
Structural Limitations of B+-Tree forensics
Peter Kieseberg

St. Pölten University of Applied

Sciences

St. Pölten, Austria

peter.kieseberg@fhstp.ac.at

Sebastian Schrittwieser

St. Pölten University of Applied

Sciences

St. Pölten, Austria

sebastian.schrittwieser@fhstp.ac.at

Edgar Weippl

SBA Research

Vienna, Austria

eweippl@sba-research.org

ABSTRACT
Despite the importance of databases in virtually all data driven

applications, database forensics is still not the thriving topic it ought

to be. Many database management systems (DBMSs) structure the

data in the form of trees, most notably B+-Trees. Since the tree

structure is depending on the characteristics of the INSERT-order, it

can be used in order to generate information on later manipulations,

as was shown in a previously published approach.

In this work we analyse this approach and investigate, whether

it is possible to generalize it to detect DELETE-operations within

general INSERT-only trees. We subsequently prove that almost

all forms of B+-Trees can be constructed solely by using INSERT-

operations, i.e. that this approach cannot be used to prove the

existence of DELETE-operations in the past.

CCS CONCEPTS
• Security and privacy→ Database activity monitoring;

KEYWORDS
digital forensics, databases, database forensics

ACM Reference Format:
Peter Kieseberg, Sebastian Schrittwieser, and Edgar Weippl. 2018. Structural

Limitations of B+-Tree forensics. In ,. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3277570.3277579

1 INTRODUCTION
Digital forensics has become an important factor in the analysis of

incidents in the IT world, be it during an official legal investigation,

or solely within an internal analysis. While there are many novel

approaches in well-researched areas like network or file forensics,

the topic of database forensics, i.e. the analysis of databases in order

to detect manipulations or steganographically hidden information,

has never been in the center of attention, even though it gradu-

ally gains importance in the scientific community [10]. Especially

considering the proclaimed ”age of data science” this seems like a

huge blind spot, as most structured data is stored, and often even

processed, in some kind of database.

Nevertheless, several approaches for database forensics have been

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CECC 2018, Central European Cybersecurity Conference 2018 (CECC 2018), November
15–16, 2018, Ljubljana, Slovenia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6515-4/18/11. . . $15.00

https://doi.org/10.1145/3277570.3277579

devised in the past. Many of these focus on the extraction of infor-

mation gathered in log-files or related mechanisms [1], also includ-

ing NO-SQL databases [9]. Other approaches rely on the analysis

of internal mechanisms used for guaranteeing ACID-compliance

like the transaction mechanism [8]. Especially for the first strategy,

there exists a large body of knowledge targeting many different

database management systems like Oracle [13] or MS SQL [17].

One major drawback of most of theses approaches, when compared

to those targeting internal mechanisms, is that logs are written for

the purpose of detecting malicious behaviour, thus being a primary

target for manipulations themselves. Furthermore, users with ad-

ministrator privileges do have a lot of possibilities regarding log

files. This is not so easy with the utilization of internal mechanisms,

as manipulations there can possibly destroy the integrity of the

database.

Another approach that even works a level of abstraction deeper

than the utilization of DBMS-specific internal mechanisms was

provided in [12]. In this approach, the authors use the structure of

the resulting B+-Tree that is used to structure the data inside the

DBMS in order to detect certain kinds of information. Still, besides

the issue of practicability (see [11] for a practical adoption in log-

ging), the approach also requires a certain insertion order of the

elements, they have to be entered in a strictly monotonous order

with respect to the primary key. In this work we will thus discuss

why relaxing this requirement is not easily done and we prove that

almost all tree structures as utilized by the original mechanisms can

be constructed by solely using INSERT-statements, thus making

the detection of DELETEs impossible using this approach.

2 BACKGROUND & RELATEDWORK
2.1 B-Trees and B+-Trees
The B-Tree was originally defined by Bayer [4] as a tree structure

where all leaf nodes lie on the same level (balanced tree) and the

following properties are obeyed:

• Every node except the root has between
b
2
and b, the root

node between 1 and b elements. The value b is constant and

predefined for a given tree (”order” of the tree).

• An inner node with d elements possesses d + 1 child nodes.

• The elements inside nodes are sorted.

The difference between the classical B-Tree and the B+-Tree is

that all the payload in a B+-Tree resides in the leaf nodes, the

inner nodes solely hold pointers in order to allow for searching the

tree [5].

Insertion in a B+-Tree works as follows: The leaf node where the

elements should be placed is identified. If this node contains less

thanb elements than the new element is simply added to the internal

sorted list of the node. If the leaf already contains b elements, it

https://doi.org/10.1145/3277570.3277579
https://doi.org/10.1145/3277570.3277579

CECC 2018, Central European Cybersecurity Conference 2018 (CECC 2018), November 15–16, 2018, Ljubljana, SloveniaPeter Kieseberg, Sebastian Schrittwieser, and Edgar Weippl

is split in half with both resulting leafs containing
b
2
elements

(without the new one). This also requires a new key in the parent

node, for which the lowest element in the second leaf is selected.

This is done iteratively, i.e. in case the parent node now contains

more than b elements, it needs to be split too. This can be required

to be done until the root node is reached, In case this contains b + 1
elements after the insertion, it is split too and a new root node is

generated, solely holding the lowest element of the second child

node as element.

B+-Trees are typically used, with slight adaptions, in database

storage engines like InnoDB [16]. For example, since full SELECTs

are quite common, the leaf nodes are linked with each other in the

form of a list, still, the principles of the tree operations stay the

same.

2.2 B+-Tree forensics
While the first work [14] to mention the possibility to infer foren-

sic information from the structure of the B+-Tree of a database

did not give any details on how to retrieve information and what

information could be restored, in their work [12], the authors pro-

posed a method for detecting manipulations in databases using the

structure of the B+-Tree of the primary index. The approach has

some prerequisite:

• The table is INSERT-only, i.e. there are no UPDATE- and

DELETE-operations. While this side-parameter seems quite

limiting in nature, it does make sense for a lot of applications

in the data warehousing world, especially considering tables

for Audit & Control.

• Furthermore, the insertion order of the elements into the

table is done strictly monotonous, i.e. the smallest element

with respect to the search key is inserted first, then the

second-smallest and so on (there are no equally big search

keys). This is also quite typical for tables, where the primary

key is structured along a timestamp (again very typical for

Audit & Control tables)

Given these prerequisites, the structure of the leafs of the resulting

B+-Tree, without considering reorganisations and strictly adhering

to the standard insertion routines, has the following form.

Let B be a B+-Tree with n > b elements which are added in ascend-

ing order. Then it holds true that the partition of the resulting k
leafs of B has the following structure:

n =
k∑
i=1

ai , with ai =
b

2

+ 1,∀i , k and ak ≥
b

2

.

In case the structure of the leafs of the B+-Tree is not adhering to

the given formula, manipulations like later INSERTs and changes

of older entries can be detected (see Figure 1 for an example).

The forensics approach was also adapted in order to serve as

an enhancement for manipulation secure logging like discussed

in [11]. The Ficklebase-approach [3] on the other hand discusses

mitigation strategies against B+-Tree-forensics in order to guar-

antee history independence. In other works [6, 7], the authors

discuss the importance of considering internal resources like trans-

action logs and data structures in databases, also referring to them

as potential information leaks and considering B+-Tree-forensics.

B+-Tree-forensics has also been mentioned as means for detecting

Figure 1: Leafs of a B+-Tree resulting from ascending or-
dered inserts only

evidence related to money laundering and violation of the BCE’s

KYC policies, as well as evidence extractors [2]. In other work [15],

the authors introduce B+-Tree-forensics into a forensic workflow

that is explicitly targeting databases.

B+-Tree-forensics has also been considered in approaches target-

ing the modelling of the impact of security policies on compliance,

especially regarding the attacker model that needs to be consid-

ered [18, 19].

3 ADOPTION FOR ARBITRARY INSERT-ONLY
TABLES

The approach outlined in Section 2, while working in principle, has

a major drawback: The insertion strategy for the data is severely

limited to (strictly) monotonous INSERT orders. Still, while this

might be enough for Audit& Control databases, most data owners

want to have more flexibility, thus it would be interesting to extend

the approach towards more general INSERT-orders. Thus, we arrive

at the research question, whether this approach is able to detect

the deletion of elements in an INSERT-only database, where the

order of the INSERT-operations is arbitrary.

In order to decide the applicability of this approach, we will dis-

cuss, what forms of finite B+-Trees (i.e. the number of elements in

the tree is finite) can be constructed by INSERTS only and where

DELETES are needed. For the sake of simplicity, we identify each

element with its number when sorted in ascending order, i.e. 4 de-

notes the 4th smallest element of the set. Additionally, we identify

each leaf node with its position in the tree, i.e. ai is the length of

the ith leaf node.

As already outlined in Section 2.2, when doing inserts of n keys

sorted in ascending order, we get the following resulting leaf forms:

n =
k∑
i=1

ai , with ai =
b

2

+ 1,∀i , k and ak ≥
b

2

.

With k being the number of leafs and ai the number of elements in

the i-th leaf.

Structural Limitations of B+-Tree forensicsCECC 2018, Central European Cybersecurity Conference 2018 (CECC 2018), November 15–16, 2018, Ljubljana, Slovenia

Our first observation is that we can construct a B+-Tree where

the j-th leaf contains
b
2
+ 2 elements.

n =
k∑
i=1

ai , with aj =
b

2

+ 2 and ai =
b

2

+ 1,∀i , j,k and ak ≥
b

2

.

Proof. For constructing this tree, we just have to add the ele-

ments (which are sorted by size) in the following order:

1, . . . , (j · (⌊
b

2

⌋ + 1) − 1), (j · (⌊
b

2

⌋ + 1) + 1), . . . ,n, j · (⌊
b

2

⌋ + 1)

The first n−1 INSERTS will construct a tree like the above structure,
where the j-th leaf node has got ⌊ b

2
⌋ + 1 elements. If we now add

element j · (⌊ b
2
⌋ + 1), it won’t be inserted at the rightmost node, but

in the j-th node (see Figure 2). �

Figure 2: B+-Tree with one node with b
2
+ 2 elements

The above approach can be easily expanded to insert up to b
elements in one node by leaving out the suitable elements.

The next question is, if this can be done with an arbitrary number

of leaf-nodes.

n =
k∑
i=1

ai , with ai ≥
b

2

+ 1,∀i , k and ak ≥
b

2

.

Actually, this question is equivalent to the question of building

any composition of the number n with particles between ⌊ b
2
⌋ + 1

and b. For solving this, we adapt the algorithm presented in the last

proof with a slight difference (see also Figure 3): The adding of the

elements that were left out does not happen in the very end for all

nodes at the same time, but in order to guarantee that there are no

side-effects, we add these elements soon after the leaf node right to

the node they belong to was started.

This can be extended a bit further, in order to construct trees that

have leafs with only
b
2
instead of

b
2
+ 1 elements in most leaf nodes

(except the first and the last leaf), i.e. we can build all leaf-structures

of the form

n =
k∑
i=1

ai , with a1 ≥
b

2

+ 1,ak ≥
b

2

,ai =
b

2

,∀i , 1,k .

For proofing this theorem, we just have to proof it is possible for

us to generate a leaf holding
b
2
elements only at each leaf-position

Figure 3: Constructing a B+-Tree with nodes holding more
than b

2
+ 1 elements

except the first and the last (Note: The last node always contains

the remaining items, its size actually depends on the total number

of elements).

Proof. If we have a leaf node i with ai =
b
2
+ 1 elements, it is

possible to insert a node k with ak ≥ b
2
elements left to it by adding

these ak to node i . Since i originally possesses
b
2
+ 1 elements this

sums up to
b
2
+ 1 + b

2
= b + 1 elements, thus forcing a split of

the node. The first
b
2
+ 1 = ai elements will stay in node i , thus

changing nothing there. The other
b
2
elements will form the new

leaf node (see Figure 4). Thus for constructing a leaf node with only

b
2
elements, we just need to leaf

b
2
elements out in the insertion

order and add them right after the next leaf node is started. Actually

this is not possible for the first node. The proof is rather trivial:

According to our prerequisites, in the case of splitting, there are

always
b
2
+ 1 elements left on the right node. So the only possibility

of having less elements in the rightmost node at leaf-level is having

a tree only consisting of the root node (or doing DELETES).

Additional INSERTS for generating leaf nodes with more than

b
2
+ 1 elements have to be done after all nodes with

b
2
elements

have been generated, or this will thwart the generation process of

the nodes containing only
b
2
elements. �

The major result of this proof is that there is only one leaf struc-

ture of a B+-Tree where a DELETE-operation is required for con-

struction: When the first leaf node only contains
b
2
elements.

CECC 2018, Central European Cybersecurity Conference 2018 (CECC 2018), November 15–16, 2018, Ljubljana, SloveniaPeter Kieseberg, Sebastian Schrittwieser, and Edgar Weippl

Figure 4: Constructing a B+-Tree with nodes holding only b
2

elements

4 CONCLUSION
In this work we showed that approach for B+-Tree-forensics for

databases as defined in [12] cannot be generalized for the detec-

tion of data deletion in case of a table that allows general, non-

monotonous, data insertion. Of course, the approach can still be

used for the task it was originally intended, indicating manipula-

tions in Audit & Control tables. It must be noted though that, similar

to the original approach, we solely concentrated on the structure

of the leaf nodes and did not consider the whole structure of the

tree including internal nodes. Still, in essence the techniques work

similar for changing the inner node structure, just the amount of el-

ements required to be inserted later gets rather large. Furthermore,

these proofs can be trivially expanded from B+-Trees to B∗
-Trees,

as the only difference between the two is the minimal number of

elements inside the leaf nodes, the other requirements remain the

same, which also means that the proofs given in this paper work

similar. Still, since B∗
-Trees are, to the best of our knowledge, not

that relevant in database forensics, and were also not part of the

original approach, we skipped the details on them.

ACKNOWLEDGEMENTS
This research was funded by the KIRAS program of the Austrian

Research Promotion Agency (FFG) and the Josef Ressel Center

TARGET. The competence center SBA Research (SBA-K1) is funded

within the framework of COMET Competence Centers for Excellent

Technologies by BMVIT, BMDW, and the federal state of Vienna.

The financial support by the Austrian Federal Ministry for Digital,

Business and Enterprise and the National Foundation for Research,

Technology and Development is gratefully acknowledged.

REFERENCES
[1] OluwasolaMary Adedayo andMartin S Olivier. 2015. Ideal log setting for database

forensics reconstruction. Digital Investigation 12 (2015), 27–40.

[2] Flores Armas and Denys Alberto. 2012. Guidelines for Collecting Forensic Com-
puting Evidence in order to reinforce the Detection of Money Laundering Activities
in the Central Bank of Ecuador. Master’s thesis. University of Derby/2012.

[3] Sumeet Bajaj and Radu Sion. 2013. Ficklebase: Looking into the future to erase

the past. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on.
IEEE, 86–97.

[4] R. Bayer and E.M. McCreight. 1972. Organization and maintenance of large

ordered indexes. Acta informatica 1, 3 (1972), 173–189.
[5] Douglas Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys (CSUR) 11, 2

(1979), 121–137.

[6] Denys A Flores, Olga Angelopoulou, and Richard J Self. 2012. Combining digital

forensic practices and database analysis as an anti-money laundering strategy for

financial institutions. In Emerging Intelligent Data and Web Technologies (EIDWT),
2012 Third International Conference on. IEEE, 218–224.

[7] Denys A Flores, Olga Angelopoulou, and Richard J Self. 2013. An Anti-Money

LaunderingMethodology: Financial Regulations, Information Security andDigital

Forensics Working Together. J. Internet Serv. Inf. Secur. 3, 1/2 (2013), 101–114.
[8] Peter Frühwirt, Peter Kieseberg, Sebastian Schrittwieser, Markus Huber, and

Edgar Weippl. 2013. InnoDB database forensics: Enhanced reconstruction of data

manipulation queries from redo logs. Information Security Technical Report 17, 4
(2013), 227–238.

[9] WK Hauger and MS Olivier. 2018. NoSQL databases: forensic attribution impli-

cations. SAIEE Africa Research Journal 109, 2 (2018), 119–132.
[10] Werner K Hauger and Martin S Olivier. 2015. The state of database forensic

research. In Information Security for South Africa (ISSA), 2015. IEEE, 1–8.
[11] Peter Kieseberg, Sebastian Schrittwieser, Lorcan Morgan, Martin Mulazzani,

Markus Huber, and Edgar Weippl. 2013. Using the structure of b+-trees for

enhancing logging mechanisms of databases. International Journal of Web Infor-
mation Systems 9, 1 (2013), 53–68.

[12] Peter Kieseberg, Sebastian Schrittwieser, Martin Mulazzani, Markus Huber, and

EdgarWeippl. 2011. Trees cannot lie: Using data structures for forensics purposes.

In Intelligence and Security Informatics Conference (EISIC), 2011 European. IEEE,
282–285.

[13] David Litchfield. 2007. Oracle forensics part 1: Dissecting the redo logs. NGSSoft-
ware Insight Security Research (NISR), Next Generation Security Software Ltd, Sutton
(2007).

[14] Gerome Miklau, Brian Neil Levine, and Patrick Stahlberg. 2007. Securing history:

Privacy and accountability in database systems.. In CIDR. Citeseer, 387–396.
[15] Tanushree Shelare and Varsha Powar. [n. d.]. A Database Forensic Approach to

Detect Tamper Using B+-Trees. ([n. d.]).

[16] Patrick Stahlberg, Gerome Miklau, and Brian Neil Levine. 2007. Threats to

privacy in the forensic analysis of database systems. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data. ACM, 91–102.

[17] Erin Toombs. 2015. Microsoft SQL server forensic analysis. Ph.D. Dissertation.
Utica College.

[18] Winfred Yaokumah, Steven Brown, and Alex Ansah Dawson. 2016. Towards

modelling the impact of security policy on compliance. Journal of Information
Technology Research (JITR) 9, 2 (2016), 1–16.

[19] Winfred Yaokumah and Peace Kumah. 2018. Exploring the Impact of Security

Policy on Compliance. In Global Implications of Emerging Technology Trends. IGI
Global, 256–274.

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 B-Trees and B+-Trees
	2.2 B+-Tree forensics

	3 Adoption for arbitrary INSERT-only tables
	4 Conclusion
	References

