
Pr
ep

rin
t

Automatic Placement of Tasks to NUMA Nodes in
Iterative Applications

Jiri Dokulil
Faculty of Computer Science

University of Vienna
Vienna, Austria

jiri.dokulil@univie.ac.at

Siegfried Benkner
Faculty of Computer Science

University of Vienna
Vienna, Austria

siegfried.benkner@univie.ac.at

Abstract—Manycore architectures with non-uniform memory
access (NUMA) are commonly used for high-performance com-
puting. On these systems, the placement of data and com-
putation to the NUMA nodes has very significant impact on
performance, especially with memory-bound applications. This
placement can usually be defined by the programmer, but it is
generally desirable to automate the placement to simplify the
programmer’s job, improve portability, and make the code more
future-proof. Task-based runtime systems already assume a fair
degree of responsibility for task placement, so it is only natural
to involve them in mapping work and data to NUMA nodes.
In this work, we propose a solution where the runtime system
first performs a profiling run of the application and measures
various performance characteristics. Then, the data collected by
the profiling run is used by a stand-alone analyzer to create a
plan for placing tasks to NUMA nodes so that the tasks are close
to the data that they most rely on. This plan is then used by
the runtime system to execute the application more efficiently.
We focus on iterative applications, where the same patterns of
tasks are being repeated. We identify these patterns and use
them to create a plan that works for any number of iterations,
not just the one that used when the application was observed. In
our experiments, which were performed on modern manycore
systems (Intel Skylake and AMD Zen) with 4 and 8 NUMA
nodes, the proposed automated placement can either match or
come close (<10%) to a hand-tuned placement.

Index Terms—parallel tasks, NUMA, task scheduling

I. INTRODUCTION

Non-uniform memory access (NUMA) architectures are
a common way to build large computers. NUMA is not a
design objective, but a necessity that arises from the design of
multi-socket servers and/or certain CPU architectures. Ideally,
every core should be able to access any part of the memory
via a high-bandwidth, low latency link. However, this would
require all cores to access the memory via the same memory
controller, which would require placing the controller further
away from the cores. Instead, each processor (or a part of
a processor) has its own memory controller. Each controller
is connected to some of the machine’s memory modules, but
these modules are not shared among controllers. Therefore, if
a CPU core needs to access memory connected to a memory
controller other than the local one, it needs to send a request
to the remote memory controller. This extra “hop” increases
the latency of the memory access and the bandwidth may be

limited as well. On the other hand, it provides faster access to
the local memory compared to a uniform memory architecture.

Clearly, the performance of an application on a NUMA sys-
tem depends on data placement, especially for memory bound
applications. If we can ensure that most memory accesses go
through the local memory controller, the performance would
almost certainly be better than if most accesses have to be
server by a remote controller. In a multi-threaded application,
the threads are likely to share some of their data with other
threads. Therefore, it may not be possible to ensure all memory
accesses are local. In a way, a NUMA system is similar to
a distributed system as there is the notion of “local” and
“remote” data. Unlike distributed memory systems, the remote
data can be accessed transparently the same way as local data.
Also, the penalty for accessing remote data in NUMA is much
smaller than in a distributed system. Still, the placement of
data and computation on a NUMA system can have significant
effect on performance. In our experiments, we’ve routinely
seen difference of over 2x between a good and bad placement.

In programming models based on threads, it may be pos-
sible to obtain good results without explicitly considering
the NUMA architecture. If there is good data locality, the
operating system may be able to ensure that the data is moved
to the memory that belongs to the local memory controller.
When fine-grain tasks and work-stealing schedulers are used,
the tasks may move between threads and subsequently also
NUMA nodes. We cannot completely restrict this movement.
Assuming tasks are created by other tasks, such restriction
would result in only one NUMA node being used.

While it is possible to leave the placement of tasks to
NUMA nodes to the application, an automated solution is
clearly desirable for various reasons, like easing application
development effort or improving portability. In this paper,
we propose such solution. In our design, the runtime system
first observes the running application, collecting performance
metrics relevant to the way tasks access the memory. Then, an
offline analyzer uses the collected metrics to define placement
for data and tasks. This plan can be used in subsequent
executions of the application to achieve better work and data
placement, assuming the structure of the application remains
unchanged. We focus our work on iterative codes, where
the same pattern is repeated many times. By identifying



Pr
ep

rin
t

these patterns, we obtain two benefits. First, by aggregating
performance data for equivalent tasks across all iterations we
get more reliable measurements. Second, the plan can then
be applied to application executions with different number of
iterations, so that we are not restricted only to the case that
was used to gather the metrics. Our work targets applications
written using OCR [1], which is an open specification of a
task-based runtime system. We use OCR-Vx, an open source
implementation of the OCR specification [2]. OCR-Vx already
had a NUMA-aware scheduler that we needed for our work
and we only had to make several localized changes to collect
the data that we need and make the runtime system use
our plan. We have evaluated our solution on two many-
core systems: a four socket server with Intel Xeon Scalable
(Skylake) CPUs with four NUMA nodes and a two socket
AMD EPYC (Zen) server with eight NUMA nodes.

II. ARCHITECTURE

On the highest level, our solution consists of three steps:
A) profiling run of the application (once);
B) construction of the plan for mapping data blocks and tasks

to NUMA nodes from the profiling results (once);
C) tuned execution of application using the plan (repeated).

The first and last steps are performed by the OCR-Vx run-
time system. For this purpose, it can be configured (at compile
time) to work in different modes. A different configuration is
used for profiling and “real” execution. The application itself
is unchanged. The second step is performed by a stand-alone
analyzer tool. The profiling run stores the result in a set of
CSV files. These are read by the analyzer which then outputs
the plan as a set of (different) CSV files. Finally, these files are
read when the runtime system starts for the tuned execution.

For the profiling run, we use the fact that all data in an
OCR application has to be stored in data blocks managed by
the runtime system. Therefore, we can make a snapshot of the
data and then undo all changes made by a task. This way, we
can run a task multiple times in different settings to obtain
a larger collection of performance data. To make the data as
reliable as possible, the profiling run is done using only a
single thread, although we do plan to move to a multi-threaded
profiling run in the future.

When creating the plan from the data measured by the
profiling run, it would not be practical to consider each task
separately, as an OCR application is likely to generate a huge
number of tasks (thousands, millions, or even more). We have
decided to focus on iterative applications where the same
pattern of tasks is repeated for each iteration. By identifying
equivalent tasks across iterations, we can work with much
smaller number of task equivalence classes (we will call them
supertasks). Equivalent tasks are identified by looking for
patterns in the way tasks are created. We assume that if two
tasks are created the same way by equivalent tasks, they are
also equivalent. A typical example would be a task T1 that
creates a clone of itself (T2) that does the same work in the
next iteration. Then T1 and T2 are equivalent. If both these
tasks create two more tasks (T1 creates A1 and then B1, while

T2 creates A2 and then B2), then A1 and A2 are equivalent
as are B1 and B2.

In our implementation, we use generalized task paths, which
are regular expressions that describe a path from the root
task (each OCR application starts with just one) to any task,
following the created-by relation. The star operator allows a
single regular expression to describe multiple tasks, forming
the generalized task path and defining a task equivalence class
(all tasks that match the path are part the equivalence class).
The following is an example of a task path:

(mainEdt, 0, creatorEdt):
(creatorEdt, 0, creatorEdt)*:
(creatorEdt, 1, workerEdt)

In this path the, mainEdt (the root task) creates a creatorEdt
(the first line). The zero means that the creatorEdt is the
first task created by mainEdt. The creatorEdt then creates
another creatorEdt. This step may be repeated any number
of times, corresponding to different iterations. Finally, any
of the creatorEdt tasks may create workerEdt (the number 1
signifies it is the second task created by creatorEdt). So, the
path actually identifies a worker task in any of the application
iterations.

A major assumption in our work is that equivalent tasks
access data (almost) the same way and that they perform
(almost) the same computation. This way, we can synthesize
data from profiling and generalize the plan to any number of
iterations. In the profiling run, we run each task multiple times
but vary the placement of data blocks read by the task. This
is likely to change the execution time of the task. If the task
relies heavily on fast access to some data block and this data
block is placed far away (different NUMA node with slower
access) the execution time increases.

When we have the data from the profiling run, we combine
measurements for equivalent tasks and compute affinities
between task equivalence classes and data blocks. A high
affinity tells us that a certain class of tasks would benefit from
being placed close to a certain data block. The data blocks are
first placed to NUMA nodes according to a pre-defined data
distribution pattern and then task placement is determined for
task equivalence classes from the data block placement and
the affinities. Note that we also work with data block classes,
not individual data blocks, using generalized paths as well.

The plan is then used by the tuned execution to place the
tasks and data blocks to the NUMA nodes specified in the plan.
As a NUMA node generally contains multiple CPU cores,
there are multiple execution threads per one NUMA node. The
standard task stealing algorithm is used to schedule the tasks
inside a NUMA node, but no tasks are stolen across NUMA
node boundaries.

III. EXPERIMENTAL EVALUATION

Our experiments were performed on two different servers
running Linux. One server contains four Intel Xeon Scalable
Gold 6138 processors (Skylake architecture, 20 cores, AVX-
512 support, 32 KB L1 data cache per core, 1 MB L2 cache

2



Pr
ep

rin
t

per core and 27.5 MB last level cache in total). There are 24
memory modules installed in the machine to fully utilize the 6
memory channels per CPU. Each module has 8 GB capacity.
The total number of physical cores is 80. There is one NUMA
node for each processor, meaning the server has the total of
four NUMA nodes, each with 20 cores.

The other server contains two AMD EPYC 7501 processors
(Zen architecture, 32 cores, 32 KB L1 data cache per core, 512
KB L2 cache per core and 64 MB last level cache in total). The
machines has 16 of the 8 GB memory modules, to match the
8 memory channels provided by each of the two processors.
The total number of physical cores is 64. Since each processor
is internally divided into four NUMA nodes (16 cores each),
there are eight NUMA nodes in total.

A. Applications

We have evaluated two different applications. These are the
two iterative, stencil OCR applications that we are aware of.
The stencil2d application was obtain from the now defunct
application repository that accompanied the OCR implemen-
tation created by Intel and Rice University [3]. The seismic
application is distributed with the OCR-Vx implementation.

Stencil2d: The stencil2d application is a proxy application
that applies a stencil operation to a grid. It is possible to
specify the size of the grid, the number of iterations, and the
number of rectangular sub-grids that the whole grid is split
into. The sub-grids are then processed in parallel, so there is
one strand of task for each sub-grid. The application prints out
the number of MFLOPS it achieved.

Seismic: The seismic application performs a simple iterative
simulation of seismic wave propagation. It is also a 2D stencil,
but it uses different data partitioning and a different way
of expressing the work as tasks. The data is split into N
horizontal blocks and each block is internally sub-divided into
M horizontal blocks, each processed by a different strands.
The application prints the execution time of the computation.

B. Tested configurations

The OCR-Vx runtime system can be configured in several
ways. Apart from the single-threaded scheduler used in the
profiling runs, there are two different schedulers. It is possible
to use the task scheduler provided by the Intel Threading
Building Blocks [4]. This is a highly efficient task-stealing
scheduler, but it is NUMA-oblivious. When choosing a victim
thread for task stealing, NUMA is not considered. The other
option is a custom NUMA-aware scheduler. Within a single
NUMA node, it performs task stealing like the TBB scheduler,
but it does not steal tasks across NUMA boundaries. Even
though there is also a scheduler that can steal tasks across
NUMA boundaries, we have not included it in the results
presented here, as it was not able to provide competitive
performance. It does not fully use the benefits of NUMA
locality and it is not as efficient and scalable as the TBB
scheduler.

The TBB scheduler cannot process the plan generated by
the analyzer, leaving us with three options: TBB scheduler,

NUMA scheduler using application-specified hints (hand-
tuned variant), NUMA scheduler using the plan. We will
denote these as TBB, HINT, and PLAN in the following text.

Another configuration option is the memory allocator.
Again, there are two options applicable to our case. It is
possible to use the scalable allocator provided by TBB. The
TBB allocator maintains a per-thread memory pool to avoid
the bottleneck imposed by a centralized allocator. The NUMA
node is selected by the first-touch strategy employed by the
operating system. The second alternative is a custom OCR-Vx
NUMA-aware allocator. It uses the hwloc library to allocate
memory on the selected NUMA node. Due to the limitations
of OCR-Vx, it is not possible to combine the NUMA allocator
and TBB scheduler. The other three combinations are all
allowed. In the following, we will use TBB and NUMA to
refer to the two allocators.

C. Experiment results

All results presented in this paper are averages of 10 execu-
tions. As no meaningful comparison can be made between the
two applications, we present the results using the metric pre-
ferred by the individual applications: MFLOPS for stencil2d
and seconds for seismic. The results for both applications are
shown in Table I.

1) Stencil2d: The stencil application is always configured
to use as many sub-grids as there are cores (80 on Intel, 64
on AMD). The data size is 1024× 1024 during profiling and
10240 × 10240 during experiments. For profiling, we only
executed 4 iterations, as even such small number turned out
to be sufficient. The tuned execution performs 1000 iterations.
On the Intel server, the best performance is obtained by using
the NUMA scheduler with our plan and the NUMA allocator.
The speedup over application-provided hints on Intel is only
1.9% but it is statistically significant (p < 0.05). On the other
hand, on the AMD server, the hand-tuned version is almost 7%
faster (also statistically significant). This might be due to the
more complex structure of the NUMA nodes on the AMD
server, where (unlike the Intel server) the communication
time between NUMA nodes is different for different pairs of
NUMA nodes. In all cases, the hand-tuned and our solution
are much faster (more than 2x) than the TBB scheduler.

2) Seismic: The seismic was configured to split the data
into as many blocks as there are NUMA nodes and use twice
as many strands to process each block as there are cores in a
NUMA node (this is a recommended usage of seismic). On
Intel, this means 4*40 on Intel and 8*16 on AMD. The data
size used for profiling was 1600 × 1600 and 16000 × 16000
for measurements. The number of iterations was 10 for the
profiling run and 100 during experiments. The results are more
varied than in the case of stencil2d. The application depends
heavily on memory bandwidth, so the performance penalty for
bad NUMA placement is extremely high, therefore the very
poor performance of TBB scheduler, which is likely to move
tasks between NUMA nodes. A hand-written TBB application
would probably be able to perform better, the way the OCR
runtime systems submits tasks to the TBB scheduler might

3



Pr
ep

rin
t

TABLE I
PERFORMANCE OF THE STENCIL2D AND SEISMIC APPLICATIONS

stencil2d seismic
configuration speedup over speedup over

machine scheduler/allocator MFLOPS TBB/TBB time (s) TBB/TBB
TBB / TBB 47403 1.000 30.896 1.000
HINT / TBB 127266 2.685 8.560 3.609

Intel HINT / NUMA 134148 2.830 8.693 3.554
PLAN / TBB 128163 2.704 8.512 3.629
PLAN / NUMA 136639 2.883 8.618 3.585
TBB/TBB 50758 1.000 26.294 1.000
HINT/TBB 116424 2.294 10.114 2.600

AMD HINT/NUMA 118204 2.329 10.107 2.602
PLAN/TBB 110719 2.181 10.124 2.597
PLAN/NUMA 110808 2.183 10.086 2.607

increase their migration between threads and therefore also
between NUMA nodes. On Intel, the performance advantage
of our solution is small but statistically significant. On AMD,
the improvement with NUMA allocator is even smaller (0.2%)
and the statistical significance is borderline (p = 0.06). When
the TBB allocator is used, our solution is slower than the hand-
tuned one by 0.1%, but this result is not significant (p = 0.39).

Overall, our solution provides very good results for the two
stencil codes, either outperforming the hand-tuned versions or
matching their performance. In both cases, there are much
faster than the NUMA-oblivious TBB scheduler.

IV. RELATED WORK

While the idea of using tasks to manage the computation
is already quite common, using relocatable data blocks to
let the runtime system automatically manage data is not so
widespread, especially in share-memory systems. For example,
Intel Threading Building Blocks (TBB) uses tasks but the data
is managed like in a normal shared-memory application using
pointers that are not exposed to the runtime system. A task can
access any valid address at any time. It would still be possible
to make experiments, by moving tasks between NUMA nodes
and observing their performance.

Other runtime systems often have some NUMA support,
allowing workers to be placed to NUMA nodes. StarPU [5],
OmpSs [6], and ParalleX [7] are examples of such systems,
where task placement can be made NUMA-aware, but only
to limit moving tasks between NUMA nodes, not to actually
place tasks based on where their data is placed.

V. CONCLUSION AND FUTURE WORK

We have designed and implemented a system which auto-
matically generates a plan from placing tasks and data blocks
to NUMA nodes in applications where the same patterns are
repeated across iterations. When using the generated plan,
the application performance is comparable to a hand-tuned
placement. Rather than placing individual tasks, we work with
groups of tasks that serve the same purpose in different itera-
tions, allowing us to use a profiling run with a small number
of iterations to create a plan for execution with any number of
iterations. The tasks and iterations are identified automatically

using generalized task creation paths, so there is no need for
the application developer to expose this information explicitly.

Our architecture can be seen as a framework, where the
different components can be replaced with more sophisticated
or more specialized alternatives. For example, the supertasks
identification is a form of clustering, so rather than using
task creation paths, we could use statistical analysis or even
machine learning. As we have already mentioned, it would be
very interesting to merge task and data placement steps, so that
we could use affinities between tasks and data blocks to place
both tasks and data blocks using optimization techniques from
graph theory on the affinity graph. It would even be possible to
use radically different approaches, like genetic programming.
Another interesting problem are applications that work in
multiple phases, where each phase requires different data
placement. This would have to be automatically identified,
adding a new step to the beginning of our workflow. It might
also be possible to use hints provided by the application to
speed up and improve profiling and analysis.

Acknowledgment The work was supported in part by the
Austrian Science Fund (FWF) project P 29783 Dynamic
Runtime System for Future Parallel Architectures.

REFERENCES

[1] T. Mattson and R. Cledat, Eds., The Open Community Runtime Interface,
April 2016, https://www.univie.ac.at/ocr-vx/doc/ocr-v1.1.0.pdf.

[2] J. Dokulil, M. Sandrieser, and S. Benkner, “OCR-Vx - an alternative
implementation of the Open Community Runtime,” in International
Workshop on Runtime Systems for Extreme Scale Programming Models
and Architectures, in conjunction with SC15. Austin, Texas, 2015.

[3] T. G. Mattson et al., “The Open Community Runtime: A runtime system
for extreme scale computing,” in 2016 IEEE High Performance Extreme
Computing Conference (HPEC), 2016, pp. 1–7.

[4] A. Kukanov and M. J. Voss, “The foundations for scalable multi-core
software in Intel Threading Building Blocks,” Intel Technology Journal,
vol. 11, no. 04, pp. 309–322, 2007.

[5] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” Concurrency and Computation: Practice and Experience;
Euro-Par 2009, vol. 23, pp. 187–198, 2011.

[6] J. Bueno, J. Planas, A. Duran, R. Badia, X. Martorell, E. Ayguade, and
J. Labarta, “Productive programming of GPU clusters with OmpSs,” in
IPDPS 2012 Parallel Distributed Processing Symposium, 2012.

[7] K. Hartmut, M. Brodowicz, and T. Sterling, “Parallex an advanced parallel
execution model for scaling-impaired applications,” in Proceedings of
the 2009 International Conference on Parallel Processing Workshops
(ICPPW ’09), 2009, pp. 94–401.

4


