
A Benchmark Set of Highly-efficient CUDA and OpenCL Kernels and its Dynamic
Autotuning with Kernel Tuning Toolkit

Filip Petroviča, David Střeláka,b, Jana Hozzováa, Jaroslav Ol’haa, Richard Trembeckýa, Siegfried Benknerc, Jǐŕı
Filipoviča,c,∗

aInstitute of Computer Science, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
bSpanish National Centre for Biotechnology, Spanish National Research Council, Calle Darwin, 3, 28049 Madrid, Spain

cFaculty of Computer Science, University of Vienna, Währinger Str. 29, Vienna 1090, Austria

Abstract

In recent years, the heterogeneity of both commodity and supercomputers hardware has increased sharply. Accelerators,
such as GPUs or Intel Xeon Phi co-processors, are often key to improving speed and energy efficiency of highly-parallel
codes. However, due to the complexity of heterogeneous architectures, optimization of codes for a certain type of
architecture as well as porting codes across different architectures, while maintaining a comparable level of performance,
can be extremely challenging. Addressing the challenges associated with performance optimization and performance
portability, autotuning has gained a lot of interest. Autotuning of performance-relevant source-code parameters allows
to automatically tune applications without hard coding optimizations and thus helps with keeping the performance
portable. In this paper, we introduce a benchmark set of ten autotunable kernels for important computational problems
implemented in OpenCL or CUDA. Using our Kernel Tuning Toolkit, we show that with autotuning most of the kernels
reach near-peak performance on various GPUs and outperform baseline implementations on CPUs and Xeon Phis. Our
evaluation also demonstrates that autotuning is key to performance portability. In addition to offline tuning, we also
introduce dynamic autotuning of code optimization parameters during application runtime. With dynamic tuning, the
Kernel Tuning Toolkit enables applications to re-tune performance-critical kernels at runtime whenever needed, for
example, when input data changes. Although it is generally believed that autotuning spaces tend to be too large to
be searched during application runtime, we show that it is not necessarily the case when tuning spaces are designed
rationally. Many of our kernels reach near peak-performance with moderately sized tuning spaces that can be searched
at runtime with acceptable overhead. Finally we demonstrate, how dynamic performance tuning can be integrated into
a real-world application from cryo-electron microscopy domain.

Keywords: dynamic autotuning, opencl, cuda, performance optimization, autotuning benchmark set

1. Introduction

In recent years, the acceleration of complex computa-
tions using hardware accelerators have become much more
common. Currently, there are many devices developed
by multiple vendors which differ in hardware architecture,
performance, and other attributes. In order to support
application development for these devices, several APIs
such as OpenCL (Open Computing Language) or CUDA
(Compute Unified Device Architecture) were designed. A
code written in those APIs is functionally portable: it can

∗Corresponding author
c©2020. This manuscript version is made available under the CC-

BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-
nd/4.0

Email addresses: fillo@mail.muni.cz (Filip Petrovič),
373911@mail.muni.cz (David Střelák), hozzova@mail.muni.cz
(Jana Hozzová), 348646@mail.muni.cz (Jaroslav Ol’ha),
422536@mail.muni.cz (Richard Trembecký),
siegfried.benkner@univie.ac.at (Siegfried Benkner),
fila@mail.muni.cz (Jǐŕı Filipovič)

be executed on various devices while producing the same
result. However, performance portability is often limited
due to the different hardware characteristics of these de-
vices. For example, an OpenCL code which was optimized
for a GPU may perform poorly on a CPU and vice versa.
The performance portability issues may even exist among
different generations of devices developed by the same ven-
dor [26]. Moreover, code performance may be sensitive to
input size, structure, or application settings, so a code op-
timized for some input may run sub-optimally when the
input is changed [20, 43].

A costly solution to this problem is to manually op-
timize code for each utilized device and possibly also for
multiple sizes or structures of the input. An alternative so-
lution is a technique called autotuning. Autotuning allows
optimizing the application’s tuning parameters (properties
influencing the application performance) in order to per-
form the execution more efficiently. It is a general tech-
nique with a broad range of applications, which includes
areas such as network protocols, compilers, and database

Preprint submitted to Elsevier March 2, 2020

ar
X

iv
:1

91
0.

08
49

8v
2

 [
cs

.D
C

]
 2

8
Fe

b
20

20

http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0

systems. We focus on autotuning of code optimization pa-
rameters, which allows changing the application at the
level of its source code: from low-level optimizations such
as loop-tiling or unrolling to more aggressive changes such
as modification of data layout or even using a different
algorithm.

In this paper, we introduce the Kernel Tuning Toolkit
(KTT), which focuses on autotuning of codes written in
OpenCL or CUDA. With KTT, tuning parameters change
the source code in a way defined by a programmer via
preprocessor macros. Thus, tuning parameters may affect
virtually any property of the source code, making auto-
tuning very powerful. KTT targets expert programmers,
as potential code optimizations have to be implemented
explicitly, requiring detailed knowledge of hardware archi-
tectures.

Autotuning can be performed offline1, i. e., before the
execution of a tuned code. Offline tuning is easier to imple-
ment but does not allow an application to re-tune when its
environment changes. Online autotuning allows the appli-
cation to tune itself during runtime by means of changing
some runtime parameters. With dynamic autotuning, the
application can even build the space of different variants
during runtime, i. e., it is able to compile tuned kernels
during the tuning process. Although several code param-
eters autotuning frameworks for heterogeneous computing
have been introduced [3, 35, 36, 47], they are intended to
be used in a standalone tuning tool, supporting offline au-
totuning only. On the other hand, KTT can be integrated
into application code and supports also dynamic tuning.

A tighter integration into applications has been re-
cently identified as one of the main challenges in auto-
tuning [6]. Kernel Tuning Toolkit was designed to sim-
plify the integration process. It acts as an intermediate
layer between the application and OpenCL or CUDA API.
Therefore, the application source code has to be adapted to
incorporate KTT calls. However, once integrated, the ap-
plication can transparently switch between execution and
tuning of the kernels. For example, the application can
re-tune itself if it is executed on new hardware, or start its
execution with already optimized tuning parameters, and
automatically start re-tuning during runtime when the in-
put changes.

Using KTT, we have developed a benchmark set com-
prising ten autotuned codes. We have executed the bench-
mark set on multiple hardware devices, including GPUs
from NVIDIA and AMD, CPU and the Xeon Phi. We
prove that our autotuned implementations are efficient
enough – they often reach performance close to the the-
oretical peak of the hardware or at least outperform the
baseline (i. e., not autotuned) implementations significantly.
We also show that autotuning is required to ensure per-
formance portability of the codes.

The search for efficient tuning configurations may be
challenging due to the discrete and non-linear nature of

1We adopt the nomenclature from [6].

tuning spaces [6]. Therefore, large tuning spaces are usu-
ally impossible to explore during application runtime. How-
ever, if tuning spaces a are created rationally (i. e., by
an expert programmer), their exploration may be feasi-
ble even at runtime. Expert programmers have to under-
stand the effect of tuning parameters and set reasonable
boundaries to their values. For example, setting the ac-
ceptable sizes of work-groups to multiples of 32, as it is
suitable for vectorization on CPUs and Xeon Phis and effi-
cient on GPUs executing work-items in warps. We show in
this paper that rationally constructed tuning spaces can be
moderately-sized (thousands of configurations or less) and
still contain enough good configurations required for per-
formance portability. Such tuning spaces can be searched
during application runtime without too high overhead. To
prove the applicability of KTT in real applications, we
demonstrate dynamic autotuning in a CUDA-accelerated
3D Fourier Reconstruction in Xmipp [43].

The paper makes the following major contributions:

• Development of dynamic autotuning techniques in
the Kernel Tuning Toolkit. KTT introduces a high-
level API for kernels and data manipulation, which
can be easily used and integrated into applications.
It allows switching transparently between autotun-
ing and executing tuned kernels. KTT is open-source2,
fully documented, and contains many examples of its
usage.

• Introduction of a benchmark set of autotuned kernels.
We have conducted a benchmark set, including mul-
tiple kernels relevant for HPC, spanning across mul-
tiple application domains such as image processing,
linear algebra, computational chemistry, and differ-
ential equations. We demonstrate that autotuning of
optimization parameters improves the performance
portability of the benchmark set across a range of dif-
ferent heterogeneous architectures significantly. We
also show that rationally constructed tuning spaces
can be searched fast enough to allow dynamic tuning
in many cases.

• Demonstration of dynamic tuning with a real-word
application. We show that dynamic autotuning can
be used in a real-world application, such as a 3D
Fourier Reconstruction. Dynamic autotuning is also
demonstrated on an application performing batched
matrix multiplication with varying matrix sizes. We
experimentally evaluate the speed of tuning space
search convergence as well as dynamic tuning over-
head on these examples.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce related work and compare it with our
work. The main design decisions and concepts of KTT
are described in Section 3. Section 4 introduces a set of

2https://github.com/Fillo7/KTT

2

ten autotunable benchmarks and evaluates their efficiency
and performance portability. Dynamic autotuning is eval-
uated in Section 5. We conclude and sketch future work
in Section 6.

2. Related Work

In this section, we compare our work to state-of-the
art methods in autotuning in three areas: tuning targets
(which properties are tuned), tuning time (when tuning is
performed) and search strategies (how the tuning space is
searched and evaluated).

Autotuning covers a broad range of empirically tuned
parameters related to application performance, such as
compiler parameters, or the runtime environment [19, 18].
Some autotuners do not required to modify the application
source code, for example, compiler flags tuners [5] or MPI
tuner [32]. Other tuners may change application source
code in order to test different code optimization variants.
We focus on the autotuners altering the code of applica-
tions in the rest of this section as they are directly related
to our tuner.

Autotuning is already successfully deployed in some
high-performance libraries for conventional CPUs, such as
ATLAS [48] (linear algebra) or FFTW [16] (signal process-
ing). Libraries for accelerators are also often improved by
autotuning [27, 24, 28, 31]. However, those libraries use
autotuners specially designed for them. Here, we are in-
terested in generic autotuners. Frameworks for skeletons
or DSLs also use autotuning to search for the best combi-
nation of the implementation variants empirically [12, 23,
14, 4]. While they cover a broader range of applications
compared to autotuned libraries, they are still restricted
to a particular problem domain or a set of skeletons.

Code optimizations autotuners generate multiple func-
tionally-equivalent variants of the application source code.
They may select one of the predefined variants of a tuned
function [34], or generate and compile implementations ac-
cording to the values of the tuning parameters. We distin-
guish between compiler-based tuning, where the space of
code transformation is generated automatically [38, 44, 40]
and user-defined code optimization parameters autotun-
ing [35, 13, 36, 15]. User-defined code optimization pa-
rameters tuning requires expert programmers to identify
and implement tuning possibilities in the source code man-
ually (e. g., by using preprocessor macros). Even though
this approach may be costly in terms of time and expertise
of the programmer, it allows to explore highly diversified
variants of the code, which usually cannot be generated
automatically by compilers: the programmer can change
virtually anything, for example, alter algorithms (e. g., use
merge sort instead of quicksort) or change the data layout
in the memory (e. g., use a structure of arrays instead of
an array of structures).

Our Kernel Tuning Toolkit focuses on tuning of user-
defined code optimization parameters. Most similar to our

work are CLTune [35], AUMA [13], ATF [37, 36], and Ker-
nel Tuner [47], which are problem domain-agnostic auto-
tuners designed for heterogeneous computing.

Existing benchmark sets for heterogeneous computing,
such as Parboil [42], SHOC [9], or Polybench/GPU [22]
do not support autotuning of code optimization parame-
ters (only work-group size can be typically changed with-
out substantial rewriting the benchmark). To the best of
our knowledge, there is no comprehensive benchmark set
for code optimization parameters tuning in heterogeneous
computing. In [35, 36], two benchmarks are used to eval-
uate code optimization parameters tuning: GEMM and
2D convolutions. Those benchmarks are also used in our
benchmark set. Three benchmarks are used in [47] (one of
them is the GEMM introduced in [35]) and in [13]. In our
work, a set of ten benchmarks is introduced.

Some forms of dynamic autotuning are supported by
problem-specific autotuners, such as SpMV tuning [20] or
generic autotuners, such as Active Harmony [44]. Auto-
tuners may also support online autotuning where usually
multiple variants of code are produced in an offline phase
and searched during runtime. Online tuning is easier to
implement than dynamic tuning (there is no runtime com-
pilation), but it is not practical when the number of possi-
ble code variants is high. An examples of an online tuner
is SOCRATES [17, 33].

None of the frameworks for code optimizations in het-
erogeneous computing support dynamic tuning natively [35,
13, 36, 47]. To implement dynamic tuning with those
frameworks, the programmer has to add a non-trivial amount
of glue code, running the tuner during application run-
time to find a better tuning configuration and then ex-
porting this configuration into the application, typically
by re-compiling OpenCL or CUDA kernels with the JIT
compiler. The OpenTuner [3], another similar tuner, is a
more generic and low-level tool: it allows us to tune virtu-
ally any property of the application, but a higher amount
of user effort has to be invested into the integration of the
tuner. OpenTuner could be used for dynamic autotuning
with higher effort than [35, 13, 36, 47], since a code re-
sponsible for a tuned kernel compilation, execution, and
testing has to be provided as well. On the other hand,
OpenTuner would allow to use results computed by ker-
nels during tuning, which can increase the performance of
the tuned application. To the best of our knowledge, KTT
is the first autotuning framework combining universal code
optimization parameters tuning with native support of dy-
namic autotuning for heterogeneous computing.

In this paper, we extend state-of-the-art general-purpose
code optimizations autotuners for heterogeneous comput-
ing with dynamic tuning. Although the concept of dy-
namic autotuning is well-known, it requires an architecture
that hides the OpenCL or CUDA API in order to switch
implementation of kernels. In addition we contribute to
the state-of-the-art in autotuning by introducing a bench-
mark set of autotunable codes, evaluating the efficiency
and performance portability of the benchmarks, and as-

3

sessing how difficult it is to amortize the overheads of dy-
namic tuning.

The space of tuning parameters can be very difficult
to search: it is discrete, non-linear, and non-convex. Al-
though a promising method has been recently published [47],
the majority of papers report that random search is often
as efficient or even more efficient than more sophisticated
search methods [25, 39, 35]. Therefore, it can be difficult
to search large tuning spaces containing hundreds of thou-
sands of configurations or more. Extremely large tuning
spaces, however, result mainly from compiler-based au-
totuners such as Lift [40] or naively constructed tuning
spaces. The papers [25, 39, 35, 47] focus on the analysis
of tuning space search methods. However, there has not
been much effort invested into studying the size of tuning
spaces using a larger number of benchmarks which main-
tain good performance portability across a wide range of
different hardware architectures. In this paper, we con-
structed a set of ten benchmarks and show that tuning
spaces are often small enough to be searched dynamically
while still providing performance portability with a near-
peak performance.

Machine learning on historical autotuning data can be
used to decrease the number of tuning decisions performed
during program compilation or execution. In [33], a dy-
namic selection from a very limited number of code vari-
ants is based on a model created from previous tuning
runs. In [8], a single tuning parameter can be optimized
at compilation time by a neural network trained in mul-
tiple trial runs. Contrary to those papers, we focus on
multi-dimensional tuning spaces.

3. Architecture of the Kernel Tuning Toolkit

In this section, we introduce the main architectural
concepts and the API of the Kernel Tuning Toolkit. We
are using the following terminology in the paper. A tun-
ing parameter is a variable which affects the code in a
user-defined way (e. g., determines loop unroll factor). The
tuning space is a cross product of all the possible values
of all tuning parameters. A configuration is a single point
in the tuning space (i. e., assignment of concrete values to
all tuning parameters), which fully determines one possi-
ble implementation variant of the tuned code. The main
functionality of KTT is:

• specification of tuning parameters and constraints of
tuning space;

• compiling and executing the kernel or kernel compo-
sition (multiple kernels and host code with shared
tuning parameters);

• automatically searching the tuning space;

• managing data transfers automatically (KTT auto-
matically creates and copies data from/to the accel-
erator);

Figure 1: Schematic view of KTT architecture. The dashed line
shows components, which are typically active during dynamic tuning
inside the main application loop.

• checking the results of the tuned kernel against a
reference implementation computation.

KTT has been designed as a C++ library, which re-
places direct access to the OpenCL or CUDA API. By
providing a middle layer between the application and the
OpenCL or CUDA API, KTT is able to perform autotun-
ing transparently: the kernel execution and tuning can
be performed by the same application code. However,
in order to allow integration into real-world applications,
KTT must support important functionality such as mem-
ory management, kernel configuration, execution, and syn-
chronization provided by OpenCL or CUDA. Because KTT
forms a middle layer between the application and the CUDA
or OpenCL API, it can modify kernel code at runtime,
transparently to the application. Moreover, this design al-
lows switching between OpenCL and CUDA easily. When
kernel codes for both APIs are provided by the program-
mer, the KTT is just initialized with the selected API and
handles all the communication between the application
and OpenCL or CUDA. Because OpenCL and CUDA use
a different way to configure the parallelism of the kernel3,
KTT can automatically translate parallelism configuration
for the selected API. The KTT API has been derived from
the CLTune project [35], so it is very similar to CLTune
when we use it for offline tuning. Additionally, KTT API
allows for tuning compositions of multiple kernels, tuning
of how kernels are called from host code [15], and novel
features for dynamic tuning.

3OpenCL’s NDRange describes global parallelism, whereas
CUDA blocks and threads define different layers of parallelism

4

The architecture of KTT and its connection to the au-
totuned application is sketched in Figure 1. The appli-
cation creates kernels and defines tuning parameters and
their acceptable values (with possible constraints passed
as lambda functions), and passes them to KTT, where
the tuning space is built. Then, it connects input and
output buffers to the kernels and starts the tuning pro-
cess. KTT uses a searcher to search the tuning space
and to select a configuration to be executed. In current
implementation, random search, simulated annealing and
Markov-chain Monte Carlo searchers are available. Then,
it compiles the kernel(s) according to the selected configu-
ration, executes and benchmarks it. If dynamic tuning is
active, the results of the tuned kernel(s) can be immedi-
ately used by the application. The results can be validated
against a reference implementation by KTT. The execu-
tion of kernel(s) is benchmarked and the performance re-
sults are stored in KTT, allowing the searcher to navigate
the search process and the application to query for, e. g.,
the fastest configuration.

3.1. Kernel tuning

The simplest scenario is tuning of a single kernel. In
this case, the following steps have to be done in a tunable
code:

• initialize the tuner;

• create handlers for kernel arguments;

• create the kernel handler;

• assign input/output arguments to the kernel;

• define tuning parameters, their acceptable values,
and constraints;

• start tuning.

The tuner executes and benchmarks different tuning con-
figurations and searches for the one, which results in the
shortest kernel runtime.

In many real-world applications, some tuning parame-
ters are shared between multiple kernels (e. g., the memory
layout of some intermediate data). KTT framework allows
sharing tuning parameters among kernels by using ker-
nel compositions. Moreover, a portion of a computation
can be performed on the host (e. g., a tuning parameter
may determine how many times a kernel is executed or if
a host code performs some pre-computation). KTT uses
the tuning manipulator when tuning parameters influence
the host code. The tuning manipulator class enables users
to customize a portion of the framework’s code that is
responsible for kernel execution and buffer management,
and optionally can perform some part of the computation
directly in the C++ host code. The tuning manipulator
must implement a method launchComputation, which can
execute multiple kernels, perform computations in C++,

and transfer data between host and device. Tuning ma-
nipulators and kernel compositions allow to use tuning pa-
rameters, which cannot be implemented when kernels are
tuned separately: for example, it is possible to change a
format of the intermediate data exchanged between mul-
tiple kernels.

3.2. Offline and Dynamic tuning

KTT supports different types of autotuning depending
on the time when tuning is performed and on the level of
integration:

• Offline autotuning is performed prior to the execu-
tion of an application, usually by an extra utility.
Offline tuning does not require integration of the au-
totuner into the application. The tuning utility can
search for tuning parameters of the computationally
most demanding application kernels and then ex-
ports values of those parameters to the build system.
The disadvantage is that the tuning process cannot
be easily repeated inside the application, i. e., during
application runtime.

• Dynamic autotuning is performed during applica-
tion runtime. When tuning parameters change ap-
plication source code, it must be modified accord-
ing to the actual values of the tuning parameters
and recompiled. The application can execute au-
totuning at any time, e. g., when it is executed on a
new hardware device or when a performance-relevant
characteristic of the processed data changes4. Dy-
namic tuning can be performed in a blocking man-
ner (the tuner tests several tuning configurations and
selects the best one; the results of kernel executions
are not passed to the application during tuning) or
non-blocking manner (the result of each tested ker-
nel variant is immediately used by the application).
With blocking autotuning, KTT automatically repli-
cates input and output arrays, so there is no side ef-
fect caused by kernel results on the application. Non-
blocking tuning is more suitable for interactive ap-
plications or complex parallel workloads with many
dependent tasks, where a slow response of some com-
ponent may be critical to the overall performance.

The Kernel Tuning Toolkit can be integrated into ap-
plication code so that the application code manages mem-
ory objects and executes kernels via the KTT API instead
of directly using OpenCL or CUDA. In such a case, the
application decides if KTT changes values of the tuning
parameters and recompiles kernels (tuning mode) or if
KTT just executes the kernels (running mode). Further-
more, the kernels’ result can be used by the application
even during the tuning process (a non-blocking tuning de-
scribed above), which improves application performance,

4With the current version of KTT, the decision about when to
tune is always made by the application.

5

especially when the tuning overhead is low (i. e. kernels
runtime dominates compilation runtime).

3.2.1. Code Example

Let us assume we have two kernels, foo(a) and bar(b).
The kernel foo produces a 2D array, which is used as an
input for kernel bar: b = foo(a); c = bar(b);. Let us
further assume a tuning parameter B TRANS, which de-
termines if b is stored transposed. Clearly, the value of
B TRANS must be the same for both foo and bar, so the
kernels must be tuned together. Thus, we create a kernel
composition with a tuning manipulator calling both ker-
nels. The tuning manipulator is shown in Listing 1. The
class inherited from tuning manipulator must override the
method launchComputation, which is responsible for ex-
ecuting the two kernels via KTT in our example, but it
could also implement computation in C++ or call KTT
functions for data movement or synchronization.

1 class TunableFoobar : public ktt : : TuningManipulator {
2 public :
3 TunableFoobar (ktt : : KernelId foo , . . .) :
4 // ass ign kerne l s and input/output
5 // to in t e rna l s t ruc ture s
6 {}
7 void launchComputation (const ktt : : KernelId)
8 ove r r i d e {
9 // tuning parameters can be queried here

10 runKernel (foo) ;
11 runKernel (bar) ;
12 }
13 private :
14 ktt : : KernelId foo ;
15 . . .
16 } ;

Listing 1: Tuning manipulator

The code setting up KTT is sketched in Listing 2. It
initializes the tuner at line 2, creates kernels (lines 5-8),
their arguments (lines 11-12), and constructs a composi-
tion of the kernels (lines 16-22). The composition is cre-
ated with a tuning manipulator implemented in a class
TunableFoobar (see Listing 1). The kernels are created
with an initial configuration of NDRange and work-group
size (lines 3-4), but this configuration can be altered in
two ways: by defining the relation of NDRange/group size
and some tuning parameter (using a pre-defined or lambda
function), or directly in launchComputation method by
any user code.

1 // I n i t i a l i z e tuner and kerne l s foo , bar
2 ktt : : Tuner tuner (platformIndex , dev ice Index) ;
3 const ktt : : DimensionVector ndRange (inputS i z e) ;
4 const ktt : : DimensionVector workGroup (128) ;
5 ktt : : KernelId foo = tuner . addKernelFromFile (
6 k e rne lF i l e , ” foo ” , ndRange , workGroup) ;
7 ktt : : KernelId bar = tuner . addKernelFromFile (
8 k e rne lF i l e , ”bar” , ndRange , workGroup) ;
9

10 // Creation of kerne l arguments a , b , c
11 ktt : : ArgumentId a = tuner−>addArgumentVector (srcA ,
12 ktt : : ArgumentAccessType : : ReadOnly) ;
13 . . .
14
15 // Creation of composition and s e t t i n g of arguments
16 ktt : : KernelId compos i t ionId = tuner . addComposition (
17 ” foobar ” , std : : vector<ktt : : KernelId>{foo , bar } ,
18 std : : make unique<TunableFoobar>(foo , bar , a , b , c)) ;
19 tuner . setCompositionKernelArguments (composit ionId ,
20 foo , std : : vector<s i z e t >{a , b }) ;

21 tuner . setCompositionKernelArguments (composit ionId ,
22 bar , std : : vector<s i z e t >{b , c }) ;
23
24 // Addition of tuning va r i a b l e s
25 tuner . addParameter (composit ionId , ”B TRANS” , {0 , 1}) ;

Listing 2: Tuning initialization

After the setup, we can perform kernel tuning. Here,
we demonstrate non-blocking dynamic autotuning, which
is performed in the main application loop as sketched in
Listing 3. In our simple example, we use the variable
tuningOn to specify whether dynamic tuning is performed
(it can be set by some user-defined function to true for a
fixed number of iterations, or until some predefined per-
formance is reached). The execution of a composition
calling foo and bar can be achieved by two methods:
runKernel or tuneKernelByStep. The runKernel exe-
cutes the composition and stores result in variable c. The
execution is performed with a tuning configuration defined
by the programmer; usually, the fastest configuration is
used. The second method, tuneKernelByStep, also per-
forms the computation and stores results in c, but with a
new values of the tuning parameters (selected by KTT us-
ing the selected search method). If the tuning space has al-
ready been explored, the method tuneKernelByStep exe-
cutes the configuration, which results in the fastest compu-
tation (so it behaves like runKernel executed with the best
configuration). If the application is exploring only a subset
of the tuning space, it can query the fastest known config-
uration via the getBestComputationResult method. The
rest of the application does not need to be aware whether
tuning is performed: the result c is obtained in any case.

1 while (app l i c a t i on run) {
2 . .
3 i f (tuningOn)
4 tuner . tuneKernelByStep (composit ionId , {c }) ;
5 else {
6 ktt : : ComputationResult best =
7 tuner−>getBestComputationResult (compos i t ionId) ;
8 tuner . runKernel (composit ionId ,
9 best . ge tCon f i gura t i on () , {c }) ;

10 }
11 // c i s computed here
12 . . .
13 }

Listing 3: Main loop performing computation

3.3. Independent Queues and Non-blocking Calls

Accelerated codes often employ task-level parallelism
to overlap computation on a host, computation on a de-
vice, and data movements between the host and the device.
Moreover, simultaneous kernel execution may improve the
performance of independent kernels when some kernels do
not fully utilize the device. Task-level parallelism is real-
ized via non-blocking kernel calls, asynchronous copy and
also via multiple queues (OpenCL) or streams (CUDA).

In order to reach high performance when integrated
into an application, KTT must support this functionality
for the tuned kernels. Thus, it is possible to use queues
(when using CUDA, KTT queues are implemented as CUDA
streams) and non-blocking calls with KTT. However, dur-
ing the tuning of the kernel, concurrent kernel execution

6

or non-blocking execution may bias benchmarking (e. g.,
with concurrent kernel execution, the host code can exe-
cute another kernel at the device where the tuned kernel is
running, so the measuted runtime of the tuned kernel in-
creases). The bias in benchmarking could result in a wrong
selection of the best tuning parameter values. Therefore,
there are two types of task-level parallelism implemented
in KTT:

• intra-manipulator parallelism allows simultaneous ker-
nel execution and overlapping computations and mem-
ory copy inside a launchComputation method of a
tuning manipulator;

• global parallelism also allows simultaneous kernel ex-
ecution and non-blocking kernel calls at the level
of the application code, so the host code can call
runKernel in non-blocking mode, allowing to over-
lap execution of multiple manipulators, or host and
device computation.

During the tuning process, global parallelism is not al-
lowed, so only one tuning configuration is executed at a
time. Therefore, benchmarking is not biased by executing
another code on a computing device or in a CPU thread
where KTT is running. However, tuning manipulators
may still use intra-manipulator parallelism, so it is still
possible to, e. g., execute multiple independent kernels in
parallel, or overlap kernel execution with the data copy or
the CPU code.

When the tuning process ends, KTT also allows the
global parallelism so that kernels or composition calls can
be overlapped with another device or host code. Note that
the result of the kernel or composition is downloaded to the
host memory by default, which enforces synchronization.
However, the user can create persistent arguments, which
are not copied to the host by KTT unless the application
explicitly calls the proper KTT copy method.

3.4. Limitations

Recall that KTT forms an intermediate layer between a
tuned application and the OpenCL or CUDA API. There-
fore, it has to implement the interface to operate those
APIs. The current implementation of KTT does not sup-
port all the features of CUDA and OpenCL. Due to the
lack of OpenCL 2.0 implementation for NVIDIA GPUs,
the OpenCL support is limited to OpenCL 1.2 with KTT.
Also, some features of CUDA are not supported: texture,
surface, and constant memory and cooperative grids. We
believe that there is no fundamental problem to support
those features in a future version of KTT.

The new features of CUDA and OpenCL, which require
changes in kernel code only, do not require any explicit
support in KTT, as KTT methods replace only the host
API (for example, new warp-level synchronization or warp-
matrix operations executed on new CUDA tensor cores can
be used with KTT without any explicit support).

In its current implementation, a single instance of KTT
works with a single computing device. To use multiple de-
vices (e. g., in multi-GPU machine), the programmer has
to create multiple instances of KTT and partition the tun-
ing space manually. It also implies that there is no explicit
support for tuning which device is to be used for which
particular kernel.

4. Autotuning Benchmarks

In this section, we introduce a set of ten tunable bench-
marks. Each benchmark contains a C++ code, which pre-
pares data and performs tuning with KTT, and OpenCL
or CUDA code of tunable kernels. We briefly introduce
their implementation and evaluate the benefits of auto-
tuning by measuring their efficiency and assessing their
performance portability. All benchmarks have been tuned
for and evaluated on seven different hardware devices as
listed in Table 1.

Device Architecture SP perf. BW

2× Xeon E5-2650 Sandy Bridge 512 102
Xeon Phi 5110P Knights Corner 2,022 320
Tesla K20 Kepler 3,524 208
GeForce GTX 750 Maxwell 1,044 80
GeForce GTX 1070 Pascal 5,783 256
Radeon RX Vega 56 GCN 5 8,286 410
GeForce RTX 2080Ti Turing 11,750 616

Table 1: Devices used in our benchmarks. Arithmetic performance
(SP perf.) is measured in single-precision GFlops, memory band-
width (BW) is measured in GB/s.

4.1. Tuning Parameters

With tuning of code optimization parameters, the tun-
ing parameters can encode virtually any change of the
source code. While many benchmarks contain tuning pa-
rameters performing the same type of optimization, their
implementation may differ from case to case. In this sec-
tion, we describe the common optimizations parameters
implemented in most of the benchmarks.

4.1.1. Work-group Size

On GPUs, the size of work-group allows balancing the
amount of reachable parallelism (i. e., amount of work-
items which can run simultaneously) and allocated re-
sources (e. g., private and local memory consumption). In
general, smaller work-groups (to some extent) allow to al-
locate of more resources and reduce local barrier overhead.
On the other hand, small work-groups may decrease mem-
ory locality when some type of memory blocking is used.
Very small work-groups may also decrease reachable paral-
lelism due to creation of under-populated warps or due to
the limited amount of work-groups which can be placed on
GPU simultaneously. On CPUs, work-items are processed
in a vectorized loop and thus the work-group size mainly

7

influences the amount of consumed registers and memory
locality.

The optimization of work-group size (or block size in
CUDA) is a common optimization method, which may be
easily implemented without re-compilation of the kernel
code. However, most of the integer arithmetic required for
array indexing uses the work-group size. Consequently,
when the work-group size is encoded by a tuning parame-
ter, indexing arithmetics can be optimized during compi-
lation.

4.1.2. Work-item Coarsening

Work-item coarsening (or thread coarsening in CUDA)
is a well-known technique [45, 41], optimizing the amount
of work per work-item. On GPUs, adding more work per
work-item improves private memory locality and instruction-
level parallelism. On the other hand, it also increases the
number of used registers, so that the reachable parallelism
can be reduced. Work-item coarsening is similar to the
loop unrolling on CPUs, as each work-item (i. e., iteration
of the generated vectorized loop) performs more computa-
tions.

4.1.3. Caching in Local Memory

Local memory (called shared memory in CUDA) is
GPU-specific hardware, which allows work-items from the
same work-group to share data. It is often used as an ex-
plicit cache, where data loaded from global memory are
further processed (or where data are collected before they
are moved to the global memory). Local memory is faster
than global memory and usually also faster than global
memory cache. On the other hand, explicit caching may
be challenging with more complex memory access patterns.
Therefore, it may or may not be efficient to cache data in
local memory.

On CPUs, there is no special hardware for local mem-
ory – data allocated in the local memory are placed in a
buffer in the global memory. Therefore, there is no reason
to use it for improving the speed of the code, but it can
be still used to share data between work-items.

4.1.4. Caching in Private Memory

Private memory (or registers in CUDA) is the fastest
memory available for both GPUs and CPUs. Explicit
caching in private memory speeds-up access to the data.
However, it may also lead to registers spilling on both GPU
and CPU architectures.

4.1.5. Tile Size

Memory tiling is a common technique to improve spa-
tial or temporal locality. It is usable for direct global mem-
ory access (a tile is stored in the cache by the hardware),
or explicit caching in local or private memory. The tile
size may or may not be equal to the work-group size (e. g.,
work-items can process multiple data elements, so the tile
size is an integer multiple of work-group size). Bigger tiles

ensure better cache locality as long as cache capacity is
not exceeded. However, with explicit caching on GPUs,
bigger tiles can reduce reachable parallelism by increasing
resources consumption.

4.1.6. Loop Unrolling

Loop unrolling is a general technique, which allows in-
creasing instruction-level parallelism, reducing branching
and simplifying array indexing by common subexpression
elimination. It increases the performance of loops if there
are enough registers available.

4.1.7. Padding Local Memory

GPU local memory consists of multiple banks (usually
32), which should be accessed in parallel to reach the high-
est performance. If different data from the same bank are
read, a bank conflict occurs and the access into this bank is
serialized, resulting in performance degradation. Padding
arrays in local memory can prevent bank conflicts in some
situations. For example, parallel read of a column of a
32 × 32 matrix in local memory results in a 32-way bank
conflict. However, when the matrix is stored as 33 × 32
array, there is no conflict in accessing columns.

4.1.8. Explicit Vectorization

The code performed by work-items can be written in
a vectorized form. Such a case is similar to loop un-
rolling with slightly modified effect. With GPUs, it is eas-
ier for the compiler to generate faster vector instructions
for memory access (both global and local). With CPUs,
the OpenCL compiler by default performs de-vectorization
and vectorization, but it can be hinted to directly translate
vectorized code into vector instructions, which can help if
implicit vectorization is not efficient enough. On the other
hand, explicit vectorization often increases register usage
on GPUs. It may also increase the amount of workload
per work-group, which increases registers pressure in case
local barriers are called within the kernel.

4.2. Benchmark Set Implementation

Here, we introduce the implementation of the bench-
mark set used in this paper. As the development of au-
totuning benchmarks is quite a time consuming task (the
tuning parameters have to be identified in the code, and
their effect has to be implemented), we have composed a
benchmark set from already available kernels, kernels de-
veloped by our group in several projects, and kernels de-
veloped as autotuned variants of previously available non-
autotuned kernels. The benchmarks set covers important
computational problems spanning across multiple applica-
tion domains: image processing (3D Fourier Reconstruc-
tion and 2D Convolution), linear algebra (BiCG, GEMM,
GEMM Batched, Matrix transpose, and Reduction), com-
putational chemistry (Direct Coulomb Summation) and
differential equation solvers (N-body and Hotspot). Most
of the benchmarks use tuning parameters for performing

8

the optimizations introduced in Section 4.1. Table 2 shows
which optimizations are implemented by which particu-
lar benchmark. Benchmarks which have been published
previously are described briefly here, whereas the unpub-
lished benchmarks are introduced in greater detail. Multi-
ple benchmarks also implement special optimizations not
listed in the table – in such case, the optimizations are
mentioned in the benchmark description in this section.

The benchmark set is publicly available. Except for
3D Fourier Reconstruction, all benchmarks are bundled
with the Kernel Tuning Toolkit as examples of its usage5.
The autotuned version of 3D Fourier Reconstruction is cur-
rently not integrated into the production version of Xmipp,
but it can be downloaded from Github6.

4.2.1. BiCG

BiCG is a kernel used in the biconjugate gradient method.
It computes

q = Ap s = AT r (1)

where A is a matrix and p, q, r, s are vectors. We have
adopted the implementation from PolyBench/GPU [22]
and implemented kernel fusion and cache tiling similarly
to our previous work [14]. In addition to the parame-
ters listed in Table 2, we have created tuning parameters
changing the following properties of the code:

• whether BiCG is computed by the fused kernel (load-
ing matrix A only once), or by two separate kernels
computing Ap and AT r;

• the amount of work per work-group (it can iter-
ate over multiple tiles, improving memory locality
of output vectors);

• how the reduction of resulting vectors is performed
(can be reduced in local memory or global memory);

• how reduction is implemented (using atomic opera-
tions, or finishing reduction in a separate kernel).

The implementation uses the tuning manipulator, as tun-
ing parameters change the execution of kernels (e. g., when
atomics are not used, an extra kernel is needed to finish
computation of vectors q, s).

4.2.2. 2D Convolution

The 2D convolution example using 7×7 filter is adopted7

from the CLTune project [35]. The special tuning param-
eters determine the way of handling shared boundaries of
tiles.

5https://github.com/Fillo7/KTT/examples
6https://github.com/I2PC/scipion/tree/jd_

reconstructFourier_KTT
7Our code uses the same kernel and tuning space, but the appli-

cation is modified to use KTT API.

4.2.3. Direct Coulomb Summation

The direct Coulomb summation precomputes the 3D
spatial grid of electric charge around a molecule, used,
e. g., in molecular docking [21]. We have introduced the
autotuned implementation in [15]. Here, we evaluate a 3D
version of the published algorithm. The algorithm tunes,
besides those mentioned in Table 2, the following param-
eters:

• whether input atoms are stored in global or in con-
stant memory;

• whether input atoms are stored as a structure of ar-
rays or as an array of structures.

4.2.4. GEMM

The generalized matrix-matrix multiply (GEMM) is a
standard part of BLAS [10]. Its performance is critical
for many applications. We have adopted an example from
the CLTune project [35] with a complex tuning space con-
taining 241,600 configurations. The large tuning space is
mainly caused by applying optimizations listed in Table 2
in multiple dimensions. Moreover, tuning parameters are
provided for switching between continuous and strided ac-
cess to the input matrices.

4.2.5. GEMM Batched

Regular BLAS implementations are optimized for large
data vectors and matrices. However, some applications,
such as deep learning [1], multifrontal solvers for sparse
linear systems [11] or Finite Elements Method [29] require
executing many instances of BLAS routines operating on
very small matrices. Therefore, batched operations (i. e.,
grouping many BLAS calls that process small matrices
together into a single call) are being developed to exploit
contemporary highly-parallel hardware.

It has been shown that autotuning enables reaching
near-peak performance for batched GEMM using very small
matrices (up to 32 × 32 elements) [30]. The implemen-
tation of batched GEMM has to be altered for different
sizes of matrices [30]. We have implemented the batched
GEMM kernel from scratch. It is optimized for very small
matrices similarly to [30], but also for highly rectangular
small matrices. Note that for small matrices, GEMM is
memory-bound (it does not expose high flop-to-word ra-
tio). Therefore, optimization strategies are different than
for GEMM optimized for larger matrices, resulting in a sig-
nificantly smaller tuning space. Since our GEMM Batched
benchmark is optimized for small matrices only, for bigger
matrices, the original GEMM benchmark should be used.

Our implementation uses highly-configurable parallelism.
For output matrix of size m × n, a work-group of size
m×y×z is created, where y, z are tuning parameters. Pa-
rameter y defines work-item coarsening: it determines the
number of work-items in the y-dimension which process
one instance of matrix multiplication and hence the num-
ber of elements processed by each work-item. Parameter z

9

https://github.com/Fillo7/KTT/examples
https://github.com/I2PC/scipion/tree/jd_reconstructFourier_KTT
https://github.com/I2PC/scipion/tree/jd_reconstructFourier_KTT

Benchmark WG size coarsening LM caching PM caching Tile size unrolling LM padding vectorization

BiCG X X X X X
2D Convolution X X X X X X X X
Coulomb 3D X X X X
GEMM X X X X X X
GEMM Batched X X X X X X X
Hotspot X X X X X
Matrix Transpose X X X X X X
N-body X X X X X X
Reduction X X X
Fourier X X X X

Table 2: Common optimizations tuned by benchmarks. Tile size is marked when it can be configured differently than work-group size. The
abbreviations used in the names of the columns are as follows: ”WG” is work-group, ”LM” is local memory, ”PM” is private memory.

determines the number of matrix multiplication instances
computed by a work-group. Caching in local memory is
also implemented for the output matrix: it can be written
into global memory directly, or multiple matrices can be
arranged in local memory and written together (improves
memory coalescing).

4.2.6. Hotspot

The Hotspot kernel, used for calculating a heat dis-
tribution on a 2D surface, is based on a kernel from the
Rodinia benchmark suite [7]. It implements a 2D finite dif-
ferences method, which can exploit temporal locality (as it
is executed iteratively). We have implemented tuning pa-
rameters listed in Table 2, and parameter allowing to tune
the number of steps performed in a kernel call (balances
temporal locality against redundant computation).

4.2.7. Matrix Transpose

We have implemented autotuning for a tiled matrix
transposition sample from NVIDIA CUDA SDK 10.0. The
tuning parameters additional to those defined in Table 2
are as follows:

• transposition of work-items (work-items in a warp
may read rows and store columns, or read columns
and store rows);

• explicit prefetching into the cache.

4.2.8. N-body

The computation of gravitational forces between n bod-
ies in space is based on the code sample from NVIDIA
CUDA SDK 9.0. It computes a gravitational force between
all pairs of bodies, and thus is a very compute-intensive
benchmark. We have added the tuning parameters allow-
ing tuning of how input bodies are stored (array of struc-
ture or structure of arrays) and also the optimizations de-
fined in Table 2.

4.2.9. Reduction

The reduction benchmark computes the sum of all el-
ements in an input vector. We have used the autotuned
implementation from our previous work [15]. There are

two special optimizations affected by tuning parameters
and not listed in Table 2:

• whether the reduction is performed with at most one
global barrier only by a fixed number of work-items,
or iteratively by multiple kernels scaling with the size
of the reduced vector;

• whether, with the fixed number of work-items, the
final reduction is performed by extra kernel invoca-
tion, or by utilizing atomic operations.

4.2.10. 3D Fourier Reconstruction

One of the computationally demanding steps in the im-
age reconstruction pipeline in cryo-electron microscopy is
a 3D Fourier reconstruction [2]: the process when 2D sam-
ples of arbitrary orientation are inserted into the 3D vol-
ume. We have used the autotuned implementation intro-
duced in our previous work [43]. This implementation can
be tuned for specific hardware and also for specific samples
resolution. In contrast to other benchmarks, 3D Fourier
Reconstruction is implemented in CUDA and therefore can
be evaluated on NVIDIA GPUs only.

The tuning space allows several optimizations not listed
in Table 2:

• atomic writing into output volume (allows to process
multiple 2D samples in parallel);

• precomputation or on-the-fly computation of inter-
polation weights;

• how are work-items mapped to data inside tiles of
input 2D samples (optimizing cache locality).

4.2.11. Summary

Our benchmarks use a variety of tuning parameters,
some of them common for multiple benchmarks, some of
them specific for a given computational problem. The
size and dimensionality of tuning spaces are summarized
in Table 3. Note that the number of tuning parameters
can be higher than the number of tuned optimizations
described in this section, because some optimizations are

10

Benchmark dimensions configurations

BiCG 11 5,122
Convolution 10 5,248
Coulomb 3D 8 1,260
GEMM 15 241,600
GEMM batched 11 424
Hotspot 6 480
Transpose 9 10,752
N-body 8 9,408
Reduction 5 175
Fourier 6 360

Table 3: A list of the benchmarks and the size and dimensionality
(i. e., the number of tuning parameters) of their tuning spaces.

Benchmark bound. ops. note

BiCG mem 4a2 a: width and height
of the input matrix

Coulomb 3D comp 6ak3 a: number of atoms,
k: number of grid
points per dimension

GEMM comp 2a3 a: width and height
of all matrices

GEMM batched mem 12na2 a: width and height
of all matrices, n:
number of matrices

Hotspot mem 4ia2 a: width and height
of the input matrix,
i: number of itera-
tions

Transpose mem 8a2 a: width and height
of all matrices

N-body comp 20n2 n: number of bodies
Reduction mem 4n n: size of input vec-

tor

Table 4: Number of operations performed by different benchmarks.
The column ”bound.” distinguishes between memory-bound codes
(operations in ”ops.” column refer to transferred bytes) and compute-
bound codes (operations in ”ops.” column refer to flops).

implemented by multiple tuning parameters (e. g., if op-
timizations are applied to multiple buffers or multiple di-
mensions independently). Several benchmarks have been
executed with a smaller tuning space on Radeon Vega56
because the AMD ROCm driver has been crashing with
some tuning configurations (mainly using vectors of size
16 and higher loop unrolling factors). Those benchmarks
are Direct Coulomb Summation, GEMM, and N-Body.

The tuning spaces of benchmarks have been defined
during their development. We have not performed any a
posterior adjustment of the tuning spaces based on the ex-
perimental evaluation (e. g., removing poorly-performing
configurations). Therefore, we are able to evaluate the
difficulty of searching tuning space without bias caused by
experimental knowledge of well- or poor-performing con-
figurations.

4.3. Efficiency of Benchmarks

If we want to study autotuning spaces (especially con-
cerning how hard it is to search them), we should first
prove that those spaces allow us to generate a code with
high performance. Here, we demonstrate that our bench-
marks either reach performance close enough to theoreti-
cal boundaries of the hardware or at least outperform the
baseline8 implementation significantly. We do not evaluate
2D Convolution here: it does not perform at peak perfor-
mance, but it reaches state-of-the-art performance [35], so
it can be considered efficient. We also exclude 3D Fourier
Reconstruction – it is a memory latency-bound code, mak-
ing theoretical performance boundaries difficult to evalu-
ate. However, it has been shown that the autotuned imple-
mentation of our gather-based 3D Fourier Reconstruction
significantly outperforms state-of-the-art scatter-based ap-
proach [43].

We define the efficiency of a benchmark as the relative
performance of the benchmark with respect to the relevant
hardware performance boundaries (memory or arithmetic
throughput). More precisely, we use:

efficiency = 100 ·max(
MEMops

time

MEMpeak
,

ALUops
time

ALUpeak
) (2)

where time is the runtime of computation, MEMpeak and
ALUpeak is peak memory and arithmetic throughput of
the hardware9. The MEMops and ALUops are the num-
ber of memory or arithmetic operations which are essential
to solve the task. In other words, we count the number
of operations required to solve the problem, not the num-
ber of operations required to execute the algorithm (such
as array indexing, communication or computations dupli-
cated among work-items). For example, BiCG benchmark
is a memory-bound code, which essentially needs to read
the input matrix A once. Therefore, even if the unfused
implementation reads it twice, the number of operations is
computed as the size of the input matrix in bytes divided
by the runtime of the implementation. The formulas for
computing ALUflops or MEMops of the benchmarks are
given in Table 4.

For all benchmarks, we have measured the performance
with sufficiently large data as to fully utilize the GPUs.
For Batched GEMM, small matrices of size 16 × 16 have
been used.

The efficiency of tuned implementations is given in Ta-
ble 5. The performance of Hotspot benchmark is not close
to the theoretical peak, so we measure the speedup over
Rodinia implementation. The number of steps per ker-
nel invocation is exposed to the user as a parameter in

8the implementation we used as a basis for our benchmark, e. g.,
the Rodinia’s Hotspot

9Only half the memory bandwidth has been considered for dual
Intel Xeon E5-2650 because OpenCL provides no mechanism to op-
timize for NUMA in the dual-socket system (pinning memory buffers
and work-groups to NUMA nodes is not possible). Therefore the full
system bandwidth is not available.

11

Benchmark 2080Ti 1070 750 K20 Vega56 E5-2650 5110P

BiCG 88.3% 84.7% 81.7% 50.4% 75.6% 46.0% 6.45%
Coulomb 3D 91.8% 91.4% 84.3% 43.2% 65.3% 74.2% 22.2%
GEMM 79.8% 80.6% 91.1% 51.3% 96.3% 37.5% 19.7%
GEMM batched 86.8% 81.4% 90.0% 49.6% 86.0% 27.7% 20.9%
Transpose 87.1% 80.2% 86.3% 64.2% 86.1% 62.5% 10.0%
N-body 89.7% 86.6% 87.7% 40.6% 82.2% 77.7% 29.9%
Reduction 68.7% 87.5% 89.4% 64.1% 71.6% 33.9% 10.1%

Hotspot 1.35× 1.94× 2.06× 1.4× 2.88× 1.2× 12.8×

Table 5: Performance of benchmarks autotuned for various hardware devices. The performance relative to the theoretical peak of devices
(see Table 4) is shown for all benchmarks except for Hotspot, which is compared to the baseline Rodinia implementation.

Rodinia’s implementation of Hotspot. To have a fair com-
parison, we have searched for the best-performing number
of steps manually, testing the same values which have been
tested by KTT in the autotuned version. As we can see,
the performance on GPUs is very good in general. We can
reach a performance close to the theoretical peak (75%
or more) in most cases for all architectures except Kepler
(Tesla K20), which is less efficient than other architectures
in all benchmarks. The performance on dual-CPU (Xeon
E5-2650) and MIC (Xeon Phi 5110P) is often far from the
theoretical peak. The development of OpenCL compiler
seems to be not of high priority for CPU-based systems
(for example Xeon Phi is not supported in Intel OpenCL
from 2015), so this result is not surprising.

Note that the performance of Coulomb 3D and N-body
benchmarks has been computed differently for GeForce
GTX 2080Ti: the Touring architecture seems to perform
transcendental functions in parallel to FP32 instructions.
Therefore, we have excluded the reciprocal square root
from the computation of overall floating-point operations,
using formulas 5ak3 and 19n2 for Coulomb 3D and N-body,
respectively (see Table 4). Otherwise, the performance
would be overestimated.

4.4. Performance Portability

In this section, we evaluate the performance portability
of benchmarks without re-tuning them – i. e., how bench-
marks perform if they are executed on a different device
than they are tuned for. This evaluation has been per-
formed as follows. We have tuned all benchmarks for all
devices d. Then, for each benchmark tuned for device di,
we have measured its performance on devices dj , j 6= i.
The performance is computed as a percentage of the max-

imal reachable performance for the device: 100
perf (dj)
perf (di)

.

Let us compute the performance portability between
GeForce GTX 750 and GeForce RTX 2080Ti as an exam-
ple. When BiCG benchmark is tuned for GeForce GTX
750, it reaches 65 GB/s, when tuned for GeForce RTX
2080Ti, it reaches 544 GB/s. When the code tuned for
GeForce RTX 2080Ti is executed on GeForce GTX 750, it
reaches 54.6 GB/s, so the performance portability is 84%.
When the code tuned for GeForce GTX 750 is executed
on GeForce 2080Ti, it reaches performance 381 GB/s, so
the performance portability is 70%.

Due to vast number of combinations, we compact the
results in Table 6 in the following way: we show the aver-
age with standard deviation and worst-case performances
(i) across GPU architectures, (ii) when GPU code is exe-
cuted on CPU-derived architecture (CPU and MIC) and
(iii) when CPU or MIC code is executed on GPU archi-
tecture.

The table clearly demonstrates that the performance
is not portable in general. Although the average perfor-
mance portability is not bad among GPUs, the worst-cases
are showing that for some benchmarks, there are combi-
nations of GPUs with very bad performance portability,
suggesting the autotuning should be re-executed for differ-
ent architectures. This is in line with related work, such
as [26, 20, 43]. The performance portability is much worse
in the case when the benchmarks are tuned for a CPU or
MIC and executed on a GPU and vice versa. The poor
portability between GPUs and CPU or MIC emphasizes
the important role of tuning – although our benchmarks
cannot reach peak performance on CPU or MIC, their per-
formance is much higher than in case when the GPU-tuned
code is simply executed on a CPU or MIC.

This experiment also reveals a serious limitation of
functional portability with OpenCL. OpenCL guarantees
the functional portability of the code if it can be executed
on a device. When a kernel uses more hardware resources
(e. g., number of registers per work-item) than is available
on the device, it cannot be executed. It seems that this is
the case of finely-tuned kernels, which often use as many
resources as possible. When such kernels are executed on
a device with a lower amount of resources, they fail. As it
is shown in Table 6, this can happen when a code tuned
for CPU, MIC, or GPU is executed on a different GPU.

5. Dynamic Autotuning

In this section, we experimentally evaluate dynamic
autotuning for two applications: batched GEMM and 3D
Fourier reconstruction. Moreover, we analytically deter-
mine the potential of dynamic autotuning for the rest of
the benchmarks.

5.1. Methodology
Recall that with dynamic autotuning, the tuning space

is explored at runtime during application execution. There-

12

GPU→GPU GPU→CPU/MIC CPU/MIC→GPU
Benchmark avg±stdev worst failed avg±stdev worst failed avg±stdev worst failed

BiCG 89.0%±12.3% 57% 1 44.1%±17% 28% 0 38.8%±29.5% 11% 0
Convolution 79.4%±14.9% 55% 3 56.9%±18.5% 33% 0 10.0%±3.6% 6% 1
Coulomb 3D 95.8%±6.5% 67% 0 84.8%±2.7% 81% 0 23.3%±16.9% 3% 2
GEMM 83.6%±16.4% 31% 0 18.6%±18.5% 1% 0 22.3%±6.6% 13% 2
GEMM batched 85.4%±17% 37% 0 68.2%±13.2% 39% 0 76.7%±22.2% 46% 1
Hotspot 80.3%±17.5% 46% 3 70.3%±15.6% 44% 0 65.1%±8.9% 59% 6
Transpose 85.0%±21.9% 8% 3 51.0%±27.1% 11% 0 34.7%±14.7% 14% 0
N-body 78.8%±24.2% 2% 3 45.9%±30.1% 0% 0 25.7%±15.6% 6% 2
Reduction 88.4%±24% 12% 3 53.1%±17.4% 26% 0 68.3%±23.8% 37% 1
Fourier 74.5%±30% 31% 0 N/A N/A N/A N/A N/A N/A

Table 6: Relative performance of benchmarks ported across GPU architectures, from CPU/MIC to GPU and from GPU to CPU/MIC, without
re-tuning. Avg±stdev denotes the average and standard deviation of the relative performance, worst shows the worst-case performance, and
failed shows the number of cases when some configuration cannot be executed on a device. 3D Fourier Reconstruction has been executed on
samples of 128 × 128 pixels on NVIDIA GPUs except for K20.

fore, the implementation variants are compiled and bench-
marked during application run-time, resulting in four sources
of overhead:

• compilation of OpenCL or CUDA kernels (each ex-
plored tuning configuration needs to be compiled by
the JIT compiler);

• execution of slower kernels (slower kernels prolong
tuning time even in non-blocking autotuning when
their results are used for computation);

• enforced global synchronization between tuning runs
(during autotuning, execution of the tuning manip-
ulators is not overlapped, see Section 3.3);

• testing kernel output (this step is optional).

These overheads are relevant during the tuning phase only
(i. e., when new configurations are searched). However,
when a sufficient number of tuned kernel invocations is
performed after the tuning, the overhead becomes negli-
gible. Here, we want to know how long the dynamically-
tuned code has to run to amortize the tuning overhead
under a certain value. Or, alternatively, if dynamic auto-
tuning reaches better performance than a code that has
been offline-tuned for a different device or input data.

Note that the overhead of the KTT API (mainly the
execution of manipulator in function runKernel) is negli-
gible during the execution of the tuned code.

5.2. Batched GEMM

In the previous section, we have introduced an auto-
tuned kernel for batched multiplication of very small ma-
trices. This kernel is tuned for fixed sizes of matrices, e. g.,
we have used matrices of size 16 × 16 for experiments in
Section 4. However, the space of the possible matrix sizes
is large. The GEMM kernel performs C = A · B, where
A is an i × j matrix, B a k × i matrix, and C a k × j
matrix. Considering small matrices of sizes up to 32 in
each dimension i, j, k, we get 32,768 combinations of the
sizes. Consider an application or library, which does not

know the sizes of multiplied matrices before it is executed.
It would be impractical to offline tune the application or
library for all possible sizes, so dynamic tuning, performed
at runtime once the matrix size is fixed, is of high practical
value.

5.2.1. Implementation

We have prepared an experiment, which simulates a
real application changing the matrix size from time to
time. Our testing application10 executed the tunable im-
plementation of batched GEMM introduced in Section 4.2.5,
but it periodically changes the size of matrices and per-
forms dynamic tuning. More precisely, the application
computes batched GEMM in a loop and randomly changes
sizes i, j, k ∈ [2, 32] every 30 seconds. The application
does not save the results of dynamic autotuning, so every
time the new sizes are used, the autotuning starts from
scratch. The batch size has been selected so that matrices
occupy approximately 900 MB of memory (so enough par-
allelism is also exploited with very small matrices). When
the size of matrices is changed, the dynamic tuning using
random search starts and is performed until (i) a config-
uration reaching 75 % of the peak memory bandwidth is
found, or (ii) 20 configurations have been explored. The
first rule allows the application to stop tuning when a con-
figuration resulting in a sufficient performance is reached
(we call such a configuration as well-performing configu-
ration). The purpose of the second rule is to stop tuning
when a configuration performing close to the theoretical
peak cannot be easily found (or does not exist at all). Af-
ter the tuning is stopped, the computation with the fastest
tuning configuration continues until the sizes of matrices
are changed again. With an application changing matrices
sizes less often, the tuning time could be prolonged. We
have measured the performance without tuning overhead
(showing whether efficient kernels can be found under lim-
ited tuning budget) and with tuning overhead (showing

10https://github.com/Fillo7/KTT/blob/master/examples/

gemm_batch/demo.cpp

13

https://github.com/Fillo7/KTT/blob/master/examples/gemm_batch/demo.cpp
https://github.com/Fillo7/KTT/blob/master/examples/gemm_batch/demo.cpp

the real performance of the dynamically tunned applica-
tion). The time required for initialization and copying of
newly created matrices was not benchmarked.

5.2.2. Evaluation

Device Maximum Restricted Incl. overhead

E5-2650 24.5 GB/s 88.6% 82.9%
5110P 22.9 GB/s 82.1% 72.1%
K20 91.2 GB/s 92.7% 61.3%
GTX 750 63.0 GB/s 91.4% 87.8%
GTX 1070 205.7 GB/s 97.2% 94.3%
Vega 56 308.5 GB/s 86.2% 74.4%
2080Ti 523.4 GB/s 92.6% 85.3%

Table 7: Dynamically tuned Batched GEMM on different computa-
tional devices. The second column (Maximum) shows the average
performance of the fastest configurations (average for all tested ma-
trix sizes). The third column (Restricted) shows averaged relative
performance (relative to the maximum) of configurations reachable
with dynamic tuning under limited tuning budget (at most 20 con-
figurations explored). Finally, the fourth column (Incl. overhead)
shows the averaged relative performance of dynamically tuned code,
including tuning overhead.

We have run the experiments for 3,000 seconds (i. e.
100 changes of matrix sizes) with all devices used in this
paper. The matrix sizes have been selected randomly, but
the same sizes are used for all devices. We have also per-
formed offline tuning with exhaustive search for those sizes
to obtain performance of the fastest configuration at each
device. The performance with and without tuning over-
head is computed as the relative performance of the fastest
configuration found by the offline tuning. The results av-
eraged over all matrix sizes are shown in Table 7. The
code executing on dual Xeon E5-2650, Xeon Phi 5110P
and Tesla K20, is compiled on Xeon E5-2650, which has
quite poor single-core performance and therefore requires
a longer time for compilation. The prolonged compilation
time does not limit performance on CPU and MIC signifi-
cantly, because average kernels’ runtime is high and there-
fore, the compilation does not induce significant overhead.
On the other hand, the compilation overhead is quite no-
ticeable with Tesla K20. The batched GEMM kernel per-
forms in general very well (i. e., it is close to the theoreti-
cal peak) on GPUs except for Tesla K20. Its performance
with overhead is also quite close to the peak kernel per-
formance (85% or better) in case of GeForce GTX 750,
GeForce GTX 1070 and GeForce RTX 2080Ti, using Core
i7-8700 for compilation. A bigger gap between the perfor-
mance of the fastest kernels discovered during the tuning
and performance with overhead can be seen with Radeon
RTX Vega 56 (running in a system with Ryzen 7 1700).
The main reason is the higher number of poorly performing
configurations and, therefore, more tuning steps required
to find a well-performing configuration (i. e., the configura-
tion within 75% of peak memory bandwidth, which leads
to finalization of the tuning).

For better illustration of tuning performance, the first
300 s of the benchmark execution is shown for well-per-

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

kernel perf.
perf. with overhead

offline tuned

Figure 2: Performance of dynamically tuned batched GEMM on
GeForce GTX1070 + Core i7-8700. The sizes of matrices are changed
every 30 s. Performance of actually executed kernels is depicted as
dots, whereas lines show performance including overhead. The max-
imal performance reachable via offline tuning with exhaustive search
is shown as horizontal red lines.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

kernel perf.
perf. with overhead

offline tuned

Figure 3: Performance of dynamically tuned batched GEMM on
Tesla K20 + Xeon E5-2650. The sizes of matrices are changed every
30 s. Performance of actually executed kernels is depicted as dots,
whereas lines show performance including overhead. The maximal
performance reachable via offline tuning with exhaustive search is
shown as horizontal red lines.

forming GeForce GTX 1070 in Figure 2 and for Tesla K20,
which suffers from tuning overhead, in Figure 3. Naturally,
the performance including tuning overhead drops, when a
new matrix size is used and increases in time as tuning
overhead is amortized. It can be seen that GeForce GTX
1070, coupled with the modern processor Core i7-8700, is
capable of amortizing tuning overhead in a very short time
– after 30 seconds of execution, performance with tuning
overhead is close to peak kernel performance. Even if mul-
tiple configurations are searched before a well-performing
one is found (see performance between 270 and 300 sec-
onds for GeForce GTX 1070 in Figure 2), the performance
with tuning overhead is close to the performance of the
best kernel found during the autotuning. On the other
hand, Tesla K20 cannot reach high performance for many
matrix sizes. This also means that more configurations

14

2080Ti 1070 750 680

2080Ti 100% 99% 31% 49%
1070 99% 100% 31% 50%
750 43% 67% 100% 94%
680 60% 72% 71% 100%

Table 8: Performance portability of 3D Fourier reconstruction with
128×128 samples. The rows represent GPUs used for offline tuning;
the columns represent GPUs used for execution. The percentage
shows how performance differs compared to the code using the best
combination of tuning parameters (for example, the code tuned for
GeForce GTX 1070 and executed on GeForce GTX 750 runs at only
31% of the speed of the code both tuned and executed on GeForce
GTX 750).

128x128 91x91 64x64 50x50 32x32

128x128 100% 100% 77% 70% 32%
91x91 100% 100% 76% 68% 33%
64x64 94% 94% 100% 91% 67%
50x50 79% 78% 98% 100% 86%
32x32 65% 67% 80% 92% 100%

Table 9: Performance portability on GeForce GTX1070. The rows
represent samples resolution used for offline tuning, the columns rep-
resent samples resolution used for execution. The percentage shows
relative performance compared to the code autotuned for the used
resolution.

are searched during the autotuning process. The system
with K20 uses an older Xeon E5-2650, which also pro-
longs kernel compilation time. Therefore, the overhead of
the tuning process is significant and would need more ker-
nel invocations to amortize. Tesla K20 is also not able
to reach high performance under limited tuning budget
(see the difference between kernel performance and per-
formance reachable by offline tuning between 210 s and
240 s, or between 270 s and 300 s for example).

5.3. 3D Fourier reconstruction in Xmipp

We have introduced the CUDA-based GPU accelera-
tion of the 3D Fourier reconstruction in [43], where KTT
has been integrated into the 3D Fourier reconstruction for
offline tuning and the values of the tuning parameters for
various hardware have been manually exported into the
production code. The implementation requires autotun-
ing to maintain performance portability across GPUs (see
Table 6). Because we were unable to install Xmipp on a
system with Tesla K20, we have run the benchmark also
on GeForce GTX 680 to get more comprehensive results.

Detailed performance portability across hardware de-
vices is in Table 8. The size of the samples inserted into
a 3D domain influence the selection of optimal tuning pa-
rameters. The tuning has to be repeated for samples of
different sizes. Otherwise, suboptimal performance is ob-
tained, as can be seen in Table 9.

5.3.1. Implementation

The pseudocode of the reconstruction is shown in Al-
gorithm 1. The output volumes G (Fourier transform of

the volume) and W (weights for the 3D voxels) are ini-
tialized at the beginning of the computation. In the loop
body (lines 4-6), the samples are added into the 3D vol-
ume. More precisely, the samples are packed into buffers
of a predefined size, and their Fourier transform is com-
puted on a CPU (line 4), copied into GPU memory (line
5) and then tuned GPU kernel is executed to insert the
samples into volumes G,W (line 6). The whole algorithm
is discussed in detail in [43].

ALGORITHM 1: 3D reconstruction
Input: s
Output: G,W

1 zero-initialize output volumes G,W in GPU memory;
2 initialize buffer of image’s Fourier Transform sf in GPU

memory;
3 foreach s ∈ S do
4 sf ← FFT (s) on CPU;
5 upload sf to GPU;
6 insert projecions of sf into G,W ;

7 end
8 download G,W to CPU memory;
9 apply weights W to G and perform inverse transform of G;

We use the non-blocking dynamic autotuning, which
performs both tuning and computation at the same time.
Therefore, all input and output data have to be man-
aged by KTT during the whole program execution. In
the loop in line 3, the data are prepared on CPU, then
a KTT method tuneKernelByStep, which launches one
step of dynamic tuning, is executed. The method selects a
new combination of the tuning parameters and executes a
tuning manipulator. The tuning manipulator implements
lines 5 and 6 of the algorithm. It first copies buffer sf into
GPU memory and then executes a kernel, which inserts
samples from sf into volumes G,W . The CPU code is mul-
tithreaded, allowing to overlap computation of FFTs with
kernel execution. The manipulator uses CUDA streams, so
when tuning is finished (and therefore global parallelism is
allowed, see Section 3.3) copying buffers may be executed
in parallel with kernel execution and even multiple ker-
nels may be executed in parallel (especially when process-
ing small samples). There is a tuning parameter changing
whether atomic writes to output volume in global memory
are allowed (see Section 4.2.10). Depending on the tuning
parameter value, the tuning manipulator method executes
kernel iteratively for each projection (atomic writes are
disabled), or just once (processing all samples in buffer sf
in one kernel call).

5.3.2. Evaluation

We have designed an experiment demonstrating the us-
ability of dynamic autotuning with the 3D Fourier recon-
struction. We have used a real-world setup, performing
reconstruction of the Brome Mosaic Virus [46] (EMPIAR
entry 10010), processing 1,826,160 samples in resolution
156 × 156. GPU kernels are processing 1500 samples at

15

best runtime tuning 50 tuning full

2080Ti 1m40s 88% ± 3% 54%
1070 5m49s 96% ± 2% 79%
750 16m59s 92% ± 4% 72%
680 15m12s 94% ± 2% 75%

Table 10: The relative performance of dynamically-tuned 3D Fourier
reconstruction. The best runtime is measured with ōrāculum, i. e.,
the fastest kernel is selected immediately, and no tuning is performed.
The relative performance of tuning with searching 50 configurations
and with searching the entire tuning space is measured as a per-
centage of the best runtime. Results for ”tuning 50” are shown as
an average and standard deviation, whereas other results are shown
as an average only (their performance is very stable across multiple
executions).

once [43]; therefore, about 1280 kernels are executed to
solve the reconstruction (the actual number can be slightly
higher due to a small percentage of void samples). All ex-
periments with different GPUs have been performed on a
desktop machine with Intel Core i7-8700.

In our experiment, the tuning is performed at the be-
ginning of the computation, when both used hardware and
sample size are known. The performance of the dynami-
cally tuned code is compared to the performance of code
with ōrāculum (i. e., when the optimal tuning configura-
tion obtained by the offline tuning using exhaustive search
is known at the beginning of the computation). We have
measured dynamically tuned code in two settings. First,
we let KTT perform 50 search steps with random search
and then continue with the fastest kernel explored. Sec-
ond, we perform the exhaustive search and continue with
the optimal configuration. As the random search was used,
the experiment has been repeated 100 times. Results of
this experiment are shown in Table 10. As we can see, the
performance penalty of dynamic tuning is smaller than
the performance penalty we get for a code that was tuned
offline for a different hardware device (see Table 8) or dif-
ferent input size (see Table 9). The performance obatined
with dynamic tuning ranges between 88% and 96% of the
performance of code with ōrāculum when 50 configura-
tions are searched, whereas the code mistuned for different
GPU can perform at 31% of ōrāculum in the worst case
(see Table 8) and the code tuned for different input size
can perform at 32% of ōrāculum in the worst case (see
Table 9).

We further analyze the overhead of dynamic autotun-
ing. Obviously, the more executions of the kernel (in our
case, the more samples used to reconstruct the 3D vol-
ume), the less overhead of dynamic autotuning. Therefore,
for more complicated reconstructions, the performance of
dynamically tuned code is closer to the code using the
ōrāculum, whereas trivial reconstruction may suffer from
dynamic tuning overhead. Adding more work per kernel
(in our case using larger samples) decreases relative over-
head of the compilation, but not the overhead caused by
the execution of slower kernels and synchronization.

In our experiment, the JIT compiler runs for 45.5 seconds

when the full tuning space is searched. It introduces sig-
nificant overhead in the experiment with GeForce RTX
2080Ti, as the GPU is very fast – the whole reconstruction
with ōrāculum is finished in 1 minute 40 seconds. With all
GPUs, some slowdown is caused by executing slow kernels.
The performance of average kernel is at 45% of the fastest
kernel for RTX 2080Ti, 69% for GeForce GTX 1070, 46%
for GeForce GTX 750 and 52% for GeForce GTX 680. The
good average performance on GeForce GTX 1070 improves
the high relative speed of dynamic tuning with 50 explored
configurations.

We have also measured the overhead of enforced global
synchronization. Recall that in such case, the tuning ma-
nipulator copies input samples to the GPU and executes
GPU kernels without the overlay with another manipula-
tor instance. The overhead is small for 3D Fourier re-
construction: for kernels executed with enforced global
synchronization, it is 7% for GeForce RTX 2080Ti and
GeForce GTX 1070, and 5% for GeForce GTX 750 and
GeForce GTX 680. The global synchronization is enforced
when kernels are tuned, but is not needed when tuning is
finished. Thus, in our setup, out of the total 1280 kernel
executions, only those 50 launched by the tuning manipu-
lator were slowed down.

To conclude, even if the reconstruction program runs
in minutes only, dynamic tuning is able to reach better
performance than offline tuning in the case offline tuning
was performed for different hardware, or different input
size.

5.4. Dynamic tuning of the benchmark set

The suitability for dynamic tuning for all benchmark
can be estimated analytically. We can compare the perfor-
mance of the best kernel with the average performance of
all kernels produced by the tuning space, which allows us
to compute the overhead caused by executing slower ker-
nels. We cannot evaluate the relative overhead of kernel
compilation, as it depends on application workload (large
kernel input prolongs kernel runtime, whereas compila-
tion time remains the same). We also cannot consider
the overhead caused by the enforced global synchroniza-
tion during tuning as it is highly application-dependent if
overlapping of manipulators can be leveraged. The perfor-
mance penalty of enforced synchronization, as well as ker-
nels compilation, is similar for all tuning variants, whereas
the performance penalty of slow kernels can be much higher
(some tuning variants can produce orders of magnitude
slower kernels). Therefore, we consider the overhead of
very slow kernels as the most significant one.

In the following we show how to estimate the number
n of kernel invocations required in order to amortize the
tuning overhead such that the performance of n kernel in-
vocations including the dynamic tuning overhead is a cer-
tain fraction of the performance we would have achieved
by executing the application using a well-performing ker-
nel n times. We define a well-performing configuration as a
configuration producing a kernel with a performance with

16

which we are satisfied. Note that the well-performing con-
figuration can be easily determined with some benchmarks
(e. g., when defined as a percentage of relevant hardware
theoretical peak), but it can be also virtually impossible
to identify a well-performing configuration until the whole
tuning space is searched (e. g., when defined as a configu-
ration reaching a certain fraction of the best configuration
performance). In this section, we use a well-performing
configuration as a theoretical concept, which is used to
determine the number of steps needed to amortize over-
head of dynamic tuning.

Let the application with ōrāculum be such an appli-
cation where a well-performing configuration is known at
the beginning of its execution (e. g., obtained by previ-
ously performed offline tuning). Let the required perfor-
mance of the dynamically tuned application relative to the
performance of the application with ōrāculum be rp (so
rp = 1.0 means that the dynamically tuned application
runs at the same speed as the application that uses some
well-performing kernel found during offline tuning). Let
the number of tuning steps be s, the average runtime of
kernels within the tuning space be tavg and the runtime
of the well-performing kernel be twell. Then, an average11

value of rp is computed as:

rp =
s · tavg + (n− s) · twell

n · twell
(3)

The average number of kernel invocations n required
to reach relative performance rp can be estimated as:

n =
rp · s · (tavg

twell
− 1)

1− rp
(4)

For example, if the average kernel has runtime tavg =
10ms, the well-performing kernel has runtime twell = 5ms,
we perform s = 100 tuning steps and we want to reach rela-
tive performance rp = 0.9 (i. e., dynamic autotuning reach
90% of the performance of an application with ōrāculum),
we need to perform 900 kernel invocations (including those
used for tuning).

The real amortization of dynamic autotuning depends
on the number of tuning steps required to find a well-
performing kernel. When random search is used, the num-
ber of required tuning steps can be computed as follows.
Let r be the ratio of well-performing configurations in the
tuning space and p be the required probability of finding
a well-performing configuration. The number of tuning
steps s, which leads to reaching the well-performing con-
figuration with probability p, can be computed as

s = log1−r(1− p) (5)

For example, if the ratio of well-performing configura-
tions is r = 0.01, then we need to explore 230 configu-
rations in order to reach a well-performing configuration
with probability p = 0.9.

11Here, rp is computed for the average situation with s tuning steps
and random search. Obviously, the tuning time may be different from
s · tavg in particular executions.

Using Equations 4 and 5, we can compute the number
of kernel invocations needed to hide overhead caused by ex-
ecuting slow kernels during dynamic tuning. We have set
up the following experiment. We define a well-performing
configuration as a configuration, which leads to at least
95% of the best configuration performance. Using data
gathered from the offline tuning of our benchmark set with
exhaustive search, we have computed the number of tun-
ing steps required to find a well-performing configuration
with probability 0.9 (using Equation 5). Then, we have
computed the number of kernel executions required to de-
crease dynamic tuning overhead under 10% (i. e. to ob-
tain at least 90% of the performance we would have with
ōrāculum). The results are given in Table 11.

Table 11 demonstrates that dynamic tuning is feasible
even for short program executions (with thousands or tens
of thousands of kernel calls) with multiple benchmarks,
such as BiCG, Direct Coulomb Summation, Batched GEMM,
Hotspot, Transpose, N-body, Reduction and 3D Fourier
Reconstruction. Longer execution is needed for 2D Con-
volution and GEMM benchmarks. This test also shows
some interesting differences between the hardware devices
used in the test. For example, autotuning of OpenCL code
for a CPU is similarly demanding as for GPUs with many
benchmarks, whereas it is much harder on the MIC (Xeon
Phi) in multiple cases. There are also some benchmarks
where different hardware performs highly differently. For
example, with Batched GEMM on GeForce GTX 1070,
304 configurations out of 424 are within 95% of the op-
timum and the average kernel performance is at 95% of
the optimum, so it is very easy to find a well-performing
kernel and to amortize tuning overhead. With GeForce
750, only 40 configurations produce well-performing ker-
nels, and the average kernel performance is within 62% of
the best one, so tuning is harder than for GeForce GTX
1070. With Xeon E5-2650, only three tuning configura-
tions result in a well-performing Batched GEMM kernel,
and the average kernel performance is at 51% of the best
kernel, so searching a well-performing kernel and amortiz-
ing the tuning overhead is significantly harder on the CPU.
Interesting differences between GPU and CPU/MIC can
be seen in 3D Coulomb Summation benchmark, where tun-
ing for GPUs is harder. Not only is the number of well-
performing kernels different (e. g., 110 for Xeon E5-2650
and 28 for GeForce GTX 1070), but a more significant
difference is the average performance – it is much lower
for all GPUs (e. g., 5% of the best one on GeForce GTX
1070 vs. 57% on Xeon E5-2650). The poor average speed
on GPU is caused by huge register spilling when high un-
rolling of the inner loop is used. Although it would be
easy to remove these slow-performing configurations from
the tuning space, we decided to keep the space as it was
designed when the benchmark was developed instead of
adding a posteriori information for tuning.

17

Benchmark 2080Ti 1070 750 K20 Vega56 E5-2650 5110P

BiCG 10,383 9,425 33.090 43,552 42,499 32,338 516,783
2D Convolution 265,297 98,966 197,550 165,783 99,087 7,211 3,435
Coulomb 3D 17,305 16,346 4,911 5,289 117* 150 631
GEMM 20,309 151,564 764,485 205,122 18,782* 384,309 3,106,384
GEMM batched 2 2 110 214 440 2,341 1,214
Hotspot 4,314 4,467 3,309 5,635 1,489* 3,926 7,346
Transpose 9,398 347 2,998 1,347 140,177 5,129 60,688
N-body 7,539 33,553 2,531 20,694 554* 2,472 1,669,559
Reduction 646 78 40 218 2,198 1,650 19,425
3D Fourier 2,239 830 3,123 N/A N/A N/A N/A

Table 11: The number of kernel invocations required to hide overhead of slow kernels execution. The goal is to find a kernel within 95% of
the optimum with 90% probability and decrease tuning overhead under 10% of the runtime. Benchmarks on Radeon RX Vega56 marked with
* are running with smaller tuning space due to ROCm instability.

6. Conclusion and Future Work

In this paper, we have introduced the Kernel Tuning
Toolkit – an advanced autoning framework for OpenCL
and CUDA applications. Using KTT allows expert pro-
grammers to configure applications for offline tuning and
dynamic tuning based on arbitrary user-defined code op-
timization parameters. We have also developed a set of
ten benchmarks covering important HPC application ar-
eas and demonstrated that autotuning with KTT allows
to produce highly efficient implementations (often close to
the theoretical peak of the hardware) of these benchmarks
for different hardware architectures including CPUs, Xeon
Phi co-processors and GPUs. In our experimental eval-
uations we also demonstrate that autotuning for different
architectures is key for performance portability. Moreover,
we have shown that rationally-designed tuning spaces are
often small enough to be searched during application run-
time, making dynamic tuning feasible for a subset of the
considered benchmarks. We have demonstrated with two
different applications that dynamic tuning outperforms of-
fline tuned implementations quickly if some performance-
relevant aspects, such as a the size of data structures,
change. Moreover, we have shown that our framework can
be integrated into production software, supporting multi-
threading, overlapping execution of host and device code
with memory copies, and utilizing simultaneous kernel ex-
ecution.

In future work, we would like to focus on the further
development and integration of advanced search strategies.
We believe that it is possible to accelerate dynamic tuning
by gathering properties of the tuning space from previous
tuning runs, e. g., determine the relative impact of tuning
parameters on performance by analyzing of profiling data.
Using more efficient search methods would make dynamic
autotuning feasible also for larger tuning spaces with a
small number of well-performing configurations. Another
line of research will focus on advanced dynamic strategies
that can detect when the performance of an application
degrades and that can then automatically trigger dynamic
re-tuning of the code.

Another planned improvement targets the generation

of tuning spaces. Currently, KTT first generates the whole
tuning space and then prunes it based on the constraints
given. We plan to speed-up tuning space generation simi-
larly as it has been done in the ATF framework [36].

Furthermore, we plan to investigate the possibilities of
connecting KTT with a compiler-based approach. By in-
troducing a DSL for optimizations, the programmer would
need to only implement advanced optimizations (such as
changing memory layout or the algorithm), whereas sim-
pler optimizations (such as vectorization or loop blocking)
would be generated automatically by the compiler.

The vast amount of autotuning results, especially when
coupled with profiling counters, can be used by the com-
munity to compare behavior and efficiency of different HW
architectures, study effects of different code optimizations,
or to develop new search strategies. Therefore, we plan to
set up a public database containing tuning results with
profiling counters and update this database with any new
hardware or benchmark available.

Last but not least, KTT has been designed to be in-
dependent of the concrete API used for accelerated ker-
nels (e. g., OpenCL or CUDA). It is, therefore, possible to
add broader support for APIs, for example, Vulcan sup-
port would extend potential applications of KTT towards
computer graphics. With non-blocking dynamic tuning,
it would be possible to alter shaders at runtime without
significant drop of frame rate.

Acknowledgements

The work was supported from European Regional Develop-
ment Fund-Project ”CERIT Scientific Cloud” (No. CZ.02.1.01-
/0.0/0.0/16 013/0001802). The project that gave rise to these
results received the support of a fellowship from la Caixa Foun-
dation (ID 100010434). The fellowship code is LCF/BQ/DI18-
/11660021. This project has received funding from the Euro-
pean Unions Horizon 2020 research and innovation programme
under the Marie Skodowska-Curie grant agreement No. 713673.
The Spanish Ministry of Economy and Competitiveness through
Grants BIO2016-76400-R(AEI/FEDER, UE). Comunidad Aut-
noma de Madrid through Grant: S2017/BMD-3817.

18

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensor-
flow.org.

[2] V. Abrishami, J. R. Bilbao-Castro, J. Vargas, R. Marabini,
J. M. Carazo, and C. O. S. Sorzano. A fast iterative con-
volution weighting approach for gridding-based direct fourier
three-dimensional reconstruction with correction for the con-
trast transfer function. Ultramicroscopy, 157:79 – 87, 2015.

[3] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bos-
boom, U.-M. O’Reilly, and S. Amarasinghe. OpenTuner: An
extensible framework for program autotuning. In Proceedings
of the 23rd International Conference on Parallel Architectures
and Compilation, PACT ’14, pages 303–316, 2014.

[4] E. Bajrovic and S. Benkner. Automatic performance tuning
of pipeline patterns for heterogeneous parallel architectures. In
2014 International Conference on Parallel and Distributed Pro-
cessing, Techniques and Applications, 2014.

[5] E. Bajrovic, Mijakovic R., J. Dokulil, S. Benkner, and
M. Gerndt. Tuning OpenCL applications with the periscope
tuning framework. In 2016 49th Hawaii International Confer-
ence on System Sciences (HICSS), 2016.

[6] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K.
Hollingsworth, B. Norris, and R. Vuduc. Autotuning in high-
performance computing applications. Proceedings of the IEEE,
106(11):2068–2083, Nov 2018.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, Tarjan, J. W. Sheaffer,
S. Lee, and K. Skadron. Rodinia: A benchmark suite for het-
erogeneous computing. In IEEE International Symposium on
Workload Characterization (IISWC), 2009.

[8] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. End-
to-end deep learning of optimization heuristics. In 2017 26th
International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pages 219–232, 2017.

[9] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. The scalable hetero-
geneous computing (SHOC) benchmark suite. In Proceedings of
the 3rd Workshop on General-Purpose Computation on Graph-
ics Processing Units, GPGPU-3, pages 63–74. ACM, 2010.

[10] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A
set of level 3 basic linear algebra subprograms. ACM Trans.
Math. Softw., 16(1):1–17, 1990.

[11] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite
sparse symmetric linear. ACM Trans. Math. Softw., 9(3):302–
325, 1983.

[12] J. Enmyren, U. Dastgeer, and C. W. Kessler. Towards a tunable
multi-backend skeleton programming framework for multi-GPU
systems. In MCC-3: Swedish Woekshop on Multicore Comput-
ing, 2010.

[13] T. L. Falch and A. C. Elster. Machine learning based auto-
tuning for enhanced OpenCL performance portability. In Pro-
ceedings of the 2015 IEEE International Parallel and Dis-
tributed Processing Symposium Workshop, 2015.

[14] J. Filipovič, M. Madzin, J. Fousek, and L. Matyska. Optimiz-
ing CUDA code by kernel fusion: application on BLAS. The
Journal of Supercomputing, 2015.

[15] J. Filipovič, F. Petrovič, and S. Benkner. Autotuning of
OpenCL kernels with global optimizations. In Proceedings of
the 1st Workshop on AutotuniNg and aDaptivity AppRoaches
for Energy Efficient HPC Systems (ANDARE ’17), 2017.

[16] M. Frigo and S. G. Johnson. The design and implementation of
fftw3. Proceedings of the IEEE, 93(2):216–231, 2005.

[17] D. Gadioli, R. Nobre, P. Pinto, E. Vitali, A. H. Ashouri,
G. Palermo, J. Cardoso, and C. Silvano. SOCRATES a seam-
less online compiler and system runtime autotuning framework
for energy-aware applications. In 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), 2018.

[18] M. Gerndt, S. Benkner, E. César, C. Navarrete, E. Bajrovic,
J. Dokulil, C. Guillén, R. Mijakovic, and A. Sikora. A multi-
aspect online tuning framework for HPC applications. Software
Quality Journal, 2017.

[19] M. Gerndt, E. Cesar, and S. Benkner. Automatic tuning of
hpc applications - the periscope tuning framework (ptf). In
Automatic Tuning of HPC Applications - The Periscope Tuning
Framework (PTF). Shaker Verlag, 2015.

[20] S. G. D. Gonzalo, S. D. Hammond, C. R. Trott, and W. M.
a. Hwu. Revisiting online autotuning for sparse-matrix vec-
tor multiplication kernels on next-generation architectures. In
2017 IEEE 19th International Conference on High Perfor-
mance Computing and Communications; IEEE 15th Inter-
national Conference on Smart City; IEEE 3rd International
Conference on Data Science and Systems (HPCC/SmartCi-
ty/DSS), 2017.

[21] D. S. Goodsell, G. M. Morris, and A. J. Olson. Automated
docking of flexible ligands: Applications of autodock. Journal
of Molecular Recognition, 9(1):1–5, 1996.

[22] S. Grauer-Gray and L. N. Pouchet. Polybench/gpu
1.0. http://web.cse.ohio-state.edu/~pouchet.2/software/

polybench/GPU/index.html, 2012.
[23] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and

J. Cavazos. Auto-tuning a high-level language targeted to gpu
codes. In 2012 Innovative Parallel Computing (InPar), 2012.

[24] D. Grewe and A. Lokhmotov. Automatically generating and
tuning GPU code for sparse matrix-vector multiplication from
a high-level representation. In Fourth Workshop on General
Purpose Processing on Graphics Processing Units (GPGPU),
2011.

[25] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Com-
bined selection of tile sizes and unroll factors using iterative
compilation. In Proceedings 2000 International Conference on
Parallel Architectures and Compilation Techniques (PACT’00),
2000.

[26] J. Kurzak, S. Tomov, and J. Dongarra. Autotuning GEMM
kernels for the Fermi GPU. IEEE Transactions on Parallel and
Distributed Systems, 23(11):2045–2057, 2012.

[27] Y. Li, J. Dongarra, and S. Tomov. A note on auto-tuning
GEMM for GPUs. In Proceedings of the 9th International Con-
ference on Computational Science: Part I, 2009.

[28] Y. Li, Y.-Q. Zhang, Y.-Q. Liu, G.-P. Long, and H.-P. Jia.
MPFFT: An auto-tuning FFT library for OpenCL GPUs. Jour-
nal of Computer Science and Technology, 28(1):90–105, 2013.

[29] K. Ljungkvist. Matrix-free finite-element operator application
on graphics processing units. In Euro-Par 2014: Parallel Pro-
cessing Workshops, pages 450–461. Springer International Pub-
lishing, 2014.

[30] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin,
J. Falcou, and J. Dongarra. High-performance matrix-matrix
multiplications of very small matrices. In Euro-Par 2016: Par-
allel Processing, pages 659–671. Springer International Publish-
ing, 2016.

[31] K. Matsumotoi, N. Nakasato, and S. G. Sedukhin. Performance
tuning of matrix multiplication in OpenCL on different GPUs
and CPUs. In 2012 SC Companion: High Performance Com-
puting, Networking Storage and Analysis, 2012.

[32] R. Miceli, G. Civario, A. Sikora, E. César, M. Gerndt, H. Haitof,
C. Navarrete, S. Benkner, M. Sandrieser, L. Morin, and
F. Bodin. AutoTune: A Plugin-Driven Approach to the Auto-
matic Tuning of Parallel Applications, pages 328–342. Springer,
2013.

[33] S. Muralidharan, A. Roy, M. Hall, M. Garland, and P. Rai.
Architecture-adaptive code variant tuning. SIGARCH Com-

19

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/GPU/index.html
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/GPU/index.html

puter Architecture News, 44(2):325–338, 2016.
[34] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and

B. Catanzaro. Nitro: A framework for adaptive code variant
tuning. In Proceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, IPDPS ’14,
pages 501–512. IEEE Computer Society, 2014.

[35] C. Nugteren and V. Codreanu. CLTune: A generic auto-tuner
for OpenCL kernels. In Proceedings of the IEEE 9th Interna-
tional Symposium on Embedded Multicore/Many-core Systems-
on-Chip (MCSoC), 2015.

[36] A. Rasch and S. Gorlatch. ATF: A generic directive-based au-
totuning framework. Concurrency and Computation: Practice
and Experience, 0(0):e4423, 2018.

[37] A. Rasch, M. Haidl, and S. Gorlatch. ATF: A generic auto-
tuning framework. In 2017 IEEE 19th International Confer-
ence on High Performance Computing and Communications;
IEEE 15th International Conference on Smart City; IEEE 3rd
International Conference on Data Science and Systems (HPC-
C/SmartCity/DSS), 2017.

[38] G. Rudy, M. M. Khan, M. Hall, C. Chen, and J. Chame. A pro-
gramming language interface to describe transformations and
code generation. In Languages and Compilers for Parallel Com-
puting. Springer Berlin Heidelberg, 2011.

[39] K. Seymour, H. You, and J. Dongarra. A comparison of search
heuristics for empirical code optimization. In 2008 IEEE Inter-
national Conference on Cluster Computing, 2008.

[40] M. Steuwer, T. Remmelg, and C. Dubach. LIFT: A functional
data-parallel ir for high-performance GPU code generation. In
2017 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), pages 74–85, 2017.

[41] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G.
Trabuco, and K. Schulten. Accelerating molecular modeling ap-
plications with graphics processors. Journal of Computational
Chemistry, 28(16), 2007.

[42] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W.
Chang, N. Anssari, G. D. Liu, and W. M. Hwu. Parboil: A re-
vised benchmark suite for scientificand commercial throughput
computing. Technical report, University of Illinois at Urbana-
Champaign, 2012.

[43] D. Střelák, C. O. S. Sorzano, J. M. Carazo, and J. Filipovič. A
GPU acceleration of 3D Fourier reconstruction in Cryo-EM. The
International Journal of High Performance Computing Appli-
cations, 0, 2019.

[44] A. Tiwari and J. K. Hollingsworth. Online adaptive code gen-
eration and tuning. In IEEE International Parallel Distributed
Processing Symposium (IPDPS), 2011.

[45] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In ACM/IEEE conference on Supercom-
puting (SC), 2008.

[46] Z. Wang, C. F. Hryc, B. Bammes, P. V. Afonine, J. Jakana,
D.-H. Chen, X. Liu, M. L. Baker, C. Kao, S. J. Ludtke, M. F.
Schmid, P. D. Adams, and W. Chiu. An atomic model of brome
mosaic virus using direct electron detection and real-space op-
timization. Nat Commun, 5:4808, 2014.

[47] B. van Werkhoven. Kernel tuner: A search-optimizing gpu code
auto-tuner. Future Generation Computer Systems, 90:347 –
358, 2019.

[48] R. C. Whaley and J. J. Dongarra. Automatically tuned lin-
ear algebra software. In Proceedings of the 1998 ACM/IEEE
Conference on Supercomputing, 1998.

20

	1 Introduction
	2 Related Work
	3 Architecture of the Kernel Tuning Toolkit
	3.1 Kernel tuning
	3.2 Offline and Dynamic tuning
	3.2.1 Code Example

	3.3 Independent Queues and Non-blocking Calls
	3.4 Limitations

	4 Autotuning Benchmarks
	4.1 Tuning Parameters
	4.1.1 Work-group Size
	4.1.2 Work-item Coarsening
	4.1.3 Caching in Local Memory
	4.1.4 Caching in Private Memory
	4.1.5 Tile Size
	4.1.6 Loop Unrolling
	4.1.7 Padding Local Memory
	4.1.8 Explicit Vectorization

	4.2 Benchmark Set Implementation
	4.2.1 BiCG
	4.2.2 2D Convolution
	4.2.3 Direct Coulomb Summation
	4.2.4 GEMM
	4.2.5 GEMM Batched
	4.2.6 Hotspot
	4.2.7 Matrix Transpose
	4.2.8 N-body
	4.2.9 Reduction
	4.2.10 3D Fourier Reconstruction
	4.2.11 Summary

	4.3 Efficiency of Benchmarks
	4.4 Performance Portability

	5 Dynamic Autotuning
	5.1 Methodology
	5.2 Batched GEMM
	5.2.1 Implementation
	5.2.2 Evaluation

	5.3 3D Fourier reconstruction in Xmipp
	5.3.1 Implementation
	5.3.2 Evaluation

	5.4 Dynamic tuning of the benchmark set

	6 Conclusion and Future Work

