
Practitioner Views on the Interrelation of
Microservice APIs and Domain-Driven Design: A
Grey Literature Study Based on Grounded Theory

1st Apitchaka Singjai
Research Group Software Architecture

University of Vienna
Vienna, Austria

apitchaka.singjai@univie.ac.at

2nd Uwe Zdun
Research Group Software Architecture

University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

3rd Olaf Zimmermann
University of Applied Sciences of

Eastern Switzerland (OST)
Rapperswil, Switzerland
olaf.zimmermann@ost.ch

Abstract—Microservice API design is a critical aspect in craft-
ing a microservice architecture. While API design in general has
been studied, the specific relation of API design to design prac-
tices and models commonly used in microservice architectures
is yet understudied. In particular, practitioners frequently use
Domain-Driven Design (DDD) in their microservice architecture
and API designs. We thus decided to study existing Architectural
Design Decisions (ADDs), their solutions options, their relations,
and the decision drivers in these decisions. Using the Grounded
Theory research method we studied grey literature sources. In
this study, we identified six ADDs with 27 decision options,
numerous relations between them, and 27 decision drivers. The
decisions cover mapping domain models to APIs, defining API
contracts in relation to domain models, designing API resources
based on domain model elements, segregation of API resources,
mapping domain model links to the API, and designing the
operations of an API resource.

Keywords-API Design, Domain Driven Design, Grey Literature,
Grounded Theory

I. INTRODUCTION

Microservices are independently deployable, scalable, and
changeable services, each having a single responsibility [1].
They typically communicate via message-based remote APIs
in a loosely coupled fashion. Those remote APIs can be
realized using many technologies, including RESTful HTTP,
queue-based messaging, SOAP/HTTP, or remote procedure
call technologies such as gRPC. A critical aspect in designing
a microservice architecture is API design which includes
aspects such as which microservice operations should be
offered in the API, how to exchange data between client and
API, how to represent API messages, and so on [2].

Microservices themselves are often identified in Domain-
Driven Design (DDD) [3] artifacts. DDD is a design approach
where the (business) domain is carefully modeled in software
and evolved over time. Microservices and DDD have a syn-
ergistic relation. DDD concepts help to design microservices
and establish their boundaries. Once established, microservice
boundaries provide technical boundaries for separately mod-
eled and evolved parts of the domain model, the Bounded
Contexts [4]. This helps in enforcing strategic DDD design

decisions e.g. modeled using a Context Map [4], [5].
We thus decided to investigate the current practitioner’s

understanding of the relation of Microservice APIs and DDD.
In this paper, we describe a Grounded Theory based qualitative
study [6], [7] for this purpose. We decided to explore literature
sources representing practitioner views on this topic. Accord-
ing to Rainer and Williams [8] there are many benefits in
using grey literature sources in software engineering research,
as they promote the voice of practitioners and provide informa-
tion on practitioners’ contemporary perspectives on important
topics relevant to practice and research. For coding processes
in the Grounded Theory study, we applied text-based coding
only initially and then applied UML-based modeling instead to
develop a precise and consistent theory (i.e. the UML figures
shown in this paper are results generated from our models).

In this paper, we focus on Architectural Design Decisions
(ADDs), their decision options, their relations, and decision
drivers. We set out to answer the following research questions:

• RQ1 What are the possible ADDs and corresponding
decision options in DDD-based Microservice API design?

• RQ2 What are forces (decision drivers) relevant in those
design decisions?

• RQ3 Which relations do the decisions and decision
options have?

Our result is a formal model of the ADDs [9] with decision
options, forces, and relations in the field of DDD-based
Microservice API design. We believe that our results can help
scientists to get a better understanding of practitioner concerns
in this field. Our work can also help practitioners to get an
overview of the current view of other practitioners.

This article is structured as follows: First, we discuss the
related work in Section II. Next, we explain our research
method in Section III. In Section IV we present the detailed
results of our grounded theory study, i.e. ADDs, decision
options, their relations, forces, and trade-offs in each solution.
Section V discusses the implications of the results for the
research questions and threats to validity. Finally, in Section VI
we draw conclusions.



II. RELATED WORK

While quite a number of studies on API design exist, only
a few focus on remote APIs. Nonetheless, a number of local
API topics are likely transferable to a certain extent to the
remote API context. APIs design is not only about technical
aspects but also about the development culture [10]. There
are a number of empirical study on API documentation [11]–
[13] which emphasize roles such as API documenter and API
designer in this context. The scientific literature has studied
various API quality attributes, such as accessibility [14],
stability [15], compatibility [16], [17], evolvability [18]–[20],
and usability [21]–[23].

Robillard [24] raised the question what makes APIs hard
to learn from the developer’s perspective. In a survey with
80 experienced developers he shows that the most popular
learning strategy is reading documentation. Murphy et al. [25]
studied the usability aspect from API designers’ perspective.
They interviewed 24 professional designers from the industry.
They found, among other things, that many designers learned
API design on the job, that it is hard for them to discern
which potential use cases of the API users will value most,
and that they lack tools to gather aggregated feedback from
the deployed API.

In comparison to those other works, our work is the first to
study the relation of DDD and API design. Our work structures
the resulting design space systematically, in terms of design
problems via ADDs, their decision options, their relations, and
the API decision drivers (forces) linked to them. Finally, many
of the related works focus on local programming APIs. As
mentioned, remote APIs are studied only in a few works yet,
and it is not clear if and which properties of local APIs can
be transfered to remote APIs.

Design patterns are an essential concept offering decision
options in our ADDs, and they offer a systematic way to
organize API design knowledge. The Microservice API Pat-
terns [2], [26]1 collect a number of API patterns in the realm
of remote APIs. Context Mapper and its MDSL generator
implement parts of the design advice and options that our
literature review in this paper reports [27], especially those
options related to the Microservice API Patterns and API
contracts. Richardson [28] describes some patterns with rele-
vance to API design such as API Gateway or Command Query
Responsibility Segregation (CQRS). Gosrki and Wojtach [29]
propose the Use Case API pattern, an architectural pattern for
use case based interfaces exposed e.g. via RESTful services.
All three works apply DDD and explain relations to DDD
patterns. However, none of these works has yet empirically
investigated the relation of microservice API design and DDD.

III. RESEARCH METHOD

In this paper we conducted a grounded theory study based
on the grey literature [30]. We used formal modeling to
precisely encode our findings (similar to [26]). Grounded
Theory (GT) [6], [7] is a systematic research method for

1See also: https://microservice-api-patterns.org/

Grounded
Theory

Data 
Collection

Open 
Coding

Axial 
Coding

Selective 
Coding

th
eo

re
tic

al
sa

m
pl

in
g

Theoretical sampling

field notes
Constant Comparison

Fig. 1. Research Method Overview

discovery of theory from data. The grey literature [8], [30]
is the main data source in our work. In software engineering,
grey literature can be defined as “any material about software
engineering that is not formally peer-reviewed nor formally
published” [30]. We decided to study grey literature sources
representing acknowledged practitioners’ views on the inter-
relation of distributed APIs and DDD. These sources are then
used as unbiased descriptions of established practices in the
further analysis.

We studied each knowledge source in depth, followed GT’s
coding process, as well as a constant comparison procedure to
derive a model, as illustrated in Figure 1. In contrast to classic
GT, the research begins with an initial research question, as
in Charmaz’s constructivist GT [31]. Whereas GT typically
uses textual analysis, uses textual codes only initially and
then transfers them into formal software models (hence it
is model-based). The data sources studied in this paper (see
Table I) include Discussion Forum Post, Practitioner Audience
Article, and Practitioner Slides. We searched for API and DDD
related keywords in search engine like Bing or Google to
find the initial data sources. We only selected practitioner
articles from practitioners targeted at other practitioners. For
this, the authors judged whether the sources focused on topics
such as designing APIs for systems based on DDD, how to
structure API and DDD-related parts of the system, or which
DDD concepts help to structure and design an API and how.
We reviewed each source in the author team. We excluded
sources that seemed to sell a product or a service. As GT is
mainly concerned with phenomena that have specifically been
observed to exist [32], it is only necessary to find enough
source that are relevant with regard to the phenomena being
study. It is not necessary to find all possibly relevant sources
(as it would be for instance in a systematic literature study).

The knowledge source acquisition is applied in many itera-
tions. We excluded sources that seemed to sell a product or a
service. This is an essential property of GT called theoretical
sampling [6], which means that results of each data analysis
step are used for the following data collection. The researchers
should actively find new data sources driven by the results of
the data analysis. In GT, the coding and data selection cycle
stops, when theoretical saturation [6] is reached. We stopped
our analysis when five to seven additional knowledge sources
did not add anything new to our understanding of the research
topic. As a result of this very conservative operationalization
of theoretical saturation, we studied a rather large number of
sources in depth (32 in total, summarized in Table I).

The authors analyzed every source line by line to elicit

https://microservice-api-patterns.org/


TABLE I
LIST OF KNOWLEDGE SOURCES INCLUDED IN THE PAPER

ID Title Tiny URL Source Type Example Source Code
s1 Bounded Context in APIs (1/2) tinyurl.com/api-ddd-s1 Practitioner Audience Article No No
s2 DDD & REST Domain Driven Apis for the Web tinyurl.com/api-ddd-s2 Slides Yes Yes
s3 Why the domain model should not be used as resources in REST API? tinyurl.com/api-ddd-s3 Discussion Forum Post Yes Yes
s4 How to clearly define boundaries of a bounded context tinyurl.com/api-ddd-s4 Discussion Forum Post No Yes
s5 REST API Design - Resource Modeling tinyurl.com/api-ddd-s5 Practitioner Audience Article Yes No
s6 Rest API and DDD tinyurl.com/api-ddd-s6 Discussion Forum Post Yes Yes
s7 Introduction to DDD Lite: When microservices in Go are not enough tinyurl.com/api-ddd-s7 Practitioner Audience Article Yes Yes
s8 REST and DDD: incompatible? tinyurl.com/api-ddd-s8 Practitioner Audience Article Yes No
s9 Domain Driven Design - External Data API as Respository or Service tinyurl.com/api-ddd-s9 Discussion Forum Post Yes No

s10 Conceptual mismatch between DDD Application Services and REST API tinyurl.com/api-ddd-s10 Discussion Forum Post Yes Yes
s11 Microservices: Overview, Misinterpretations and Misuses tinyurl.com/api-ddd-s11 Practitioner Audience Article No No
s12 Design a DDD-oriented microservice tinyurl.com/api-ddd-s12 Practitioner Audience Article Yes No
s13 Apply Domain-Driven Design to microservices architecture tinyurl.com/api-ddd-s13 Practitioner Audience Article No No
s14 Designing APIs and Microservices Using Domain-Driven Design tinyurl.com/api-ddd-s14 Slides Yes No
s15 REST Service and CQRS tinyurl.com/api-ddd-s15 Discussion Forum Post Yes Yes
s16 Exposing CQRS Through a RESTful API tinyurl.com/api-ddd-s16 Practitioner Audience Article Yes Yes
s17 REST-first design is Imperative, DDD is Declarative [Comparison] -

DDD w/ TypeScript
tinyurl.com/api-ddd-s17 Practitioner Audience Article Yes Yes

s18 Designing APIs for microservices tinyurl.com/api-ddd-s18 Practitioner Audience Article Yes Yes
s19 Moving Towards Domain Driven Design in Go tinyurl.com/api-ddd-s19 Practitioner Audience Article Yes Yes
s20 Microservices, Apache Kafka, and Domain-Driven Design tinyurl.com/api-ddd-s20 Practitioner Audience Article Yes No
s21 API & Domain Driven Design tinyurl.com/api-ddd-s21 Slides Yes Yes
s22 Implementing Domain-Driven Design for Microservice Architecture tinyurl.com/api-ddd-s22 Practitioner Audience Article Yes No
s23 Pattern: Decompose by subdomain Context tinyurl.com/api-ddd-s23 Practitioner Audience Article Yes No
s24 Building Microservices with Event Sourcing/CQRS in Go using gRPC,

NATS Streaming and CockroachDB
tinyurl.com/api-ddd-s24 Practitioner Audience Article Yes Yes

s25 Aggregate Oriented Microservices tinyurl.com/api-ddd-s25 Practitioner Audience Article Yes Yes
s26 Designing a Serverless Application with Domain Driven Design tinyurl.com/api-ddd-s26 Slides Yes No
s27 Bounded Contexts With Axon tinyurl.com/api-ddd-s27 Practitioner Audience Article Yes No
s28 Building Real-Time Web Applications using wolkenkit tinyurl.com/api-ddd-s28 Practitioner Audience Article Yes Yes
s29 Uncovering API Implementation tinyurl.com/api-ddd-s29 Practitioner Audience Article Yes No
s30 Implementing an API-First Design Methodology tinyurl.com/api-ddd-s30 Practitioner Audience Article No No
s31 API First Development tinyurl.com/api-ddd-s31 Practitioner Audience Article Yes Yes
s32 The API Design Process tinyurl.com/api-ddd-s32 Practitioner Audience Article No No

the required information, and then created one field note per
source. This is a memo writing technique where we noted
down the conceptual details, hidden interpretations, and other
interesting details on the sources. We established traceability
from lines in the sources, over each coding step, to the formal
model of our theory derived during the GT study. Next, we
followed Corbin’s and Strauss’ method for GT coding [7]:
First, we applied Open Coding with the goal to transform
conceptual details into conceptual labeling. Next, during Axial
Coding we identified categories in the concepts, e.g., by
identifying concepts that reappear in the data, synonymous
concepts, related concepts, and so on. The identification helps
to find out the relations between the concepts. Finally, during
Selective Coding we carved out main ideas of the theory, i.e.,
understanding the big picture by reflecting on the data and
analysis results. As mentioned, after initial text-based open
coding, we used formal UML-based modelling for axial and
selective coding, instead of the often-used text-based coding
process, in order to develop a precisely defined and consistent
theory. We used the Python tool CodeableModels2 for this.
Formal modelling also eased establishing an audit trail of the
research, and thus enable repeatability of the study. In addition,
we provide public access to the original data as well as the
derived models3

2https://github.com/uzdun/CodeableModels
3We provide all open and axial coding files, derived formal models

in Python, and generated models (in UML, Markdown, and Latex) as a
replication package for download on https://doi.org/10.5281/zenodo.4569578.

IV. ARCHITECTURAL DESIGN DECISIONS

In this section, we present the results of our study in form
of ADDs that appear in the discussions of the practitioners
in our grey literature sources. Figure 2 shows an overview
of the decisions identified and their relations (explained in
detail below). For space reasons, we cannot give detailed
examples. Please note that Table I4 shows which sources
provide examples (with or without source code).

A. Domain Model Mapping Decision

The core result of a DDD modeling effort is the Domain
Model, which defines the Ubiquitous Language. This term
is used by Evans to describe the language shared by the
whole team, including developers, domain experts, and other
participants [3]. For larger domains, it is usually not possible
to model the whole Ubiquitous Language in a single unified
model. Instead DDD divides larger domains into different
Bounded Contexts and explicitly models their relationships,
usually with the help of Context Maps [3], [5].

In the sources analyzed in our study, the practitioners
frequently discuss the ADD How to Map the Domain Model
and its Elements to an API? (overall 16 source discuss this
ADD) as summarized in Table II. We found evidence for
seven possible design options as solutions for this ADD as
illustrated in Figure 3. A simple solution is to Expose the

4In the table we use the following color coding to visualize the frequency
of the evidences: < 5%, < 10%, < 20%, < 35%, < 50%,

< 70%, ≥ 70%.

https://tinyurl.com/api-ddd-s1
https://www.slideshare.net/SpringCentral/ddd-rest-domain-driven-apis-for-the-web
https://tinyurl.com/api-ddd-s3
https://tinyurl.com/api-ddd-s4
https://tinyurl.com/api-ddd-s5
https://tinyurl.com/api-ddd-s6
https://tinyurl.com/api-ddd-s7
https://tinyurl.com/api-ddd-s8
https://tinyurl.com/api-ddd-s9
https://tinyurl.com/api-ddd-s10
https://tinyurl.com/api-ddd-s11
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/ddd-oriented-microservice
https://tinyurl.com/api-ddd-s13
https://tinyurl.com/api-ddd-s14
https://tinyurl.com/api-ddd-s15
https://tinyurl.com/api-ddd-s16
https://tinyurl.com/api-ddd-s17
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/api-design
https://tinyurl.com/api-ddd-s19
https://tinyurl.com/api-ddd-s20
https://tinyurl.com/api-ddd-s21
https://tinyurl.com/api-ddd-s22
https://tinyurl.com/api-ddd-s23
https://tinyurl.com/api-ddd-s24
https://tinyurl.com/api-ddd-s25
https://tinyurl.com/api-ddd-s26
https://tinyurl.com/api-ddd-s27
https://tinyurl.com/api-ddd-s28
https://tinyurl.com/api-ddd-s29
https://tinyurl.com/api-ddd-s30
https://tinyurl.com/api-ddd-s31
https://tinyurl.com/api-ddd-s32
https://github.com/uzdun/CodeableModels
https://doi.org/10.5281/zenodo.4569578


TABLE II
STUDY RESULTS: OVERVIEW OF DESIGN DECISIONS, DECISION OPTIONS, EVIDENCES AND RELATED FORCES

Design Decision # Solution Evidences Forces

How to Map a
Domain Model and
its Elements to an
API?

1.Expose the Whole Domain Model in 1:1 Relation as
API

s1, s3, s9 f1(--), f2(-), f17(+), f7(--), f8(-), f4(-), f10(-), f15(+)

2.Expose Domain Model Subset as API s3, s6, s9 f1(o), f2(o), f17(+), f7(o), f8(o), f4(-), f10(-), f15(+)
3.Expose Each Bounded Context as an API s1, s4, s13, s14, s20, s27,

s29, s32
f1(-), f2(-), f17(-), f7(-), f8(-), f4(-), f10(-), f15(+)

4.Expose Selected Bounded Contexts as APIs s1, s3, s4, s13, s14, s20,
s21, s22, s23, s27, s29, s32

f1(o), f2(o), f17(-), f7(o), f8(o), f4(-), f10(o), f15(+)

5.Introduce and Expose Interface Bounded Context as
an API

s1, s3, s23 f1(+), f2(+), f17(++), f7(+), f8(+), f4(+), f10(+), f15(-)16

6.Expose a Shared Kernel between Client and Server
as an API

s1, s3 f1(+), f2(+), f17(++), f7(+), f8(+), f4(+), f10(+), f15(-)

Which Approach is
Chosen for Defining
the API Contract in
Relation to the
Domain Model?

1.Explicitly Specify the API Contract s3, s8, s10, s13, s17, s18,
s21, s30, s31, s32

f21(+), f24(+), f25(+), f26(o), f10(o), f18(o), f23(o),
f27(++)

2.Extract API Contract from Domain Model s3, s10, s13, s17, s18 f21(+), f24(+), f25(+), f26(o), f10(o), f18(o), f23(o),
f27(+)

3.Domain Model Defines API Contract s3, s10, s13, s18 f21(-), f24(--), f25(--), f26(o), f10(o), f18(o), f23(o),
f27(o)

4.Bounded Context Defines API Contract s3, s13, s27 f21(-), f24(--), f25(--), f26(o), f10(o), f18(o), f23(o),
f27(o)15

5.Write API Code First which Defines the Contract s17, s30 f21(--), f24(--), f25(--), f26(++), f10(-), f18(-), f23(--),
f27(--)

Which Domain
Model Elements
Should be Offered as
Resources or
Endpoints in an API?

1.Entities as API Resources s1, s2, s5, s6, s12, s13, s14,
s16, s17, s18, s19, s21, s32

f2(--), f11(--), f3(-), f5(-), f6(-), f7(-), f18(-), f19(-), f13(-
)

2.Domain Services as API Resources s9, s13, s19 f2(o), f11(+), f3(o), f5(++), f6(++), f7(+), f18(+), f19(+),
f13(+)

3.Aggregate Roots as API Resources s1, s2, s5, s6, s10, s12, s13,
s17, s18, s19, s25, s26, s27,
s28

f2(+), f11(++), f3(+), f5(+), f6(+), f7(+), f18(+), f19(+),
f13(+)

4.Bounded Contexts as API Resources s1, s2, s5, s20, s25, s26,
s29

f2(+), f11(o), f3(+), f5(+), f6(+), f7(-), f18(o), f19(o),
f13(o)21

5.Domain or Business Processes as API Resources s5, s10, s20 f2(+), f11(++), f3(+), f5(+), f6(+), f7(+), f18(+), f19(+),
f13(+)

Segregate Resources
for Reading and
Updating Information
in an API?

1.Expose Segregated Command and Query Resources
in API

s5, s6, s8, s11, s12, s15,
s16, s24, s25, s27, s28

f7(-), f11(-), f6(+), f20(+)

11 2.Do Not Segregate Queries and Commands in an API s5, s6, s8, s11, s12, s15,
s16, s24, s25, s27, s28

f7(+), f11(+), f6(-), f20(-)

How to Design the
Operations of a
Resource?

1.CRUD-Style Operations on Resources s1, s2, s3, s5, s6, s7, s8,
s10, s11, s12, s14, s15, s16,
s17, s18, s19, s20, s21, s29

f2(-), f3(--), f5(--), f6(--), f16(-), f18(-), f11(-), f19(-),
f13(-), f22(+)

2.Domain Operations on Resources s1, s2, s3, s4, s5, s6, s7, s9,
s10, s11, s12, s15, s16, s18,
s20, s25

f2(+), f3(+), f5(+), f6(+), f16(+), f18(+), f11(+), f19(+),
f13(+), f22(+)

3.Encode Operations as Commands in the Payload s6, s15, s16 f2(+), f3(+), f5(+), f6(+), f16(+), f18(o), f11(+), f19(+),
f13(+), f22(-)

4.Expose Domain Events as State Transitions s2, s3, s4, s5, s9, s11, s12,
s14, s16, s20, s24, s25, s26,
s27, s28, s29

f2(++), f3(+), f5(+), f6(++), f16(+), f18(+), f11(+),
f19(+), f13(+), f22(-)26

5.Expose Domain Events via Feeds or Pub/Sub s2, s20, s24, s27, s28 f2(++), f3(+), f5(+), f6(++), f16(+), f18(+), f11(+),
f19(+), f13(+), f22(-)

How to Map Links
between Domain
Model Elements to
the API?

1.None s1, s2, s31
2.Use Distributed or Hypermedia Links in the Payload s1, s2, s3, s8, s10, s18, s31 f11(+), f9(+), f10(+), f12(++), f2(++), f13(++), f14(-),

f4(-), f5(-), f6(-)
3.Pass Object Identifiers in the Payload s1, s2, s18, s31 f11(+), f9(+), f10(+), f12(++), f2(-), f13(-), f14(+), f4(-),

f5(-), f6(-)8
4.Embed Linked Data in the Payload s1, s2 f11(-), f9(-), f10(-), f12(-), f2(o), f13(+), f14(+), f4(+),

f5(+), f6(+)

Forces Codes/Sources: f1:Brittle Interfaces [s1, s23], f2:Avoid Exposing Domain Model Details in API [s1, s2, s3, s4, s5, s7, s10, s17, s18, s29, s32], f3:Chatty API [s1, s5, s11,
s18], f4:Minimize API calls [s1, s2], f5:Performance [s1, s11, s16, s18], f6:Scalability [s1, s4, s5, s8, s11, s16, s18, s20, s24, s28, s29], f7:API Complexity [s1, s5, s6, s11, s12,
s15, s18, s25, s29], f8:API Usability [s1, s5, s14], f9:API Evolvability [s1, s5, s18, s31], f10:API Modifiability [s1, s3, s4, s5, s17, s18, s23, s30, s31], f11:Data Consistency [s1,
s2, s5, s10, s12, s16, s18, s20, s21, s22, s25, s27, s28, s29], f12:Message Size [s1], f13:Coupling of Clients to Server [s2, s5, s6, s8, s10, s14, s18, s20, s22, s23, s27], f14:Protocol
Complexity in Client [s2, s8, s10], f15:Design and Implementation Effort [s3, s21, s23, s29, s30], f16:Interface Design Limits Domain Model Design [s3, s10], f17:Clients Need
to Manage Crossing Model Boundaries [s3, s4], f18:Maintainability of API and API Consumers [s5, s6, s7, s10, s17, s29, s30], f19:Reliability [s4, s5], f20:Eventual Consistency
Support [s5, s15, s16, s24, s25, s27, s28], f21:Separation of API Contract and Domain Concerns [s1, s3, s5, s10, s13, s24, s29, s30, s32], f22:API Understandability [s6, s7, s15,
s16, s17, s30, s31, s32], f23:Can Lead to Anemic Domain Model Anti-Pattern [s8, s17], f24:API Stability [s10, s23, s30, s31], f25:Domain Model Flexibility [s10], f26:Initial Effort
Required [s17, s30, s31], f27:Support for External or Public Clients [s18]



How to Map a Domain Model and its
Elements to an API? : Decision

Which Domain Model Elements Should be Offered
as Resources or Endpoints in an API?

: Decision

Which Approach is Chosen for Defining the API
Contract in Relation to the Domain Model?

: Decision

Segregate Resources for Reading and Updating Information
in an API? : Decision

How to Design the Operations of a Resource?
: Decision

How to Map Links between Domain Model Elements
to the API? : Decision

Consider If Not Decided Yet Consider If Not Decided Yet Consider If Not Decided Yet

Consider If Not Decided Yet Consider If Not Decided Yet Consider If Not Decided Yet

Fig. 2. ADDs and ADD Relations: Overview

How to Map a Domain Model and
its Elements to

an API? : Decision

Expose the Whole Domain
Model in 1:1 Relation

as API : Practice

Expose Domain Model
Subset as API : Practice

Expose Each Bounded
Context as an API

: Practice

Expose Selected Bounded
Contexts as APIs

: Practice

Introduce and Expose
Interface Bounded Context

as an API : Practice

Expose a Shared Kernel
between Client and

Server as an API
: Practice

Domain Model and API :
And-Combined Group

Domain Model :
Domain Class

API :
Domain Class

«Option»
{name = "Map Domain

Model Fully to
the API"}

«Option»
{name = "Map Selected
Elements of the Domain

Model to the API"}

«Option»
{name = "Map Each
Bounded Context to

APIs"}

«Option»
{name = "Map Selected

Bounded Contexts
to APIs"}

«Option»
{name = "Introduce and
Expose an Additional

Interface Bounded Context
as an API"}

«Option»
{name = "Identify

Shared Kernel between
Communication Participants
and Expose it as an API"}

decide for some
instances of

«Can be
Realized With»

{how = "might be based
on a shared kernel"}

Fig. 3. Domain Model Mapping Decision

Whole Domain Model in 1:1 Relation as API but this is seen
as working only for small examples, as it leads to negative
impacts on coupling and maintainability forces such as Brittle
Interfaces, API Complexity, and Avoiding Exposing Domain
Model Details in API. A usually better working solution is
Expose Domain Model Subset as API which partly improves
on the negative force impacts. Both solutions have benefits like
little required Design and Implementation Effort. For complex
domains, it can be advisable to consider the Bounded Contexts
as well. Then there are the options to Expose Each Bounded
Context as an API or Expose Selected Bounded Contexts
as APIs, both leading to a sub-division of the API along
the Bounded Context boundaries. In most large domains, the
latter solution is seen as being better suited to avoid Brittle
Interfaces, Exposing of Domain Model Details in the API,
and API Complexity, and improve API Usability and API
Modifiability. Both solutions offer positive impact on Design
and Implementation Effort, but require more effort than the
first two solutions. The downside of those solutions is that
Clients Need to Manage Crossing Model Boundaries, i.e.,
the boundaries between the Bounded Contexts. One suggested
solution to this problem is to Introduce and Expose Interface
Bounded Context as an API. That is, a new special Bounded
Context that represent the API interface is exposed. This
solution is neutral or positive on all so far mentioned forces,

except the Design and Implementation Effort where it leads
to additional effort compared to all other so far mentioned
solutions.

In some cases, it might make sense to consider Expose a
Shared Kernel between Client and Server as an API, which
can be seen as an option how to realize the solution Introduce
and Expose Interface Bounded Context as an API. Shared
Kernel is a DDD relation between two Bounded Contexts in
which some subset of the domain model is shared between
the two teams developing the contexts. For example, it is often
implemented as a local code library available to API client and
server. Here, the client and server contexts would share such
a Shared Kernel. This is a good solution with similar force
impacts as Introduce and Expose Interface Bounded Context
as an API in cases, where close interaction between the teams
developing client and server is acceptable.

Please note that the two options explained before Expose
Each Bounded Context as an API or Expose Selected Bounded
Contexts as APIs also use Bounded Context relations to
determine what is exposed as a remote API: They would use
Bounded Context relations that are more frequently leading to
remote interconnections between services in the implementa-
tion such as Open Host Service, Customer/Supplier or Anti-
Corruption Layer. Implementation-wise such solutions lead to
use of the Service Layer pattern [33] for the services exposing



the API, with each service being the Remote Facade [33] for
the elements shielded by the API.

As can be seen in Figure 2, this decision has a number
of direct and indirect follow-on decisions that should be
considered as well. It is also suggested to first consider the
API contract related ADD in Section IV-B and then consider
the domain model mapping ADD. Many of the DDD elements
in both decisions are sometimes using Event Storming; while
not directly related to API design, such techniques have an
indirect influence on API design which is interesting to explore
in future work.

B. API as Contract Decision

The API Contract is an API-related concept in which the
API is defined in some formal language, e.g., based on Open
API or RAML for RESTful APIs, WSDL for SOAP APIs,
some special Domain-specific Language for API Contract def-
inition, and so on. API Contracts can support the decoupling
between API consumers and API providers. The contracts
are essential in terms of mutual understanding between those
parties. Ideally, the API Contract is more stable than the
backend systems, i.e., it is only changed rarely, whereas the
backend systems often constantly evolve.

The relation between DDD and API Contract leads to
the ADD Which Approach is Chosen for Defining the API
Contract in Relation to the Domain Model? This ADD is
mentioned in 15 sources (see Table II). We have identified
5 decision options in the sources. The first option Explicitly
Specify the API Contract describes the practice to design the
API Contract before or relatively independent from the domain
model. A specific variant of this, sometimes mentioned, is
Specify the API Contract First; usually it meant as contin-
uous improvement of a contract specification, starting from
a specification, not a rigid, pre-defined contract. Explicitly
Specify the API Contract can for instance be achieved using
the Expose a Shared Kernel between Client and Server as an
API or Introduce and Expose Interface Bounded Context as
an API options from the previous decision. Another option is
Extract API Contract from Domain Model, i.e., the practice of
selecting elements of the domain model to be exposed in the
contract. Both are practices that help in reaching Separation
of API Contract and Domain Concerns, are positive for API
Stability, and enable Domain Model Flexibility.

Not all possible solutions focus on Separation of API
Contract and Domain Concerns: Domain Model Defines API
Contract and Bounded Context Defines API Contract use the
elements of the domain model or a Bounded Context as the
elements of the API Contract. This leads to a worse Separation
of API Contract and Domain Concerns as the API elements
are tightly coupled to the faster evolving domain concept,
which in turn is negative for either API Stability or Domain
Model Flexibility. Domain Model Defines API Contract can
be realized with the Expose the whole Domain Model in 1:1
Relation as API or Expose Domain Model Subset as API
options of the previous decision. Bounded Context Defines
API Contract can be realized with the Expose Each Bounded

Context as an API or Expose Selected Bounded Contexts as
API options of the previous decision.

The option Write API Code First Which Defines the Con-
tract describes an API first approach which is seen, in contrast
to the prior options, rather negatively: It can lead to bad
Separation of API Contract and Domain Concerns as the do-
main model is based on premature, often low-level API design
decisions, which Can Lead to Anemic Domain Model Anti-
pattern, i.e., a domain model which contains little deep domain
knowledge. This results in bad API Stability or Domain Model
Flexibility, as well as bad API Modifiability and other issues
in Maintainability of API and API Consumers.

Finally, there is the force Support for External or Public
Clients to be considered. It is important to distinguish between
two types of APIs: public APIs that client applications call,
and backend APIs that are used for communication between
services. For external clients or public clients the maintain-
ability, stability, and modifiability forces are usually of much
higher importance than for internal APIs where a certain level
of control of changes is possible. Thus for Support for External
or Public clients, the option Write API Code First which
Defines the Contract performs worst. Domain Model Defines
API Contract and Bounded Context Defines API Contract can
be less positive here than Explicitly Specify the API Contract
and Extract API Contract from Domain Model, as they lead
to a less strict separation of API and domain model, which
might impede stability. The API as Contract decision has a
strong connection to the domain model mapping decision and
vice versa.

C. Designing API Resources Decision

We use the term API Resource for a set of related interface
elements exposed in an API. Sometimes the term API Endpoint
is used instead in a similar sense, even though endpoint usually
denotes a remote location of a resource such as a URI. Please
note that we use API Resource for any API technology, not
limited to the RESTful resources. On the other hand, the
decision outcomes of the two previous decisions determine
the scope in which Interface Elements can be identified in the
Domain Model and/or API contract. These need to be mapped
to API Resources, which is the purpose of this ADD.

The decision on Support for External or Public clients
Which Domain Model Elements Should be Offered as Re-
sources or Endpoints in an API? (21 evidences as summarized
in Table II) consist of five options namely Entities, Aggregate
Roots, Domain Services, Bounded Contexts, and Domain or
Business Process as API Resources (typically realized as a
Processing Resource [2]). That is, the basic abstractions Entity,
Aggregate, and Service in tactical DDD [3] are discussed
as possible sources for API Resources, as well as the two
“broader” concepts Bounded Contexts and Processes (the
later is applicable only in process-based system designs).
Interestingly Bounded Contexts have already been used as API
scopes in some options of the previous two ADDs, and are
rather a concept of strategic design in DDD: Strategic Design
shapes the big picture, while Tactical Design dives into design



Which Approach is Chosen for Defining
the API Contract in Relation

to the Domain Model? : Decision

Explicitly Specify the
API Contract : Practice

Specify the API Contract
First : Practice

Introduce and Expose
Interface Bounded Context

as an API : Practice

Expose a Shared Kernel
between Client and Server

as an API : Practice

Extract API Contract
from Domain Model : Practice

Expose Domain Model
Subset as API : Practice

Domain Model Defines
API Contract : Practice

Expose the Whole Domain
Model in 1:1 Relation

as API : Practice

Bounded Context Defines
API Contract : Practice

Expose Each Bounded
Context as an API

: Practice

Expose Selected Bounded
Contexts as APIs

: Practice

Write API Code First
which Defines the
Contract : Practice

API Contract : Domain Class

«Option»
{name = "Design the API

Contract before or
Independently from
the Domain Model"}

«Option»
{name = "Design the API

Contract by Selecting
Elements of the Domain
Model to be Exposed"}

«Option»
{name = "Use the Elements

of the Domain Model
as the Elements of
the API Contract"}

«Option»
{name = "Use the Elements

of a Bounded Context
as the Elements of
the API Contract"}

«Option»
{name = "Write the API Code

First and Design the
API Contract

as You Code the API"}

decide for some
instances of

Can be
Realized With

Can be
Realized With

Is-a

«Can be
Realized With»

{how = "might be based
on a shared kernel"}

«Can be
Realized With»

«Can be
Realized With»

«Can be
Realized With»

«Can be
Realized With»

«Can be
Realized With»

Fig. 4. API as Contract Decision

Which Domain Model Elements Should be Offered as
Resources or Endpoints in an API? : Decision

Entities as API
Resources : Practice

Domain Services as
API Resources : Practice

Aggregate Roots as
API Resources : Practice

Domain or Business
Processes as API Resources

: Practice

Processing Resource
: Pattern

Bounded Contexts as
API Resources : Practice

Identified Interface
Elements : Domain Class

«Option»
{name = "Offer

Entities as API Resources"}

«Option»
{name = "Offer

Domain Services as API
Resources"}

«Option»
{name = "Offer

Aggregate Roots as API
Resources"}

«Option»
{name = "Offer

Bounded Contexts as
API Resources"}

«Option»
{name = "Offer

Domain or Business
Processes as

API Resources"}

decide for
some instances of

Can Use Can Use

Fig. 5. Designing API Resources Decision

details [5]. This shows that this ADD is located at the border
of these two central DDD design levels.

Entities as API Resources has the highest number of ev-
idences (13 sources) as shown in Table II. While being an
obvious option, a number of practitioners in our sources
advise strongly against using Entities as foundations for API
Resource. With 10 sources, Aggregate Roots as API Resources
has the second highest number of evidences, and seems to be
the most often recommended option how to start looking for
API Resources. As an Aggregate abstracts the implementation
details of a number of related Entities and other DDD model
elements, it naturally serves as an Identified Interface Element.
Practitioners agree that Aggregate Roots are a good starting
point for API Resources, but many other options exist and
often deliberate, incremental design is needed to find good
API Resources. Some practitioners suggest Domain Services
as API Resources. For instance, they can lead to stateless API
Resources in addition to the usually stateful resources based
on Aggregates. Both Bounded Contexts and Processes bundle
a number of related DDD model elements and can thus, both
according to a few practitioners, be candidates for defining API

Resources. Some sources suggest to consider first Aggregates,
and then the other options.

Main drawbacks of exposing Entities are issues related to
Avoiding Exposing Domain Model Details in API, Data Con-
sistency, and Chatty APIs. This can lead to bad Performance,
Scalability issues, and high API Complexity. Other issues are
possibly Coupling of Clients and Server and other issues in
Maintainability of API and API Consumers. Aggregate Roots
as API Resources and where applicable Domain Services as
API Resources can help to avoid most of these issues. Domain
or Business Processes as API Resources can have a similar
positive impact on the forces, if a process-based abstraction
makes sense in the domain context. Certain Bounded Contexts
can work well for many of the forces, but there is a risk of
higher API Complexity due the size of the Bounded Contexts.
Also Data Consistency can be more natural to manage on an
Aggregate than on a Bounded Context and low Coupling of
Clients and Server can be harder to reach.

D. Resource Segregation Decision

After API Resources have been identified, e.g. using the
options from the previous decision, there sometimes is the



option to decide whether or not to Segregate Resources for
Reading and Updating Information in an API. This is closely
related to the Command Query Responsibility Segregation
(CQRS) Pattern [28]. The idea of CQRS is to use a different
model to update data than the model that is used to read data.
A common implementation technique in the context of event-
based microservices is Event Sourcing [28]. As querying the
corresponding event store can be hard to realize efficiently,
often CQRS is used in this context.

If CQRS is used e.g. for a microservice design in the back-
end, often it makes sense to offer the segregated commands
and queries as two resources in an API which this ADD
is about (see Figure 6). Practitioners agree that CQRS is a
complex pattern and it should only be chosen if it offers a
substantial benefit. It can be chosen in the backend and not
exposed in the API, too. It is possible to use Encoding Opera-
tions as Command in Payload in the operations design decision
in Section IV-F as a practice to realize the segregation option.
The segregation option would enable Eventual Consistency as
a practice, not only in the backend, but covering the clients.

Regarding forces, this option has the benefit of possibly im-
proving Scalability and enabling Eventual Consistency Support
where it is needed, e.g. in long running transactions. Down-
sides are higher API Complexity and less Data Consistency.

Segregate Resources for Reading and
Updating Information in an API? : Decision

Expose Segregated Command
and Query Resources

in API : Practice

CQRS :
Pattern

Eventual Consistency :
Pattern

Encode Operations as Commands
in the Payload : Practice

Do Not Segregate Queries
and Commands in an

API : Do Nothing

Identified Interface
Elements : Domain Class

«Option»
{name = "Yes"}

«Option»
{name = "No"}

decide for all
instances of

Uses Enables Can Use

Fig. 6. Resource Segregation Decision

E. Link Mapping Decision

How to Map Links between Domain Model Elements
to the API? : Decision

: Do Nothing
Use Distributed or

Hypermedia Links in
the Payload : Practice

Linked Information
Holder : Pattern

Pass Object
Identifiers in the
Payload : Practice

Object Identifier : Pattern

Embed Linked
Data in the

Payload : Practice

Embedded Entity :
Pattern

Link :
Domain Class

«Option»
{name = "Do Not Offer
the Link Via the API"}

«Option»
{name = "Pass Distributed

or Hypermedia Links
in the Payload to

Represent Domain
Model Links"}

«Option»
{name = "Pass Object

Identifiers in the Messages
to Represent Domain

Model Links"}

«Option»
{name = "Pass Embedded

Data in the Messages
to Include Perhaps

Needed Data"}

decide for
some instances of

Uses Uses Uses

Fig. 7. Link Mapping Decision

Another decision following the API resource decision is on
link mapping. In APIs the links between API Resources play

a central role. In DDD the links between model elements have
a similar role. Obviously not all links in the DDD model are
candidates to be exposed in an API, but only those between
the model elements offered as API Resources, e.g. following
the ADD from Section IV-C.

Figure 7 shows the link mapping decision. Many links are
not mapped, as explained. The Use Distributed or Hyper-
media Links in the Payload option means to use standard
distributed/hypermedia links, such as URIs in RESTful HTTP
or URIs and HAL/JSON-LDs in JSON. This conforms to using
the Linked Information Holder pattern [2], which describes a
linked API Resource. An alternative is Embed Linked Data in
the Payload which follows the Embedded Entity pattern [2]
where the content (or a part of it) is added to the message
payload instead of linking to it. Finally, there is the option to
Pass Object Identifiers in the Payload, i.e. to follow the Object
Identifier pattern [34]. This means to send an Object Identifier
that is meaningful (only) in the server context, but contains
no remote location information such as a distributed link.

Compared to the embedding option, use of distributed links
is beneficial for Data Consistency as the link is always up-to-
date, and thus API Evolvability and API Modifiability are posi-
tively influenced. It leads also to smaller Message Sizes. Links
however lead to higher Protocol Complexity, make it harder to
Minimize API Calls, and can have a worse Performance and
Scalability because of many resulting distributed calls. The
Object Identifier based option is very similar in its effects to
the distributed links based option. In direct comparison, it has
the disadvantages of possibly Exposing Domain Model Details
in API as well as higher Coupling of Clients to Server.

F. Operation Design Decision

The ADD How to Design the Operations of a Resource?
shown in Figure 8 appeared in 26 investigated sources (see
Table II).

A simplistic option, especially in a RESTful context, are
CRUD-style Operations on Resources which are discussed
in 16 sources. CRUD-style Operations on Resources designs
operations like primitive data store operations. This practice,
while commonly used, is seen negatively for many forces.
In particular, in contrast to the options below it is negative
for the Avoiding Exposing Domain Model Details in API
force, and can lead to Chatty APIs with bad Performance
and Scalability. It is argued that it can lead to Interface
Design Limits Domain Model Design, various Maintainability
issues including Coupling issues, Reliability problems, and
Data Consistency problems. On the positive side, CRUD-
style Operations on Resources are simple and good for API
Understandability.

The option to expose Domain Operations on Resources has
the second highest in a number of evidences (15 sources).
Domain Operations on Resources designs are focused on
coarser-grained, explicit domain operations. This option is
usually positive on the mentioned forces, but needs more
design work when mapped to a RESTful API. A variant of
it is Encode Operations as Commands in the Payload which



How to Design the Operations
of a Resource? : Decision

CRUD-Style
Operations on

Resources : Practice

Domain Operations on
Resources : Practice

Encode Operations as
Commands in the
Payload : Practice

Expose Segregated Command
and Query Resources in

API : Practice

Expose Domain
Events as State

Transitions : Practice

Expose Domain
Events via Feeds or
Pub/Sub : Practice

Operation :
Domain Class

«Option»
{name = "Design Operations

Like Primitive Datastore
Operations"}

«Option»
{name = "Design Coarser
Grained, Explicit Domain

Operations"}

«Option»
{name = "Group

Operations on Resource and
Select Operations in the

Payload"}

«Option»
{name = "Expose State

Transition Domain Events
to Clients"}

«Option»
{name = "Expose Event

Feed Via a Feed or
Publish/Subscribe to Clients"}

decide for
all instances of

Variant Can Use

«Extension»
{how = "events might
be exposed to clients

via feeds or publish/subscribe"}

Fig. 8. Operation Design Decision

can be harder to understand than domain operations exposed
via other means such as protocol features (if supported by the
protocol). It is often used e.g. when CQRS is exposed in the
API, as then the operation commands can be encoded in a
similar way as the queries.

Many microservice systems are event-based systems. In
such systems, another option is to Expose Domain Events as
State Transitions (or its variant Expose Domain Events via
Feeds or Pub/Sub). These options are also positive for most of
the mentioned forces. They can even lead to a better solution
for Exposing Domain Model in API, if events are used to
model the domain, and/or improving Scalability. Events can
be harder to understand and thus these options also can have
some issues with regard to API Understandability.

V. DISCUSSION

A. How Practitioners Understand DDD-Based Microservice
API Design

In the previous section, we have presented detailed findings
on each of our research questions. RQ1 investigates what the
possible architectural design decisions and corresponding de-
cision options in DDD-based microservice API design are. We
have found evidence for six principal ADDs with 27 decision
options. It is possible to classify those ADDs based on their
context and DDD design level. The Domain Model Mapping
Decision in Section IV-A and the API as Contract Decision
in Section IV-B clearly focus on DDD elements of Strategic
Design, such as Domain Model, Bounded Context, and Shared
Kernel. On the API side, they focus on coarse-grained API
concepts such as the whole API or the API Contract. The next
set of decisions, i.e., the Designing API Resources Decision,
and the Resource Segregation Decision, focus at the transition
from Strategic to Tactical Design considering atomic model
elements such as Entities but also composite structures such as
Aggregates or Processes, as well as Bounded Contexts. Finally,
the Link Mapping Decision and the Operation Design Decision
focus on detailed mapping options. That is, it is considered
how links are mapped to messages and how DDD operations
are mapped to API operations.

RQ2 considers what the relevant decision drivers in those
ADDs are. We have observed 27 relevant decision drivers as
shown in Table II From this detailed list we can generalize a
number of main concerns API developers care about. Please
note that GT aims to explain phenomena that have been

observed to exist [32]; that is the number of evidences listed
in Table II can at most provide a rough indication of force
importance. More interestingly, the forces can be categorized
into a number of recurring themes:

• A number of forces focus on a loosely coupled relation of
API/its clients and the Domain Model (f2, f16, f17, f21,
f23) which is related to independent modifiability and
evolvability of the API (f9, f10) as well as API stability
(f24, f1) in relation to Domain Model changes (f25).

• Various forces concern maintainability aspects of the API
e.g. complexity and understandability (f18, f7, f14, f22).

• Some forces consider the consistency of data (f11, f20).
• A number of forces are related to runtime properties of

the API including performance and scalability (f3, f4, f5,
f6), bandwidth use (f12), and reliability (f19).

• The relation of API client and server (API provider) is
also important; it should be loosely coupled (f13), usable
(f8), and consider different types of API clients (f27).

• Costs and effort are reappearing as forces (f15, f26).
RQ3 investigates which relations the decisions and decision

options have. Here, the decisions define most of the relations
via their options in our model. While the first two decisions
Domain Model Mapping Decision and the API as Contract De-
cision mainly need to be decided once per API/Domain Model,
lower-level decisions need to be made repeatedly. For example,
the Designing API Resources Decision needs to be made for
each Identified Interface Element in the Domain Model and
those Identified Interface Elements can change based on prior
decisions. Thus there are no unequivocal recommendations in
the practitioner literature, such as “Aggregate Roots as API
Resources work best in the most common design situation
and the other work well in certain niches”. Rather a deliberate,
incremental, and iterative human (often collaborative) design
approach required. Always decisions depend on project con-
text, goals, and requirements. For instance, for the Designing
API Resources Decision (as an example), the advice is given to
start off considering Aggregate Roots as API Resources. If they
do not provide a well working abstraction, Domain Services
or Processes can be considered, if applicable. If those do not
work well either, then maybe smaller-scale Entities or coarser
Bounded Contexts might provide a well working solution.
Similar considerations need to be made in the contexts of
the Resource Segregation Decision, Link Mapping Decision
and Operation Design Decision. Such a deliberate, incremental



design process to map domain models to technical realizations
is commonly suggested in the practitioner literature. For exam-
ple, in the related area of identifying microservice boundaries,
one of our sources (s18) suggests a very similar process of first
analyzing Bounded Contexts, then considering Aggregates,
then analyzing Domain Services, and finally considering non-
functional requirements5. In this context, it is also interesting
to observe that the recommended practices for microservice
identification and API or API resource identification differ.
Just exposing all microservices in system in an API without a
deliberate, incremental API design effort, as explained above,
might lead to bad API designs.

In addition to these main relations, the two decisions Do-
main Model Mapping Decision and API as Contract Decision
have options that are closely related, as shown in Figure 4.
Finally, a couple of decision options from the designing API
resources, link mapping, and resource segregation decisions
have relations to well-established software patterns such as
CQRS, Processing Resource, Linked Information Holder, and
so on, as detailed above.

Our resulting formal model describes a theory with a precise
classification (or categorization) of model elements, as design
decision, related context, decision options, decision driver, and
related decisions and options. The model reveals interesting
insights on which conceptual elements are present in practi-
tioner discussions. Our work can help scientists to gain insights
into current practitioner views, whereas practitioners can get
a consolidated view integrating many practitioner views based
on empirical research methods.

B. Threats to Validity

As GT is mainly concerned with phenomena that have
specifically been observed to exist, threats to the results’
validity are mainly restricted to inappropriate conceptualiza-
tion [32]. There is a risk that generalizing from some of
our results might be misleading, but as we do not claim
completeness and use a rather high number of sources (i.e.,
more than needed for theoretical saturation), it is likely that
generalization is valid to at least some extent. At any rate, our
results are only valid in our set scope.

To increase internal validity or credibility, we decided to use
practitioner reports that were produced independently from our
study. This avoids bias, e.g. compared to interviews in which
the practitioners would have known that their answers are used
in a study. However, this introduces a different threat: Some
important information might be missing in the reports, which
would have been revealed in interviews. We tried to mitigate
this threat by looking at more sources than needed to reach
theoretical saturation, as it is unlikely that all different sources
miss the same important information. Different members of
the author team have cross-checked all models independently
to minimize researcher bias. The threat to validity that the
researcher team is biased in some sense remains, however. The

5See: https://docs.microsoft.com/en-us/azure/architecture/microservices/
model/domain-analysis

same applies to our coding procedure and the formal modeling:
Other researchers might have coded or modeled differently. As
our goal was only to find one model that is able to specify all
observed phenomena, and this was achieved, we consider this
threat not to be a major issue for our study.

The experience and search-based procedure for finding
knowledge sources may have introduced some kind of bias
as well. However, this threat is mitigated to a large extent
by the chosen research method, which requires just additional
sources corresponding to the inclusion and exclusion criteria,
not a specific distribution of sources. Note that our procedure
is in this regard rather similar to how interview partners are
typically found in qualitative research studies in software engi-
neering today. However, the threat remains that our procedures
introduced some kind of unconscious exclusion of certain
sources; we mitigated this by assembling an author team with
many years of experience in the field, and performing very
general and broad searches.

VI. CONCLUSIONS

We have studied the relation of DDD practices and mi-
croservice API design. We have identified six ADDs with 27
decision options concerning the mapping of domain models
to APIs, defining API contracts in relation to domain models,
designing API resources based on domain model elements,
segregation of API resources, mapping domain model links to
the API, and designing the operations of an API resource. In
addition, we identified 27 decision drivers (forces) considered
by practitioners in those decisions, which can be broadly
categorized into forces on loosely coupled relation of API/its
clients and the Domain Model, maintainability aspects of the
API such as complexity and understandability, consistency
of data, runtime properties, the relation of API client and
server (API provider), and costs and effort (see Section V).
Finally, we identified numerous decision-option relations and
other relations. Those usually require a deliberate, incremental
human design effort. Our results can help scientists to get a
better understanding of practitioner concerns, and practitioners
to get an overview of the current view of other practitioners on
the interrelation of microservice APIs and DDD. Moreover, the
design guidance by our ADD model also can help to reduce
design efforts and risks. As future work, we plan to use our
findings to provide automated design advice to API designers
and improve tools that generate API code. We plan to perform
research on further ADDs model elaboration and validation.
Further research on related practices such as event storming
and event sourcing might be interesting as well.

ACKNOWLEDGMENTS

This work was supported by the API-ACE project funded
by the FWF (Austrian Science Fund) project I 4268.

REFERENCES

[1] O. Zimmermann, “Microservices tenets,” Computer Science-Research
and Development, vol. 32, no. 3-4, pp. 301–310, Jul. 2017. [Online].
Available: https://doi.org/10.1007/s00450-016-0337-0

https://docs.microsoft.com/en-us/azure/architecture/microservices/model/domain-analysis 
https://docs.microsoft.com/en-us/azure/architecture/microservices/model/domain-analysis 
https://doi.org/10.1007/s00450-016-0337-0


[2] O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun,
“Introduction to microservice api patterns (map),” Joint Post-proceedings
of the First and Second International Conference on Microservices
(Microservices 2017/2019), vol. 78, no. 4, pp. 1–17, 2020.

[3] E. Evans, Domain-Driven Design: Tacking Complexity In the Heart of
Software. Reading, MA.: Addison-Wesley, 2003.

[4] ——, “Ddd and microservices: At last, some boundaries!” https://www.
youtube.com/watch?v=sFCgXH7DwxM, 2016.

[5] V. Vernon, Implementing Domain-Driven Design. Boston, USA:
Addison-Wesley Professional, 2013.

[6] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. New York, NY: de Gruyter, 1967.

[7] J. Corbin and A. L. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative Sociology, vol. 13, pp. 3–
20, 1990.

[8] A. Rainer and A. Williams, “Using blog-like documents to investigate
software practice: Benefits, challenges, and research directions,” Journal
of Software: Evolution and Process, vol. 31, no. 11, p. e2197, 2019.

[9] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster,
“Managing architectural decision models with dependency relations,
integrity constraints, and production rules,” J. Syst. Softw., vol. 82,
no. 8, Aug. 2009. [Online]. Available: http://dx.doi.org/10.1016/j.jss.
2009.01.039

[10] M. Henning, “Api design matters,” Queue, vol. 5, no. 4, pp. 24–36,
2007.

[11] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What should
developers be aware of? an empirical study on the directives of api
documentation,” Empirical Software Engineering, vol. 17, no. 6, pp.
703–737, 2012.

[12] L. Shi, H. Zhong, T. Xie, and M. Li, “An empirical study on evolution
of api documentation,” in International Conference on Fundamental
Approaches To Software Engineering. Berlin, Heidelberg: Springer,
2011, pp. 416–431.

[13] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd docu-
mentation: Exploring the coverage and the dynamics of api discussions
on stack overflow,” Georgia Institute of Technology, USA, Tech. Rep.,
2012.

[14] L. Li, T. F. Bissyandé, Y. Le Traon, and J. Klein, “Accessing inaccessible
android apis: An empirical study,” in 2016 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). Washington,
DC, USA: IEEE, 2016, pp. 411–422.

[15] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability
and adoption in the android ecosystem,” in 2013 IEEE International
Conference on Software Maintenance. Washington, DC, USA: IEEE,
2013, pp. 70–79.

[16] S. Scalabrino, G. Bavota, M. Linares-Vásquez, M. Lanza, and
R. Oliveto, “Data-driven solutions to detect api compatibility issues
in android: an empirical study,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). Washington, DC,
USA: IEEE, 2019, pp. 288–298.

[17] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating
the detection of api-related compatibility issues in android apps,” in
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2018. ACM, 2018, pp. 153–163.

[18] A. Hora, R. Robbes, M. T. Valente, N. Anquetil, A. Etien, and
S. Ducasse, “How do developers react to api evolution? a large-scale
empirical study,” Software Quality Journal, vol. 26, no. 1, pp. 161–191,
2018.

[19] W. Wu, A. Serveaux, Y.-G. Guéhéneuc, and G. Antoniol, “The impact
of imperfect change rules on framework api evolution identification: an
empirical study,” Empirical Software Engineering, vol. 20, no. 4, pp.
1126–1158, 2015.

[20] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service api
evolution affect clients?” in 2013 IEEE 20th International Conference
on Web Services. Washington, DC, USA: IEEE, 2013, pp. 300–307.

[21] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of api
usability,” in 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. Washington, DC, USA: IEEE,
2013, pp. 5–14.

[22] H. Zhong and H. Mei, “An empirical study on api usages,” IEEE
Transactions on Software Engineering, vol. 45, no. 4, pp. 319–334, 2017.

[23] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “On the use of
replacement messages in api deprecation: An empirical study,” Journal
of Systems and Software, vol. 137, pp. 306–321, 2018.

[24] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE software, vol. 26, no. 6, pp. 27–34, 2009.

[25] L. Murphy, M. B. Kery, O. Alliyu, A. Macvean, and B. A. Myers, “Api
designers in the field: Design practices and challenges for creating usable
apis,” in 2018 ieee symposium on visual languages and human-centric
computing (vl/hcc). IEEE, 2018, pp. 249–258.

[26] U. Zdun, M. Stocker, O. Zimmermann, C. Pautasso, and D. Lübke,
“Guiding architectural decision making on quality aspects in microser-
vice apis,” in Service-Oriented Computing - 16th International Con-
ference, ICSOC 2018, Hangzhou, China, November 12-15, 2018, ser.
LNCS, vol. 11236. Springer, 2018, pp. 73–89.

[27] S. Kapferer and O. Zimmermann, “Domain-specific language and tools
for strategic domain-driven design, context mapping and bounded con-
text modeling,” in Proceedings of the 8th International Conference on
Model-Driven Engineering and Software Development, MODELSWARD
2020, Valletta, Malta, February 25-27, 2020. Scitepress, 2020, pp. 299–
306.

[28] C. Richardson, “A pattern language for microservices,” http://
microservices.io/patterns/index.html, 2017.

[29] T. Górski and E. Wojtach, “Use case api-design pattern for shared
data,” in 2018 26th International Conference on Systems Engineering
(ICSEng). Washington, DC, USA: IEEE, 2018, pp. 1–8.

[30] V. Garousi, M. Felderer, M. V. Mäntylä, and A. Rainer, “Benefitting
from the grey literature in software engineering research,” 2019.

[31] K. Charmaz, Constructing grounded theory. sage, 2014.
[32] F. Zieris and L. Prechelt, “On knowledge transfer skill in pair program-

ming,” in Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM’14.
New York, NY, USA: Association for Computing Machinery, 2014.

[33] M. Fowler, Patterns of Enterprise Application Architecture. USA:
Addison-Wesley, 2002.

[34] M. Voelter, M. Kircher, and U. Zdun, Remoting Patterns - Foundations
of Enterprise, Internet, and Realtime Distributed Object Middleware.
Hoboken, NJ, USA: J. Wiley & Sons, 2004.

https://www.youtube.com/watch?v=sFCgXH7DwxM
https://www.youtube.com/watch?v=sFCgXH7DwxM
http://dx.doi.org/10.1016/j.jss.2009.01.039
http://dx.doi.org/10.1016/j.jss.2009.01.039
http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html

	Introduction
	Related Work
	Research Method
	Architectural Design Decisions
	Domain Model Mapping Decision
	API as Contract Decision
	Designing API Resources Decision
	Resource Segregation Decision
	Link Mapping Decision
	Operation Design Decision

	Discussion
	How Practitioners Understand DDD-Based Microservice API Design
	Threats to Validity

	Conclusions
	References

