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ABSTRACT Whole-genome sequencing (WGS) is now routinely performed in
clinical microbiology laboratories to assess isolate relatedness. With appropriately
developed analytics, the same data can be used for prediction of antimicrobial
susceptibility. We assessed WGS data for identification using open-source tools
and antibiotic susceptibility testing (AST) prediction using ARESdb compared to
matrix-assisted laser desorption ionization-time of flight mass spectrometry
(MALDI-TOF MS) identification and broth microdilution phenotypic susceptibility
testing on clinical isolates from a multicenter clinical trial of the FDA-cleared Un-
yvero lower respiratory tract infection (LRTI) application (Curetis). For the trial,
more than 2,000 patient samples were collected from intensive care units across
nine hospitals and tested for LRTI. The isolate subset used in this study included
620 clinical isolates originating from 455 LRTI culture-positive patient samples.
Isolates were sequenced using the Illumina Nextera XT protocol and FASTQ files
with raw reads uploaded to the ARESdb cloud platform (ares-genetics.cloud; re-
leased for research use in 2020). The platform combines Ares Genetics’ proprie-
tary database ARESdb with state-of-the-art bioinformatics tools and curated pub-
lic data. For identification, WGS showed 99 and 93% concordance with MALDI-
TOF MS at the genus and species levels, respectively. WGS-predicted susceptibility
showed 89% categorical agreement with phenotypic susceptibility across a total of
129 species-compound pairs analyzed, with categorical agreement exceeding 90% in
78 species-compound pairs and reaching 100% in 32. Results of this study add to
the growing body of literature showing that, with improvement of analytics, WGS
data could be used to predict antimicrobial susceptibility.
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Antimicrobial resistance (AMR) is listed as a serious global health threat by multiple
international groups (1, 2). The danger was reflected in the Review on Antimicrobial

Resistance by O’Neill in 2014, projecting more than 10 million annual deaths by 2050 as
a result of AMR (3). Bacteria have evolved multiple mechanisms to evade antibiotic
treatment; use of antibiotics has contributed to the emergence and spread of
multidrug-resistant bacteria (4, 5). At the same time, few novel antibiotics are in
development, and prominent pharmaceutical companies have cut back their research
and development efforts in the infectious diseases space (6). Appropriate patient
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treatment and AMR stewardship are needed to curtail the rise of multidrug-resistant
bacteria, appropriately treat patients, and improve patient outcomes; AMR diagnostics
may be helpful in this regard (7). Bacterial cultures and antimicrobial susceptibility
testing (AST) are established tools for detecting, identifying, and defining the antimi-
crobial susceptibility of bacteria in clinical practice. Their advantages and disadvantages
have been reviewed extensively (8, 9). In recent years, whole-genome sequencing
(WGS), combined with high-performance bioinformatics, has become available and has
been adopted into clinical practice, mostly for ascertaining isolate relatedness for
infection prevention and control purposes. The WGS data used for typing, or clonality
testing, can theoretically be used clinically for isolate identification alongside antimi-
crobial susceptibility prediction. Lacking, however, are broadly applicable bioinformat-
ics platforms suitable for use in clinical laboratories and the demonstration of their
performance.

Here, we compared WGS-based bacterial identification and antibacterial suscepti-
bility testing against matrix-assisted laser desorption ionization-time of flight mass
spectrometry (MALDI-TOF MS) identification and broth microdilution susceptibility
testing using a set of clinical isolates from the clinical trial of the Unyvero lower
respiratory tract infection (LRTI) application, a multiplex-PCR based sample-to-answer
solution manufactured by Curetis. LRTI is a leading cause of death in intensive care unit
(ICU) patients globally. The incidence of hospital-acquired LRTI in Europe and the
United States is estimated at 1 to 12 cases per 1,000 individuals (10–12); 10 to 39% of
patients receive inappropriate empirical treatment (13, 14), in part because of the
spread of AMR.

MATERIALS AND METHODS
Microbiology culture. A total of 483 patient samples—tracheal aspirate and bronchoalveolar lavage

specimens—were cultured and polymicrobial cultures worked up by colony morphology, resulting in 664
cultured, microbial, clinical isolates. All clinical isolates were identified with a Bruker Microflex LT/SH
MALDI-TOF MS Biotyper (MBT subtyping module RUO 3.1.65) and tested for antibiotic susceptibility by
broth microdilution.

Broth microdilution antimicrobial susceptibility testing. MICs were determined once using the
broth microdilution method in 96-well plates following European Committee on Antimicrobial Suscep-
tibility Testing (EUCAST) recommendations. Testing was performed on 21 compounds spanning 10
compound classes (Table 1). Quality control isolates Escherichia coli ATCC 25922, ATCC 35218, and NCTC
13846, Pseudomonas aeruginosa ATCC 27853, Streptococcus pneumoniae ATCC 49619, Haemophilus
influenzae ATCC 49766, and Staphylococcus aureus ATCC 29213 were used for the antibiotic susceptibility
testing panels. Panels were considered acceptable for testing when the quality control results met the
control ranges described by EUCAST.

Briefly, testing panels were constructed by a commercial vendor (IHMA Europe) as follows: for
members of the Enterobacterales, amikacin (0.25 to 32 �g/ml), amoxicillin-clavulanic acid (constant
2 mg/liter clavulanic acid) (1 to 16 �g/ml), ampicillin (1 to 16 �g/ml), cefepime (0.008 to 8 �g/ml),
ceftazidime (0.03 to 8 �g/ml), ceftriaxone (0.015 to 4 �g/ml), cefuroxime (1 to 16 �g/ml), ciprofloxacin
(0.002 to 1 �g/ml), ertapenem (0.002 to 2 �g/ml), gentamicin (0.12 to 8 �g/ml), imipenem (0.03 to
16 �g/ml), levofloxacin (0.004 to 2 �g/ml), meropenem (0.004 to 16 �g/ml), piperacillin-tazobactam
(constant
4 mg/liter tazobactam) (0.12 to 32 �g/ml), tobramycin (0.12 to 8 �g/ml), and trimethoprim-
sulfamethoxazole (1:19) (0.015 to 8 �g/ml); for P. aeruginosa, Acinetobacter baumannii, and Stenotroph-
omonas maltophilia, amikacin (0.5 to 32 �g/ml), cefepime (0.25 to 16 �g/ml), ceftazidime (0.5 to 32 �g/

TABLE 1 List of compounds and compound classes used for microdilution AST

Compound Class

Ampicillin, benzylpenicillin, amoxicillin-clavulanic acid,
piperacillin-tazobactam

Penicillins

Cefuroxime Second-generation cephalosporins
Ceftazidime, ceftriaxone Third-generation cephalosporins
Cefepime Fourth-generation cephalosporins
Ertapenem, imipenem, meropenem Carbapenems
Trimethoprim, trimethoprim-sulfamethoxazole Folate pathway inhibitors
Ciprofloxacin, levofloxacin, moxifloxacin Fluoroquinolones
Amikacin, gentamicin, tobramycin Aminoglycosides
Erythromycin Macrolides
Tetracycline Tetracyclines
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ml), ciprofloxacin (0.125 to 8 �g/ml), gentamicin (0.25 to 16 �g/ml), imipenem (0.25 to 32 �g/ml),
levofloxacin (0.125 to 8 �g/ml), meropenem (0.125 to 32 �g/ml), piperacillin-tazobactam (constant 4
�g/ml tazobactam) (0.12 to 64 �g/ml), tobramycin (0.25 to 16 �g/ml), and trimethoprim-
sulfamethoxazole (1:19) (0.125 to 16 �g/ml); for S. aureus, benzylpenicillin (0.03 to 2 �g/ml), ciprofloxacin
(0.06 to 8 �g/ml), erythromycin (0.12 to 4 �g/ml), gentamicin (0.06 to 4 �g/ml), levofloxacin (0.03 to
8 �g/ml), moxifloxacin (0.008 to 1 �g/ml), tetracycline (0.06 to 4 �g/ml), trimethoprim (0.06 to 8 �g/ml),
and trimethoprim-sulfamethoxazole (1:19) (0.008 to 8 �g/ml).

MIC values were converted into categorical resistant (R), susceptible (S), intermediate (I), and
susceptible dose-dependent (SDD) phenotypes per species-compound pair according to breakpoints
defined by the Clinical and Laboratory Standards Institute (CLSI) guidelines (15). EUCAST guidelines were
used for in vitro testing, and CLSI criteria were used for interpretation because WGS AST models in
ARESdb were trained on CLSI criteria (see “WGS AST model training, validation, and evaluation”). Tested
dilution ranges were confirmed to include CLSI interpretive breakpoints for all species-compound pairs.

Whole-genome sequencing. DNA was extracted from isolate cultures using the UltraClean microbial
DNA isolation kit according to the manufacturer’s protocol (Mo Bio Laboratories Inc.). Next-generation
sequencing (NGS) libraries were prepared in a 96-well format using a NexteraXT DNA sample preparation
kit and a NexteraXT index kit for 96 indexes (Illumina) according to the manufacturer’s protocol.
Sequencing was run on Illumina NextSeq 500, v2, high output, 2 � 150 bp, with a minimum targeted
depth of 30. Samples were demultiplexed and Illumina adapter residuals trimmed.

ARESdb and computational data analysis. Data analysis workflows were written with Nextflow
v18.10.1 and implemented on the ARESdb cloud platform (ares-genetics.cloud). The platform
combines Ares Genetics’ proprietary database ARESdb, an extension of the GEAR database described
by Galata et al. (16), with state-of-the-art open-source tools and public data. At the time of the study,
ARESdb comprised curated genotype-phenotype data for approximately 35,000 bacterial strains and
more than 100 antibiotics, originating largely from GEAR as well as from freely accessible data sets,
including data from PATRIC and NDARO. At the time of submission, ARESdb has further grown and
contains matched whole-genome sequencing and antibiotic susceptibility data for more than 50,000
bacterial strains.

(i) WGS data upload and ARESdb access. Data upload, WGS AST analysis, and interactive reporting
based on ARESdb were performed via ares-genetics.cloud (https://ares-genetics.cloud) hosted on Ama-
zon Web Services (AWS), which is accessible for research use after registration. FASTQ files containing
NGS raw reads from the 664 samples evaluated in this study were uploaded to the secure user space via
secure file transfer protocol. Reports of predicted S/R phenotypes were subsequently downloaded and
used for WGS AST performance evaluation in this study.

(ii) WGS data quality control and genome assembly. Illumina NextSeq 500 reads were quality
checked using FastQC v0.11.6 and MultiQC v1.6 (17, 18). Platform-specific adapters were removed and
paired-end reads trimmed using Trimmomatic v0.38 (19). Reads were deduplicated prior to downstream
analysis with FastUniq v1.1 (20). Sequenced isolates were de novo assembled with SPAdes v3.12.0 and
annotated with Prokka v1.13 prior to quality control through Quast v4.6.3 and assembly coverage
determination with BWA v0.7.17 and BEDTools v.2.27.1 for indexing and alignment and Samtools v1.9 for
sorting the BAM files (21–26).

CheckM was used to evaluate assembly quality and contamination (27). Isolates that had less than
90% completeness, more than 10% contamination as per CheckM, or a quality measure of less than 50%
were considered contaminated or low quality and were consequently removed. The quality measure was
calculated as the completeness CheckM metric minus five times the contamination as in reference 28.
From the 664 initial isolates, 44 were removed that failed to meet the defined quality criteria. Of the
remaining 620 isolates, 25 presented a genome bigger than expected for the identified species. For these
25, after manual inspection of the assembly files, a long tail of small contig fragments (below 300 bp)
with a larger GC content than that of the main genome was observed. To try to rescue as many isolates
as possible, any contig with a length below 300 bp was removed.

(iii) WGS-based identification. WGS-based in silico identifications were determined from sequenc-
ing reads with Kraken v1.0 using Kraken’s “full kraken database” based on the NCBI nonredundant
database (29). Assigned taxonomy identifications were double-checked using contig assembly similari-
ties calculated by SourMash 2.0.0a using the NCBI RefSeq database (30). Identifications were compared
for agreement on the species and genus rank per isolate culture between MALDI-TOF MS and WGS-based
in silico identification.

(iv) WGS AST model training, validation, and evaluation. WGS AST classification models for
prediction of antibiotic susceptibility/resistance (S/R) were trained per species-compound pair using
ARESdb. In summary, a total of 129 independent WGS AST models covering 21 antibiotic compounds and
13 pathogenic species were assessed in this study.

For each of the 13 species, an exhaustive 15-mer count matrix was built based on de novo genome
assemblies from ARESdb using KMC 3.1.0 (31). For each 15-mer count matrix, zero-variance 15-mers were
removed and the top 50,000,000 15-mers with the highest variance were selected. All subsequent feature
selection and model training procedures were performed independently for each of the 129 species-
compound combinations assessed.

For feature selection and model training, the 15-mer count matrix of a given species was randomly
split into training/holdout subsets by the ratio 80% to 20%. Stratified splitting was performed based on
the MIC of a given compound, thereby ensuring homogenous distribution of resistance phenotypes in
training and holdout subsets. Training/holdout 15-mer count matrices were subsequently binarized to
yield presence/absence matrices of genome assemblies and 15-mers. Resistance phenotypes as mea-
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sured by the MIC were subsequently binarized to derive R/S class labels. Intermediate and susceptible
dose-dependent phenotypes were treated as susceptible. For each 15-mer in the training subset, the
presence/absence pattern was tested for association with the resistance phenotype using the �2 test as
implemented in scikit-learn (32). The 15-mers were then filtered for P values of �0.05 prior to inclusion
in subsequent model training. Additionally, the feature space for each species-compound combination
was expanded to include all 15-mers mapping to curated AMR markers that have been either described
in scientific studies or identified by our recently published high-throughput biomarker validation
procedure (33). The method was thus designed to select features that are either strongly correlated with
the phenotype or known and functionally meaningful AMR markers.

Using the selected features, extreme gradient boosting binary classifiers were trained for the
prediction of S/R categories with XGBoost 0.82 (34). Hyperparameters for model training were optimized
for balanced accuracy using random search over a defined variable space and validated by 5-fold
cross-validation. Finally, optimized models were further validated on the retained holdout subset
confirming generalizability before being evaluated for WGS-based AST on isolates from the Unyvero LRTI
trial.

(v) Comparison of microdilution AST and WGS AST. Observed resistant and susceptible pheno-
types from microdilution AST were compared to WGS-based in silico-predicted AST phenotypes per
compound-isolate pair. The comparison was performed using binary classification metrics such as
categorical agreement, as well as major errors (MEs) and very major errors (VMEs), referring to false-
resistant (false-positive) and false-susceptible (false-negative) predictions, respectively.

Data availability. Raw sequence reads and genome assemblies are available from the NCBI BioProj-
ect repository under project no. PRJNA553678, “Clinical Utility of Antibiotic Susceptibility Testing by
Whole Genome Sequencing.”

RESULTS
Study design. More than 2,000 patient samples were tested for LRTI during the trial.

A total of 664 isolates from 483 samples that were culture positive for at least one
Unyvero LRTI application pathogen (a subset of the overall culture-positive specimens)
were selected for this study. Isolates were subjected to identification via matrix-assisted
laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and
phenotypic susceptibility testing by broth microdilution in parallel to WGS and subse-
quent WGS-based identification using open-source tools and AST prediction using
ARESdb (Fig. 1). Concordance between WGS-based identification and MALDI-TOF MS
was assessed at the species and genus levels. For antimicrobial susceptibility assess-

FIG 1 Overview of the sample acquisition, identification, and antimicrobial susceptibility testing work-
flows. (A) A total of 664 cultured isolates from 483 patient samples which were positive for at least one
Unyvero LRTI application pathogen and which were culture positive, out of a cohort of more than 2,000
patient samples (tracheal aspirate and bronchoalveolar lavage specimens combined), were selected for
study. (B and C) Isolates were identified by MALDI-TOF MS and in vitro antimicrobial susceptibility testing
performed using broth microdilution (B), as well as being subjected to WGS-based identification using
open-source tools and antimicrobial susceptibility prediction using ARESdb (C).
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ment, concordance was evaluated by comparing results of broth microdilution testing
to predicted susceptibility using WGS data.

WGS quality control. Assembly depth ranged from 43 to 453, with a mean of 141.
WGS data and de novo assemblies were quality checked and contaminated assemblies
excluded (see Materials and Methods). Contaminated isolates were identified using
CheckM following the method described by Parks et al. (27) and removed from the
study. After removal of 44 isolates due to sequence contamination, the final test set
contained 620 isolates.

Comparison of MALDI-TOF MS and WGS taxonomy results. MALDI-TOF MS and
WGS-based identification agreed at the species and genus levels for 93 and 99% of
isolates, respectively. Four isolates (0.6%) were discrepant at the genus level (see Table
S1 in the supplemental material). MALDI-TOF MS identified 28 species (see Fig. S1) in
contrast to 30 identified via WGS (see Table S2). The analysis covered the following
genera: Acinetobacter, Citrobacter, Enterobacter, Escherichia, Haemophilus, Klebsiella,
Moraxella, Morganella, Proteus, Providencia, Pseudomonas, Raoultella, Serratia, Staphylo-
coccus, Stenotrophomonas, and Streptococcus. The four isolates discrepant at the genus
level were excluded from the comparison between broth microdilution testing and
WGS susceptibility predictions.

Comparison of broth microdilution AST and WGS-based prediction of antimi-
crobial susceptibility. Broth microdilution AST results were compared to WGS-
predicted susceptibility and analyzed for agreement as to the determined susceptible
(S) or resistant (R) phenotypes according to CLSI interpretive guidelines. Intermediate
(I) and susceptible dose-dependent (SDD) phenotypes were treated as susceptible.
Susceptible and resistant phenotypes were determined per isolate-compound pair.
From the 616 isolates that passed quality control and had concordant genus ID results,
WGS susceptibility predictions were obtained using Ares Genetics’ proprietary database
ARESdb (see Materials and Methods) for species-compound pairs present in the data-
base. Comparison between broth microdilution and WGS-predicted AST was performed
on the 566 isolates for which data from the given methods was available for at least one
compound. There was 89% categorical agreement between WGS-predicted AST and
broth microdilution AST. One-on-one comparisons were performed by species and
compound pairs if that pair was tested via broth microdilution AST and WGS-predicted
susceptibility was available. For 78 of 129 compared pairs, categorical agreement was
�90%, with 32 pairs showing 100% categorical agreement (Fig. 2). Overall, a major
error (ME) rate of 8% and very major error (VME) rate of 19% were calculated across all
isolate-compound pairs. VME and ME rates for all species-compound pairs are shown in
Fig. S2 and S3. Over half of the species-compound pairs had MEs of �2.5%, with
notable exceptions being cephalosporins for Klebsiella aerogenes and Enterobacter
cloacae, which had ME rates as high as 76.9%.

When data were grouped by compound class, categorical agreement ranged from
72.5% for macrolides to 95.8% for aminoglycosides. All compound classes except for
macrolides presented categorical agreement above 80% (Table 2).

Categorical agreement per species ranged from 76.9% (K. aerogenes) to 95.2%
(Acinetobacter baumannii). Categorical agreement was �80% for Stenotrophomonas
maltophilia, Citrobacter freundii, Enterobacter cloacae, Pseudomonas aeruginosa,
Morganella morganii, Klebsiella oxytoca, Proteus mirabilis, Staphylococcus aureus,
Serratia marcescens, Klebsiella pneumoniae, Escherichia coli, and A. baumannii
(Table 3).

ESKAPE pathogens (A. baumannii, K. pneumoniae, S. aureus, E. cloacae, and P.
aeruginosa), representing 5 of the 13 species analyzed, and E. coli were selected to
illustrate species-level results observed for WGS-based susceptibility prediction, as
shown in the species-compound results.

For A. baumannii, WGS-based susceptibility prediction had �84% categorical agree-
ment, with 0 VMEs for piperacillin-tazobactam, ceftazidime, cefepime, ciprofloxacin,
levofloxacin, imipenem, meropenem, and trimethoprim-sulfamethoxazole (see Fig. S2). For
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aminoglycosides, the VME rate ranged from 7.7 to 18.2%. The ME rate was 0% for all
compounds except gentamicin (ME � 16.7%), cefepime (ME � 37.5%), and trimethoprim-
sulfamethoxazole (ME � 20.0%) (see Fig. S3).

For E. coli, categorical agreement was �90% except for amoxicillin-clavulanic acid
(73.9%) and trimethoprim-sulfamethoxazole (84.8%). VMEs for E. coli varied between
compounds, ranging from 0% for gentamicin, tobramycin, ceftriaxone, cefepime, and
ciprofloxacin to 100% for ertapenem, while MEs ranged mostly from 0 to 3.6% except
for meropenem (ME � 4.3%), ceftazidime (ME � 5.1%), tobramycin (ME � 7.0%), and
ampicillin (ME � 8.3%).

FIG 2 Percent categorical agreement per species-compound pair, with Gram-negative bacteria shown on the top and S. aureus
on the bottom. Species considered intrinsically resistant to a given compound according to CLSI guidelines (15) are labeled
“IR.” Species-compound pairs which were not tested with broth microdilution AST or for which no WGS susceptibility
prediction was run are labeled “ND.” Species sample counts are in parentheses. Categorical agreement values of �90% are in
bold.
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Categorical agreement for K. pneumoniae was above 83% for all compounds. VMEs
varied from 0% for amikacin, gentamicin, tobramycin, cefuroxime, ceftazidime, ceftri-
axone, cefepime, ertapenem, imipenem, and meropenem to 43.8% for amoxicillin-
clavulanic acid. The ME rate was between 0 and 5.3% for all compounds except for
piperacillin-tazobactam (16.7%), cefuroxime (15.8%), ertapenem (8.7%), and mero-
penem (15.2%).

For P. aeruginosa, categorical agreement for all compounds was above 76%. VMEs
varied from 10% for ciprofloxacin to 66.7% for amikacin. The ME rate varied from 0.8%
for amikacin to 21.6% for meropenem.

S. aureus showed categorical agreement of �90% for all compounds except eryth-
romycin (72.5%) and trimethoprim-sulfamethoxazole (75.8%). VMEs varied from 0% for
fluoroquinolones to 50.0% for gentamicin and trimethoprim-sulfamethoxazole; MEs
varied from 0 to 22.5%.

A. baumannii, P. aeruginosa, and Enterobacter species resistant to carbapenems and
Enterobacter species resistant to third-generation cephalosporins are in the most
severe, critical category of the WHO priority list (35, 36). For A. baumannii, categorical
agreement for carbapenem susceptibility prediction was 100%. For P. aeruginosa,
categorical agreement for carbapenem susceptibility prediction was between 78.5 and
82.2%; for E. cloacae, categorical agreement was 83.8% for ertapenem. No WGS AST
models were available for meropenem and imipenem. Categorical agreement for E.
cloacae susceptibility prediction for third-generation cephalosporins ranged from 67.6
to 70.3%.

TABLE 2 Summary of categorical agreement, very major errors, and major errors per compound class for WGS-based susceptibility
prediction in comparison with broth microdilution susceptibility testinga

Compound class
No. of
compounds

No. of
isolates

Categorical
agreement (%) VME (%) ME (%) TP TN FP FN

Aminoglycosides 3 462 924/965 (95.8) 19/115 (16.5) 22/850 (2.6) 96 828 22 19
Fluoroquinolones 3 547 1067/1143 (93.4) 34/382 (8.9) 42/761 (5.5) 348 719 42 34
Tetracyclines 1 128 116/128 (90.6) 2/5 (40.0) 10/123 (8.1) 3 113 10 2
Macrolides 1 109 79/109 (72.5) 26/69 (37.7) 4/40 (10.0) 43 36 4 26
Folate pathway inhibitors 2 431 486/559 (86.9) 39/106 (36.8) 34/453 (7.5) 67 419 34 39
Penicillins 4 485 549/638 (86.1) 38/217 (17.5) 51/421 (12.1) 179 370 51 38
Cephalosporins (second generation) 1 190 156/190 (82.1) 9/68 (13.2) 25/122 (20.5) 59 97 25 9
Cephalosporins (third generation) 2 438 549/641 (85.6) 44/187 (23.5) 48/454 (10.6) 143 406 48 44
Cephalosporins (fourth generation) 1 394 349/394 (88.6) 18/104 (17.3) 27/290 (9.3) 86 263 27 18
Carbapenems 3 361 681/784 (86.9) 34/139 (24.5) 69/645 (10.7) 105 576 69 34
aCategorical agreement, very major errors (VME), and major errors (ME) were calculated from the overall number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) obtained per compound class.

TABLE 3 Summary of categorical agreement, very major errors, and major errors per species WGS-based susceptibility prediction in
comparison with broth microdilutiona

Species
No. of
compounds

No. of
isolates

Categorical
agreement (%) VME (%) ME (%) TP TN FP FN

Acinetobacter baumannii 11 19 199/209 (95.2) 5/146 (3.4) 5/63 (7.9) 141 58 5 5
Escherichia coli 15 46 653/690 (94.6) 26/143 (18.2) 11/547 (2.0) 117 536 11 26
Klebsiella pneumoniae 15 48 677/720 (94.0) 13/110 (11.8) 30/610 (4.9) 97 580 30 13
Serratia marcescens 12 28 314/336 (93.5) 11/26 (42.3) 11/310 (3.5) 15 299 11 11
Staphylococcus aureus 9 128 950/1038 (91.5) 37/341 (10.9) 51/697 (7.3) 304 646 51 37
Proteus mirabilis 10 21 192/210 (91.4) 5/52 (9.6) 13/158 (8.2) 47 145 13 5
Klebsiella oxytoca 9 13 101/117 (86.3) 7/20 (35.0) 9/97 (9.3) 13 88 9 7
Morganella morganii 7 2 12/14 (85.7) 2/10 (20.0) 0/4 (0.0) 8 4 0 2
Pseudomonas aeruginosa 10 135 1153/1350 (85.4) 84/294 (28.6) 113/1056 (10.7) 210 943 113 84
Enterobacter cloacae 10 37 313/370 (84.6) 21/79 (26.6) 36/291 (12.4) 58 255 36 21
Citrobacter freundii 8 4 26/32 (81.3) 4/5 (80.0) 2/27 (7.4) 1 25 2 4
Stenotrophomonas maltophilia 4 60 193/240 (80.4) 35/123 (28.5) 12/117 (10.3) 88 105 12 35
Klebsiella aerogenes 9 25 173/225 (76.9) 13/43 (30.2) 39/182 (21.4) 30 143 39 13
aCategorical agreement, very major errors, and major errors were calculated from the overall number of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) obtained per species. Data are sorted by categorical agreement in descending order.
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DISCUSSION
Bacterial identification by WGS. MALDI-TOF MS and WGS-based identification

agreed for 93% of isolates at the species level and 99% at the genus level. Agreement
in previous reports has varied from 77.6% to 100% at the species level, depending on
the species and genus analyzed (37–43). There were 4 isolates with identifications that
were discrepant at the genus level. In 3 of these cases, the isolates originated from
polymicrobial cultures; discordance at the species and especially the genus level may
have arisen from incomplete workup of polymicrobial samples during culture. Since
discrepancies between MALDI-TOF MS and WGS-based identification are unlikely at the
genus level, experimental error was assumed, and the 4 affected isolates were excluded
from further analysis.

From an initial 483 patient samples, 664 bacterial isolates were obtained,
indicating a high detection rate of polymicrobial lower respiratory tract microbiota
in multiple cases. The rate of polymicrobial respiratory tract infections found in
previous studies ranged from 11% to 28% (13, 44, 45). While this study focused on
the evaluation of WGS-predicted AST for isolates, further development of sequenc-
ing applicable to polymicrobial infections with predictive AST directly from patient
specimens is needed.

Comparison of microdilution AST and WGS AST. Overall achieved categorical
agreement of WGS AST was 89%, with an ME rate of 8% and a VME rate of 19%.
Categorical agreement per compound class was lowest for macrolides. Erythromycin,
the only macrolide included, showed a categorical agreement of 72.5% in S. aureus.
Known resistance mechanisms include ribosomal modification by methylases, muta-
tions in rRNA, and compound transport via efflux pumps (46). Efflux pumps can be
subdivided into multiple classes, some of which are nonspecific with regard to their
substrates and can act as general drug efflux pumps, which are tightly regulated and
can cause false-positive (false-resistant) results (46).

A principal limitation of genotypic methods for susceptibility prediction is the
possible disconnect between the presence of a genetic marker and its expression. False
positives (MEs) are expected for genetic markers that are tightly regulated, like efflux
pumps or inducible �-lactamases, such as that encoded by ampC.

For the second-generation cephalosporins, cefuroxime showed an overall categor-
ical agreement of 82.1%. Categorical agreement was particularly low for K. aerogenes
and K. oxytoca. Ceftazidime and ceftriaxone, both third-generation cephalosporins,
followed, with an overall categorical agreement of 85.6%. For these compounds, low
categorical agreement was mainly observed with C. freundii, M. morganii, K. aerogenes,
and E. cloacae.

Overall categorical agreement for the �-lactam–�-lactamase inhibitor combinations
amoxicillin-clavulanate and piperacillin-tazobactam was 82.7%. The inhibitory action of
the �-lactamase inhibitor is challenging to predict using genomics, making �-lactam–
�-lactamase inhibitor combinations prone to high ME rates.

Across compounds, A. baumannii performed best at 95.2% categorical agreement,
with 5 VMEs (3.4%) and 5 MEs (7.9%). Lowered predictive performance for P. aeruginosa
with 84 VMEs (28.6%) may be due to complex regulation mechanisms present in this
species (47). WGS prediction of AST for K. aerogenes, M. morganii, and C. freundii also
suffered from high VMEs. The results obtained for K. aerogenes can be explained by the
lack of comprehensive studies on antimicrobial resistance in this species. Passarelli�
Araujo et al. reported in 2019 on the genetic diversity and the structure of the
population, as well as the resistance genes encoded in the core genome (48). With
regard to M. morganii and C. freundii, only 6 isolates representing these 2 species were
analyzed, indicating a low prevalence and resulting in challenges in obtaining data
from these species.

To achieve regulatory approval of a new AMR diagnostic test, the FDA stipulates
that categorical agreement should be �90%, VME rates should be �1.5%, and ME
rates should be �3% (8). Of all 129 species-compound pairs, 78 met the FDA criteria
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for categorical agreement and 63 and 65 met the FDA criteria for VME and ME,
respectively. In 36 of 129 pathogen-drug pairs, WGS prediction of AST categorical
agreement, VME, and ME were in line with FDA guidelines. As WGS AST prediction
algorithms evaluated in this study have been optimized for (balanced) accuracy
based on matched genotype-phenotype training data in ARESdb, it is not surprising
that the FDA accuracy acceptance categorical agreement criterion was met for a larger
fraction of species-compound pairs than the VME and ME criteria. To further improve
performance, improvement in WGS prediction of AST by optimizing prediction algo-
rithms specifically for FDA acceptance criteria is required, as well as incorporation of
intermediate and susceptible dose-dependent phenotypes into these algorithms. Here,
intermediate and susceptible dose-dependent phenotypes were treated as susceptible
in an attempt to avoid overprediction of resistance. Isolates testing intermediate and
susceptible dose-dependent may have inducible genes or efflux pumps that may be
challenging to identify genotypically. For some species-compound pairs, there are
different interpretations from CLSI and EUCAST; as more data become available,
prediction of MIC values may be possible, allowing application of different interpreta-
tive schemes. Inclusion of additional AMR markers and development of a better grasp
of regulatory mechanisms and efflux pump specificity, alongside determination of how
to treat co-occurring markers and discovery of new AMR markers, are needed. Finally,
in this study, measurements of MICs in triplicate might have been helpful to remove
uncertainty intrinsic to phenotypic susceptibility testing methods.

Conclusion. High concordance in species identification between the reference
method, MALDI-TOF MS, and the tested WGS-based method illustrates the performance
of WGS for reliable species identification. Furthermore, WGS-based prediction of AST
using ARESdb demonstrates the potential of predictive AST. With continuous expansion
and availability of sequenced isolates and reference AST data, together with an
improved understanding of AMR, predictive AST is likely to improve and provides an
opportunity for future incorporation into clinical practice.
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