σi is

the unity matrix of size dki × dki, I(γi) = log ( p
ki
) + log(p + 1), Li is the log-likelihood function

depending on the density function of xi and matrix Wi is a diagonal matrix depending on link function ηi.

Remark 2. ([23]) compared AICc criterion with MML code for generalized linear models. We constructed the
AICc criterion also for HGGM. This criterion however requires the computation of pseudoinverse of a matrix
multiplication, which includes matrices Xi. Since Xis are highly collinear, these matrix multiplications had,
in our experiments, very high condition numbers. This consequently led to the application of AICc for HGGM,
giving spurious results, and therefore we do not report them in our paper.

3.3. Log-Likelihood Li, Matrix Wi and Dispersion φi for xi with Various Exponential Distributions

In this section, we will present the form for the log-likelihood function and for matrix Wi for
Gaussian, binomial, Poisson, gamma and inverse-Gaussian distributed time series xi. The derivation
for each case can be found in Appendix B. µi = ηi(Xiβ

′
i) holds in each case for the link function as

in (10). By [Xiβ
′
i]

t, we denote the t-th coordinate of vector Xiβ
′
i.

Case xi is Gaussian This is the case when xi is an independent Gaussian random variable and link
function ηi is identity. Assume φ̂i = σ2

i to be the variance of the Gaussian random variable. We assume
that in model (10) xi follows Gaussian distribution with the density function p(xi|β̂i, σ2

i , Xi, γi) =

n

∏
t=d+1

p(xt
i |β̂i, σ2

i , Xi, γi) = (
1

(2πσ2
i )

)(n−d)/2 exp [− 1
2σ2

i

n

∑
t=d+1

(xt
i − [Xi β̂i]

t)2]. (14)

Then

Li = log p(xi|β̂i, σ2
i , Xi, γi) = −

n− d
2

log(2πσ2
i )−

1
2σ2

i

n

∑
t=d+1

(xt
i − [Xi β̂i]

t)2 (15)

and Wi := In−d,n−d is a unit matrix of dimension (n− d)× (n− d).

Case xi is binomial This is the case when xi is an independent Bernoulli random variable and it
can achieve only two different values. For the link function, it holds ηi = log( µi

1−µj
). Without lack of

generality, we consider φ̂i = 1 and the density function p(xi|β̂i, σ2
i , Xi, γi) =

n

∏
t=d+1

p(xt
i |β̂i, σ2

i , Xi, γi) =
n

∏
t=d+1

([Xi β̂
′
i]

t)xt
i (1− ([Xi β̂

′
i]

t))(1−xt
i ). (16)

Then

Li = log(p(xi|β̂i, Xi, γi)) =
n

∑
t=d+1

(
xt

i [Xi β̂
′
i]

t − log(1 + exp[Xi β̂
′
i]

t)
)

(17)

and

Wi := diag(
exp ([Xi β̂i]

1)

(1 + exp ([Xi β̂i]
1))2

, . . . ,
exp ([Xi β̂i]

n−d)

(1 + exp ([Xi β̂i]
n−d)2)

). (18)
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In the case that we cannot assume accurate fitting to one of the two values, for robust estimation
we can consider the sandwich estimate of the covariance matrix of β̂i with

Wi = diag
(
[x1

i −
exp ([Xi β̂

′
i]

1)

(1 + exp ([Xi β̂
′
i]

1))2
]2, . . . , [xn−d

i − exp ([Xi β̂
′
i]

n−d)

(1 + exp ([Xi β̂
′
i]

n−d))2
]2
)
. (19)

Case xi is Poisson If xi is an independent Poisson random variable with link function
ηt

i = log(µt
i) = log([Xi β̂

′
i]

t), the density is

p(xi|β̂i, Xi, βi) =
n

∏
t=d+1

exp ([Xi β̂
′
i]

t)xt
i exp (− exp ([Xi β̂

′
i]

t))

xt
i !

. (20)

Then

Li = log(p(xi|β̂i, Xi, γi)) =
n

∑
t=d+1

xt
i [Xi β̂

′
i]

t − exp ([Xi β̂
′
i]

t)− log(xt
i !) (21)

and diagonal matrix
Wi := diag

(
exp(Xi β̂

′
i)

1, . . . , exp(Xi β̂
′
i)

n−d) (22)

for Poisson xi with φ̂i = 1 and

Wi := diag
(
[xd+1

i − exp (Xi β̂
′
i)

1]2, . . . , [xd+(n−d)
i − exp (Xi β̂

′
i)

n−d]2
)

(23)

for over- or underdispersed Poisson xi, i.e., when φ̂i 6= 1 and is positive, where t = 1, . . . , n− d.

Case xi is gamma If xi is an independent gamma random variable, we consider for the inverse of
shape parameter κi for each t rate parameter κiµ

t
i and for the link function it holds µt

i =
1
ηt

i
= 1

[Xi βi ]
t .

For parameters of gamma function ai, bi we take ai =
1
κi

, bt
i = κiµ̂

t
i and assume for dispersion φ̂i = κi.

Then, we have density function

p(xi|β̂i,
1
κi

, κiµ̂i, Xi, γi) =
n

∏
t=d+1

(xt
i )
( 1

κi
−1) exp (− xt

i
κiµ

t
i
)

(κiµ
t
i)

1
κi Γ( 1

κi
)

(24)

and log-likelihood Li = log(p(xi|β̂i,
1
κi

, κiµ̂i, Xi, γi))

=
n

∑
t=d+1

(
(

1
κi
− 1) log xt

i −
xt

i
κiµ̂

t
i
− 1

κi
log(κiµ̂

t
i)− log Γ(

1
κi
)
)

(25)

and diagonal matrix

Wi := diag((µ̂1
i )

2, . . . , (µ̂n−d
i )2) = diag(

1

([Xi β̂
′
i]

1)2
, . . . ,

1

([Xi β̂
′
i]

n−d)2
). (26)

Case xi is inverse-Gaussian If xi is an independent inverse-Gaussian random variable,
we consider the inverse of the shape parameter ξi and link function ηt

i = log(µt
i) = log([Xi β̂

′
i]

t).
Assume dispersion φ̂i = ξi. Then we have density function

p(xi|β̂i, ξi, µ̂i, Xi, γi) =
n

∏
t=d+1

1
2πξi(xt

i )
3 exp [− 1

2ξi

n

∑
t=d+1

(xt
i − µ̂t

i)
2

(µ̂t
i)

2xt
i

] (27)
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and log-likelihood Li = log(p(xi|β̂i, ξiµ̂i, Xi, γi))

=
n

∑
t=d+1

(
− 1

2ξi

n

∑
t=d+1

(xt
i − µ̂t

i)
2

(µ̂t
i)

2xt
i
− log(2πξi) + 3 log(xt

i )
)

(28)

and diagonal matrix

Wi := diag(
1

µ̂1
i

, . . . ,
1

µn−d
i

) = diag(
1

([Xi β̂
′
i]

1)
, . . . ,

1

([Xi β̂
′
i]

n−d)
). (29)

One could express similarly Li and Wi for other common exponential distributions,
applied in GLMs.

3.4. Variable Selection by MML in Heterogeneous Graphical Granger Model

For all considered cases of exponential distributions of xi we define the family of models
M(γi) := {p(xi|β̂i, φ̂i, Xi, γi), γi ∈ Γ} with the corresponding exponential density p(xi|β̂i, φ̂i, Xi, γi).
First, we present the procedure which for each xi computes the MML code for a set γi ⊂ Γ in
Algorithm 1. Then we present Algorithm 2 for computation of γ̂i.

Algorithm 1 MML Code for γi

Input: γi ∈ Γ, d ≥ 1, |γi| = ki, series is the matrix of xt
i , φ̂i dispersion parameter,

i = 1, . . . , p, t = 1, . . . , n − d, Σi a unity matrix of size dki × dki, H a set of positive numbers;
I(γi) = log ( p

ki
) + log(p + 1).

Output: For each i minimum of HMML(xi, Xi, γi) over H is found;
for all xi do

// Construct the d-lagged matrix Xi with time series with indices from γi.
//Compute matrix Wi.
for all λi ∈ H do

// Compute Li
// Find the initial estimates of β̂i.
//Compute MML(xi, β̂i, φ̂i, λi, Xi, γi) from (13).

end for// to λi
// Compute I(xi, β̂i, φ̂i, λ̂i, Xi, γi) = minλi∈H MML(xi, β̂i, φ̂i, λi, Xi, γi).
// HMML(xi, Xi, γi) := I(xi, β̂i, φ̂i, λ̂i, Xi, γi) + I(γi).

end for// to xi
return HMML(xi, Xi, γi) for each i.

In general, the selection of the best structure γi amounts to evaluate values of HMML(γi) for
all γi ⊂ Γ, i.e., for all 2p possible subsets and then to pick the subset with which the minimum of the
function was achieved.

3.5. Search Algorithms

We will find the best structure of γi with MML code by two approaches. The first way is by the
exhaustive search approach exHMML and the second one is by minimizing the HMML by genetic
algorithm type procedure called HMMLGA, which we introduce in the following. Since HMML in (12)
is a function having multiple local minima, the achievement of the global minimum by these two
approaches is not, in general, guaranteed. In [12], a similar genetic algorithm MMLGA was proposed
for the Poisson GGM. In this paper, we propose its modification, which is more appropriate for the
objective functions that we have here.

The idea of HMMLGA is as follows. Consider an arbitrary γi ⊂ Γ with size ki for a fixed i.
Define a Boolean vector Qi of length p corresponding to a given γi, so that it has ones in the positions
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of the indices of covariates from γi, otherwise zeros. Define HMML(Qi) := HMML(γi) where
HMML(γi) is from (12). Genetic algorithm MMLGA executes genetic operations on populations of Qi.
In the first step, a population of size m (m an even integer), is generated randomly in the set of all 2p

binary strings (individuals) of length p. Then, we select m/2 individuals in the current population with
the lowest value of (12) as the elite subpopulation of parents of the next population. For a predefined
number of generated populations ng, the crossover operation of parents and the mutation operation
of a single parent are executed on the elite to create the rest of the new population. A mutation
corresponds to a random change in Qi and a crossover combines the vector entries of a pair of parents.
The position of mutation is for each individual selected randomly in contrast to MMLGA, where the
position was, for all individuals, the same, and is given as an input parameter. Similarly, the position
of crossover in HMMLGA is for each pair of individuals selected randomly. After each run of these
two operations on a current population, the current population is replaced with the children with the
lowest value of (12) to form the next generation. The algorithm stops after the number of population
generations ng is achieved. Since HMML in (12) has multiple local minima, in contract to MMLGA,
we selected in the HMMLGA the following strategy: We do not take the first Qi with the sorted HMML
values ascendently, but based on the parsimony principle, we take that Qi among all with minimum
HMML value, which has the minimum number of ones in Qi. Concerning the approach by exhaustive
search exHMML, similarly we do not take the first Qi with sorted HMML code ascendently, but also,
here, we take that Qi, among all with a minimum value of HMML, which has the minimum number of
ones in Qi. The algorithm HMMLGA is summarized in Algorithm 2.

Algorithm 2 HMMLGA

Input: Γ, d ≥ 1, p, ng, m an even integer;
series is the matrix of xt

i , i = 1, . . . , p, t = 1, . . . , n− d;
Output: Adj := adjacency matrix of the output causal graph;
// For every xi Qi with minimum of (12) is found;
for all xi do

Create initial population {Qj
i , j = 1, . . . , m} at random; Compute

HMML(Qj
i) := I(xi, β̂i, φ̂i, λ̂i, Xi, Qj

i) + (
p

kj
i
) + log(p + 1) for each j = 1, . . . , m where

kj
i is the number of ones in Qj

i ; v:=1;
while v ≤ ng do

u:=1;
while u ≤ m do

Sort HMML(Qj
i) ascendently and create the elite population; By crossover of Qj

i and Qr
i , r 6= j

at a random crossing position create children and add them to elite; Compute HMML(Qj
i)

for each j; Mutate a single parent Qj
i at a random position; Compute HMML(Qj

i) for each j;

Add the children with minimum HMML(Qj
i) until the new population is not filled;

u := u + 1;
end while// to u
v := v + 1;

end while// to v
end for// to xi

The i-th row of Adj: Adji := Qi with min of (12) such that |Qi| is minimum.
return (Adj)

Our code in Matlab is publicly available at: https://t1p.de/26f3.

Computational Complexity of HMMLGA and of exHMML

We used Matlab function fminsearch for computation of HMML(xi, β̂i, λ̂i, Xi, γi). It is well known
that the upper bound of the computational complexity of a genetic algorithm is of order of the product

https://t1p.de/26f3


Entropy 2020, 22, 1400 11 of 21

of the size of an individual, of the size of each population, of the number of generated populations and
of the complexity of the function to be minimized. Therefore, an upper bound of the computational
complexity of HMMLGA for p time series, size p of an individual, m the population size and ng

the number of population generations is O(pmng) ×O(fminsearch) × p, where O(fminsearch) can
also be estimated. The highest complexity in fminsearch has the computation of the Hessian matrix,
which is the same as for the Fisher information matrix (our matrix Wi) or the computation of the
determinant. The computational complexity of Hessian for i fixed for (n − d) × (n − d) matrix is
O( (n−d)(n−d+1)

2 ). An upper bound on the complexity of determinant in (13) is O((pd)3) (for proof see

e.g., [25]). Denote M = max{(pd)3, (n−d)(n−d+1)
2 }. Since we have p optimization functions, our upper

bound on the computational complexity of HMMLGA is then O(p2mng M). The computational
complexity of exHMML is p2pO(fminsearch) = p2p M.

4. Related Work

In this section, we discuss the related work on the application of two description length based
compression schemes for generalized linear models, further the related work on these compression
principles applied to causal inference in graphical models, and finally, other papers on causal inference
in graphical models for non-Gaussian time series.

Minimum description length (MDL) is another principle based on compression. Similarly as for
MML, by viewing statistical modeling as a means of generating descriptions of observed data, the MDL
framework (Rissanen [26], Barron et al. [27], and Hansen and Yu [28]) discriminates between competing
model classes based on the complexity of each description. The minimum description length principle
is based on the idea that one chooses the model that gives the shortest description of data. The methods
based on MML and MDL appear mostly equivalent, but there are some differences, especially in
interpretation. MML is a Bayesian approach: it assumes that the data-generating process has a given
prior distribution. MDL avoids assumptions about the data-generating process. Both methods make
use of two-part codes: the first part always represents the information that one is trying to learn,
such as the index of a model class (model selection) or parameter values (parameter estimation);
the second part is an encoding of the data, given the information in the first part.

Hansen and Yu 2003 in [29] derived objective functions for one-dimensional GLM regression
by the minimum description principle. The extension to the multi-dimensional case is however not
straighforward. Schmidt and Makalic in [23] used MML87 to derive the MML code of a multivariate
GLM ridge regression. Since these works were not designed for time series and do not consider any
lag, the mentioned codes cannot be directly used for Granger models.

Marx and Vreeken in [30,31] and Budhathoki and Vreeken [32] applied the MDL principle to the
Granger causal inference. The inference in these papers is however done for the bivariate Granger
causality and the extension to graphical Granger methods is not straightforward. Hlaváčková-Schindler
and Plant in [33] applied both MML and MDL principle to the inference in the graphical Granger
models for Gaussian time series. Inference in graphical Granger models for Poisson distributed data
using the MML principle was done by the same authors in [12]. To our best knowledge, papers on
compression criteria for heterogeneous graphical Granger model have not been published yet.

Among the causal inference on time series, Kim et al. in [7] proposed the statistical framework
Granger causality (SFGC) that can operate on point processes, including neural-spike trains.
The proposed framework uses multiple statistical hypothesis testing for each pair of involved neurons.
A pair-wise hypothesis test was used for each pair of possible connections among all time series and the
false discovery rate (FDR) applied. The method can also be used for time series from exponential family.

For a fair comparison with our method, we selected the causal inference methods, which are
designed for p ≥ 3 non-Gaussian processes. In our experiments, we used SFGC as a comparison
method, and as another comparison method, we selected the method LINGAM from Shimizu et al. [6],
which estimates causal structure in Bayesian networks among non-Gaussian time series using structural
equation models and independent component analysis. Finally, as a comparison method, we used the
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HGGM with the adaptive Lasso penalisation method, as introduced in [1] and described in Section 2.2.
The experiments reported in the papers with comparison methods were done only in scenarios when
the number of time observations is several orders of magnitude greater than the number of time series.

5. Experiments

We performed experiments with HMMLGA and with exHMML on processes, which have an
exponential distribution of types given in Section 3.3. We used the methods HGGM [1], LINGAM [6]
and SFGC [7] for comparison. To assess similarity between the target and output causal graphs in
synthetic experiments by all methods, we used the commonly applied F-measure, which takes both
precision and recall into account.

5.1. Implementation and Parameter Setting

The comparison method HGGM uses Matlab package penalized from [34] with adaptive Lasso
penalty. The algorithm in this package employs the Fisher scoring algorithm to estimate the regression
coefficients. As recommended by the author of penalized in [34] and employed in [1], we used adaptive
Lasso with λmax = 5, applying cross validation and taking the best result with respect to F measure
from the interval (0, λmax]. We also followed the recommendation of the authors of LINGAM in [6] and
used threshold = 0.05 and the number of boots n/2, where n is the length of the time series. In method
SFGC , we used the setting recommended by the authors, the significance level 0.05 of FDR.

In HMMLGA and exHMML, the initial estimates of βi were achieved by the iteratively
re-weighted least square procedure implemented in Matlab function glmfit; in the same function,
we obtained also the estimates of the dispersion parameters of time series. (Considering initial
estimates of βi by the IRLS procedure using function penalized with ridge penalty gave poor results
in the experiments.) In case of gamma distribution, we achieved the estimates of parameters κi by
statistical fitting, concretely by Matlab function gamfit. The minimization over λi was done by function
fminsearch, which defined set H from Algorithm 1 as positive numbers from interval [0.1, 1000].

5.2. Synthetically Generated Processes

To be able to evaluate the performance of HMML and to compare it to other methods, the ground
truth, i.e., the target causal graph in the experiments, should be known. In this series of experiments,
we examined randomly generated processes, having an exponential distribution of Gaussian and
gamma types from Section 3.3, together with the correspondingly generated target causal graphs.
The performance of all tested algorithms depends on various parameters, including the number of time
series (features), the number of causal relations in Granger causal graph (dependencies), the length
of time series, and finally, on the lag parameter. Concerning the calculation of an appropriate lag for
each time series; theoretically, it can be done by AIC or BIC. However, the calculation of AIC and BIC
assumes that the degrees of freedom are equal to the number of nonzero parameters, which is only
known to be true for the Lasso penalty [35], but not known for adaptive Lasso. In our experiments,
we followed the recommendation of [1] on how to select the lag of time series in HGGM. It was
observed that varying the lag parameter from 3 to 50 did not influence either the performance of
HGGM nor SFGC significantly. Based on that, we considered lags 3 and 4 in our experiments.

We examined causal graphs with mixed types of time series for p = 5 and p = 8 number of
features. For each case, we considered causal graphs with higher edge density (dense case) and lower
edge density (sparse case), which corresponds to the parameter “dependency” in the code, where the
full graph has for p time series p(p− 1) possible directed edges. Since we concentrate on a short time
series in the paper; the length of generated time series varied from 100 to 1000.

5.2.1. Causal Networks with 5 and 8 Time Series

We considered 5 time series with 2 gamma, 2 Gaussian and 1 Poisson distributions, which we
generated randomly together with the corresponding network. For the denser case with 5 time series,
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we generated randomly graphs with 18 edges, and for the sparser case, random graphs with 8 edges.
The results of our experiments on causal graphs with 5 features (p = 5) are presented in Table 1.
Each value in Table 1 represents the mean value of all F-measures over 10 random generations of
causal graphs for length n and lag d. For dependency 8, we took strength = 0.9; for dependency 18,
we took strength = 0.5 of causal connections.

Table 1. p = 5, average F-measure for each method, HMML, ng = 10, m = 20, HGGM with λmax = 5,
LINGAM with n/2 boots. The first one subtable is for d = 3, the second one for d = 4.

dense g. 18, n = 100 300 500 1000; sparse g. 8, n = 100 300 500 1000

exHMML 0.69 0.83 0.82 0.88 exHMML 0.70 0.72 0.72 0.67
HMMLGA 0.73 0.90 0.89 0.90 HMMLGA 0.73 0.76 0.74 0.67

HGGM 0.5 0.48 0.54 0.52 HGGM 0.52 0.36 0.66 0.36
LINGAM 0.57 0.58 0.62 0.58 LINGAM 0.58 0.54 0.69 0.45

SFGC 0.33 0.26 0.26 0.33 SFGC 0.14 0.35 0.44 0.31

dense g. 18, n = 100 300 500 1000; sparse g. 8, n = 100 300 500 1000

exHMML 0.71 0.73 0.83 0.83 exHMML 0.67 0.80 0.80 0.68
HMMLGA 0.82 0.79 0.87 0.92 HMMLGA 0.67 0.73 0.77 0.70

HGGM 0.44 0.37 0.40 0.39 HGGM 0.53 0.47 0.65 0.36
LINGAM 0.71 0.58 0.58 0.65 LINGAM 0.33 0.52 0.74 0.46

SFGC 0.43 0.55 0.42 0.63 SFGC 0.35 0.59 0.42 0.38

One can see from Table 1 that HMMLGA and exHMML gave considerably higher precision in
terms of F-measure than three other comparison methods, for all considered n up to 1000.

In the second network, we considered 8 time series with 7 gamma and 1 Gaussian distributions,
which we generated randomly together with a corresponding network. For the denser case,
we randomly generated graphs with 52 edges and for the sparser case random graphs with 15 edges.
The results are presented in Table 2. Each value in Table 2 represents the mean value of all F-measures
over 10 random generations of causal graphs for length n and lag d. For graph with 52 dependencies,
we had strength = 0.3; for graph with 15 dependencies, strength = 0.9. Similarly as in the experiments
with p = 5, one can see in Table 2 for p = 8 that both exHMML and HMMLGA gave considerably
higher F-measure than the comparison methods for considered n up to 1000. The pair-wise hypothesis
test used in SFGC for each pair of possible connections among all time series showed its efficiency
for long time series in [1,7], however, it was in all experiments in our short-time series scenarios
outperformed by LINGAM. The performance of method HGGM, efficient in long-term scenarios [1],
was for 5 times series comparable to Lingam; for 8 times, this was the performance of HGGM the
weakest from all the methods.

5.2.2. Performance of exHMML and MMLGA

The strategy to select the set γi with minimum HMML and with minimum number of regressors
is applied in both methods. In exHMML, all 2p possible values of HMML were sorted ascendently.
Among those having the same minimum value, that one in the list is selected so that it has minimum
number of ones (regressors) and is the last in the list. Similarly, this strategy is applied iteratively in
HMMLGA on populations of individuals which have size m < 2p. This strategy is an improvement
with respect to MMLGA [12], where the first γi in the list with minimum MML function was selected.
However, since the function HMML has multiple local minima, the convergence to the global minimum
by both exHMML and HMMLGA cannot be guaranteed. The different performance of exHMML
and HMMLGA for various p and various causal graph density is given by the nature of the objective
function in (12) to be minimized. This function has multiple local minima. The above described
implementation of both procedures for the exhaustive search and for the genetic algorithm, therefore,
without any prior knowledge of the ground truth causal graph, can give different performance of
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HMMLGA and exHMML. However as shown in the experiments, the achieved local minima are for
both methods much closer to the global one than in case of the three rival methods.

Table 2. p = 8, average F-measure for each method, HMML, with d = 3, ng = 10, m = 20, HGGM with
λmax = 5, LINGAM with n/2 boots. The first subtable is for d = 3, the second one for d = 4.

dense g. 52, n = 100 300 500 1000; sparse g. 15, n = 100 300 500 1000

exHMML 0.68 0.78 0.79 0.82 exHMML 0.69 0.73 0.77 0.64
HMMLGA 0.84 0.67 0.66 0.87 HMMLGA 0.57 0.69 0.7 0.56

HGGM 0.16 0.17 0.17 0.17 HGGM 0.2 0.09 0.18 0.17
LINGAM 0.62 0.54 0.51 0.55 LINGAM 0.28 0.33 0.4 0.19

SFGC 0.32 0.21 0.35 0.20 SFGC 0.3 0.24 0.22 0.19

dense g. 52, n = 100 300 500 1000; sparse g. 15, n = 100 300 500 1000

exHMML 0.59 0.64 0.56 0.75 exHMML 0.58 0.84 0.80 0.69
HGGMGA 0.77 0.72 0.63 0.79 HMMLGA 0.42 0.69 0.70 0.56

HGGM 0.16 0.16 0.18 0.17 HGGM 0.17 0.10 0.18 0.19
LINGAM 0.62 0.54 0.51 0.55 LINGAM 0.27 0.33 0.40 0.18

SFGC 0.36 0.45 0.82 0.83 SFGC 0.29 0.29 0.24 0.20

5.3. Climatological Data

We studied dynamics among seven climatic time series in a time interval. All time series were
measured in the station of the Institute for Meteorology of the University of Life Science in Vienna 265 m
above sea level [36]. Since weather is a very changeable process, it makes sense to focus on shorter
time interval. We considered time series of dewpoint temperature (degree C, dew p), air temperature
(degree C, air tmp), relative humidity (%, rel hum), global radiation (W m−2, gl rad), wind speed
(km/h, w speed), wind direction (degree, w dir), and air pressure (hPa, air pr). All processes were
measured every ten minutes, which corresponds to n = 432 time observations for each time series.
We concentrated on the temporal interactions of these processes during two scenarios. The first one
corresponded to 7 to 9 July 2020 which were days with no rain. The second one corresponded to
16 to 18 July 2020 which were rainy days.

Before we applied the methods, we tested the distributions of each time series. In the first
scenario (rainy days), air temperature (2) and global radiation (4) followed a gamma distribution
and the remaining processes, the dew point temperature (1), relative humidity (3), wind speed (5),
wind direction (6), and air pressure (7), following a Gaussian distribution. In the second scenario
(dry days), wind direction (6) and air pressure (7) followed a Gaussian distribution, the dew point
temperature (1), air temperature (2), relative humidity (3), global radiation (4) and wind speed
(5), following a gamma distribution. To decide which of the algorithms exHMML or HMMLGA
would be preferable to apply in this real valued experiment, we executed synthetic experiments
for constellations of 5 gamma and 2 Gaussian (dry days), as well as of 2 gamma and 5 Gaussian
(rainy days), with n = 432 for sparse and dense graphs with d = 4 and 5, each for 10 random graphs.
Higher F-measure was obtained for HMMLGA, therefore we applied the HMMLGA procedure in the
climatological experiments.

The resulting output graphs for methods HMMLGA, Lingam and HGGM for rainy and dry days
gave the same graphs each for both lags; for dry days, we obtained, in HGGM, different graphs for each
lag. We were interested in (a) how realistic were the detected temporal interactions of the processes by
each method and in each scenario and (b) how realistic were the detected temporal interactions by
each method, coming from the difference of graphs for dry and rainy days. In this case, we focused
here only on the connections which differed in both graphs for each method. The figures of the output
graphs for methods HMMLGA, Lingam, SFGC and HGGM for rainy and dry days can be for lag d = 4,
seen in Figures 1 and 2.
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Figure 1. Output causal graphs for method HMMLGA and Lingam for rainy days and dry day scenarios.
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Figure 2. Output causal graphs for method HGGM and SFGC for rainy days and dry day scenarios.

For Lingam, the ouput graphs for rainy and dry days were identical and complete, so we omitted
this method from further analysis.

Based on the expert knowledge [37], the temporal interactions in HMMLGA output graphs in
both the rainy and dry scenarios correspond to the reality. In HMMLGAD−R, which is the subgraph
of HMMLGA of connections of the complement for dry days and of rainy days, the following directed
edges in the form (cause, effect) were detected: (air tmp, air pr) and (dew p, air pr). The (direct)
influence of dew point on air pressure is more strongly observable during sunny days, since the
dew point is not possible to determine during rainy days. Similarly, the causal influence of air
temperature on the air pressure is stronger during sunny days than during rainy days. So, both detected
edges in HMMLGA were realistic. HMMLGAR−D was empty. Output graph HGGMD−R gave no
edges. For HGGMR−D, we obtained these directed edges: (dew p, air pr), which is, during rain,
not observable, but the achieved influence (rel hum, dew p) is also during rain observable. Moreover,
(rel hum, air pr) are observable (as humidity increases, pressure decreases). The edge (w speed, w dir)
is not observable in reality, (w speed, air pr) is observable (higher wind speeds will show lower air
pressure); also (w speed, air tmp) and (w speed, gl rad) are observable, however direct effect (w dir,
rel hum) is not observable in reality. So, HGGMR−D had 2 falsely detected directions out of 8. Graph
SFGCR−D gave this edge (dew p, air pr). Similarly, as in the case of HGGM, this edge is, during
rain, not observable; (dew p, air tmp)—is during rain not observable; (dew p, w speed)—is during
rain not observable; (dew p, rel hum)—is during rain not observable; (dew p, gl rad)—is during
rain not observable; (rel hum, gl rad)—is during rain observable; (gl rad, w speed)—is during rain

Figure 1. Output causal graphs for method HMMLGA and Lingam for rainy days and dry day scenarios.
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For Lingam, the ouput graphs for rainy and dry days were identical and complete, so we omitted
this method from further analysis.

Based on the expert knowledge [37], the temporal interactions in HMMLGA output graphs in
both the rainy and dry scenarios correspond to the reality. In HMMLGAD−R, which is the subgraph
of HMMLGA of connections of the complement for dry days and of rainy days, the following directed
edges in the form (cause, effect) were detected: (air tmp, air pr) and (dew p, air pr). The (direct)
influence of dew point on air pressure is more strongly observable during sunny days, since the
dew point is not possible to determine during rainy days. Similarly, the causal influence of air
temperature on the air pressure is stronger during sunny days than during rainy days. So, both detected
edges in HMMLGA were realistic. HMMLGAR−D was empty. Output graph HGGMD−R gave no
edges. For HGGMR−D, we obtained these directed edges: (dew p, air pr), which is, during rain,
not observable, but the achieved influence (rel hum, dew p) is also during rain observable. Moreover,
(rel hum, air pr) are observable (as humidity increases, pressure decreases). The edge (w speed, w dir)
is not observable in reality, (w speed, air pr) is observable (higher wind speeds will show lower air
pressure); also (w speed, air tmp) and (w speed, gl rad) are observable, however direct effect (w dir,
rel hum) is not observable in reality. So, HGGMR−D had 2 falsely detected directions out of 8. Graph
SFGCR−D gave this edge (dew p, air pr). Similarly, as in the case of HGGM, this edge is, during
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Figure 2. Output causal graphs for method HGGM and SFGC for rainy days and dry day scenarios.

For Lingam, the ouput graphs for rainy and dry days were identical and complete, so we omitted
this method from further analysis.

Based on the expert knowledge [37], the temporal interactions in HMMLGA output graphs in
both the rainy and dry scenarios correspond to the reality. In HMMLGAD−R, which is the subgraph
of HMMLGA of connections of the complement for dry days and of rainy days, the following directed
edges in the form (cause, effect) were detected: (air tmp, air pr) and (dew p, air pr). The (direct)
influence of dew point on air pressure is more strongly observable during sunny days, since the
dew point is not possible to determine during rainy days. Similarly, the causal influence of air
temperature on the air pressure is stronger during sunny days than during rainy days. So, both detected
edges in HMMLGA were realistic. HMMLGAR−D was empty. Output graph HGGMD−R gave no
edges. For HGGMR−D, we obtained these directed edges: (dew p, air pr), which is, during rain,
not observable, but the achieved influence (rel hum, dew p) is also during rain observable. Moreover,
(rel hum, air pr) are observable (as humidity increases, pressure decreases). The edge (w speed, w dir)
is not observable in reality, (w speed, air pr) is observable (higher wind speeds will show lower air
pressure); also (w speed, air tmp) and (w speed, gl rad) are observable, however direct effect (w dir,
rel hum) is not observable in reality. So, HGGMR−D had 2 falsely detected directions out of 8. Graph
SFGCR−D gave this edge (dew p, air pr). Similarly, as in the case of HGGM, this edge is, during
rain, not observable; (dew p, air tmp)—is during rain not observable; (dew p, w speed)—is during
rain not observable; (dew p, rel hum)—is during rain not observable; (dew p, gl rad)—is during
rain not observable; (rel hum, gl rad)—is during rain observable; (gl rad, w speed)—is during rain
not observable; (gl rad, w dir)—is during rain not observable. So, SFGCR−D had 7 falsely detected
directions out of 8. The output of SFGCD−R gave these edges: (rel hum, dew p)—this is during a dry
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period observable; (rel hum, air tmp)—this is during a dry period observable; (gl rad, w speed)—this
is during a dry period observable; (dev p, air tmp)—this is during a dry period observable; (air press,
w dir)—this is during a dry period observable; (w speed, air pr)—this is during a dry period observable;
(air pr, w speed) is during dry period in reality observable. So, SFGCD−R had 7 correctly detected
directions out of 7.

We conclude that, in this climatological experiment, method HMMLGA, followed by SFGC,
gave the most realistic causal connections with respect to the comparison methods.

5.4. Electrohysterogram Time Series

In the current obstetrics, there is no effective way of preventing preterm birth. The main
reason is that no good objective method is known to evaluate the stepwise progression of pregnancy
through to labor [38]. Any better understanding of the underlying labor dynamics can contribute to
prevent preterm birth, which is the main cause of mortality in newborns. External recordings of the
electrohysterogram (EHG) can provide new knowledge on uterine electrical activity associated with
contractions.

We considered a database of 4-by-4 electrode EHG recordings performed on pregnant women,
which were recorded in Iceland between 2008 and 2010 and are available via PhysioNet (PhysioBank
ATM) [39]. This EHC grid (in the matrix form) was placed on the abdomen of the pregnant women.
The electrode numbering, as considered in [38], can be found in Figure 3.

Figure 3. The ordering of the electrodes as mounted on the abdomen of women.

We applied the recordings, concretely for EHG signal for women in the third phase of pregnancy
and during labor, to all the methods. We selected all (five) mothers for which the recordings were
performed, both in the third trimester and during labor. Since there is no ground truth known on how
the dynamics among the electrodes should look like for both modalities, we set a modest objective for
us, whether HMMLGA and the comparison methods are able to distinguish labor from pregnancy
from the EHG recordings. During labor, a higher density of interactions among electrodes is expected
than during pregnancy, due to the higher occurrence of contractions of the uterine smooth muscles,
which is also supported by some recent research in obstetrics, e.g., [40].

The 16 electromyographic time series (channels) were taken for all women (woman 11, 27, 30,
31 and 34), for each in the third trimester (P) and during labor (L). The observations in time series
correspond to the time resolution every 5th microsecond. The time series in the databasis are
commented by information about contraction, possible contraction, participant movement, participant
change of position, fetal movement and equipment manipulation. By statistical fitting, we found out
that all 16 time series followed Poisson distribution (setting raw ADC units in the Physionet database).
We analysed the causal connections of each method for labor and pregnancy for all five women.

Since HMMLGA had higher F-measure than exHMML in the synthetic experiments with
16 Poisson time series, we considered further only HMMLGA in this real data experiment.
In the synthetic experiments in [12], Poisson time series showed the highest F-measure on short
time series, i.e., the case when the number of time observations is smaller than approximately two
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orders times the number of time series. Based on this, we took the last 1200 observations for labor,
since in the last phase, it was sure the labor had already started and the contractions had increased
in time. Labor still continued for another few hours after the EHG recording finished for each of
five women. For pregnancy time series, we took also 1200 observations, starting the moment where
all electrodes had been fixed. The hypothesis, that during labor all electrodes were activated was
confirmed by HMMLGA, HGGM and Lingam at all mothers. The hypothesis, that the causal graph
during labor had higher density of causal connections than in the pregnancy case, was confirmed at all
mothers by HMMLGA, for HGGM for mothers 30 and 31, but for SFGC and Lingam, we could not
confirm it. In fact, Lingam gave identical complete causal graphs for both labor and pregnancy cases.
The real computational time for Lingam (with 100 boots, as recommended by the authors) was for 16
time series and both labor and pregnancy modalities cca 12 h (in HP Elite Notebook); on the other side,
for other methods, the time was in order of minutes. We present the causal graphs of all methods for
labor and pregnant phase of mother 31 in Figure 4.
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One can see that the density of connections by HMMLGA for labor is higher than for pregnancy.
Causal graphs of HMMLGA for all mothers were for labor also denser than the pregnancy one.
To make some more concrete hypotheses about the temporal interactions among the electrodes based
on contractions, we would probably have to consider only intervals about which we know that they
are without or with a limited number of artifacts in terms of participant movement, participant change
of position, etc.

6. Conclusions

Common graphical Granger models in scenarios with short time series suffer often from
overestimation, including the heterogeneous graphical Granger model. To remedy this, in this paper,
we proposed to use the minimum message length principle for determination of causal connections
in the heterogeneous graphical Granger model. Based on the dispersion coefficient of the target time
series and on the initial maximum likelihood estimates of the regression coefficients, we proposed a
minimum message length criterion to select the subset of causally connected time series with each
target time series, and we derived its concrete form for various exponential distributions. We found
this subset by a genetic-type algorithm (HMMLGA), which we have proposed as well as by exhaustive
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One can see that the density of connections by HMMLGA for labor is higher than for pregnancy.
Causal graphs of HMMLGA for all mothers were for labor also denser than the pregnancy one.
To make some more concrete hypotheses about the temporal interactions among the electrodes based
on contractions, we would probably have to consider only intervals about which we know that they
are without or with a limited number of artifacts in terms of participant movement, participant change
of position, etc.

6. Conclusions

Common graphical Granger models in scenarios with short time series suffer often from
overestimation, including the heterogeneous graphical Granger model. To remedy this, in this paper,
we proposed to use the minimum message length principle for determination of causal connections
in the heterogeneous graphical Granger model. Based on the dispersion coefficient of the target time
series and on the initial maximum likelihood estimates of the regression coefficients, we proposed a
minimum message length criterion to select the subset of causally connected time series with each
target time series, and we derived its concrete form for various exponential distributions. We found
this subset by a genetic-type algorithm (HMMLGA), which we have proposed as well as by exhaustive
search (exHMML). We evaluated the complexity of these algorithms. The code in Matlab is provided.
We demonstrated superiority of both methods with respect to the comparison methods in synthetic
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experiments in short data scenarios. In two real data experiments, the interpretation of the causal
connections as the result of HMMLGA was the most realistic with respect to the comparison methods.
The superiority of HMMLGA with respect to the comparison methods for short time series can be
explained by utilizing the dispersion of time series in the criterion as an additional (prior) information,
as well as the fact that this criterion is optimized in the finite search space.
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Appendix A. Derivation of the MML Criterion for HGGM

Assume p independent random variables from the exponential family which are represented by
time series xt

i , t = d + 1, . . . , n and for each i be φ̂i the given estimate of its dispersion. Consider the
problem (10) for a given lag d > 0.

We consider now γi fixed, so for simplicity of writing we omit it from the list of variables of the
functions. Having function Li, we can now compute an initial estimate of β̂i from (10) which is the
solution to the system of score equations. Since Li forms a convex function, one can use standard
convex optimization techniques (e.g., Newton-Raphson method) to solve these equations numerically.
(In our code, we use the Matlab implementation of an iteratively reweighted least squares (IRLS)
algorithm of the Newton–Raphson method). Assume now we have an initial solution β̂i from (10).

Having parameters β̂i, φ̂i, Σi Wi and λi, we need to construct the function HMML(γi): We
use for each i = 1, . . . , p and for regression (10) Formula (18) from [23] i.e., the case when we plug
in variables α := 0 and β := β̂i and X := Xi, y := xi, n := n − d, k := ki, θ := β̂i, λ := λi,
φ := φ̂i, S = Σi be the unity matrix of dimension dki. The corrected Fisher information matrix for
the parameters βi is then J(β̂i|φ̂i, λi) = ( 1

φi
)X′iWiXi + λiΣi. Function c(m) for m := ki + 1 is then

c(ki + 1) = − ki+1
2 log(2π) + 1

2 log((ki + 1)π)− 0.5772 and the constants which are independent of ki
we omitted from the HMML code, since the optimization w.r.t. γi is independent of them. Among all
subsets γi ∈ Γ, there are ( p

ki
) subsets of size ki. If nothing is known a priori about the likelihood of

any covariate xi being included in the final model, a prior that treats all subset sizes equally likely
π(|γi|) = 1/(p + 1) is appropriate [23]. This gives the code length I(γi) = log ( p

ki
) + log(p + 1) as

in (12).

Appendix B. Derivation of Li, Wi, φi for Various Exponential Distributions of xi

Case xi is Gaussian Since in this case is φi = σ2
i its variance, we will omit φi from the list of parameters

which condition function p. Li in (15) is obtained directly from (14) by applying logarithm on it. By

plugging values for identity link corresponding to the Gaussian case as ηt
i = µt

i = [Xiβi]
t and δηt

i
δµt

i
= 1

into Formula (13) from [23], matrix Wi = Ikid×kid is directly obtained.
Case xi is binomial Assuming φi be a constant, we can omit φi from the list of parameters which
condition function p. Li in (17) is obtained directly from (16) by applying logarithm on it. As in the
previous case, it is obtained by plugging values into formula (13) from [23]. Value of Wi from (19)
is obtained by plugging values for logit link corresponding to the binomial case as ηt

i = [Xiβi]
t =

log( µt
i

1−µt
i
) and δηt

i
δµt

i
= 1

µt
i (1−µt

i )
into Formula (13) from [23]. In case we cannot assume φi = 1, we apply

the sandwich estimate of the covariance matrix of β̂i for robust estimation which for a general logistic
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regression can be found in e.g., [41]) and in our case it gives matrix Wi in the form Wi = diag
(
(x1

i −
exp ([Xi β̂

′
i ]

1)

(1+exp ([Xi β̂
′
i ]

1))2
)2, . . . , (xn−d

i − exp ([Xi β̂
′
i ]

n−d)

(1+exp ([Xi β̂
′
i ]

n−d))2
)2).

Case xi is Poisson First we will express the log-likelihood function Li in terms of parameters βi.
Since we use Poisson model for xi having the Poisson distribution or overdispersed Poisson, we
omit φi from the list of parameters which condition function p. For a given set of parameters βi,

the probability of attaining xd+1
i , . . . , xn

i is given by p(xd+1
i , . . . , xn

i |Xi, βi) = ∏n
t=d+1

(µt
i )

xt
i exp (−µt

i )

(xt
i )!

=

∏n
t=d+1

exp ([Xi β
′
i ]

t)
xt

i exp (− exp ([Xi β
′
i ]

t))

xt
i ! and ηt

i = exp([Xiβ
′
i]

t), (recalling the notation from Section 3.2,

[Xiβ
′
i]

t denotes the t-th coordinate of the vector Xiβ
′
i). The log-likelihood in terms of βi is Li =

log p(βi|xi, Xi) = ∑n
t=d+1 xt

i [Xiβ
′
i]

t − exp ([Xiβ
′
i]

t) − log(xt
i !). Now we derive matrix Wi for xi with

(exact) Poisson distribution: The Fisher information matrix Ji = J(βi) = −Eβi
(∇2Li(βi|xi, Xi)) may be

obtained by computing the second order partial derivatives of Li for r, s = 1, . . . , ki. This gives

δ2Li(βi |xi ,Xi)

δ2βr
i βs

i
= δLi

δβs
i

∑n
t=d+1[x

t
i ∑d

l=1 xt−l
r − exp (∑ki

j=1 ∑d
l=1 xt−l

j βl
j)∑d

l=1 xt−l
r ]

= −∑n
t=d+1 exp (∑ki

j=1 ∑d
l=1 xt−l

j βl
j)(∑

d
l=1 xt−l

s )(∑d
l=1 xt−l

r ).
(A1)

If we denote Wi := diag(exp (∑ki
j=1 ∑d

l=1 xd+1−l
j βl

j), . . . , exp (∑ki
j=1 ∑d

l=1 xn−l
j βl

j)) then we have
Fisher information matrix J(βi) = (Xi)

′WiXi. Alternatively, Wi can be obtained by plugging values
into formula (13) from [23]. Value of Wi from (22) is obtained by plugging values for log link

corresponding to the Poisson case as ηt
i = [Xiβi]

t = log(µt
i) and δηt

i
δµt

i
= 1

µt
i

into Formula (13) from [23].

Derivation of matrix Wi for xi with overdispersed Poisson distribution: Assume now the
dispersion parameter φi > 0, 6= 1. The variance of the overdispersed Poisson distribution is φiµi.
We know that the Poisson regression model can be still used in overdispersed settings and the function
Li is the same as Li(βi) derived above. We use the robust sandwich estimate of covariance of β̂i as it
was proposed in [42] for general Poisson regression. The Fisher information matrix of overdispersed
problem is Ji = J(βi) = (Xi)

′WiXi where Wi is constructed for xi Poisson based on [42] and has the
form Wi = diag([xd+1

i − exp (∑ki
j=1 ∑d

l=1 xd+1−l
j βl

j)]
2, . . . , [xn

i − exp (∑ki
j=1 ∑d

l=1 xn−l
j βl

j)]
2).

Case xi is gamma Li in (25) is obtained directly from (24) by applying logarithm on it. By plugging

values for log link corresponding to the gamma case as ηt
i = 1

µt
i

and δηt
i

δµt
i
= 1

(µt
i )

2 into Formula (13)

from [23], matrix Wi from (26) is directly obtained.
Case xi is inverse-Gaussian Li in (28) is obtained directly from (24) by applying logarithm on it.
By plugging values for log link corresponding to the inverse-Gaussian case as ηt

i = [Xiβi]
t = log(µt

i)

and δηt
i

δµt
i
= 1

µt
i

into Formula (13) from [23], matrix Wi from (29) is directly obtained.
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