Elektrotechnik & Informationstechnik https://doi.org/10.1007/s00502-019-00780-x

Advanced threat intelligence: detection
and classification of anomalous behavior
in system processes

R. Luh, S. Schrittwieser

With the advent of Advanced Persistent Threats (APTs), it has become increasingly difficult to identify and understand attacks on
computer systems. This paper presents a system capable of explaining anomalous behavior within network-enabled user sessions by
describing and interpreting kernel event anomalies detected by their deviation from normal behavior.

The prototype has been developed at the Josef Ressel Center for Unified Threat Intelligence on Targeted Attacks (TARGET) at St.
Polten University of Applied Sciences.

Keywords: malware; attack; anomaly detection

Advanced Threat Intelligence: Erkennung und Klassifizierung von anomalem Verhalten in Systemprozessen.

Mit dem Aufkommen von Advanced Persistent Threats (APTs) ist es immer schwieriger geworden, Angriffe auf Computersysteme zu
identifizieren und zu verstehen. Diese Arbeit stellt ein System vor, das in der Lage ist, anomales Verhalten innerhalb von Benutzer-
Sessions zu erkldren, indem es Kernel-Ereignisanomalien beschreibt und klassifiziert, welche durch ihre Abweichung vom Normalver-
halten erkannt werden.

Der Prototyp wurde am Josef Ressel-Zentrum fir konsolidierte Erkennung gezielter Angriffe (TARGET) an der Fachhochschule St.

Pélten entwickelt.

Schltsselwérter: Schadsoftware, Angriff, Anomalieerkennung

Received October 2, 2019, accepted November 22, 2019
© The Author(s) 2019

1. Introduction

IT systems are threatened by an ever-growing number of cyber-
attacks. With the emergence of Advanced Persistent Threats (APTs),
the focus shifted from off-the-shelf malware to multipartite attacks
that are tailored to specific organizations or systems. These targeted
threats are driven by varying motivations, such as espionage or sab-
otage, and often cause significantly more damage [1].

While APTs use malware like most conventional attacks, the level
of complexity and sophistication of the malicious programs is usu-
ally higher. This is problematic since defensive measures offered
by security vendors often utilize primarily signature-based systems,
which are effective in the defense against known exploit carriers
or ill-considered user actions but struggle with hitherto unknown
malware [2]: Traditional misuse detection relies heavily on signature
databases that have to be updated whenever a new attack tech-
nique or sample is discovered. For emerging threats, such binary
patterns of the involved malware are unlikely to exist at the time of
attack. Poly- and metamorphic techniques [3] additionally obfuscate
malicious software by creating self-altering malware variants that
sport differing static appearance for cryptor and payload. Mimicry
attacks, on the other hand, might substitute system calls, interweave
instructions, or attempt to avoid generating observable events at all,
which increases the complexity of dynamic detection efforts [4].

Targeted or not, modern cyber-threats are no longer limited to a
single malware executable (i.e. sample) but often comprise multi-
stage attacks that are difficult to spot using only file- and signature-
based malware detection systems. Therefore, it is necessary to ex-

t‘)

Check for
updates

plore novel techniques for threat intelligence and APT detection that
are augmented with contextual information and provide resilience
to various stealth techniques.

Dynamic, behavior-based solutions are a promising means to iden-
tify adversary activity on live IT systems. Anomalies signifying a de-
viation from a known behavioral baseline can be used to detect the
threat in its early stages. However, most existing systems do not
provide the offending behavioral data to the analyst and contribute
little to its interpretation. We argue that closing that semantic gap
is a vital next step in holistic (IT) system threat mitigation.

In this article, which is based on the publications “LLR-based sen-
timent analysis for kernel event sequences” [5] and “AlIDIS: Detect-
ing and Classifying Anomalous Behavior in Ubiquitous Kernel Pro-
cesses” [6], we propose an intrusion detection and classification sys-
tem capable of explaining anomalous behavior within a network-
enabled user session by considering kernel event anomalies identi-
fied through their deviation from a set of baseline process graphs.
For this purpose, we adapt star structures [7], a less computationally
complex, bipartite representation used to approximate the edit dis-
tance between two graphs. Baseline templates are generated auto-

Luh, Robert, Fachhochschule St. Polten, Josef Ressel Zentrum TARGET,
Matthias-Corvinus-StraBe 15, 3100 St. Pélten, Osterreich (E-mail: robert.luh@fhstp.ac.at);
Schrittwieser, Sebastian, Fachhochschule St. Pélten, Josef Ressel Zentrum TARGET,
Matthias-Corvinus-StraBe 15, 3100 St. Pélten, Osterreich

(E-mail: sebastian.schrittwieser@fhstp.ac.at)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00502-019-00780-x&domain=pdf
mailto:robert.luh@fhstp.ac.at
mailto:sebastian.schrittwieser@fhstp.ac.at

R. Luh, S. Schrittwieser Advanced threat intelligence: detection and classification...

Data Collection

Preprocessing

Sentiment Analysis Default

Optional
i »-

LLR-based

LLR
Dictionary creation assessment &
DB ‘.—n process selection

A 4
.
.
.
g

.----------------------------..------------n'---------------’------------.»

Grammar Inference

Star Graph Analysis

JSEEEEEEEEEEEEREESY

Inference-based
anomaly detection

Sequitur
compression

Template creation Graph-based
anomaly detection

Anomaly explication
& classification

CETLLLLLLLLES

‘s EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

Fig. 1. Overview of intrusion detection and classification system

matically and adapt to the nature of the respective operating system
process.

Since we want to move away from sample-centric analysis that re-
quires knowledge about a particular suspicious binary, we addition-
ally use a machine learning approach to sentiment analysis based
on the log likelihood ratio (LLR) test [8] to identify ubiquitous Win-
dows kernel processes that contribute most to an automated ma-
licious/benign classification. This helps narrow down the computa-
tional scope of the aforementioned anomaly detection component
by providing a small pool of processes worthy of increased scrutiny.

Ultimately, we implemented smart anomaly classification through
a set of competency questions applied to graph template deviations
and evaluated the approach using both Random Forest [9] and linear
kernel Support Vector Machines [10]. The determined attack classes
are ultimately mapped to a novel APT attacker/defender model that
considers actions, actors, as well as assets and mitigating controls,
thereby enabling decision support and contextual interpretation of
past and ongoing attacks. Figure 1 depicts the proposed multi-stage
system in its entirety. This article focuses on the components “Sen-
timent Analysis” and “Star Graph Analysis”.

1.1 Related work
For an in-depth look at related and similar work refer to Luh et al.’s
literature survey [11] as well as the system’s core publication [6].

2. Methodology

The methodology chosen to investigate our approach to targeted
attack detection and classification is experimental, constructive re-
search based on large-scale data analytics as well as top-down threat
modeling.

Our research is founded on a formal top-down and a technical
bottom-up component. This article focuses on the latter; namely
data collection, knowledge extraction, and anomaly analysis, which
corresponds to the aforementioned system components. Figure 2
summarizes the overall methodical approach.

Attacker/Defender Meta Model

[Event to CAPEC I .l Attack/defense]
correlation modeling

We specifically explore data monitoring and processing, behav-
ioral analysis, as well as anomaly detection and classification. Our
system comprises three stages:

e Observation of actively used computer systems as part of the ini-
tial data monitoring process;

e Extraction of behavioral patterns from the collected data to de-
termine the most relevant processes and features in regard to
anomaly detection;

e White-box anomaly detection and granular classification to spot
attacks and classify them in accordance to their attack stage or
pattern.

3. Advanced threat detection and classification

This article focuses on the technical component of the proposed
system. Work detailing the formal approach can be found in [12]
and [13]. In the following we discuss the three stages highlighted
in Fig. 2: Data collection, process behavior extraction, and anomaly
detection with classification.

3.1 Observation: data collection and processing

In our research, we opted to use kernel monitoring data of moderate
abstraction, which represents a compromise between raw events or
API calls and high-level alerts based on often problematic patterns.
Our final data selection comprised abstracted process and file sys-
tem activity as well as network functions invoked on the endpoint.
The instrument used for collecting the data is a monitoring agent
prototype dubbed “Sonar”. It runs as part of the Windows kernel
and utilizes SSDT hooking [14, 15] to remain undetected. Sonar col-
lects process, thread, image load, file, registry, and network events in
the form of abstracted API and system calls. These events describe
i.a. process launches or terminations, access to local resources, or
the retrieval of system configuration information. Other functions
represent the establishing of network connections or general inter-
action with external resources — all of which can be considered an
event in the context of a process.

R. Luh, S. Schrittwieser Advanced threat intelligence: detection and classification. ..

Formal approach

Advanced Intrusion Detection
& Interpretation System

Evaluation of
semantics-aware
techniques

Threat definition &
modeling

Technical approach

Process behavior
extraction

Data collection,
processing & storage

Key research

Attacker/defender model from formal approach

e Threat, actors, assets, attack patterns & controls
e Uses mapped data to explain anomalies

mapping

Attacker/defender
model & mapping
framework

Data provider
evaluation & design

Compression &
pattern inference

Anomaly detection &
classification

Labeled data from technical approach

e Classified and syntactically structured
¢ Annotated events descibing anomalies

Fig. 2. Tiered research approach. Stages discussed in this article are highlighted

Table 1. Timeline of events as chronological trace ordered by process
occurrence

Event type Argument (operation)
ProcessEvent Start process A with PID 220
ImageloadEvent Load image “process.exe”
RegistryEvent Write file “document.txt”
ProcessEvent Start process B with PID 224
RegistryEvent Modify registry key “HKLM/..."
ProcessEvent Terminate process with PID 220
ProcessEvent Start process B with PID 224
ImagelLoadEvent Load image “library.dll”
NetworkEvent Connect to IP address 1.2.3.4

To maintain chronology as well as context, each individual event
captured by the Sonar agent is time-stamped and can be linked to a
specific process or thread through its respective (parent) process ID.
This allows us to construct trees of individual processes as well as
entire system sessions, as discussed at length in [16]. See Fig. 3 for
an example process tree.

Ultimately, all process trees are converted to traces in order to
enable word-based processing. Table 1 shows an example based on
the tree depicted in Fig. 3.

Each of our system’s components use such traces for their pat-
tern extraction and anomaly detection routines. Despite the func-
tion abstraction implemented by SONAR, manually interpreting the
depicted activity becomes a daunting task. Therefore, automated
solutions are necessary to process the newly generated timelines.

3.2 Extraction: determining process behavior

We use an approach akin to sentiment analysis [17] to generate ini-
tial knowledge about relevant OS processes and to determine the
most expressive process candidates for investigation. At the same
time, this first stage computes a first benign/malicious score that
provides us with a tendency towards general harmfulness for the
provided dataset. In the following, we highlight the main proper-
ties of the sentiment analysis component, which has been initially
disseminated in [5].

The likelihood ratio (LR) test employed is a statistical method used
to test model assumptions, namely the quality of fit of a reference
(null) and an alternative model, whereby the simpler model can be
understood as a special case of the more complex one [8]. The goal
of a model is to find parameter values that in turn maximize the
value of the likelihood function, which is equivalent to finding the
set of parameters that make the data most likely [18]. The LR test
relies less on the assumption that a certain variable (i.e. word) is dis-
tributed normally throughout a text than e.g. chi-squared or z-score
tests. When computing the occurrence of rarely observed events —
which are at the core of many a malicious trace — likelihood ratio
tests show significantly better results than the mentioned alterna-
tives.

Dunning [8] defines the likelihood ratio for a hypothesis as the
ratio of the maximum value of the likelihood function over the sub-
space represented by the hypothesis to the maximum value of the
likelihood function L over the entire parameter space, where € is
the entire parameter space and Qg is the hypothesis being tested.

 MaXpe, L (w;K)

MaXyeq L (w; k)

As mentioned above, the basis for sentiment analysis are kernel
event traces reordered to maintain process and thread context. Af-
ter tokenization, we extract bigrams from the collected sequences.
The general goal of this stage is to find useful features in a large
amount of system traces, in particular events that occur in combi-
nation. We compute the LLR score for each individual n-gram to
highlight collocations characteristic for sequences of malicious and
benign system events. This enables the analyst to ultimately rank
the words of a corpus by their domain relevance and subsequently
extract processes that are more likely to be involved in adversarial
behavior.

The formulas presented in Table 2 (matrix K) are responsible for
counting token occurrences in the given distribution. The different
values are defined as the number of times both event tokens oc-
cur together (k11), the number of times each event token has been
observed independently from the other (kq, and k31, depending on
their position in the bigram), and the number of times the tokens
were not present at all (kz2).

R. Luh, S. Schrittwieser Advanced threat intelligence: detection and classification...

Process A: Create
Process A

Image: Load

File: Create

Process B: Create

I Time

Registry: Modify

Process: Terminate

Bo 880

Fig. 3. Example tree of a process launched by the kernel

Table 2. Event occurrence matrix K

A 1A
B k11 =k (AB) k12 =k (1AB)
1B ko1 =k (AlB) koo =k (1A1B)

Once these counts have been determined, it becomes possible to
compute the log likelihood ratio (LLR) score. Applied to the assem-
bled matrix K, LLR becomes

LLR(K) =25 (K) - (H(K) — H (k11 + k12k21 + k22)
— H (ki1 +ka1ki2 + k22))

where S (K) represents the sum of all matrix elements k; in K and
H denotes the function computing the Shannon entropy [19]. l.e.
given an m x n matrix X = (x,-j), we have:

N Xj
HEO :ZZ<T>1<> ‘log <5<;<>>)
i=1 j=1

with

SO=)_> x

i=1 j=1

Using this methodology, we are able to extract a list of bigrams
that represent likely collocations, signifying their semantic relation-
ship. Based on these calculations we can then determine the asso-
ciation of bigrams to different corpora of known benign and mali-
cious events. With a significantly high number of known benign and
malicious kernel event traces at one’s disposal it becomes possible
compile a dictionary of suspect and valid events.

The dictionary compilation process itself is similar to the one de-
scribed above. We determine the occurrence of known malicious n-
grams in a benign sample set. In addition to LLR-based scoring per-
formed for opposing corpora, we calculate the occurrence of partial
and full malicious bigrams in the benign corpus. This results in a new
LLR score that describes the association of each bigram to both sets
of data.

Based on these scores we can assign sentiment to each identified
bigram determined through the occurrence of the sequence and the
maximum LLR measured for each corpus. The result is a normalized
sentiment rating s ranging from +1.0 (benign) to —1.0 (malicious).

>B\l Process B
-}l Image: Load
-] Network: Open

B

B

Scoring is achieved by means of both the benign and malicious
scores determined through a comparison with the sentiment dictio-
nary compiled in the previous stage. The final score s is determined
by whether the root-LLR scores of the unknown event sequence lean
toward the harmless or suspicious end of the spectrum.

LLR-scored sequence combinations have proven to be good indi-
cators for both individual programs as well as entire system sessions.
Simultaneously, the resulting scores give us a good idea which ubig-
uitous kernel processes are the most likely candidates for closer ex-
amination.

3.3 Detection and classification: interpreting anomalies

Once monitoring candidates have been identified, we utilize star
structures to create a by-process representation of event sequences
that encompass single process launch behavior, its full run time,
or even entire multi-process system sessions. Star structures are a
means to reduce the complexity of a known NP problem to polyno-
mial complexity [7, 20]. Instead of searching entire system session
graphs for matching patterns, the star structure approach breaks
down the computation into a triplet of nodes (vertices) connected by
a labeled edge, denoted as G = (U, V, E). The labels of both vertices
and edges are used as basis for minimal cost calculation of same-
size star structures. Specifically, we utilize bipartite graph matching
based on the Hungarian (Kuhn—Munkres) algorithm [21], namely an
adaptation of Hu's approach [7] which combines n bipartite graphs
into one star representing a single process and all its activity. The
process becomes the natural center vertex of a star-shaped graph,
where the outer vertices represent the individual actions performed
within its context and the edges describe the type of operation per-
formed (e.g. create, modify, delete). Figure 4 shows a simplified ex-
ample.

This method for determining the minimal edit distance between
two star-shaped graphs is used as the foundation for context-aware
anomaly detection utilizing supervised learning on a per-process ba-
sis. The cost of required transformation operations can be used to
determine the event-level deviation between instances of the same
process. In order to automatically determine thresholds for each ob-
served process, we create one or several templates from a benign
environment in one of 4 different ways: 1) Perfect match extracts
identical events found in each iteration of a process and assembles
an entirely new graph, 2) Majority mode picks the most common

R. Luh, S. Schrittwieser Advanced threat intelligence: detection and classification. ..

Process

svchost.exe

sys.conf

O

HKLM/Software

Process

svchost.exe

sys.conf cmd . exe

HKLM/Software

Fig. 4. Example event representation for process svchost . exe (central node)

base graph from the input set and converts it to a template with-
out altering its contents, 3) Prototype extraction uses the Malheur
algorithm [22, 23] to extract not one, but several prototypes repre-
sentative of the various aspects of a single process, and 4) Similarity
hashing measured document similarity using the MinHash algorithm
[24].

Armed with one or several templates for each process, we can
now check unknown graphs against the predetermined thresholds
and extract events responsible for the deviation. To classify these
anomalous events, we map them to CAPEC attack patterns de-
scribing concrete adversary behavior [13]. Features are extracted
through a list of 200 competency questions, which include simple
Boolean queries into the presence of events over another event (e.g.
if the number of thread terminations exceed the number of thread
spawns) as well as decisions based on the presence of certain ac-
tivity tags describing the base functionality of a loaded image (e.g.
networking, authentication, user interface, kernel, etc.).

For the discrimination of anomaly traces, both binary ‘benign’ vs.
‘malicious’ and multi-class classification is used, focusing on Ran-
dom Forest and Linear Kernel Support Vector Machines (SVM). Ulti-
mately, our system maps the resulting verdict (e.g. ‘anomaly belongs
to class CAPEC-112’) and the anomaly report itself to the model dis-
seminated in [13], thereby building our knowledge base of labeled
attacks that can then be associated a goal, stage, likely actor, possi-
ble countermeasure, and more.

4. Evaluation
The prototype of the system was implemented in a test-bed en-
vironment consisting of 13 physical Windows computers used on
and off by developers and IT personnel of a medium business over
the course of half a year. One additional virtual Windows instance
was utilized for dynamically monitoring malicious software and au-
tomated targeted attacks on demand.

The repository of data used for evaluating the system included
a total of 125 GiB of traces with more than 1.3 billion individual
events across all monitored processes. Another 4.3 million (4.5 GiB)
events were recorded on the aforementioned analysis VM. For these
malicious traces, we executed a total of 1,995 APT malware sam-
ples and attack software, ranging from DarkComet [25] and other,
unnamed Remote Access Trojans (RATs) to various crypto-miners
and tools such as ShoulderSurfer.! Since our system is not primar-
ily used for malware classification but considers behavior indepen-
dently, most monitored attack activity is not attributed to specific

Thttps:/wikileaks.org/ciav7p1/cms/page_524353.html.

Table 3. Results of the anomaly classification

Classes OOB error Accuracy Kappa C-value Time

(s)
RF 2 0.26% 99.77% - - 142.1
SVM 2 - 99.82% 99.24% 1 70.4
SVM grid 2 - 99.83% 99.28% 0.25 1899.8
RF n 496% 91.37% - - 224.8
SVM n - 95.53% 94.67% 1 412.0
SVM grid n - 95.73% 94.87% 1.75 8180.4

sample families. We instead use a CAPEC-based classification [26] to
describe patterns for e.g. reconfiguring the system or disabling secu-
rity mechanisms. Altogether, we classified our data into 23 CAPEC
attack patterns, a “benign” class for non-malicious software, and
two classes representing crashing or idle malware [6].

4.1 Results summary

Next to the compound system (named “AIDIS Core” below), all indi-
vidual components can be employed in standalone mode and have
been tested with standard event traces as described in Sect. 3. Per-
formance was assessed using the traditional accuracy score as main
performance indicator. Figure 5 shows a summary. Note that “SE-
QUIN" is an optional component discussed in [27].

For both binary and CAPEC multi-class classification, the core clas-
sification system utilizing SVM with hyperplane optimization offers
the highest accuracy with 99.82% and 95.73%, respectively. We
used 10-fold cross validation and a 70-30 split between training
and validation data in our experiments. Table 3 provides further de-
tails.

Key features as per mean decrease in accuracy/Gini turned out to
be the count of error function libraries imported, the use of Win-
dows user management and universal app functions, high (system)
registry interaction, operations related to log files, network activ-
ity in general, as well as the import of data access and diagnostics
functions.

In summary, many of the most relevant features are related to im-
age load and registry operations. The reason for this can be found
to a degree in the selection of data used in the experiment: With a
focus on the initial 10 s of activity, it is expected to see numerous
events pertaining to the dynamic linking of libraries [28], which is
generally more widely used than static or runtime linking in both
malware and benign software. Registry events typically represent

https://wikileaks.org/ciav7p1/cms/page_524353.html

=

Table 4. Primary process candidates for monitoring

Luh, S. Schrittwieser Advanced threat intelligence: detection and classification. ..

Process Description Min Mean Max Std. dev. Total #
conhost Console window host process —0.895 0.016 0.607 0.104 485932
Csrss Win32 user-mode subsystem —1.000 0.039 0.836 0.171 2952
explorer Explorer shell and file manager —1.000 0.003 1.000 0.008 756709
searchindexer Windows search and indexing —1.000 0.002 1.000 0.047 310956
Smss Session manager subsystem —1.000 —0.236 1.000 0.416 53126
svchost Generic host process —1.000 0.005 1.000 0.012 1612797
taskhost Generic host process for libraries —1.000 0.022 0.983 0.048 409818
100.0%

98.0%

96.0%

94.0%

92.0%

90.0%

88.0%

86.0%

sa0% [EAIE B & 2 g g]

& S & A & 3 *
82.0%
AIDIS Core LLR SEQUIN Star mean Star mean Star opt. Star opt.
(single) (multi) (single) (multi)
M Binary classification Multi-class

Fig. 5. Classification accuracy comparison of the core system and its individual components

initialization tasks or changes to certain settings, something that
is often seen in the early stages of operation as well. Interestingly,
file events were found to be generally underrepresented during the
start-up of compromised process instances in particular: Only 108
events in the selection described malicious file operations, as op-
posed to 40,538 events in the benign svchost . exe corpus. As a
result, the lack of specific file operations might be a strong indica-
tor of manipulation — something that has to be considered in future
feature selection.

As a standalone system, the sentiment analysis component per-
formed well (accuracy of 98.2%) in comparison to similar n-gram-
based implementations such as AccessMiner [29], which achieved
an average accuracy rate of 89.5% using file operation trigrams of
benign applications as baseline. This supports our decision of ob-
serving several event types in synergy and of basing our decision on
a statistical test rather than the number of n-grams deviating from
a baseline.

To determine not only a preliminary anomaly score but identify
processes more likely to exhibit malicious behavior, we used statisti-
cal evaluation of close to 2,000 unique processes that were launched
during the lifetime of more than 10,000 benign and close to 2,000
malicious system sessions. This yielded a list of 7 processes (Table 4)
that were determined to be of greatest significance. In order to per-
form meaningful data mining, the process with the most recorded
events (126.1 million) was chosen for all subsequent analyses: sv-
chost . exe, the Windows generic host (service host) process [30].

Star anomaly detection by itself resulted in a workable accuracy of
at least 89.3% and up to 96.2%, depending on the number of tem-
plates and the kind of threshold optimization used. Utilizing multiple
templates for complex processes such as svchost . exe is highly

recommended: In our experiments, doing so increased accuracy by
at least 2 percentage points across the board. Still, optimizing the
threshold instead of using the mean star graph distance deviation
should be used sparingly to avoid overfitting. The key contribution
of the (standalone) star anomaly system is undoubtedly the new in-
sights into process coverage: Our results show that 88.48% of all
malicious activity is reflected in the first 10 s of activity of the sv-
chost . exe generic host process. This finding has the potential to
significantly contribute to IDS efficiency for both new and existing
solutions.

5. Conclusion
In this article, we presented the core components of a star structure-
based intrusion detection and classification system able to detect
and explain anomalous deviations in operating system process be-
havior. The returned output of detailed state changes as well as a
tendency towards a specific APT stage and attack pattern is ex-
pressed through the mapping of semantic key factors to a dedi-
cated attacker—defender model. At the same time, the model sug-
gests specific measures intended to counter any observed attack.
The process was prototypically implemented and successfully
tested using real-world process data captured on more than a dozen
company workstations over half a year. Ultimately, 99.8% of star
structure anomalies were correctly identified as benign or malicious,
with a solid 95.7% accuracy in multi-class scenarios that seek to as-
sociate each anomaly with a distinct CAPEC attack pattern. Further-
more, we have shown that 88.3% of close to 2,000 attacks could
be accurately identified by observing and classifying just one generic
Windows process for a mere 10 seconds, thereby eliminating the ne-

R. Luh, S. Schrittwieser Advanced threat intelligence: detection and classification. ..

cessity to monitor each and every (unknown) process existing on a
system.

For future research, we aim to focus on strategy inference uti-
lizing the model in combination with anomalous events tagged by
our classification system to compute optimal responses to a wide
range of attacks. This will enable analysts to employ our solution
as expert system supporting both risk management and organiza-
tional threat mitigation while being provided detailed technical as-
sessments about individual stages of an intrusion.

Acknowledgements

Open access funding provided by FH St. Pélten — University of Ap-
plied Sciences. The financial support by the Austrian Federal Ministry
for Digital and Economic Affairs and the National Foundation for Re-
search, Technology and Development is gratefully acknowledged.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http:/creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided you give appropriate credit to the original au-
thor(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

References

1. Symantec Security Response Team (2018): Internet security threat report. Symantec.

2. Dornhackl, H., Kadletz, K., Luh, R., Tavolato, P. (2014): Malicious behavior patterns.
In 2014 IEEE 8th international symposium on service oriented system engineering,
SOSE.

3. O'Kane, P, Sezer, S., McLaughlin, K. (2011): Obfuscation: the hidden malware. IEEE
Secur. Priv., 9, 41-47.

4. Wagner, D., Soto, P. (2002): Mimicry attacks on host-based intrusion detection sys-
tems. In Proceedings of the 9th ACM conference on computer and communications
security.

5. Luh, R., Schrittwieser, S., Marschalek, S. (2017): LLR-based sentiment analysis for ker-
nel event sequences. In 2017 IEEE 31st international conference on advanced infor-
mation networking and applications, AINA.

6. Luh, R., Janicke, H., Schrittwieser, S. (2019): AIDIS: detecting and interpret-
ing anomalous behavior in ubiquitous kernel processes. J. Comput. Secur.
https://doi.org/10.1016/}.cose.2019.03.015.

7. Hu, X., Chiueh, T-c., Shin, K. G. (2009): Large-scale malware indexing using function-
call graphs. In Proceedings of the 16th ACM conference on computer and communi-
cations security.

8. Dunning, T. (1993): Accurate methods for the statistics of surprise and coincidence.
Comput. Linguist., 19, 61-74.

Authors

Robert Luh

was awarded his master’s degree in informa-
tion security at St. Polten University of Ap-
plied Sciences (UAS) in 2013. He recently de-
fended his PhD thesis on attack recognition
and interpretation of anomalous events in IDS
monitoring data at DeMontfort University in
Leicester. In his role as lecturer and researcher
at St. Polten UAS and its Institute of IT Se-
curity Research he mainly focuses on threat
modeling, adversary and malicious software behavior, intrusion de-
tection, and machine learning.

0 0000] 0. Jahrgang

© The Author(s)

9. Liaw, A., Wiener, M., et al. (2002): Classification and regression by randomforest. R
News, 2, 18-22.

10. Cortes, C., Vapnik, V. (1995): Support-vector networks. Mach. Learn., 20, 273-297.

11. Luh, R., Marschalek, S., Kaiser, M., Janicke, H., Schrittwieser, S. (2016): Semantics-
aware detection of targeted attacks: a survey. J. Comput. Virol. Hacking Tech., 13,
17-85.

12. Luh, R., Schrittwieser, S., Marschalek, S. (2016): TAON: an ontology-based approach
to mitigating targeted attacks. In Proceedings of the 18th international conference on
information integration and web-based applications services.

13. Luh, R, Temper, M., Tjoa, S., Schrittwieser, S. (2018): APT RPG: design of a gamified
attacker/defender meta model. In Proceedings of the 4th international conference on
information systems security and privacy, ICISSP 2018.

14. Grégio, A. R. A., Fernandes Filho, D. S., Afonso, V. M., Santos, R. D. C., Jino, M., Geus,
P. L. (2011): Behavioral analysis of malicious code through network traffic and system
call monitoring. In SPIE defense, security, and sensing.

15. Sebastian, E., Robert, L., Sebastian, S. (2017): The evolution of process hiding tech-
niques in malware-current threats and possible countermeasures. J. Inf. Process. (58).
https://doi.org/10.2197/ipsjjip.25.866.

16. Marschalek, S., Luh, R., Kaiser, M., Schrittwieser, S. (2015): Classifying malicious sys-
tem behavior using event propagation trees. In Proceedings of the 17th international
conference on information integration and web-based applications services.

17. Gamon, M. (2004): Sentiment classification on customer feedback data: noisy data,
large feature vectors, and the role of linguistic analysis. In Proceedings of the 20th
international conference on computational linguistics.

18. UCLA Institute for Digital Research and Education: How are the likelihood ratio, Wald,
and Lagrange multiplier (score) tests different and/or similar?

19. Shannon, C. E. (1948): A mathematical theory of communication. Bell Syst. Tech. J.
27, 379-423.

20. Zeng, Z., Tung, A. K. H., Wang, J., Feng, J., Zhou, L. (2009): Comparing stars: on
approximating graph edit distance. Proc. VLDB Endow., 2, 25-36).

21, Kuhn, H. W. (1955): The Hungarian method for the assignment problem. Nav. Res.
Logist. Q., 2, 83-97.

22. Trinius, P, Willems, C., Holz, T, Rieck, K. (2009): A malware instruction set for
behavior-based analysis.

23. Rieck, K., Trinius, P, Willems, C., Holz, T. (2011): Automatic analysis of malware be-
havior using machine learning. J. Comput. Secur., 19, 639-668.

24. Broder, A. Z. (1997): On the resemblance and containment of documents. In Com-
pression and complexity of sequences proceedings.

25. Kujawa, A. (2012): You dirty RAT! Part 1: DarkComet.

26. MITRE Corporation (2015): CAPEC — common attack pattern enumeration and classi-
fication (CAPEC).

27. Luh, R., Schramm, G., Wagner, M., Janicke, H., Schrittwieser, S. (2018): SEQUIN: a
grammar inference framework for analyzing malicious system behavior. J. Comput.
Virol. Hacking Tech., 14, 1-21.

28. Franz, M. (1997): Dynamic linking of software components. Computer, 30, 74-81.

29. Llanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E. (2010): Access-
Miner: using system-centric models for malware protection. In Proceedings of the 17th
ACM conference on computer and communications security.

30. Russinovich, M. E., Solomon, D. A., lonescu, A. (2012): Windows internals. Upper
Saddle River: Pearson Education.

Sebastian Schrittwieser

was awarded his doctorate at TU Wien in
2014. His dissertation revolved around the
topic of code analysis and obfuscation. Since
2015, Sebastian heads the Josef Ressel Cen-
ter for Unified Threat Intelligence on Targeted
Attacks, which explores novel techniques for
detecting and mitigating targeted attacks on
IT infrastructures. He is a full-time permanent
professor (FH) and scientific head of the In-
stitute of IT Security Research at St. Pélten UAS. His main research
interests are static code analysis, code obfuscation, malware detec-
tion, and digital forensics.

heft 0.0000

https://doi.org/10.1016/j.cose.2019.03.015
https://doi.org/10.2197/ipsjjip.25.866

	Advanced threat intelligence: detection and classiﬁcation of anomalous behavior in system processes
	Abstract
	Zusammenfassung
	Introduction
	Related work

	Methodology
	Advanced threat detection and classiﬁcation
	Observation: data collection and processing
	Extraction: determining process behavior
	Detection and classiﬁcation: interpreting anomalies

	Evaluation
	Results summary

	Conclusion
	Acknowledgements
	References

