Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome

K Roessler, M Donat, R Lanzenberger, K Novak, A Geissler, A Gartus, A R Tahamtan, D Milakara, T Czech, M Barth, E Knosp and R Beisteiner

doi:10.1136/jnnp.2004.050286

Updated information and services can be found at:
http://jnnp.bmj.com/cgi/content/full/76/8/1152

These include:

References
This article cites 49 articles, 8 of which can be accessed free at:
http://jnnp.bmj.com/cgi/content/full/76/8/1152#BIBL

Rapid responses
You can respond to this article at:
http://jnnp.bmj.com/cgi/eletter-submit/76/8/1152

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Journal of Neurology, Neurosurgery, and Psychiatry go to:
http://journals.bmj.com/subscriptions/
Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome

K Roessler, M Donat, R Lanzenberger, K Novak, A Geissler, A Gartus, A R Tahamtan, D Milakara, T Czech, M Barth, E Knosp, R Beisteiner

PAPER

Cerebral glioma surgery seems beneficial for patient survival of low and high grade glioma, especially in cases where a gross total resection can be achieved. However, the ultimate neurosurgical goal in patients with cerebral gliomas in highly eloquent areas such as the motor cortex is to preserve function and quality of life. Progress in computer science introduced neuronavigation systems in the mid 1980s to neurosurgical intraoperative techniques, which allowed the transformation of image structures of all imaging modalities onto the brain surface during surgery for definition of anatomical resection borders. Intraoperative electrocortical stimulation has proven to be the gold standard in glioma surgery since the 1930s for the avoidance of postoperative neurological deterioration. However, such stimulation introduces the risk of triggering intraoperative seizures, which may jeopardise the reliability of further stimulation mapping.

Preoperative functional magnetic resonance imaging (fMRI) enables the definition of cortical motor areas and their association to tumour tissue, and can provide global preoperative information about the resectability of the tumor without causing neurological deterioration. Up to now, validation of fMRI topography by intraoperative electrocortical stimulation studies has shown variable failure rates, with up to 20% disagreements when 1.5 T clinical MRI systems were tested. Application of higher field strengths has the advantages of improved signal to noise ratio and enhanced blood oxygenation level dependent (BOLD) effect; however, clinical data on the validity and postoperative outcomes in patients with higher field strength (3 T) fMRI do not as yet exist.

Thus, this is to our knowledge the first study testing clinical outcome and correlation between fMRI and navigated MCS with preoperative high field (3 T) motor fMRI. These data should clarify whether 3 T fMRI results could safely be used preoperatively and intraoperatively to identify and spare motor areas during glioma surgery.

PATIENTS AND METHODS

Patient population
For the study, 22 patients (mean age 39 years, range 10 to 65) with gliomas close to or involving the motor cortex were recruited. Clinical, radiological, and histological (according to the recent WHO classification) findings and extent of resection (gross total >99%, subtotal between 90 and 99% radiological amount) as defined by an immediate postoperative MRI scan are summarised in table 1. Six patients had one previous surgery and one patient had two (previous histology in brackets). Preoperative neurological function and postoperative outcome 1 week and 3 months after surgery were assessed using the MRS (table 2).

Abbreviations: BOLD, blood oxygenation level dependent; fMRI, functional magnetic resonance imaging; MCS, motor cortex stimulation

See end of article for authors’ affiliations

Correspondence to:
Dr K Roessler, Department of Neurosurgery, or Dr R Beisteiner, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; karl.roessler@meduniwien.ac.at; roland.beisteiner@meduniwien.ac.at

Received 20 July 2004
In revised form 17 November 2004
Accepted 18 November 2004
Individually constructed plaster cast helmets for each approach. A mical reference system was defined using the Talairach angle 90˚, 128EPI sequence (repetition time 4000 ms; echo time 5.5 ms; flip Germany) with a phase corrected blipped GE, single shot, fMRI imaging in a 3 Tesla high field MR tomograph.

Motor functional (f)MRI in glioma surgery 1153

Prior to further analysis, all volumes of every subject were realigned using dedicated software (AIR 3.08 41) with a rigid six parameter (three transformation and three rotation parameters) model. Motor risk maps 31 32 which avoid localisation errors caused by functional smoothing procedures 31 32 were then generated. Voxel reliability was determined by evaluating the number of runs a voxel surpassed a certain correlation threshold. At various correlation thresholds, reliability values were colour coded and mapped as follows: yellow = 75–100% of runs active; orange = 50–75% of runs active; red = 25–50% of runs active (figs 1 and 2). The largest correlation threshold that yielded voxel clusters with reliable voxel cluster was defined as the motor centre. To

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th>No.</th>
<th>Age</th>
<th>Tumour site</th>
<th>Size (cm)</th>
<th>Pre-op neurology</th>
<th>FMRI paradigm</th>
<th>Extent of surgery</th>
<th>Histology</th>
<th>MRS pre-op</th>
<th>MRS 1 week post-op</th>
<th>MRS 3 months post-op</th>
<th>Results MCS</th>
<th>MRS in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>Fronto-paracentral right</td>
<td>4.5</td>
<td>GM</td>
<td>H/F left motor</td>
<td>GT</td>
<td>Astro II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Foot, lower leg, thigh, forearm, hand</td>
<td>Excluded</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>Central right</td>
<td>3.0</td>
<td>GM, JE</td>
<td>H/F left motor</td>
<td>ST</td>
<td>GBM/ (GBM/ GBM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Hand, forearm</td>
<td>Excluded</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>Precentral right</td>
<td>5.0</td>
<td>JE A left</td>
<td>H/F left motor</td>
<td>GT</td>
<td>Oligo I</td>
<td>0</td>
<td>5*</td>
<td>0</td>
<td>Hand, forearm</td>
<td>Excluded</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>Central right</td>
<td>3.0</td>
<td>CPS</td>
<td>H left M motor</td>
<td>GT</td>
<td>Astro III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Hand, finger, face</td>
<td>Excluded</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>Centro-paracentral left</td>
<td>5.0</td>
<td>JE AF right</td>
<td>H/F left motor, F motor</td>
<td>B</td>
<td>GBM</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Foot, lower leg</td>
<td>Excluded</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>Precentral right</td>
<td>4.0</td>
<td>GM</td>
<td>H/F left M motor</td>
<td>ST</td>
<td>Astro III</td>
<td>0</td>
<td>2*</td>
<td>0</td>
<td>Hand</td>
<td>Excluded</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
<td>Postcentral left</td>
<td>6.0</td>
<td>HH, Cogn.</td>
<td>H/ right M motor</td>
<td>GT</td>
<td>GBM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Hand, forearm</td>
<td>Excluded</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>Central left</td>
<td>5.0</td>
<td>Asphasia</td>
<td>FA flex right</td>
<td>ST</td>
<td>GBM/ (Astro III)</td>
<td>0</td>
<td>2*</td>
<td>0</td>
<td>Hand, forearm</td>
<td>Excluded</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>Fronto-central left</td>
<td>4.5</td>
<td>CPS</td>
<td>H/F right motor</td>
<td>ST</td>
<td>GBM</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Excluded</td>
<td>NMR</td>
</tr>
<tr>
<td>10</td>
<td>56</td>
<td>Central left</td>
<td>2.5</td>
<td>JE A right</td>
<td>H right motor</td>
<td>ST</td>
<td>GM</td>
<td>0</td>
<td>2*</td>
<td>0</td>
<td>Hand, forearm</td>
<td>Excluded</td>
</tr>
<tr>
<td>11</td>
<td>29</td>
<td>Centro-postcentral right</td>
<td>2.5</td>
<td>JE AF left, GM</td>
<td>H left motor/sensory</td>
<td>GT</td>
<td>Oligo I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Hand, forearm, shoulder</td>
<td>Excluded</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>Postcentral left</td>
<td>4.0</td>
<td>CPS</td>
<td>H right motor/sensory</td>
<td>GT</td>
<td>Astroll / (astro II)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Excluded</td>
<td>Technical problem</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Centro-temporal right</td>
<td>2.0</td>
<td>CPS, JE</td>
<td>H left M motor</td>
<td>ST</td>
<td>Ganglio-glioma II/ I</td>
<td>0</td>
<td>2*</td>
<td>0</td>
<td>Face, tongue</td>
<td>Excluded</td>
</tr>
<tr>
<td>14</td>
<td>31</td>
<td>Central left</td>
<td>3.0</td>
<td>JA face/HP right</td>
<td>H right M motor</td>
<td>ST</td>
<td>B</td>
<td>GBM/ astro</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Hand, forearm</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>Centro-insular right</td>
<td>3.0</td>
<td>HP left</td>
<td>H left M motor</td>
<td>ST</td>
<td>GBM/ (astro II)</td>
<td>3</td>
<td>4*</td>
<td>3</td>
<td>Hand, forearm, Finger flexion</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>44</td>
<td>Postcentral left</td>
<td>5.0</td>
<td>CSD</td>
<td>H right motor/sensory</td>
<td>GT</td>
<td>Oligastro III, (astro II)</td>
<td>1</td>
<td>2*</td>
<td>1</td>
<td>Excluded</td>
<td>Technical problem</td>
</tr>
<tr>
<td>17</td>
<td>29</td>
<td>Precentral right</td>
<td>4.0</td>
<td>JE face A left</td>
<td>H left M motor</td>
<td>GT</td>
<td>GBM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Hand, forearm</td>
<td>Excluded</td>
</tr>
<tr>
<td>18</td>
<td>41</td>
<td>Fronto-central/postcentral right</td>
<td>3.0</td>
<td>GM</td>
<td>H/F left motor</td>
<td>ST</td>
<td>Oligastro III, (astro II)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Foot, lower leg, hip</td>
<td>Excluded</td>
</tr>
<tr>
<td>19</td>
<td>14</td>
<td>Centro-paracentral right</td>
<td>6.0</td>
<td>Hhyp left</td>
<td>H left motor/sensory</td>
<td>GT</td>
<td>GBM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Hand, forearm</td>
<td>Excluded</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>Central right</td>
<td>6.0</td>
<td>GM</td>
<td>H/F right motor</td>
<td>ST</td>
<td>Astro I, pilocytic GMB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Foot, lower leg</td>
<td>Excluded</td>
</tr>
<tr>
<td>21</td>
<td>65</td>
<td>Precentral right</td>
<td>4.5</td>
<td>HP left</td>
<td>H left motor</td>
<td>ST</td>
<td>Astro III</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>Excluded</td>
<td>NMR</td>
</tr>
<tr>
<td>22</td>
<td>55</td>
<td>Precentral right</td>
<td>4.0</td>
<td>GM</td>
<td>H/F right M motor</td>
<td>ST</td>
<td>Oligo II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Excluded</td>
<td>NMR</td>
</tr>
</tbody>
</table>

*Transient neurological worsening. CSD, cognitive and speech disturbance; CPS, complex partial seizures; GM, generalised seizures; HA, hemianopia, HP, hemiparesis; H, hand; F, foot; M, mouth, GT, gross total; ST, subtot; B, biopsy; astro, astrocytoma; GBM, glioblastoma multiforme; oligo, oligodendroglioma; oligoastro, oligoastrocytoma; fMRI, functional MRI; MCS, motor cortex stimulation; MRS, Modified Rankin Scale level; pre-op, preoperative; preoperative, post-op, postoperative; FISIS, focal intraoperative stimulation induced seizures; NMR; no motor response; SPS, simple partial seizures.

Magnetic resonance imaging studies

Preoperatively, all patients underwent morphological and fMRI imaging in a 3 Tesla high field MR tomograph (BRUKER Medspec 30/80, BRUKER BioSpin, Ettlingen, Germany) with a phase corrected blipped GE, single shot, EPI sequence (repetition time 4000 ms; echo time 5.5 ms; flip angle 90°, 128×128 matrix, 230×230 field of view, 25 axial slices, slice thickness 3 mm, no interslice gap, sinc pulse excitation), using an fMRI technique employing motor paradigms as described previously 14 16 32 (table 1). Individually constructed plaster cast helmets for each patient were used for head fixation. 23 A common anatomical reference system was defined using the Talairach approach. 16

www.jnnp.com
avoid localisation errors due to EPI distortions, motor centres were individually transferred from distorted EPI images to non-distorted anatomical images by a neuroanatomical expert in a semiautomatic fashion. The resulting anatomical functional dataset was used for MCS.

Imaging data transfer and surgical planning

Anatomical MRI and fMRI datasets were uploaded to the neuronavigation systems. Image correlation was carried out by mechanical data transformation in the neuronavigation system via a magneto-optical disc or, for the last 10 cases, automatically with recently available commercial software (Medtronic, Minneapolis, Minnesota, USA). The fMRI image information was transformed into digital imaging and communications in medicine (DICOM) format and split into anatomical and functional information. The anatomical 3 T MRI was consecutively fused with the 1.5 T navigation image, and exchanged with the functional image content. This procedure led to a spatially correct transformation of the fMRI images for intraoperative navigation. Preplanning of surgery and navigation was performed in the planning station of the navigation systems outside the operating theatre the day before surgery. Image registration was carried out in the operating theatre, using an established protocol, to avoid registration inaccuracies and to minimise brain shift associated inaccuracies at the beginning of stimulation mapping.

Intraoperative neuronavigation and motor cortex stimulation

The patient’s head was fixed in a standard head rest (Mayfield clamp; Integra, NJ, USA). Three different navigation systems were used for spatial correlations of fMRI data with intraoperative motor cortex mapping. For registration of image data onto the patient’s head, the infrared pointer navigation system EGN (Philips, Best, The Netherlands) was used in five patients, the infrared pointer and robotic microscope navigation system MKM (Zeiss, Oberkochen, Germany) in seven, and the infrared pointer and microscope navigation system StealthStation TREON (Medtronic, Minneapolis, Minnesota, USA) for the last 10 patients. Correlation of image data and brain structures was achieved as described earlier. When the registration procedure demonstrated a registration error (deviation of image structures and corresponding patient structures after registration) >2 mm, the registration was cancelled and the procedure was repeated. Spatial correlation between fMRI data and cortical mapping results was performed.

Table 2 Modified Rankin Scale

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No symptoms at all</td>
</tr>
<tr>
<td>1</td>
<td>No significant disability despite symptoms; able to carry out all usual duties and activities</td>
</tr>
<tr>
<td>2</td>
<td>Slight disability; unable to carry out all previous activities, but able to look after own affairs without assistance</td>
</tr>
<tr>
<td>3</td>
<td>Moderate disability; requiring some help, but able to walk without assistance</td>
</tr>
<tr>
<td>4</td>
<td>Moderately severe disability; unable to walk without assistance and unable to attend to own bodily needs without assistance</td>
</tr>
<tr>
<td>5</td>
<td>Severe disability; bedridden, incontinent and requiring constant nursing care and attention</td>
</tr>
<tr>
<td>6</td>
<td>Dead</td>
</tr>
</tbody>
</table>

Figure 1 An fMRI risk map. Case 11: 29 year old male, presenting with focal sensible Jackson’s epilepsy on the left hand and left forearm. Neuroradiological examinations revealed a hypointense, partially calcified lesion within the postcentral gyrus, next to the central sulcus and precentral knob on the right. The fMRI activation areas are visualised as yellow and red areas after performing a finger flexion extension paradigm within the 3 T MRI using a plaster cast helmet and repeated measurements and correlation data analysis (risk map technique).

Figure 2 Intraoperative correlative stimulation mapping using neuronavigation. Intraoperative neuronavigation: fMRI was fused to structural contrast enhanced 1.5 T MRI and registered to the patient’s head. A correlation analysis of anatomical details on the images and corresponding cerebral structures is possible. Electro cortical stimulation on the fMRI finger flexion extension paradigm activation area was performed with the Ojemann stimulator. Finger flexion occurs during stimulation of the cortical area, which showed the fMRI activation. *fMRI activation signal, +, corresponding cortical area identified by neuronavigation; >, central sulcus.
immediately after opening the dura to avoid the effect of brain shift. Motor fMRI data were outlined with the navigation system as preoperatively defined, and were stimulated along with the surrounding tissue using a bipolar stimulation electrode and electrical stimulator (Ojemann cortical stimulator OCS-1; Radiionics, Germany). The current was increased stepwise from 2 mA to a maximum of 25 mA, and trains of square wave pulses of 2–4 ms duration at 50 Hz were used. The effect of cortical stimulation was observed and documented by a member of the neurosurgery (or neuroanesthesiology) team. Tonic activation of contralateral limb or facial muscles was classified as positive motor response and further increase of stimulus intensity was stopped. As the main goal of this study was the investigation of the functional significance of the preoperatively defined fMRI motor focus, the motor focus and a surrounding area of about 1 cm was primarily mapped. Depending on the topographic relationship between tumour tissue and fMRI activation sites, areas with less reliable or no fMRI activation were additionally stimulated. Anatomical sites of stimulation responses were marked using sterile paper plates numbered with consecutive Arabic numerals and documented by photographs.

All patients were kept under total intravenous anaesthesia during the whole surgery and stimulation mapping procedure, using propofol (6–12 mg/kg/h) as a sedative and remifentanil (0.05–2 µg/kg/min) as an analgesic drug. No muscle relaxants were used except for the induction of general anaesthesia. In three patients, focal motor seizures developed, which were easily abolished by rinsing the cortex with cold Ringer’s solution and administering an additional bolus of 10–20 mg propofol.

RESULTS

In the study, all 22 patients (100%) successfully demonstrated cortical activation from a finger flexion/extension paradigm in the fMRI within the precentral knob, nine patients additionally from a foot flexion/extension paradigm in the region of the motor part of the paracentral lobule, and six patients from a mouth opening/closing paradigm in the opercular part of the precentral gyrus. Motor foci representing most reliable activations at the highest possible correlation thresholds comprised only few voxels (fig 1). In 17 of 18 patients in whom a motor response could be elicited, motor cortex stimulation at the fMRI motor focus or within an area of 1 cm around the focus resulted in a motor response, somatotopically corresponding to the MRI paradigm (table 1, fig 1). For safe tumour resection, mapping of tissue not activated with our fMRI paradigm was also performed. Results showed motor responses, but these were qualitatively different from the target movement (table 1). In two patients (9.1%), no motor response could be elicited by stimulating the exposed cortex, in three patients (13.6%), technical problems occurred during stimulation. These five patients had to be excluded from the evaluation of fMRI MCS induced seizures. Compared with literature results, where best correlation mapping using image guidance with a considerable number of patients showed failure rates of up to 20%, our results support the clinical applicability of the achieved technical refinements. Considering the 5 mm distance of the two poles of the stimulation probe, accuracy was guaranteed for a distance of about 10 mm around the motor focus, discussed as the critical distance from response site to resection margin for inducing permanent neurological deficits, which we respected in every patient. In comparison, the correlation reported for magnetic source imaging for somatosensory and motor mapping ranges was within a distance of 19 mm, with the disadvantage that magnetoencephalography units are rarely available.

Despite the unfavourable localisation of the cerebral gliomas in the investigated patients, clinical outcome resulted in 31.8% transient morbidity. Nevertheless, this seems unacceptably high, underlining the problem with using imaging instead of biopsy for radical glioma surgery in and around the motor cortex. Recent reports on comparably eloquent tumour surgery within eloquent areas and with comparable amounts of resection report up to 71% transient postoperative morbidity and 5–10% permanent neurological deficits, despite application of electrocortical mapping and neuronavigation. In contrast, in our study, all patients who experienced deterioration recovered to the original preoperative MRS level, resulting in no permanent neurological morbidity. A significant problem with preoperative fMRI as used here is that in complex clinical situations more extended mapping of primary motor cortex may be desirable. Repeated preoperative fMRI investigations with more complex motor tasks need to be performed. This, of course, would demand a significant increase in the length of the operation.

DISCUSSION

Despite the controversy surrounding the prognostic significance of the extent of resection in the treatment of hemispheric gliomas, growing evidence exists that surgical resection of gliomas is beneficial for long term patient survival of high and low grade gliomas. In highly eloquent areas, such as the motor cortex, high morbidity rates are reported for resective surgery, and in most cases only biopsy or subtotal resection is advisable. Employing motor cortex stimulation, image fusion, and intraoperative neuronavigation, complications may be reduced and resection optimised.

The role of preoperative functional MRI and its validity in glioma surgery for sparing eloquent cortex areas are still under debate. Therefore, we investigated the validity of a recently developed clinical high field motor fMRI protocol by navigated motor cortex stimulation intraoperatively, and evaluated the postoperative neurological outcome. This technique combines optimised head fixation, high spatial functional resolution, and evaluation of voxel reliability in high magnetic field with improved signal to noise ratio, enhanced BOLD effect (functional contrast), and reduced artefacts, as described previously.

Preoperative fMRI motor mapping was successfully performed in all patients. A success rate superior to results using conventional lower field fMRI was achieved. Eloquent tissue was always detected as highly focal in the sense of voxels representing the largest probability for true positive activation within the experimental context (table 1). In 5 of 22 patients, technical problems with MCS prevented correlation of fMRI findings with stimulation results (MCS failure rate of 22.7%), which seems high, compared with literature. Subclinical seizure activity and repeatedly experienced problems with the technical performance of the stimulation might be the reason. In all 17 patients, where correlation mapping was successful, a good spatial correlation of fMRI activation site and motor response similar to the activation task in fMRI was noted, indicating 100% reliability of the preoperatively detected fMRI risk areas. Compared with literature results, where best correlation mapping using image guidance with a considerable number of patients showed failure rates of up to 20%, our results support the clinical applicability of the achieved technical refinements. Considering the 5 mm distance of the two poles of the stimulation probe, accuracy was guaranteed for a distance of about 10 mm around the motor focus, discussed as the critical distance from response site to resection margin for inducing permanent neurological deficits, which we respected in every patient. In comparison, the correlation reported for magnetic source imaging for somatosensory and motor mapping ranges was within a distance of 19 mm, with the disadvantage that magnetoencephalography units are rarely available.
extended preoperative preparation time and data analysis work. In contrast, extended motor mapping using electrical stimulation probes takes much less time. Another problem using our improved technique is the time consuming patient preparation, with a total data acquisition and integration time for navigated surgery of about 24 hours, which is not acceptable in space occupying gliomas presenting with acute signs of increased intracranial pressure or in children.12 However there are no such restrictions for patients with low grade gliomas, and the 100% concordance of preoperative fMRI activation with intraoperative cortical mapping favours this method as a preoperative planning and intraoperative navigation assistance whenever feasible.

In summary, high field fMRI combined with specifically developed clinical fMRI technique has been demonstrated to be safe and highly reliable for motor tasks in preoperative investigation of glioma patients. Intraoperative neuronavigation guided electrocortical mapping and correlation with fMRI motor foci showed agreement within about 10 mm spatial resolution. This technique may add benefit in reducing postoperative morbidity when used as an adjunct to all affordable technical adjuncts for the planning of glioma surgery in motor areas.

ACKNOWLEDGEMENTS

The authors acknowledge important scientific and organisatory navigation assistance whenever feasible.

REFERENCES

NEUROLOGICAL STAMP

Sir Thomas Lewis 1881–1945

The principal contributions of Sir Thomas Lewis, who was born in Cardiff, were in cardiology and electrocardiography. He also performed research on blood vessels and pain. His observation on the sequence of events that followed stroking sensitive or normal skin with a blunt instrument, known as the “triple response”, was described by Lewis in 1924, and was attributed to the release of histamine-like substance. This response is of interest to neurologists, because intradural histamine produces a triple response (vasodilatation, weal formation, and flare) in pre-ganglionic, but not post-ganglionic brachial plexus lesions.

Lewis was honoured on a stamp produced by Mauritius in 1981, (Stanley Gibbons no. 624, and Scott no.529) on the centenary of his birth. He is shown here with an electrocardiogram.

L F Haas
Department of Neurology, Wellington Hospital, Private Bag 7902, Raddiford Street, Wellington, New Zealand; lhaas@xtra.co.nz

doi: 10.1136/jnnp.2004.055269