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Abstract—Building large scientific applications by composing
multiple smaller applications is one of current research direc-
tions. If the individual component applications are executed
together on one compute node, we need to allocate resources to
the components. While the operating system is already capable
of doing this, it might be possible to get higher efficiency with a
more specialized solution. Our goal is to describe opportunities
and challenges faced by anyone designing such a system. We
look into the specific case where a dynamic runtime system (or
multiple such runtime systems) are used by the applications,
since we believe the fundamental design of these runtime systems
makes them especially suitable for the role. The ideas described
in this paper are based on our prior experience in building such
a runtime system and our early experiments with cooperating
applications. We will focus on CPU core allocation and point
out the importance of making non-uniform memory access
architectures a prime consideration in such work.

I. INTRODUCTION

There are many ways in which we can deal with the
increasing complexity of today’s scientific applications. One
interesting approach is to build a larger, more complex appli-
cation out of multiple simpler applications. These applications
might already exist, but combining them might be rather
difficult, especially if we would like to build a single mono-
lithic application, where everything is compiled and executed
together.

The obvious alternative is to keep the applications separate,
but allow them to share data, thus enabling them to work
on the same problem. This way, we avoid the compatibility
issues. However, there are still problems that need to be
dealt with. First, we need to make sure that the data is
exchanged correctly, at the right time, and that the progress
of the individual applications is coordinated, so that we get
the correct results. Second, we also need to make sure that
the applications “play nice” with each other. While it would
be possible to completely isolate them and run different
applications on different compute nodes or virtual machines,
it might be beneficial to run them on the same nodes. A
tighter integration might allow more efficient data exchange
(via shared memory) and synchronization, but also improve
overall efficiency. If one application cannot use some resources
at a point in time, we might be able to allocate them to another
application, which can use them.
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We will focus on CPU cores as the resources, but similar
things could be done with accelerators if the applications use
them. We will also consider memory as a factor in perfor-
mance, but assume that there is enough memory available on
the node to run all the components. To explore what might be
possible, we will look at task-based dynamic runtime systems
[1], [2] since applications built using such runtime systems are
especially suitable for our scenario.

The main idea behind these systems is to use fine-grained
tasks to express works, rather than threads. The tasks might
potentially be executed in parallel and their synchronization is
controlled by setting up dependencies between the tasks. By
decoupling the work (tasks) from the processing units (CPU
cores), these runtime systems get much more flexibility. Fur-
thermore, most task-based runtime systems can dynamically
adjust the number of worker threads used to run the tasks,
or they could be extended with such capability with relative
ease. Usually, there is a one-to-one mapping between worker
threads and CPU cores, so changing the number of worker
threads effectively changes the number of CPU cores that the
application uses.

A side-effect of this is that these runtime systems can also
easily move work between CPU cores, either by moving the
worker threads or by stopping threads that use the cores that
should become idle and starting new threads on the target
cores. This is especially useful in the scenario of multiple
cooperating applications, where the CPU cores of the node
can be dynamically partitioned and allocated to the individual
applications.

In the following text, we will further explore this topic,
explain our previous work in the area and future plans. Based
on our experience building and using the OCR-Vx [3] runtime
system, we will make a case for NUMA layout of the node
to be a prime consideration. Dealing with NUMA is already
important for scientific applications and we will explain why
we believe it is also very important when allocating CPU cores
to multiple cooperating applications.

The rest of the paper is organized as follows. In the next
section, we will further discuss how cooperating applications
can benefit from task-based runtime systems, starting with
brief overview of related work. Section III explains why we
believe NUMA to be a key consideration in these scenarios.



Sections IV and V explain integration with codes that don’t use
tasks and put the work in context within distributed execution
(MPI). The last section concludes the paper and discusses
future work.

II. TASK-BASED RUNTIME SYSTEMS AND COOPERATING
APPLICATIONS

There are already multiple established task-based runtime
systems. The Intel Threading Building Blocks (TBB) library
[2] was one of the first successful examples. Other systems
include StarPU [4], OmpSs [5], Habanero [6] (with support
for Java and C), HPX [7], or PaRSEC [8]. Even OpenMP has
support for tasks (since OpenMP 3.0). In our work, we have
mostly used the Open Community Runtime (OCR, [1]), which
is an open specification of a task based runtime. We have
created OCR-VX, our own implementation of the specification.
The OCR is well suited for research, since it has a relatively
solid specification [9], small API, and it also moves the
application data under the control of the runtime systems, in
a fashion similar to how the execution of work is delegated to
the runtime via tasks.

At the moment, most of the runtime systems assume that
they have all node resources at their disposal. Some of the
systems look at the core affinity set for the process and modify
the number of threads accordingly. It is also possible to limit
the resources used by the applications using Linux control
groups (cgroups), since these are enforced by the operating
system and the applications is therefore forced to follow
them. However, only few of the parameters can be changed
dynamically at runtime, not enough for our use. TBB is one
of the few libraries built with a strong assumption that it is not
running in isolation and the authors made a conscious effort to
make it “play nice”, automatically stopping unneeded threads.
There is even a way to dynamically control the number of
threads, although it is not exposed in an easy-to-use, well-
documented way.

Still, at least some of the runtime systems can dynamically
adjust the number of worker threads. We have extended OCR-
Vx with this capability, specifically to support coordinated
execution of multiple applications [10]. We used a simple
producer-consumer scenario, where one application produces
one data item per iteration and another application consumes
one such item per iteration. Each iteration consists internally
of multiple tasks that can be executed in parallel. We have
used a dedicated agent process to coordinate their execution,
dynamically adjusting the number of threads in both applica-
tions to keep them aligned, so that the producer is only ahead
by a small number of iterations. The architecture is shown in
Figure 1.

Each application starts with as many number of threads
as there are CPU cores, but some of these threads may be
suspended (blocked), to free up the corresponding CPU core.
There are three different options that the runtime system can be
configured to use for selecting the worker threads to suspend:

1) Total number of threads — the runtime is instructed
by the agent to use a specific number of threads. As
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Fig. 1. The architecture of the system, with two running applications.
The agent communicates with the runtime in both applications. It receives
information about the execution from the runtimes (number of tasks executed,
number of running threads, etc.) and it issues commands instructing the
runtimes to use a specified number of threads. The threads over this limit
are blocked. The task scheduler inside each of the runtimes schedules the
ready tasks of the application to the available (not blocked) threads. All of
the threads are scheduled to the CPU cores by the operating system. The
agent also periodically queries the operating system to check the actual CPU
load generated by the applications.

long as there are more threads than the target number,
threads that are not currently executing a task get
blocked. The blocked threads are not selected explicitly
by the runtime, but based on their (in)activity. A thread
executing a short task is more likely to be blocked than
a thread executing a long task, since by the time the
thread with the long task finishes, a sufficient number
of threads may have been blocked to reach the target
number. This also ensures that the target number is
reached as soon as possible without preempting tasks,
which is not supported by OCR-Vx. If the target number
of threads is raised, the required number of extra threads
are unblocked almost immediately. These threads are
selected randomly. The threads may be bound (using
affinity) to individual cores, to all cores in a NUMA
node or unbound.

2) Individual cores — the runtime is instructed by the agent
to block specific threads, which are bound to individual
CPU cores. A thread blocks as soon as it finishes running
a task or almost immediately if it is idle. Unblocking of
threads is also nearly immediate.

3) Number of threads per NUMA node — in this setup,
the threads are bound to NUMA nodes, not individual
cores. If a NUMA node contains 6 CPU cores, there



will be 6 threads bound to this NUMA node, but not
to individual cores. The operating system is allowed to
move the threads between the cores belonging to that
NUMA node. Otherwise, this option behaves like the
first option, but the target number of threads is specified
for each NUMA node. For example, if there are two
NUMA nodes with 6 cores each, it is possible for the
agent to order the runtime to use 4 threads in the first
NUMA node and 2 threads in the second NUMA node.

While we use the agent process to decide the number
of threads to be used by the different runtime systems, it
would also be possible to have the different runtime systems
cooperatively come to an agreement.

The thread blocking functionality may not be directly of-
fered by the other runtime systems. For example, the TBB
API only allows the number of worker threads used by the
scheduler to be set once when the scheduler is initialized.
However, TBB has Resource Management Layer (RML),
which can dynamically allocate threads to arenas — collections
of worker threads used inside TBB. This could be used to
adjust the total number of threads usable in an application,
like option 1 offered by OCR-Vx. Furthermore, it is possible
to bind some of the TBB threads to a NUMA node, so by
binding all threads in an arena to a NUMA node and using
RML to adjust the number of threads in the arenas, we should
also be able to get something very similar to option 3 of OCR-
Vx.

There is no fundamental reason why something similar
would not be possible with the other runtime systems. How-
ever, there may be some limitations. For example, OpenMP is
allowed to suspend execution of a task at some points. If the
task is tied, it is guaranteed to eventually resume execution
on the same thread. Removing this thread from the worker
pool would prevent the task from executing. Still, this could
be solved by not suspending tied tasks.

If multiple instances of a runtime system or even multiple
instances of different runtime systems support one of the
thread blocking options and they have a common mechanism
to achieve a consensus on how the CPU cores can be allocated,
we get a powerful tool for managing CPU cores. The way
of reaching the consensus could for example be the agent
process that we used in our architecture shown in Figure
1. A simple core allocation strategy would be to give each
application a fair share of the cores, so that the total number
of worker threads across all applications is equal to the total
number of available CPU cores. Normally, each application
would create and use as many worker threads as there are
cores, leading to significant over-subscription. This forces the
operating system to constantly switch between threads of
the different applications, leading to extra overhead and also
decreasing cache efficiency. Without over-subscription, most
threads would be allowed to run on the same core for extended
periods of time, improving cache efficiency thanks to better
locality of execution.

On the other hand, some over-subscription might be ben-
eficial. If some tasks are unable to fully utilize the available

cores, for example by being blocked in I/O operations, it might
be beneficial if there are other threads available that could be
scheduled to such cores. With our architecture, we can still
achieve such over-subscription, but we have better control of it,
being able to decide how many extra threads we want exactly
and which applications should get these threads.

However, there is one important caveat with these over-
subscription avoiding techniques. Our earlier experiments [10]
have shown that in most cases, the Linux operating system
can do a very good job when scheduling the threads of
such applications, so the benefits of the thread allocation
techniques may not be as good as one would imagine. We
have observed a clear benefit on storage thanks to the reduced
size of intermediate data (data generated by the produced but
not yet processed by the consumer) but only marginal (a few
percent) improvement in performance. In some cases, there
was no measurable improvement. With a larger number of
applications, the benefits would most likely increase, but our
setup did not allow for such an experiment.

Therefore, most of the benefits will not come from simply
reducing the OS scheduling overhead by only using as many
threads as necessary. In fact, if the threads are unable to fully
utilize the CPU cores at all times, the performance might even
be reduced. One example where we might get benefits is the
aforementioned reduction in intermediate data size. But we
believe it is still possible to get actual speedup thanks to better
CPU utilization. For example, if the scaling of the applications
is less than linear, we might get better efficiency by reducing
the number of threads. Note that we are not assuming that the
performance of that application actually degrades with more
threads. The application’s performance might increase with
any extra thread, but the scaling is not linear. In this case, it
might be better to limit the number of threads allocated to this
application and assign the CPU cores to another application,
which can make better use of them.

Another scenario where dynamic core allocation might be
beneficial are cooperating applications that are more tightly
integrated, not just running on the same nodes, exchanging
data at few, clearly defined points. For example, one applica-
tion might use the other application like a library, delegating
a specific job to it whenever needed. In this case, quickly
shifting resources to the “library” application when it is
called could improve efficiency. Similarly, when the “library”
finishes, we can quickly free up the CPU cores that were
used to run it and move them back to the “main” application.
Furthermore, with even tighter integration, we might be able to
not just move the threads, but also make sure that the core that
wrote the data (that should be processed by the “library”) also
starts processing the data inside the other application, enabling
cache reuse.

This is one of the directions that we consider to be po-
tentially very interesting and we plan to pursue it in the
future. We aim for a tight integration, where we compose low-
level components (provided by different application codes),
with frequent interaction between the components across
application boundaries. In such case, one might view the



whole composed application as one enormous task graph that
spans multiple processes (we assume the different applications
cannot be integrated into one code and then run as one
process). However, we don’t expect it to be possible to
have a single do-it-all scheduler, which would be able to
schedule the whole task graph. Different kinds of workloads
might benefit from using a scheduler tailored for the specific
kind of problems. But even at a more fundamental level,
different task-based runtime systems have a very different
way of dealing with synchronization (like dependencies, but
also controlling access to shared data) and it might be very
difficult or even impossible to handle all of them together by a
shared scheduler. Instead, each code would use its own runtime
system, with a scheduler tailored for the specific purpose. The
coordination of the individual runtime systems and schedulers
would happen on the level of resource arbitration. The runtime
systems would agree on core allocation and quickly transfer
cores when necessary. So, while existing less tightly integrated
applications might benefit from dynamic resource management
(assuming they use dynamic runtime systems), we expect the
benefits to be more in allowing efficient tight integration of
small components.

III. NUMA EFFECTS

Since we are considering running multiple applications on
a single node, the node is likely to be fat, with a large number
of cores and large memory. Such nodes are usually built as
non-uniform memory access (NUMA) architectures, where the
memory access time depends on the actual location of the data.
As scientific applications tend to be memory bound, they need
to take NUMA into account. We have seen that with OCR-
Vx, it is possible to get very significant speed improvement
with NUMA-aware codes over NUMA-oblivious alternatives
[11]. We have performed our experiments on the Intel Knights
Landing (KNL) processor, where the NUMA is optional and
can be switched off. It was possible to get good performance
from the NUMA-oblivious codes by switching the process
to non-NUMA mode. But on most multi-socket servers, the
NUMA is inherent to the hardware design and it is impossible
to opt out'. We have performed the same experiments on a
multi-socket server based on Intel Xeon CPUs? and the speed
improvement over the NUMA-oblivious code is significant,
even larger than on the KNL with enabled NUMA.

As a result, we should expect that most of the applications
will be NUMA-aware, placing the data and tasks in a way that
optimized the data access. Allocating cores to such applica-
tions by specifying the total number of worker threads could
be very inefficient, unless the runtime systems used by these
applications can make good decisions about which threads to
block to reach the target number. The current implementation
of OCR-Vx is not capable of that, but it would be possible

'Tt may be possible to enable node interleaving, which does hide the NUMA
architecture, but this degrades performance of most applications and is not
recommended if a NUMA-aware operating system is used.

2These results were obtained as part of the work on OCR on KNL [11],
but not presented in the paper or any other publication.

to extend it to spread the blocked threads evenly across the
NUMA nodes. But all runtime systems would have to make
such decisions and also make sure that they are compatible.
For example, we would not want all runtime systems to decide
that when they get exactly the right number of threads to fully
occupy one NUMA node that they will all use node 0.

We believe that in this case, it would be better to use the
option 3 for selecting threads to block (the three options were
explained in the previous section) and instruct the runtime
systems how many threads to use on the different NUMA
nodes. Consider a scenario with 4 applications, machine with
4 NUMA nodes and 8 CPU cores in each NUMA node. We
could give each application two cores in each NUMA node,
but also give all cores in one NUMA node to each application.
There are many other ways to partition the machine, like
giving one application 5 threads in all nodes and one thread
per node to all the other applications.

In this example and further text, we work with two impor-
tant assumption. First, each thread is bound to a NUMA node.
Most operating systems do allow the code to specify thread
affinity, listing which CPU cores the thread is allowed to use.
We assume that the affinity for each thread is set to cores in
one NUMA node, therefore the thread can run on any core of
that NUMA node, but nowhere else. The second assumption
is that there are at most as many threads bound to a NUMA
node as there are CPU cores in that NUMA node. In other
words, there is no over-subscription.

With these assumptions, we don’t need to distinguish be-
tween threads and cores. Without over-subscription, the oper-
ating system can allow the threads to mostly run uninterrupted
on the core they have first been assigned, without moving the
threads around. In our experience, the Linux scheduler does a
very good job in this regard. So, for performance reasons, we
can assume that all threads are running and that each threads is
bound to a core. The exceptions are rare enough to make this a
sufficiently good approximation. In the following text, we use
the terms threads and cores interchangeably, since they play
the same role and it is not always easily possible to decide
what properties would be better attributed to a core and which
properties belong to the thread running on that core.

A. Model

To get some insight into different scenarios, we have created
a simplified model of applications running on a NUMA
machine and implemented a tool that runs simulations with this
model. The applications can be configured to use different core
allocations using option 3 (number of threads set for individual
NUMA nodes). Since we need to model the core performance
and memory access, we use the roofline model [12], which can
give us performance estimates based on just these numbers:
arithmetic intensity (Al) of an application (number of floating
point operations per one byte transferred to from/memory),
peak memory throughput (GB/s), and peak compute perfor-
mance (GFLOPS). We work with several assumptions:

1) a single CPU core has the same peak GFLOPS for each

application;



2) for the purposes of computation, the CPU cores are
completely independent (e.g., there is no DVES);

3) each threads tries to access memory at the peak
bandwidth based on the arithmetic intensity and peak
GFLOPS of the core (e.g., a core with 10 GFLOPS
running code with AI=2 would try to read 10/2 = 5
GB/s);

4) memory bandwidth is shared by all cores in the same
NUMA node;

5) the actual memory bandwidth is split to the cores so
that each core can get at least its equal share of the
total node bandwidth (with 40 GB/s per node and 8
cores this is 40/8 = 5 GB/s) and the remainder is split
proportionately to the attempted memory access (e.g., a
code that would want to make twice as many memory
operations above the baseline will end up getting twice
as much of the remaining bandwidth).

Let’s revisit our previous examples with 4 applications, this
time assuming three of them are memory bound (AI=0.5) and
one is compute bound (AI=10). The machine has 4 NUMA
nodes, with 8 cores each, and each core capable of peak 10
GFLOPS. The memory bandwidth is 32 GB/s per NUMA
node. The memory-bound applications would want to use
20 GB/s (10 GFLOPS of the core, divided by AI of 0.5).
The compute bound application would only use 1 GB/s. We
will model three different ways of allocating threads to these
applications. A graphical overview of the possibilities is shown
in Figure 2.

If we allocate 1 thread per NUMA node for each of the three
memory-bound applications and 5 threads to the compute-
bound application, the total desired bandwidth is 65 GB/s
(1 % 20 for each memory bound and 5 * 1 for the compute-
bound code, therefore 3 * 1 % 20 + 1 % 5 * 1). The available
bandwidth is only 32 GB/s, and the baseline bandwidth per
core is 4 GB/s (the total of 32GB/s divided to 8 cores). As the
compute-bound application is asking for 1 GB/s per thread, it
will get the total 5 GB/s required together by the 5 threads. The
memory-bound applications are asking for 20GB/s per thread,
so they get the baseline of 4 GB/s per thread. At this point, 17
GB/s has been allocated to the four applications (344 1x5),
with 15 GB/s still remaining. We split this evenly among the
three memory-bound applications, giving each of them 5 GB/s
more to the total of 9 GB/s (4 GB/s baseline, 5 GB/s extra). In
performance, this translates to 50 GFLOPS for the compute-
bound code (5 threads, 10 GFLOPS each) and 4.5 GFLOPS
for each of the memory-bound codes (9 GB/s and Al of 0.5).
In total, we get 63.5 GFLOPS per NUMA node, for the total
of 254 GFLOPS. This computation is also shown in a more
structured form in Table I.

If we allocated two threads to each application on every
NUMA node, we would get much less performance from the
compute-bound code (20 GFLOPS per NUMA node) and only
slightly more from the memory-bound codes (5 GFLOPS per
NUMA node). Overall, this works out at 140 GFLOPS. The
exact way of coming to this result is shown in Table II. If we
gave one NUMA node to each application, we would get 128

GFLOPS in total (80 for the compute-bound code and 16 for
each memory-bound code).

In the example above, the best and second best results are
obtained by allocating the same number of threads to each
application on every NUMA node. Assigning each application
to its own NUMA node provided the worst performance.
However, the applications that we used so far were perfectly
adapted to NUMA, so they only read local (belonging to the
same NUMA node) memory. To explore different applications,
we need to further extend the model to handle reading data
from other NUMA nodes. We support two kinds of applica-
tions: perfectly adapted to NUMA, like the two applications
in the above example, and the worst case application, which
stores all its data in a single NUMA node. The machine model
now defines peak bandwidth between all pairs of NUMA
nodes. The simulation has been modified to handle these in a
way that is simple but captures to some degree experimental
results that we have obtained using the STREAM benchmark
[13] on a four socket server with Xeon Skylake processors: a
memory first tries to serve requests from other NUMA nodes
(up to the maximum bandwidth provided by the link to that
remote node) and splits the remaining bandwidth as before.

With this model, we used two different types of memory-
bound applications: three instances of a NUMA-perfect appli-
cations with AI=0.5, one instance of “NUMA-bad” application
that stores all its data in one NUMA node and has Al=1. We
have compared two different thread allocations. If we give
2 cores to each application in each NUMA node, the total
performance is 138 GFLOPS. This situation is shown in Figure
3. By giving each application all threads in a NUMA node
(and ensuring the NUMA-bad code is on the right node), we
get 150 GFLOPS. This is the same as the case c) in Figure
2. So, the result is the opposite from the previous example,
where dedicating a whole NUMA node to an application was
the slowest option.

This shows us that when allocation cores to applications,
we need to be aware of the NUMA architecture and also of
the way memory is used by the application. Preferably, there
should be a way to not only figure out the access patterns,
but also to influence where the application stores its data. In
the ideal case, the application should be able to move the data
to a different NUMA node. This would easily be possible in
OCR, where the runtime system is also in charge of managing
the data, but it might be very difficult in applications based on
TBB, where the runtime is oblivious to the application data.

B. Experimental evaluation

The model presented above is a relatively rough approx-
imation of the complex behavior of a NUMA system. To
see if it somewhat corresponds to the real world, we have
implemented a simple synthetic benchmark that can behave
like the applications used to evaluate the model. We have
tested it on a NUMA server with four Intel Xeon Scalable
Gold 6138 processors (Skylake architecture, 20 cores, AVX-
512 support, 32 KB L1 data cache per core, 1 MB L2 cache
per core and 27.5 MB last level cache in total). There are 24
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Fig. 3. The cross-node configuration of the case with the NUMA-bad

application (app4). The part on the right is repeated three times in the model,
with app4 always accessing memory of the node on the left.

memory modules installed in the machine to fully utilize the 6
memory channels per CPU. Each module has 8 GB capacity.

While it is easy to select the performance parameters (the
peak performance, memory bandwidth and AI) to use in
the model, it is difficult to replicate the same performance
characteristics on real hardware and software. While the
theoretical peaks of the machine can be derived from available
information, the actual behavior of an application is likely to
be far from those, without extensive tuning effort. Instead, we
have only been able to make our best effort (with the available
resources) to make the application work as well as possible
and then estimate the parameters of the machine from the
measured performance of the application.

We have configured the benchmark to match the even thread
allocation scenario shown in Figure 2 b), tuned the AI of
the applications to obtain meaningful results, and estimated
the hardware’s performance parameters from this case. The
performance is consistent with 100GB/s memory bandwidth
and 0.29 peak GFLOPS per thread. Note that there are 20
cores per NUMA node on our server, not 8 like in the model
example. We have set up the model with these parameters and
arithmetic intensities (1/32 for memory-bound, 1 for compute-

bound, and 1/16 for the NUMA-bad application).

Then we have evaluated all five scenarios in the model and
executed the corresponding benchmarks on the real hardware.
The results are shown in Table III. For the first three cases,
where we use three compute-bound applications and one
memory-bound application with different thread assignment,
the results are a good match. Of course, keep in mind that the
second scenario is how the model was configured, so it needs
to match. But also the first case is very close. As for the fourth
and fifth case, where we evaluate combination of NUMA-
perfect and NUMA-bad applications, the results are somewhat
further away, but they are still reasonable approximations. Our
model overestimates the performance by around 5% in both
cases, so it gives good relative performance comparison, even
though the absolute values are not fully accurate.

IV. NON-WORKER THREADS

Ideally, we would want the computation to be only done
by the worker threads, which we can control. This would
usually mean putting all the work into tasks. This is the
way OCR is designed, but most runtime systems do not
have this requirement. For example, TBB preserves the usual
structure of the application with a main thread. This main
thread may invoke parallel algorithms that are then processed
by the worker threads. While the algorithm is running and the
main thread is waiting for the result, the main thread might
also be used by TBB to run tasks. Also, because doing 1/O
usually requires blocking calls to be made, extra threads may
be created by the application to do the I/O, since blocking
inside a TBB task is not advised.

As a result, we might get threads that are doing work, but
are not controlled by the task-based runtime system. If such
a thread is only submitting work to the runtime system or it
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all instances

(per-instance * #instances)
total required bandwidth 6045 =165

baseline GB/s per thread 32/8 =4

(total GB/s #threads)

allocated baseline per thread
(min(peak,baseline))

allocated node GB/s 3x1x4+1x5x1=17
(3" #apps * #threads * GB/s per thread)

remaining node GB/s

min(20,4) =4  min(l,4) =1

32-17=15

still required GB/s per thread 20 — 4 = 16 1-1=0

(peak - allocated)

still required GB/s 3x1%x164+1x5%x0 =48

remainder given to a thread 15/(3%1) =5

(remaining node GB/s / unsatisfied threads)

total allocated to each thread 4+4+5=29 1+0=1
(baseline + split remainder)

GFLOPS per thread 9%0.5=4.5 1%10=10
(allocated GB/s * Al)

GFLOPS per application 1%x4.5=4.5 510 =50

(#threads * per-thread)
total GFLOPS per node
total GFLOPS

3%4.54+1%50=063.5

4% 63.5 = 254
TABLE 1
TWO APPLICATIONS MODELED ON A MACHINE WITH 4 NUMA NODES, 8
CORES PER NUMA NODE, PEAK 10 GFLOPS PER CORE, AND 40 GB/s

BANDWIDTH PER NUMA NODE. UNEVEN THREAD ALLOCATION (1,1,1,5).

scenario model GFLOPS | real GFLOPS
uneven thr. (1,1,1,17) 23.20 22.82
even thr. (5,5,5,5) 18.12 18.14
one app per node 15.18 15.28
NUMA-bad cross-node 13.98 13.25
NUMA-bad on-node 15.18 14.52

TABLE III
COMPARISON OF PERFORMANCE ESTIMATED BY OUR MODEL AND
RESULTS OBTAINED BY A SYNTHETIC BENCHMARK ON REAL HARDWARE.
THE “CROSS-NODE” PERFORMANCE REFERS TO THE CASE WHERE THE
NUMA-OBLIVIOUS APPLICATION STORES ALL OF ITS DATA ON A
DIFFERENT NUMA NODE, WHILE “ON-NODE” MEANS THAT THE DATA IS
STORED ON THE CORRECT (LOCAL) NUMA-NODE.

is mostly blocked in I/O function calls, it is not a big issue
from the load balancing point of view. But it might still be
important when dealing with NUMA, as the I/O threads will
most likely be reading and writing data that is also used for
computation.

Then we have the threads that perform computation, but that

thread
(peak GFLOPS / Al)

peak memory bandwidth per
instance
(per-thread * #threads)

20x2 =40 1x2=2

total memory bandwidth of 40 x3 = 120 2x1=2
all instances

(per-instance * #instances)
12042 =122
32/8 =4

total required bandwidth

baseline GB/s per thread
(total GB/s #threads)

allocated baseline per thread
(min(peak,baseline))

allocated node GB/s 3%2x4+1%2%x1=26
(3" #apps * #threads * GB/s per thread)

remaining node GB/s

min(20,4) =4  min(l,4) =1

32—-26=6

still required GB/s per thread 20 —4 = 16 1-1=0

(peak - allocated)

still required GB/s 3x2%x164+1%x2%x0 =96

remainder given to a thread 6/(3%x2)=1

(remaining node GB/s / unsatisfied threads)

total allocated to each thread 4+4+1=25 1+0=1
(baseline + split remainder)

GFLOPS per thread 5%x0.5=25 1%10=10
(allocated GB/s * Al)

GFLOPS per application 2%x25=5 2%10 =20

(#threads * per-thread)
total GFLOPS per node
total GFLOPS

3x5+1%x20=35

4% 35 =140
TABLE II
TWO APPLICATIONS MODELED ON A MACHINE WITH 4 NUMA NODES, 8
CORES PER NUMA NODE, PEAK 10 GFLOPS PER CORE, AND 40 GB/s
BANDWIDTH PER NUMA NODE. EVEN THREAD ALLOCATION (2,2,2,2).

are not worker threads of the runtime system. This might be
the main thread used by TBB to run tasks, but also threads
explicitly launched by the application to do some computation
not using tasks. There could even be some applications that
form a part of our one big composed application, but that
are not based on a task-based runtime system. We might
still be able to use thread affinities provided by the operating
system to move such threads. Using priorities may also help
in controlling how much compute times these threads actually
get, but without significant changes to the code, we would
probably not be able to fully stop such threads. Also, the
applications might be written with the assumption that all
their threads progress at a similar rate, leading to significant
inefficiency if we break this assumption. One example of such
code is the OpenMP parallel for loop with static scheduling.

If an agent process is used for resource arbitration, we
also need to be careful about the way it affects the machine.
If it is only required to occasionally perform quick (in the
sense of CPU time) decisions, the operating system scheduler



would most likely be able to prevent any adverse effects these
short interruptions (which make one CPU core temporarily
unavailable for the computing applications). But if some
sophisticated, CPU-intensive scheduling algorithm is used, we
need to account for it. It could be run on a dedicated thread
bound to a core not used for computation or even on a separate,
dedicated machine.

V. DISTRIBUTED ENVIRONMENT

So far, we have always assumed that computation is per-
formed on a single node. This is not the case for most large
scientific applications. Usually, MPI is used to run them in
a distributed fashion on a large number of compute nodes.
If such application is composed of multiple cooperating but
independent components, the nodes may be statically parti-
tioned either by allocating nodes to the different components
exclusively (e.g., component A gets 8 nodes, component B gets
8 different nodes) or splitting each node into several parts and
giving each part to a component.

Our suggestion is to do a dynamic variant of the second
option, by allowing the components to run on the same nodes,
but dynamically shifting resources between them. This adds
another layer of complexity to the problem, as the overall
design of the MPI code usually assumes that the nodes provide
comparable performance and allocate work either statically or
dynamically, but with the assumption that the performance of
the nodes is stable.

If the work is allocated statically to the nodes, we should at-
tempt to provide some speedup on all nodes, favoring stability
over maximal performance, so that it translates to an overall
speedup. If the workload is being redistributed dynamically,
we might be able to use more aggressive strategies. Still,
the dynamic approach is more suitable for codes that are
not tightly synchronized. If the code requires a barrier (or
similar) after every iteration, the benefit of speeding up the
iteration body on some of the nodes is rather limited. If the
synchronization is loose, like an application that needs to
perform a lot of independent tasks (many big data applications
behave this way), most of the local speedup should translate
to overall speedup.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have outlined why we consider the topic of
dynamic CPU core allocation important and why task-based
runtime systems might be a good fit for the job. The ability to
suspend or move worker threads proved the kind of flexibility
that would be difficult to achieve in a traditional thread-based
design. On the other hand, properly dealing with NUMA
systems is more challenging with dynamic systems, with the
dynamic CPU allocation making it even more difficult. We
do believe that it is a problem that can be solved and that
it would provide higher efficiency within a compute node.
Another step is translating the on-node speedup to improved
overall performance even for large distributed applications. We
also believe this to be possible, especially if the distributed
application has some degree of flexibility on its own.

In the future, we plan to further develop these ideas and turn
them into a workable solution, which would allow multiple
runtime systems to effectively share on-node resources. In
the first iteration, we plan to continue with our work on
OCR-Vx, but also incorporate TBB, allowing TBB and OCR-
Vx applications to cooperatively manage CPU cores. As we
have already explained, we believe that the greatest potential
might be in enabling low-level (fine granularity) composition
of applications from codes that use different runtime systems.
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