
EMMOS: TRADEABLE UNITS OF KNOWLEDGE-ENRICHED

MULTIMEDIA CONTENT

Utz Westermann1, Sonja Zillner1, Karin Schellner2, Wolfgang Klas1,2

1 University of Vienna, Dept. of Computer Science and Business Informatics,

Liebiggasse 4, A-1010 Wien, Austria

phone: +43-1-4277-38430 fax: +43-1-4277-38449

{gerd-utz.westermann,sonja.zillner,wolfgang.klas}@univie.ac.at

2 Research Studios Austria - Digital Memory Engineering

ARC Seibersdorf Research GmbH, Thurngasse 8/20, A-1090 Wien, Austria

phone: +43-1-585-0537 fax: +43-1-585-3741

karin.schellner@researchstudio.at

EMMOS: TRADEABLE UNITS OF KNOWLEDGE-ENRICHED

MULTIMEDIA CONTENT

ABSTRACT

Current semantic approaches to multimedia content modeling treat the content’s media, the

semantic description of the content, and the functionality performed on the content such as

rendering as separate entities, usually kept on separate servers in separate files or databases

and typically under the control of different authorities. This separation of content from its

description and functionality hinders the exchange and sharing of content in collaborative

multimedia application scenarios. In this chapter, we propose Enhanced Multimedia Meta

Objects (Emmos) as a new content modeling formalism that combines multimedia content

with its description and functionality. Emmos can be serialized and exchanged in their

entirety - covering media, description, and functionality - and are versionable, thereby

establishing a suitable foundation for collaborative multimedia applications. We outline a

distributed infrastructure for Emmo management and illustrate the benefits and usefulness of

Emmos and this infrastructure by means of two practical applications.

KEYWORDS

Multimedia, Data Semantics, Metadata, Multimedia Databases, Semantic Data Model

INTRODUCTION

Today’s multimedia content formats such as HTML (Raggett et al., 1999), SMIL (Ayars et

al., 2001), or SVG (Ferraiolo et al., 2003) primarily encode the presentation of content but not

the information content conveys. But this presentation-oriented modeling only permits the

hard-wired presentation of multimedia content exactly in the way specified; for advanced

operations like retrieval and reuse, automatic composition, recommendation, and adaptation

of content according to user interests, information needs, and technical infrastructure,

valuable information about the semantics of content is lacking.

In parallel to research on the Semantic Web (Berners-Lee et al., 2001; Fensel, 2001), one can

therefore observe a shift in paradigm towards a semantic modeling of multimedia content.

The basic media of which multimedia content consists are supplemented with metadata

describing these media and their semantic interrelationships. These media and descriptions are

processed by stylesheets, search engines, or user agents providing advanced functionality on

the content that can exceed mere hard-wired playback.

Current semantic multimedia modeling approaches, however, largely treat the content’s basic

media, the semantic description, and the functionality offered on the content as separate

entities: the basic media of which multimedia content consists are typically stored on web or

media servers; the semantic descriptions of these media are usually stored in databases or in

dedicated files on web servers using formats like RDF (Lassila & Swick, 1999) or Topic

Maps (ISO/IEC JTC 1/SC 34/WG 3, 2000); the functionality on the content is normally

realized as servlets or stylesheets running in application servers or as dedicated software

running at the clients such as user agents.

This inherent separation of media, semantic description, and functionality in semantic

multimedia content modeling, however, hinders the realization of multimedia content sharing

as well as collaborative applications which are gaining more and more importance, such as

the sharing of MP3 music files (Gnutella, n.d.) or learning materials (Nejdl et al., 2002) or the

collaborative authoring and annotation of multimedia patient records (Grimson et al., 2001).

The problem is that exchanging content today in such applications simply means exchanging

single media files. An analogous exchange of semantically modeled multimedia content

would have to include content descriptions and associated functionality, which are only

coupled loosely to the media and usually exist on different kinds of servers potentially under

control of different authorities, and which are thus not easily moveable.

In this chapter, we give an illustrated introduction to Enhanced Multimedia Meta Objects

(Emmos), a semantic multimedia content modeling approach developed with collaborative

and content sharing applications in mind. Essentially, an Emmo constitutes a self-contained

piece of multimedia content that merges three of the content's aspects into a single object: the

media aspect, i.e., the media which make up the multimedia content, the semantic aspect

which describes the content, and the functional aspect by which an Emmo can offer

meaningful operations on the content and its description that can be invoked and shared by

applications. Emmos in their entirety – including media, content description, and functionality

- can be serialized into bundles and are versionable: essential characteristics that enable their

exchangeability in content sharing applications as well as the distributed construction and

modification of Emmos in collaborative scenarios.

Furthermore, this chapter illustrates how we employed Emmos for two concrete collaborative

and content sharing applications in the domains of cultural heritage and digital music

archives.

The chapter is organized as follows: we begin with an overview of Emmos and show their

difference to existing approaches for multimedia content modeling. We then introduce the

conceptual model behind Emmos and outline a distributed Emmo container infrastructure for

the storage, exchange, and collaborative construction of Emmos. We then apply Emmos for

the representation of multimedia content in two application scenarios. We conclude this paper

with a summary and give an outlook to our current and future work.

BACKGROUND

In this section, we provide a basic understanding of the Emmo idea by means of an

illustrating example. We show the uniqueness of this idea by relating Emmos to other

approaches to multimedia content modeling in the field.

The Emmo Idea

The motivation for the development of the Emmo model is the desire to realize multimedia

content sharing and collaborative applications on the basis of semantically modeled content

but to avoid the limitations and difficulties of current semantic modeling approaches implied

by their isolated treatment of media, semantic description, and content functionality.

Following an abstract vision originally formulated by (Reich et al., 2000), the essential idea

behind Emmos is to keep semantic description and functionality tied to the pieces of content

to which they belong, thereby creating self-contained units of semantically modeled

multimedia content easier to exchange in content sharing and collaborative application

scenarios. An Emmo coalesces the basic media of which a piece of multimedia content

consists (i.e., the content’s media aspect), the semantic description of these media (i.e., the

content’s semantic aspect), and functionality on the content (i.e., the content’s functional

aspect) into a single serializeable and versionable object.

Figure 1 depicts a sketch of a simplified Emmo, which models a small multimedia photo

album of a holiday trip of an imaginary couple Paul and Mary and their friend Peter. The

bottom of the figure illustrates how Emmos address the media aspect of multimedia content.

An Emmo acts as a container of the basic media of which the content that is represented by

the Emmo consists. In our example, the Emmo contains four JPEG images which constitute

the different photographs of the album along with corresponding thumbnail images.

Fig. 1. Aspects of an Emmo

Media can be contained either by inclusion, i.e., raw media data is directly embedded within

an Emmo, or by reference via an URI if embedding raw media data is not feasible because of

the size of media data or the media is a live stream.

An Emmo further carries a semantic description of the basic media it contains and the

associations between them. This semantic aspect, illustrated to the upper left of Figure 1,

makes an Emmo a unit of knowledge about the multimedia content it represents.

For content description, Emmos apply an expressive concept graph-like data model similar to

RDF and Topic Maps. In this graph model, the description of the content represented by an

Emmo is not performed directly on the media that are contained in the Emmo; instead, the

model abstracts from physical media making it possible to subsume several media objects

which constitute only different physical manifestations of logically one and the same medium

under a single media node. This is a convenient way to capture alternative media. In Figure 1,

for example, each media node Picture 1 … Picture 4 subsumes not only a photo but

also its corresponding thumbnail image.

Apart from media, nodes can also represent abstract concepts. By associating an Emmo’s

media objects with such concepts, it is possible to create semantically rich descriptions of the

multimedia content the Emmo represents. In Figure 1, for instance, it is expressed that the

logical media nodes Picture 1 … Picture 4 constitute photos taken in Paris, Vienna,

and Salzburg showing Peter and Paul, Paul and Mary, and Mary, respectively. The figure

further indicates that nodes can be augmented with primitive attribute values for closer

description: the pictures of the photo album are furnished with the dates at which they have

been shot.

By associating concepts with each other, it is also possible to express domain knowledge

within an Emmo. It is stated in our example that Peter, Paul, and Mary are Persons, that Paul

and Mary are family members, that Peter is a friend, that Paris is located in France, and that

Vienna and Salzburg are parts of Austria.

The Emmo model does not predefine the concepts, association types, and primitive attributes

available for media description; these can be taken from arbitrary, domain-specific ontologies.

While they thus constitute a very generic, flexible, and expressive approach to multimedia

content modeling, Emmos are no ready-to-use formalism but require an agreed common

ontology before they can be employed in an application.

Finally, Emmos also address the functional aspect of content. An Emmo can offer operations

that can be invoked by applications in order to work with the content the Emmo represents in

a meaningful manner. As shown to the top right of Figure 1, our example Emmo provides two

operations supporting two different rendition options for the photo album, which are

illustrated by the screenshots of Figure 2. As indicated by the left screenshot, the operation

renderAsSlideshow()might know how to - given a set of persons, locations, as well as

time periods of interest - render the photo album as a classic slideshow on the basis of the

contained pictures and their semantic description by generating an appropriate SMIL

presentation. As indicated by the right screenshot, the operation renderAsMap() might

also know how to – given the same data - render the photo album as a map with thumbnails

pointing to the locations where photographs have been taken by constructing an SVG graph.

Fig. 2. Emmo Functionality

One may think of many further uses of operations. For example, operations could also be

offered for rights clearance, displaying terms of usage, etc.

Emmos have further properties: an Emmo can be serialized and shared in its entirety in a

distributed content sharing scenario including its contained media, the semantic description of

these media, and its operations. In our example, this means that Paul can accord Peter the

photo album Emmo as a whole - for instance, via email or a file-sharing peer-to-peer

infrastructure - and Peter can do anything with the Emmo what Peter can also do, including

invoking its operations.

Emmos also support versioning. Every constituent of an Emmo is versionable, an essential

prerequisite for applications requiring the distributed and collaborative authoring of

multimedia content. This means that Peter, having received the Emmo from Paul, can add his

own pictures to the photo album while Paul can still modify his local copy. Thereby, two

concurrent versions of the Emmo are created. As the Emmo model is able to distinguish both

versions, Paul can merge them into a final one when he receives Peter’s changes.

Related Approaches

The fundamental idea underlying the concept of Emmos presented beforehand is that an

Emmo constitutes an object unifying three different aspects of multimedia content, namely

the media aspect, the semantic aspect, and the functional aspect. In the following, we fortify

our claim that this idea is unique.

Interrelating basic media like single images and videos to form multimedia content is the task

of multimedia document models. Recently, several standards for multimedia document

models have emerged (Boll et al., 2000), such as HTML (Ragett et al., 1999), XHTML+SMIL

(Newmann et al., 2002), HyTime (ISO/IEC JTC 1/SC 34/WG 3, 1997), MHEG-5 (ISO/IEC

JTC 1/SC 29, 1997), MPEG-4 BIFS and XMT (Pereira & Ebrahimi, 2002), SMIL (Ayars et

al., 2001), and SVG (Ferraiolo et al., 2003). Multimedia document models can be regarded as

composite media formats that model the presentation of multimedia content by arranging

basic media according to temporal, spatial, and interaction relationships. They thus mainly

address the media aspect of multimedia content. Compared to Emmos, however, multimedia

document models neither interrelate multimedia content according to semantic aspects nor do

they allow to provide functionality on the content. They rely on external applications like

presentation engines for content processing.

As a result of research concerning the Semantic Web, a variety of standards have appeared

that can be used to model multimedia content by describing the information it conveys on a

semantic level, such as RDF (Lassila & Swick, 1999; Brickley & Guha, 2002), Topic Maps

(ISO/IEC JTC 1/SC 34/WG 3, 2000), MPEG-7 (especially MPEG-7's graph tools for the

description of content semantics (ISO/IEC JTC 1/SC 29/WG 11, 2001)), and Conceptual

Graphs (ISO/JTC1/SC 32/WG 2, 2001). These standards clearly cover the semantic aspect of

multimedia content. As they also offer means to address media within a description, they

undoubtedly refer to the media aspect of multimedia content as well. Compared to Emmos,

however, these approaches do not provide functionality on multimedia content. They rely on

external software like database and knowledge base technology, search engines, user agents,

etc. for the processing of content descriptions. Furthermore, media descriptions and the media

described are separate entities - potentially scattered around different places on the Internet,

created and maintained by different and unrelated authorities not necessarily aware of each

other and not necessarily synchronized - whereas Emmos combine media and their semantic

relationships into a single indivisible unit.

There exist several approaches that represent multimedia content by means of objects.

Enterprise Media Beans (EMBs) (Baumeister, 2002) extend the Enterprise Java Beans (EJBs)

architecture (Matena & Hapner, 1998) with predefined entity beans for the representation of

basic media within enterprise applications. These come with rudimental access functionality

but can be extended with arbitrary functionality using the inheritance mechanisms available to

all EJBs. Though addressing the media and functional aspects of content, EMBs in

comparison to Emmos are mainly concerned with single media content and not with

multimedia content. Furthermore, EMBs do not offer any dedicated support for the semantic

aspect of content.

Adlets (Chang & Znati, 2001) are objects that represent individual (not necessarily

multimedia) documents. Adlets support a fixed set of predefined functionality which enables

them to advertise themselves to other Adlets. They are thus content representations that

address the media as well as the functional aspect. Different from Emmos, however, the

functionality supported by Adlets is limited to advertisement and there is no explicit modeling

of the semantic aspect.

Tele-Action Objects (TAOs) (Chang et al., 1995) are object representations of multimedia

content that encapsulate the basic media of which the content consists and interlink them with

associations. Though TAOs thus address the media aspect of multimedia content in a way

similar to Emmos, they do not adequately cover the semantic aspect of multimedia content:

only a fixed set of 5 association types is supported mainly concerned with temporal and

spatial relationships for presentation purposes. TAOs can further be augmented with

functionality. Such functionality is, in contrast to the functionality of Emmos, automatically

invoked as the result of system events and not explicitly invoked by applications.

Distributed Active Relationships (Daniel et al., 1998) define an object model based on the

Warwick Framework (Lagoze et al., 1996). In the model, Digital Objects (DOs), which are

interlinked with each other by semantic relationships, act as containers of metadata describing

multimedia content. DOs thus do not address the media aspect of multimedia content but

focus on the semantic aspect. The links between containers can be supplemented with

arbitrary functionality. As a consequence, DOs take account of the functional aspect as well.

Different from Emmos, however, the functionality is not explicitly invoked by applications

but implicitly whenever an application traverses a link between two DOs.

ENHANCED MULTIMEDIA META OBJECTS

Having motivated and illustrated the basic idea behind them, this section semiformally

introduces the conceptual model underlying Emmos using UML class diagrams. A formal

definition of this model can be found in (Schellner et al., 2003). The discussion is oriented

along the three aspects of multimedia content encompassed by Emmos: the media aspect, the

semantic aspect, and the functional aspect.

Media Aspect

Addressing the media aspect of multimedia content, an Emmo encapsulates the basic media of

which the content it represents is composed. Figure 3 presents the excerpt of the conceptual

model which is responsible for this.

Connector MediaSelector

+beginMs : int

+durationMs : int

TemporalSelector

+startX : int

+startY : int

+endX : int

+endY : int

SpatialSelector

+beginChar : int

+endChar : int

TextualSelector

+compositionType : int

CompositeSelector

0..1 1

0..*

1 FullSelector

1..*

0..*

+audioChannels : int

+bandWidth : float

+bitRate : int

+colorDomain : String

+contentType : String

+duration : float

+fileFormat : String

+fileSize : int

+fontSize : int

+fontStyle : String

+frameRate : double

+height : int

+profileID : String

+qualityRate : float

+resolution : int

+samplingRate : double

+width : int

MediaProfile

+inlineMedia : Byte[]

+locationDescription : String

+mediaURL : URL

MediaInstance

1 1..*

Fig. 3. Management of basic media in an Emmo

Closely following the MPEG-7 standard and its multimedia description tools (ISO/IEC JTC

1/SC 29/WG 11, 2001), basic media are modeled by media profiles (represented by the class

MediaProfile in Figure 3) along with associated media instances (represented by the class

MediaInstance). Media profiles hold low-level metadata describing physical

characteristics of the media such as the storage format, file size, etc.; the media data itself is

represented by media instances, each of which may directly embed the data in form of a byte

array or, if that is not possible or feasible, address its storage location by means of an URI.

Moreover, if a digital representation is not available, a textual location description can be

specified, e.g. the location of analog tapes in some tape archive. Figure 3 further shows that a

media profile can have more than one media instances. In this way, an Emmo can be provided

with information about alternative storage locations of media.

Basic media represented by media profiles and media instances are attached to an Emmo by

means of a connector (see class Connector in Figure 3). A connector not just addresses a

basic medium via a media profile; it may also refer to a media selector (see base class

MediaSelector) to address only a part of the medium. As indicated by the various

subclasses of MediaSelector, it is possible to select media parts according to simple

textual, spatial, temporal and textual criteria, as well as an arbitrary combination of these

criteria (see class CompositeSelector). It is thus possible to address the upper right part

of a scene in a digital video starting from second 10 and lasting until second 30 within an

Emmo without having to extract that scene and to put it into a separate media file using a

video editing tool.

Semantic Aspect

Out of the basic media which it contains, an Emmo forges a piece of semantically modeled

multimedia content by describing these media and their semantic interrelationships. The class

diagram of Figure 4 gives an overview over the part of the Emmo model that provides these

semantic descriptions. As one can see, the basic building blocks of the semantic descriptions,

the so-called entities, are subsumed under the common base class Entity. The Emmo model

distinguishes four kinds of entities, namely logical media parts, associations, ontology

objects, and Emmos themselves, represented by according subclasses. These four kinds of

entities have a common nature but each extends the abstract notion of an entity with

additional characteristic features.

Figure 5 depicts the characteristics that are common to all kinds of entities. Each entity is

globally and uniquely identified by its OID, realized by means of a universal unique identifier

(UUID) (Leach, 1998) which can be easily created even in distributed scenarios. To enhance

human readability and usability, each entity is further augmented with additional attributes

like a name and a textual description. Moreover each entity holds information about its

creator and its creation and modification date.

Entity

LogicalMediaPart Emmo Association OntologyObject

0..*

0..*

+OID : String

+name : String

+description : String

+creationDate : long

+modifiedDate : long

+creator : String

Entity

+value : Object

AttributeValue

OntologyObject

1 0..*

+value0..*

+attribute1

0..*

+type

0..*

+successor

0..*

+predecessor 0..*

Fig. 4. The semantic aspect of Emmos Fig. 5. Entity details

Figure 5 furthermore expresses that entities may receive an arbitrary number of types. A type

is a concept taken from an ontology and represented by an ontology object in the model.

Types thus constitute entities themselves. By attaching types, an entity gets meaning and is

classified in an application-dependent ontology. As mentioned before, the Emmo model does

not come with a predefined set of ontology objects but instead relies on applications to agree

on common ontology before the Emmo model can be used.

Fig. 6. An entity with its types Fig. 7. An entity with an attribute value

In the example of Figure 6, the entity Picture 3 of kind logical media part (depicted as a

rectangle), which represents the third picture of our example photo album of the holiday trip

introduced in the previous section, is an instantiation of the concepts “photograph” and

“digital image”, represented by the ontology objects photograph and digital image

(each pictured by an octagon) respectively. The type relationships are indicated by dashed

arrows.

For further description, the Emmo model also allows to attach arbitrary attribute values to

entities (expressed by the class of the same name in the class diagram of Figure 5). Attribute

values are simple attribute-value pairs, with the attributes being a concept of an application-

dependent ontology represented by an ontology object entity and the value being an arbitrary

object suiting the type of the value. The rationale behind representing attributes by concepts

of an ontology and not just by mere string identifiers is that this allows to express constraints

on the usage of attributes within the ontology, e.g., to which entity types attributes are

applicable.

Figure 7 gives an example of attribute values. In the figure, it is stated that the third picture of

the photo album has been taken at July 28th 2003 by attaching an attribute value

“date=07/28/2003” to the entity Picture 3 representing that picture. The attribute “date” is

modeled by the ontology object date and the value “07/28/2003” is captured by an object of

a suitable date class (represented using the UML object notation).

As an essential prerequisite for the realization of distributed, collaborative multimedia

applications in which multimedia content is simultaneously authored and annotated by

different persons at different locations, the Emmo model provides intrinsic support for

versioning. The class diagram of Figure 5 states that every entity is versionable and can have

an arbitrary number of predecessor and successor versions, all of which have to be entities of

the same kind as the original entity. Treating an entity’s versions as entities on their own has

several benefits: on the one hand, entities constituting versions of other entities have their

own globally unique OID. Hence, different versions concurrently derived from one and the

same entity at different sites can easily be distinguished without synchronization effort. On

the other hand, different versions of an entity can be interrelated just like any other entities

allowing to establish comparative relationships between entity versions.

Fig. 8. Versioning of an entity

Figure 8 exemplifies a possible versioning of our example entity Picture 3. The original

version of this logical part is depicted to the left of the figure. As expressed by the special

arrows indicating the predecessor (pred) and the successor (succ) relationship between

different versions of the same entity, two different successor versions of this original version

were created, possibly by two different people at two different locations. One version

augments the logical media part with a date attribute value to denote the creation date of the

picture whereas the other provides an attribute value describing the aperture with which the

picture was taken. Finally, as shown by the logical media part at the right side of the figure,

these two versions were merged again into a fourth that now holds both attribute values.

Having explained the common characteristics shared by all entities, we are now able to

introduce the peculiarities of the four concrete kinds of entities: logical media parts, ontology

objects, associations, and Emmos.

Logical Media Parts

Logical media parts are entities that form the bridge between the semantic aspect and the

media aspect of an Emmo. A logical media part represents a basic medium of which

multimedia content consists on a logical level for semantic description, thereby providing an

abstraction from the physical manifestation of the medium. According to the class diagram of

Figure 9, logical media parts can refer to an arbitrary number of connectors - which we

already know from our description of the media aspect of Emmos - permitting to logically

subsume alternative media profiles and instances representing different media files in possibly

different formats in possibly different storage locations under a common logical media part.

The ID of the default profile to use is identified via the attribute masterProfileID. Since

logical media parts do not need to have connectors associated with them, it is also possible to

refer to media within Emmos which do not have a physical manifestation.

Ontology Objects

Ontology objects are entities that represent concepts of an ontology. We have already

described how ontology objects are used to define an entity types and to augment entities with

attribute values. By relating entities such as logical media parts to ontology objects, they can

be given a meaning. As it can be seen from the class diagram of Figure 10, the Emmo model

distinguishes two kinds of ontology objects represented by two subclasses of

OntologyObject: Concept and ConceptRef. Whereas an instance of Concept

serves to represent a concept of an ontology that is fully captured within the Emmo model,

ConceptRef allows to reference concepts of ontologies specified in external ontology

languages such as RDF Schema (Brickley & Guha, 2002). The latter is a pragmatic tribute to

the fact that we have not developed an ontology language for Emmos yet and therefore rely

on external languages for this purpose. References to concepts of external ontologies

additionally need a special ID (objOID) uniquely identifying the external concept referenced

and a label indicating the format of the ontology (ontStandard), e.g., “RDF Schema”.

+masterProfileID : String

LogicalMediaPart

Connector

1

0..*

+ontType : int

OntologyObject

+objOID : String

+ontStandard : String

ConceptRef Concept

Fig. 9. Logical media parts Fig. 10. Ontology objects

Associations

Associations are entities that establish binary directed relationships between entities, allowing

to create complex and detailed descriptions of the multimedia content represented by the

Emmo. As one can see from Figure 11, each association has exactly one source entity and one

target entity. The kind of semantic relationship represented by an association is defined by the

association’s type which is - like the types of other entities - an ontology object representing

the concept that captures the type in an ontology. Different from other entities, however, an

association is only permitted to have one type as it can express only a single kind of

relationship.

Since associations are first-class entities, they can take part as sources or targets in other

associations like any other entities. This feature permits the creation of very complex content

descriptions, as it facilitates the reification of statements (“statements about statements”)

within the Emmo model.

Association

Entity

+target1

0..*

+source

1

0..*

Fig. 11. Association Fig. 12. Reification

Figure 12 demonstrates how reification can be expressed. In the figure, associations are

symbolized by a diamond shape, with solid arrows indicating the source and target of an

association and dashed arrows indicating the association type. The example shown in this

figure wants to express that “Peter believes that Paul thinks that Mary fancies Picture 3”. The

statement “Mary fancies Picture 3” is represented at the bottom of the figure by an association

of type fancies that connects the ontology object Mary with the logical media part

Picture3. Moreover, this association acts as target for another association having the type

thinks and the source entity Paul, thereby making a statement about the statement “Mary

fancies Picture 3”. This reification is then further enhanced by attaching another statement to

obtain the desired message.

Emmos

Emmos themselves, finally, constitute the fourth kind of entities. An Emmo is basically a

container that encapsulates arbitrary entities to form a semantically modeled piece of

multimedia content (see the aggregation between the classes Emmo and Entity in the

introductory outline of the model in Figure 4). As one and the same entity can be contained in

more than one Emmo, it is possible to encapsulate different, context-dependent, and even

contradicting views onto the same content within different Emmos; as Emmos are first-class

entities, they can be contained within other Emmos and take part in associations therein,

allowing to build arbitrarily nested Emmo structures for the logical organization of

multimedia content. These are important characteristics especially useful for the authoring

process, as they facilitate reuse of existing Emmos and the content they represent.

Figure 13 shows an example where a particular Emmo encapsulates another. In the figure,

Emmos are graphically shown as ellipses. The example depicts an Emmo modeling a private

photo gallery that up to the moment holds only a single photo album (again modeled by an

Emmo), namely the photo album of the journey to Europe we used as a motivating example in

the section illustrating the Emmo idea. Via an association, this album is classified as

“vacation“ within the photo gallery. In the course of time, the photo gallery might become

filled with additional Emmos representing further photo albums, e.g., one that keeps the

photos of a summer vacation in Spain. These Emmos can be related to each other. For

example, an association might express that the journey to Europe took place before the

summer vacation in Spain.

Fig. 13. Nested Emmos

Functional Aspect

Emmos also address the functional aspect of multimedia content. Emmos may offer

operations that realize arbitrary content-specific functionality which makes use of the media

and descriptions provided with the media and semantic aspects of an Emmo and which can be

invoked by applications working with content. The class diagram of Figure 14 shows how this

is realized in the model. As expressed in the diagram, an Emmo may aggregate an arbitrary

number of operations represented by the class of the same name. Each operation has a

designator, i.e., a name that describes its functionality, which is represented by an ontology

object. Similar to attributes, the motivation behind using concepts of an ontology as operation

designators instead of simple string identifiers is that this allows to express restrictions on the

usage of operations within an ontology, for example the types of Emmos for which an

operation is available, the types of the expected input parameters, etc.

The functionality of an operation is provided by a dedicated implementation class whose

name is captured by an operation’s implClassName attribute to permit the dynamic

instantiation of the implementation class at runtime. There are not many restrictions for such

an implementation class: the Emmo model merely demands that an implementation class

realizes the OperationImpl interface. OperationImpl enforces the implementation of

a single method only, namely the method execute() which expects the Emmo on which an

operation is executed as its first parameter followed by a vector of arbitrary operation-

dependent parameter objects. execute() performs the desired functionality and, as a result,

may return an arbitrary object.

Fig. 14. Emmo’s functionality Fig. 15. Example of Emmo operations

Figure 15 once more depicts the Emmo modeling the photo album of the journey to Europe

that we already know from Figure 13, but this time enriched with the two operations already

envisioned in the second section: one that traverses the semantic description of the album

returns a SMIL presentation that renders the album as a slide show and another that returns an

SVG presentation that renders the same album as a map. For both operations, two

implementation classes are provided that are attached to the Emmo and differentiated via their

designators renderAsSlideShow and renderAsMap.

THE EMMO CONTAINER INFRASTRUCTURE

As an elementary foundation for the sharing and collaborative authoring of pieces of

semantically modeled multimedia content on the basis of the Emmo model, we have

implemented a distributed Emmo container infrastructure. Figure 16 provides an overview of

this infrastructure, which we are going to describe in more detail in the following.

Fig. 16. Emmo container infrastructure

Basically, an Emmo container provides a space where Emmos “live”. Its main purpose is the

management and persistent storage of Emmos. An Emmo container provides application

programming interfaces that permit applications to fine-grainedly access, manipulate,

traverse, and query the Emmos it stores. This includes the media aspect of an Emmo with its

media profiles and instances, the semantic aspect with all its descriptional entities such as

logical media parts, ontology objects, other Emmos, and associations, as well as the

versioning relationships between those entities. Moreover, an Emmo container offers an

interface to invoke and execute an Emmo’s operations giving access to the functional aspect

of an Emmo.

Emmo containers are not intended as a centralized infrastructure with a single Emmo

container running at a server (although this is possible). Instead, it is intended to establish a

decentralized infrastructure with Emmo containers of different scales and sizes running at

each site that works with Emmos. Such a decentralized Emmo management naturally reflects

the nature of content sharing and collaborative multimedia applications.

The decentralized approach has two implications. The first implication is that platform

independence and scalability are important in order to support Emmo containers at potentially

very heterogeneous sites ranging from home users to large multimedia content publishers with

different operating systems, capabilities, and requirements.

For these reasons, we have implemented the Emmo containers in Java, employing the object-

oriented DBMS ObjectStore for persistent storage. By Java, we obtain platform

independence; by ObjectStore, we obtain scalability as there not just exists a full-fledged

database server implementation suitable for larger content providers but also a code-

compatible file-based in-process variant named PSEPro better suiting the limited needs of

home users. It would have been possible to use a similarly scalable relational DBMS for

persistent storage as well; we opted for an object-oriented DBMS, however, because of these

systems’ suitability for handling complex graph structures like Emmos.

The second implication of a decentralized infrastructure is that Emmos must be transferable

between the different Emmo containers operated by users that want to share or collaboratively

work on content. This requires Emmo containers to be able to completely export Emmos into

bundles encompassing their media, semantic, and functional aspects, and to import Emmos

from such bundles, which is explained in more detail in the following two subsections.

In the current state of implementation, Emmo containers are rather isolated components,

requiring applications to explicitly initiate the import and export of Emmos and to manually

transport Emmo bundles between different Emmo containers themselves. We are building a

peer-to-peer infrastructure around Emmo containers that permits the transparent search for

and transfer of Emmos across different containers.

Exporting Emmos

An Emmo container can export an Emmo into a bundle whose overall structure is illustrated

by Figure 17.

Fig. 17. Structure of an Emmo bundle

The bundle is basically a ZIP archive which captures all three aspects of an Emmo: the media

aspect is captured by the bundle’s media folder. The basic media files of which the

multimedia content modeled by the Emmo consists are stored in this folder.

The semantic aspect is captured by a central XML file whose name is given the OID of the

bundled Emmo. This XML file captures the semantic structure of the Emmo, thus describing

all of the Emmo’s entities, the associations between them, the versioning relationships, etc.

Figure 18 shows a fragment of such an XML file. It is divided into a <components>

section declaring all entities and media profiles relevant for the current Emmo and a

<links> section capturing all kinds of relationships between these entities and media

profiles, such as types, associations, etc.

Fig. 18. Emmo XML representation

The functional aspect of an Emmo is captured by the bundle’s operations folder in which

the binary code of the Emmo’s operations is stored. Here, our choice for Java as the

implementation language for Emmo containers comes handy again, as it allows us to transfer

operations in form of JAR files with platform-independent bytecode even between

heterogeneous platforms.

The export functionality can react to different application needs by offering several export

variants: an Emmo can be exported with or without media included in the bundle, one can

choose whether to also include media that are only referenced by URIs, the predecessor and

successor versions of the contained entities can either be added to the bundle or omitted, and

it can be decided whether to recursively export Emmos contained within an exported Emmo.

The particular export variants chosen are recorded in the bundle’s manifest file.

In order to implement these different export variants, an Emmo container distinguishes three

different modes of how entities can be placed in a bundle:

• The strong mode is the normal mode for an entity. The bundle holds all information about

an entity including its types, attribute values, immediate predecessor and successor

versions, media profiles (in case of a logical media part), contained entities (in case of an

Emmo), etc.

• The hollow mode is applicable to Emmos only. The hollow mode indicates that the bundle

holds all information about an Emmo except the entities it contains. The hollow mode

appears in bundles where it was chosen not to recursively export encapsulated Emmos. In

this case, encapsulated Emmos receive the hollow mode; the entities encapsulated by

those Emmos are excluded from the export.

• The weak mode indicates that the bundle contains only basic information about an entity,

such as its OID, name, and description but no types, attribute values, etc. Weak mode

entities appear in bundles that have been exported without versioning information. In this

case, the immediate predecessor and successor versions of exported entities are placed

into the bundle in weak mode; indirect predecessor and successor versions are excluded

from the export.

The particular mode of an entity within a bundle is marked with the mode attribute in the

entity’s declaration in the bundle’s XML file (see again Figure 18).

Importing Emmos

When importing an Emmo bundle exported in the way described in the previous subsection,

an Emmo container essentially inserts all media files, entities, and operations included in the

bundle into its local database. In order to avoid duplicates, the container checks whether an

entity with the same OID or whether a media file or JAR file already exists in the local

database before insertion. In such a case, the basic strategy of the importing container is that

the local copy prevails.

However, the different export variants for Emmos and the different modes in which entities

might occur in a bundle as well as the fact that in a collaborative scenario Emmos might have

been concurrently modified without creating new versions of entities demand a more

sophisticated handling of duplicate entities on the basis of a timestamp protocol. Depending

on the modes of two entities with the same OID in the bundle and the local database and the

timestamps of both entities essentially the following treatment is applied:

• A greater mode (weak < hollow < strong) in combination with a more recent timestamp

always wins. Thus, if the local entity has a greater mode and a newer timestamp, it

prevails and the entity in the bundle is ignored. Similarly, if the local entity has a lesser

mode and an older timestamp, the entity in the bundle completely replaces the local entity

in the database.

• If the local entity has a more recent timestamp but a lesser mode, additional data available

for the entity in the bundle (entity types, attribute values, predecessor or successor

versions, encapsulated entities in case of Emmos, or media profiles in case of logical

media parts) complements the data of the local entity thereby raising its mode.

• In case of same modes but a more recent timestamp of the entity in the bundle, the entity

in the bundle completely replaces the local entity in the database.

• In case of same modes but a more recent timestamp of the entity in the local database, the

entity in the database prevails and the entity in the bundle is ignored.

APPLICATIONS

Having introduced and described the Emmo approach to semantic multimedia content

modeling and the Emmo container infrastructure, this section illustrates how these concepts

have been practically applied in two concrete multimedia content sharing and collaborative

applications. The first application named CULTOS is in the domain of cultural heritage and

the second application introduces a semantic jukebox.

CULTOS

CULTOS is an EU-funded project carried out from 2001 to 2003 with 11 partners from EU-

countries, and Israel1. It has been the task of CULTOS to develop a multimedia collaboration

platform for authoring, managing, retrieving, and exchanging Intertextual Threads (ITTs)

(Benari et al., 2002; Schellner et al., 2003) - knowledge structures that semantically interrelate

and compare cultural artifacts such as literature, movies, artworks, etc. This platform enables

the community of intertextual studies to create and exchange multimedia-enriched pieces of

cultural knowledge that incorporate the community’s different cultural backgrounds - an

important contribution to the preservation of European cultural heritage.

ITTs are basically graph structures that describe semantic relationships between cultural

artifacts. They can take a variety of forms, ranging from spiders over centipedes to associative

maps, like the one shown in Figure 19.

The example ITT depicted highlights several relationships of the poem “The Fall” by Tuvia

Ribner to other works of art. It states that the poem makes reference to the 3rd book of Ovid's

1 See http://www.cultos.org for more details on the project.

“Metamorphoses” and that the poem is an ekphrasis of the painting “Icarus' Fall” of the

famous Dutch painter Breugel.

Fig. 19. Simple intertextual thread

The graphical representation of an ITT bears strong resemblance to well-known techniques

for knowledge representation such as concept graphs or semantic nets, although it lacks their

formal rigidity. ITTs nevertheless get very complex, as they commonly make use of

constructs such as encapsulation and reification of statements that are challenging from the

perspective of knowledge representation.

Encapsulation is intrinsic to ITTs because intertextual studies are no exact sciences. Certainly,

the cultural and personal context of a researcher affects the kind of relationships between

pieces of literature he discovers and are of value to him. As such different views onto a single

subject are highly interesting to intertextual studies, ITTs themselves can be relevant subjects

of discourse and thus be contained as first-class artifacts within other ITTs. Figure 20

illustrates this point with a more complex ITT that interrelates two ITTs manifesting two

different views on Ribner’s poem as opposed representations.

Reification of statements is also frequently occurring within ITTs. Since experts in

intertextual studies extensively base their position on the position of other researchers,

statements about statements are common practice within ITTs. In the ITT of Figure 20, for

instance, it is expressed by reification that the statement describing the two depicted ITTs as

opposed representation is only the opinion of a certain researcher B. Zoa.

Fig. 20. Complex intertextual thread

Given these characteristics of ITTs, we have found that Emmos are very well suited for their

representation in the multimedia collaboration platform for intertextual studies that is

envisioned by CULTOS. Firstly, the semantic aspect of Emmos offers sufficient

expressiveness to capture ITTs. Figure 21 shows how the complex ITT of Figure 20 could be

represented using Emmos. Due to the fact that associations as well as Emmos themselves are

first-class entities, it is even possible to cope with reification of statements as well as with

encapsulation of ITTs.

Secondly, the media aspect of Emmos allows researchers to enrich ITTs that so far expressed

interrelationships between cultural artefacts on an abstract level with digital media about these

artefacts, such as a JPEG image showing Breugel’s painting Icarus’ Fall. The ability to

consume these media while browsing an ITT certainly enhances the comprehension of the

ITT and the relationships described therein.

Thirdly, with the functional aspect of Emmos, functionality can be attached to ITTs. For

instance, an Emmo representing an ITT in CULTOS offers operations to render itself in an

HTML-based hypermedia view.

Fig. 21. Emmo representing an ITT

Additionally, our Emmo container infrastructure outlined in the previous section provides a

suitable foundation for the realization of the CULTOS platform. Their ability to persistently

store Emmos as well as their interfaces which enable applications to fine-grainedly traverse

and manipulate the stored Emmos and invoke their operations make Emmo containers an

ideal ground for the authoring and browsing applications for ITTs that had to be implemented

in the CULTOS project. Figure 22 gives a screenshot of the authoring tool for ITTs that has

been developed in the CULTOS project which runs on top of an Emmo container.

Moreover, their decentralized approach allows the setup of independent Emmo containers at

the sites of different researchers; their ability to import and export Emmos with all the aspects

they cover facilitates the exchange of ITTs, including the media by which they are enriched as

well as the functionality they offer. This enables researchers to share and collaboratively work

on ITTs in order to discover and establish new links between artworks as well as different

personal and cultural viewpoints thereby paving the way to novel insights to a subject. The

profound versioning within the Emmo model further alleviates this kind of collaboration,

allowing researchers to concurrently create different versions of an ITT at different sites, to

merge these versions, as well as to highlight difference between these versions.

Fig. 22. CULTOS authoring tool for ITTs

Semantic Jukebox

One of the most prominent (albeit legally disputed) multimedia content sharing applications is

the sharing of MP3 music files. Using peer-to-peer file sharing infrastructures such as

Gnutella, many users gather large song libraries on their home PCs which they typically

manage with one of the many jukebox programs available, such as Apple’s iTunes (iTunes,

n.d.). The increasing use of ID3 tags (ID3v2, n.d.) - optional free text attributes capturing

metadata like the interpreter, title, and the genre of a song - within MP3 files for song

description alleviates the management of such libraries.

Nevertheless, ID3-based song management quickly reaches its limitations. While ID3 tags

enable jukeboxes to offer reasonably effective search functionality for songs (provided the

authors of ID3 descriptions spell the names of interprets, albums, and genres consistently),

more advanced access paths to song libraries are difficult to realize. Apart from other songs of

the same band or genre, for instance, it is difficult to find songs similar to the one that is

currently playing. In this regard, it would also be interesting to be able to navigate to other

bands in which artists of the current band played as well or with which the current band

appeared on stage together. But such background knowledge cannot be captured with ID3

tags.

Using Emmos and the Emmo container infrastructure, we have implemented a prototype of a

semantic jukebox that considers background knowledge about music. The experience we have

gained from this prototype shows that the Emmo model is well-suited to represent

knowledge-enriched pieces of music in a music sharing scenario. Figure 23 gives a sketch of

such a music Emmo which holds some knowledge about the song “Round Midnight”.

Its media aspect enables the depicted Emmo to act as a container of MP3 music files. In our

example, this is a single MP3 file with the song “Round Midnight” that is connected as a

media profile to the logical media part Round Midnight in the center of the figure.

The Emmo’s semantic aspect allows us to express rich background knowledge about music

files. For this purpose, we have developed a basic ontology for the music domain featuring

concepts such as “Artist”, “Performance”, “Composition”, and “Record” that all appear as

ontology objects in the figure. The ontology also features various association types which

allow us to express that “Round Midnight” was composed by Thelonious Monk and the

particular performance by Miles Davis can be found on the record “Round about Midnight”.

The ontology also defines attributes for expressing temporal information like the issue date of

a record.

Fig. 23. Knowledge about the song “Round Midnight” represented by an Emmo

 The functional aspect, finally, enables the Emmo to support different renditions of the

knowledge it contains. To demonstrate this, we have realized an operation that, being passed a

time interval as its parameter, produces an SVG timeline rendition (see screenshot of Figure

24) arranging important events like the foundation of bands, the birthdays and days of death

of artists, etc. around a timeline. More detailed information for each event can be gained by

clicking on the particular icons on the timeline.

Further operations could be imagined, e.g., operations that provide rights clearance

functionality for the music files contained in the Emmo, which is a crucial issue in music

sharing scenarios.

Our Emmo container infrastructure provides a capable storage foundation for semantic

jukeboxes. Their ability to fine-grainedly manage Emmos as well as their scalability allowing

them to be deployed as both, as small-scale file-based and as large-scale database server

configurations. Thus, Emmo containers constitute suitable hosts for knowledge-enriched

music libraries of private users as well as libraries of professional institutions such as radio

stations. Capable of exporting and importing Emmos to and from bundles, Emmo containers

also facilitate the sharing of music between different jukeboxes. Their versioning support

even allows it to move from mere content sharing scenarios to collaborative scenarios where

different users cooperate to enrich and edit Emmos with their knowledge about music.

Fig. 24. Timeline rendition of a music Emmo

CONCLUSION

Current approaches to semantic multimedia content modeling typically regard the basic media

which the content comprises, the description of these media, and the functionality on the

content as conceptually separate entities. This leads to difficulties with multimedia content

sharing and collaborative applications. In reply to these difficulties, we have proposed

Enhanced Multimedia Meta Objects (Emmos) as a novel approach to semantic multimedia

content modeling. Emmos coalesce the media of which multimedia content consists, their

semantic descriptions, as well as functionality on the content into single indivisible objects.

Emmos in their entirety are serializable and versionable, making them a suitable foundation

for multimedia content sharing and collaborative applications. We have outlined a distributed

container infrastructure for the persistent storage and exchange of Emmos. We have

illustrated how Emmos and the container infrastructure were successfully applied for the

sharing and collaborative authoring of multimedia-enhanced intertextual threads in the

CULTOS project and for the realization of a semantic jukebox.

We strive to extend the technological basis of Emmos. We are currently developing a query

algebra, which permits declarative querying of all the aspects of multimedia content captured

by Emmos, and integrating this algebra within our Emmo container implementation.

Furthermore, we are wrapping the Emmo containers as services in a peer-to-peer network in

order to provide seamless search for and exchange of Emmos in a distributed scenario. We

also plan to develop a language for the definition of ontologies that is adequate for use with

Emmos. Finally, we are exploring the handling of copyright and security within the Emmo

model. This is certainly necessary as Emmos might not just contain copyrighted media

material but also carry executable code with them.

REFERENCES

Ayars, J., Bulterman, D., Cohen, A., et al. (2001). Synchronized Multimedia Integration

Language (SMIL 2.0). W3C Recommendation, World Wide Web Consortium (W3C).

Baumeister, S. (2002). Enterprise Media Beans TM Specification. Public Draft Version1.0,

IBM Corporation.

Benari, M., Ben-Porat, Z., Behrendt, W., Reich, S., Schellner, K., & Stoye, S. (2002).

Organizing the Knowledge of Arts and Experts for Hypermedia Presentation. Proceedings of

the Conference of Electronic Imaging and the Visual Arts, Florence, Italy.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American.

Boll, S., Klas, W., & Westermann, U. (2000). Multimedia Document Formats - Sealed Fate or

Setting Out for New Shores? Multimedia - Tools and Applications, 11(3).

Brickley, D., & Guha, R.V. (2002). Resource Description Framework (RDF) Vocabulary

Description Language 1.0: RDF Schema. W3C Working Draft, World Wide Web Consortium

(W3C).

Chang, H., Hou, T., Hsu, A., & Chang, S. (1995). Tele-Action Objects for an Active

Multimedia System. Proceedings of the International Conference on Multimedia Computing

and Systems (ICMCS 1995), Ottawa, Canada.

Chang, S., & Znati, T. (2001). Adlet: An Active Document Abstraction for Multimedia

Information Fusion. IEEE Transactions on Knowledge and Data Engineering, 13(1).

Daniel, R., Lagoze, D., & Payette, S. (1998). A Metadata Architecture for Digital Libraries.

Proceedings of the Advances in Digital Libraries Conference, Santa Barbara, California.

Fensel, D. (2001). Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer, Heidelberg.

Ferraiolo, J., Jun, F., & Jackson, D. (2003). Scalable Vector Graphics (SVG) 1.1. W3C

Recommendation, World Wide Web Consortium (W3C).

Gnutella. Retrieved 2003, from http://www.gnutella.com.

Grimson, J., Stephens, G., Jung, B., et al. (2001). Sharing Health-Care Records over the

Internet. IEEE Internet Computing, 5(3).

ID3v2. Retrieved 2004, from http://www.id3.org.

ISO/IEC JTC 1/SC 29 (1997). Information Technology - Coding of Hypermedia Information

- Part 5: Support for Base-Level Interactive Applications. ISO/IEC International Standard

13522-5:1997, International Organization for Standardization/International Electrotechnical

Commission (ISO/IEC).

ISO/IEC JTC 1/SC 34/WG 3 (1997). Information Technology - Hypermedia/Time-based

Structuring Language (HyTime). ISO/IEC International Standard 15938-5:2001, International

Organization for Standardization/International Electrotechnical Commission (ISO/IEC).

ISO/IEC JTC 1/SC 34/WG 3 (2000). Information Technology - SGML Applications - Topic

Maps. ISO/IEC International Standard 13250:2000, International Organization for

Standardization/International Electrotechnical Commission (ISO/IEC).

ISO/JTC1/SC 32/WG 2 (2001). Conceptual Graphs. ISO/IEC International Standard,

International Organization for Standardization/International Electrotechnical Commission

(ISO/IEC).

ISO/IEC JTC 1/SC 29/WG 11 (2001). Information Technology - Multimedia Content

Description Interface - Part 5: Multimedia Description Schemes. ISO/IEC Final Draft

International Standard 15938-5:2001, International Organization for

Standardization/International Electrotechnical Commission (ISO/IEC).

iTunes. Retrieved 2004, from http://www.apple.com.

Lagoze, C., Lynch, C., & Daniel, R. (1996). The Warwick Framework: A Container

Architecture for Aggregating Sets of Metadata. Technical Report TR 96-1593, Cornell

University, Ithaca, New York.

Lassila, O., & Swick, R.R. (1999). Resource Description Framework (RDF) Model and

Syntax Specification. W3C Recommendation, World Wide Web Consortium (W3C).

Leach, P. J. (1998, February). UUIDs and GUIDs. Network Working Group Internet-Draft,

The Internet Engineering Task Force (IETF).

Matena, V., & Hapner, M. (1998). Enterprise Java Beans TM. Specification Version 1.0, Sun

Microsystems Inc.

Nejdl, W., Wolf, B., Qu, C., et al. (2002). EDUTELLA: a P2P Networking Infrastructure

Based on RDF. Proceedings of the Eleventh International World Wide Web Conference

(WWW 2002) Honolulu, Hawaii.

Newmann, D., Patterson, A., & Schmitz, P. (2002). XHTML+SMIL Profile. W3C Note,

World Wide Web Consortium (W3C).

Pereira, F., & Ebrahimi T., (Eds.) (2002). The MPEG-4 Book. Pearson Education, California.

Reich, S., Behrendt, W., & Eichinger, C. (2000). Document Models for Navigating Digital

Libraries. Proceedings of the Kyoto International Conference on Digital Libraries, Orlando,

Kyoto, Japan.

Raggett, D., Le Hors, A., & Jacobs, I. (1999). HTML 4.01 Specification. W3C

Recommendation, World Wide Web Consortium (W3C).

