
On the Practitioners’ Understanding of Coupling Smells – A Grey
Literature Based Grounded-Theory Study

Apitchaka Singjai, Georg Simhandl, Uwe Zdun
University of Vienna, Faculty of Computer Science, Research Group Software Architecture, Austria,

firstname.lastname@univie.ac.at

Abstract

Context: Code and design smells, such as the coupling smells examined in this article, are widely studied.
Existing empirical studies reveal gaps between the scientific theory and practice, not yet explained by
the scientific literature. Only basic coupling smell detection approaches and metrics seem to have been
transferred to practice so far.
Objective: This article aims to study the current practitioner’s understanding of coupling smells.
Method: Based on grey literature sources containing practitioner views on coupling smells, we performed
a Grounded Theory (GT) study. We used UML-based modeling to precisely encode our findings and
performed a rigorous analysis of our codes and models.
Results: Our results are defining factors of coupling smells, as well as smell impacts, trade-offs, relation-
ships to other smells, relationships to practices and patterns, and fix options as perceived by practitioners.
We further identified gaps in the understanding of coupling smells between science and practice, and
derived opportunities and challenges for future scientific work.
Conclusions: Five lessons are presented as opportunities and challenges for future research. Our re-
sults can help scientists to get a better understanding of practitioner concerns, and practitioners to get an
overview of the current perception of other practitioners on coupling smells.

Keywords: grey literature, grounded theory, design smells, code smells, coupling smells, software
design quality, code quality.

1. Introduction

A Code or Design Smell is a symptom of poor implementation or design choices that often corresponds
to a deeper problem in a software system [1]. The term Coupling Smell refers to those kinds of smells
that contribute to a specific kind of design problem: excessive coupling between classes. As an example
of a coupling smell consider a Method m of a Class A that uses two methods of A itself, but 10 methods
of Class B. This method likely suffers from the Feature Envy coupling smell because it uses the features
of B excessively. Coupling could be substantially reduced, if m is moved to B or – even better – the part
of m that uses B could be extracted and then moved to B.

The scientific literature has developed a substantial number of high-quality research studies on code
and design smells [2], including metrics to detect code smells [3], smell detection approaches and tools [4,
5, 6, 7, 8], smell fixing approaches and tools [9, 10, 11, 12], taxonomies [13, 14], and a considerable
number of empirical studies with human participants [15, 16, 17, 18, 19]. However, the existing empirical
studies indicate that there are gaps between the scientific results and practice. For many current scientific
approaches, the actual accuracy of smell detection and fixing in complex coupling situations relevant in
practice is either low or unclear (see Section 2). We also observed that only relatively trivial approaches,

Preprint submitted to Information and Software Technology January 28, 2021

such as basic definitions and metrics, seem to have been transferred to practitioner views, approaches,
and tools yet. Finally, smells which reside at the boundary between code and design quality, such as
coupling smells, seem to be more prone to these issues than simplistic code smells such as Long Method.
These problems have led to this study, which aims to investigate the current practitioner’s understanding
of coupling smells.

To illustrate the research problem further, let us give a few examples of interesting phenomena not well
explained by the current scientific literature on code smell approaches and tools – identified in existing
empirical studies on smells: Guo et al. [18] observed that domain-specific tailoring of code smell detection
rules and heuristics can greatly improve the human understanding of smells. Furthermore, they found
problems in encoding code smells into a tool using metrics from the scientific literature. Mantyla et
al. [16] found that the use of smells for code evaluation purposes is hard due to conflicting perceptions of
different evaluators, and that metrics and smell evaluations did not correlate. Palomba et al. [17] found
that instances of a smell may or may be problematic based on the “intensity” of the problem, and that
developer’s experience and system’s knowledge play an important role in the identification of some code
smells. Yamashita and Moonen [19] investigated serious interaction effects between smells. Palomba et
al. [17] concluded: “Indeed, there seems to be a gap between theory and practice, i.e., what is believed to
be a problem (theory) and what is actually a problem (practice).”

We thus explore the current practitioner’s understanding of coupling smells. In this article, we describe
a Grounded Theory (GT) [20, 21] based qualitative study for the above mentioned purpose. We decided to
perform a Grey Literature Study (GLS) of acknowledged practitioners’ views on coupling smells. Accord-
ing to Rainer and Williams [22] there are many benefits of GLS in software engineering research, as they
promote the voice of practitioners and provide information on practitioners’ contemporary perspectives on
important topics relevant to practice and research. In our GT study we used, after initial text-based open
coding, formal UML-based modeling for axial and selective coding, instead of the often-used text-based
coding process, in order to develop a precisely defined and consistent theory. We have successfully used
similar research methods in a couple of prior studies [23, 24, 25, 26]. A secondary contribution of this
article is that the description of this method in Section 3 can be used as a definition of this GT variant for
later use in other research studies, and the coupling smell study in this context can be seen as a detailed
example. We set out to answer the following research questions:

• RQ1 How are coupling smells understood by practitioners?

– RQ1.1 What are the defining factors of coupling smells as perceived by practitioners?

– RQ1.2 What are the impacts on and trade-offs to be made with regard to code and design
quality when considering coupling smells as perceived by practitioners?

– RQ1.3 What are the relations and interactions among coupling smells, to other related smells,
and to other software code and design concepts as perceived by practitioners?

– RQ1.4 What are the options for fixing coupling smells as perceived by practitioners?

• RQ2 What are gaps in the understanding of coupling smells between the practitioner’s view and the
scientific literature?

• RQ3 What are opportunities and challenges for future scientific work to address the practitioner
concerns on coupling smells well?

Our results comprise a set of relevant coupling smells described with a detailed meta-model and a
set of definitions describing the defining factors of coupling smells. For each smell, we found many

2

possible liabilities and violations of software design principles that explain their impacts on code and
design quality. Our model contains detailed relations among the smells, as well as to existing practices
and patterns. Finally, for each smell the model includes detailed options for fixing the smell. We compared
our results to previous studies in this field. This revealed interesting gaps, from which we derived five
lessons that represent opportunities and challenges for future research.

We believe that our results can help scientists better understand practitioner concerns regarding code
smells. This can help in better explaining the mentioned empirical results and target future research
towards approaches that likely have a high chance of adoption in practice.Our work can also help practi-
tioners get an overview of other practitioners’ current views on coupling smells.

This article is structured as follows: First, we discuss the related work in Section 2. Next, we explain
our research method in Section 3. In Section 4 we present the detailed results of our grounded theory,
i.e. the resulting meta-model and the detailed results for the coupling smells. Section 5 discusses the
implications for the research questions, which includes an in-depth comparison of our results to the related
work, and a discussion of threats to validity. In Section 6 we draw conclusions.

2. Related work

2.1. Research works on coupling and related smells detection and repair
Many studies on coupling smells are about engineering detection and/or smell fixing approaches and

tools. Most existing works use metrics or other measures on structural or behavioral features of the code
to detect smells. In a recent systematic literature review [2] static source code analysis (such as behav-
ioral, empirical, algorithm-based, methodology-based, and linguistic source code analyses) and dynamic
source code analysis (such as dynamic threshold adaptation or genetic algorithms), are found as the pri-
mary methods for smell detection. Refactorings, such as those from Fowler’s book [1], are often used or
suggested as fixes for the smells.

Lanza and Marinescu [3] suggest metrics and thresholds to identify a large number of code smells.
The book covers Feature Envy, Data Class and other smells, as well as situations of intensive coupling
underlying many smells discussed in our work. The authors recommend detection strategies, i.e. metrics-
based rules, to detect the smells in the code.

JDeodorant [4] is a tool for detecting smells such as Feature Envy. Chatzigeoriou and Manakos [27]
adopt JDeodorant to investigate three code smells (Long method, Feature Envy, and State Checking) in
two open source projects. They recommend resolving Feature Envy by the move method and move field
refactorings [1], but the study is limited to the refactoring options offered by the tool. In another work,
Tsantalis and Chatzigeorgiou [9] suggest distance metrics as a way to identify move method refactoring
opportunities to remove Feature Envy. Palomba et al. [5] suggest HIST, a history-based smell detection
approach. They compare HIST to JDeodorant for detecting Feature Envy, and conclude that the overall
F-measure for HIST is 77% and for JDeodorant 68%. For this evaluation, they used a manually produced
oracle from 20 open source systems. This work led to the Landfill open data set [28], one of the few
manual oracles in the field of code smell. A summary of research related to JDeodorant can be found
in [29].

Distance metrics are often applied in the context of move method refactoring [1], which is one of
the most commonly proposed resolution strategies for coupling smells. JMove [10, 11] is based on an
approach for move method refactoring recommendation that uses static dependency sets. The precision
and recall for JMove [10, 11] were evaluated on synthesized versions of open source systems, in which the
authors moved random methods to random classes. It is assumed that a tool should suggest the opposite
of the randomly moved methods. JMove’s precision ranges from 21% to 32% and its recall ranges from
21% to 60%.

3

Dipongkor et al. [12] propose another move method refactoring recommendation approach based on
the frequency of coupled methods and attributes. Rahman et al. [30] recommend to move methods based
on coupling, cohesion, and contextual similarities.

Fontana et al. [31] exploit code smell relations to assess software architecture quality. They identify
code smells by recurring anomalies and metrics. Their code smells include among other smells, the Data
Class and Message Chain coupling smells. They evaluate 74 systems to figure out the relationships among
the code smells.

Vidal et al. [32] present, prioritize, and evaluate criteria to identify architectural problems using their
JSpIRIT tool. 23 versions of four systems are evaluated to reveal smells including Feature Envy. For smell
detection, they simply use the catalog by Lanza and Marinescu [3] and assume correct identification.

Fard and Mesbah [6] propose automated JavaScript code smells detection in their Jsnose tool which
combines a metrics-based approach with static and dynamic analysis. They gather 13 code smells includ-
ing Message Chain. They use rather simple metrics to identify the smells, but most of their smells are
simple in nature, too.

Some authors experiment with machine learning approaches for smell detection. Fontana et al. [7]
compare 16 machine learning algorithms on four code smells, including Data Class and Feature Envy.
They report a highest accuracy of 96%. However, their training sets are generated by tools using simple
metrics and heuristics. Liu et al. [8] suggest deep learning based Feature Envy detection based on textual
features of the source code. They compare the accuracy of their approach to JDeodorant and JMove. They
claim an F1-measure of 18.66% for JDeodorant and 17.27% for JMove, whereas their own approach offers
an F1-measure of 52.98%. However, such numbers need to be considered with great care, as the training
data is generated based on distance metrics; that is, one of the approaches the authors wanted to improve
with their approach is used for training data generation.

2.2. Research works on improving smell detection and repair with additional knowledge
Several studies try to improve smell detection and repair them with some kind of domain or other-

wise specialized additional knowledge. As our study results indicate this as a promising future research
direction, we highlight different kinds of related approaches in this section.

Concerning architectural issues, some approaches study the impact of coupling smells on architec-
tural technical debt [31, 32]. A more promising approach might be to study architecture coupling smells
directly; e.g. Garcia et al. [33] introduce four architectural smells directly based on architecture concepts
and focusing on architectural component interactions. Another even more domain-specific example is
the study of Taibi et al. on microservice smells [34] which uses architecture structures and specifics of
microservices-based architectures to define the smells precisely.

Other approaches focus on other specialized knowledge. Ratiu et al. [35] use historical information
to increase the accuracy of automatic detection. They consider the God Class and Data Class smells.
Another history-based approach is suggested by Palomba et al. [5]. Marinescu [36] shows that detection
accuracy of the Data Class and Feature Envy smells can be improved by considering aspects of the studied
enterprise applications. Fontana et al. [37] suggest filters to remove false positives, e.g. a filter on test class
methods is defined for Message Chains, and for Data Classes filters such as Serializable Class, Test Class,
and Logger Class are defined. Guo et al. [18] present an approach to tailor the detection heuristics to take
domain-specific factors into account.

2.3. Systematic studies of coupling and related smells
There are a number of studies on taxonomy and empirical studies of coupling smells. Sabir et al. [2]

perform a systematic literature review to study approaches for detection of smells and their evolution in
object-oriented and service-oriented systems during 2000-2017. In their coupling category they identify

4

the Schizophrenic Class, Message Chain, Middle Man, Incomplete Library Class, Feature Envy, Inap-
propriate Intimacy, Intensive Coupling, Extensive Coupling, and Unnamed Coupling smells as coupling
smells. The survey identified various static and dynamic source code analyses as the primary methods for
smell detection (summarized above).

Mantyla et al. [13] present a subjective taxonomy and provide an initial empirical study on bad smells
in code by performing a survey with developers of a small Finnish software company. They categorized
22 smells into 7 categories: Bloaters, Object-Orientation Abusers, Change Preventers, Dispensables, En-
capsulators, Couplers, and Others. For the Couplers, they categorize Feature Envy and Inappropriate
Intimacy. Our study of practitioner views include these two smells in this category, too, but reveals that
practitioners see many other smells as coupling smells. Marticorena et al. [14] aim to extend the taxonomy
of Mantyla et al. [13] with metrics.

Carneiro et al. [15] investigate in an empirical study whether multiple views of a concern influence
code smell detection. They investigate the Feature Envy, God Class, and Divergent Change smells. This
exploratory study is performed with only 5 participants, so the results are not highly reproducible. The
recall and precision for the Feature Envy smell were only 0.4 and 0.2, respectively, which confirms points
made below related to difficulties related to detecting Feature Envy by practitioners.

Mantyla et al. [16] describe the results of a case study in a Finnish software company, where they
studied the evaluator effect when subjectively evaluating the existence of smells in code modules. This
study is one of the few studies that actually consider subjective impressions of practitioners. The study
considers the Feature Envy and Middle Man smells. Mantyla et al. found that the use of smells for code
evaluation purposes is hard due to conflicting perceptions of different evaluators. Secondly, they applied
source code metrics for identifying three smells and compared the results to the practitioner evaluations.
They concluded that the metrics and smell evaluations did not correlate.

Palomba et al. [17] report about an empirical study on the developers’ perception of 12 bad smells.
They have shown code entities (that are affected by the smells or not) from three open source projects
to developers and master students. They also found that instances of a smell may or may not represent
a problem based on the “intensity” of the problem. Finally, they found that developer’s experience and
system’s knowledge play an important role in the identification of some smells. They claim smells related
to possible misuses of OO principles, such as Feature Envy, are among those.

Guo et al. [18] present an approach to tailor the metrics and detection rules to take domain-specific
factors into account. Input for these domain-specific heuristics is derived from an iterative empirical field
study in a software maintenance project. Among others, they consider the Data Class smell. They found
that the code smell definitions, as proposed by Lanza and Marinescu [3], were judged to be accurate and
actionable by a panel of practitioners, but they required tailoring to be applicable in the project. They
found that simple tailorings can improve the results. Problems in encoding code smells into a tool called
CodeVizard are reported, too, especially that some semantic factors could not be encoded into the tool.

Yamashita and Moonen [19] studied to which extent problems in maintenance projects can be pre-
dicted by code smell presence. In a multiple case study six developers working on four different Java
systems were observed. Code smells were detected using tools before the study. In-depth examination of
quantitative and qualitative data was conducted to determine if the observed problems could be explained
by the detected smells (including Data Class and Feature Envy). Roughly 30% percent of the problems
investigated were somehow related to files containing the found code smells. They observed interaction
effects amongst code smells, and between code smells and other code characteristics, and these effects
led to severe problems during maintenance. They conclude that the role of code smells in the context of
the overall system maintainability is relatively minor, and thus they alone cannot predict maintainability
issues.

5

3. Research Method

This article aims to systematically study practitioner knowledge on coupling smells based on a GLS
focused on practitioner views on coupling smells.

We performed a GT study in which we used UML-based modeling to precisely encode our findings.
GLS is used as the data collection technique for GT. UML-based modeling is introduced with the goal to
develop a precisely defined and consistent theory. We have successfully used this and very similar research
methods in a couple of prior studies [23, 24, 25, 26]. As it is a rather new combination of research method
elements, we explain it and its motivation in this section in detail.

3.1. Grounded Theory
Glaser and Strauss [20] introduced Grounded Theory (GT) as research method for discovery of the-

ory from systematically obtained and analyzed data. The method has two unique properties: constant
comparison and theoretical sampling [20]. Constant comparison means that the method uses an iterative
and incremental process of data collection and analysis. GT derives concepts from the data instances and
then categories from the derived concepts. Comparisons of data instances with other instances need to be
made during data analysis [21], as well as comparisons to concepts and categories. Theoretical sampling
means that researchers should actively find new data sources driven by the results of the data analysis.
Researchers need to be theoretically sensitive [21]; that means, they should think effectively about what
types of data need to be collected and which aspects of the data already collected are most important for
the theory [38].

In this article, we roughly follow the GT data analysis and coding steps by Corbin and Strauss [21] who
designed a highly systematic and rigorous coding structure to create (rather than to discover) a rigorous
theory which closely corresponds to the data [39]. They use three main coding steps:

• Open coding is performed first after data collection. It aims to examine the data and identify discrete
elements in the data. Open coding identifies concepts in the data.

• During axial coding the researchers identify categories in the concepts, e.g. by identifying concepts
that reappear in the data, synonymous concepts, related concepts, etc.

• Selective coding is about carving out main ideas of story lines of the theory, i.e. understanding the
big picture by reflecting on the data and analysis results. An important step is the reduction of
concept and categories.

GT ends when theoretical saturation is reached. This occurs when no new concepts emerge from new
data sources anymore and the theory has been thoroughly validated with the collected data [38].

3.2. Grey Literature Study
Grey literature in software engineering can be defined as “any material about software engineering

that is not formally peer-reviewed nor formally published [40].” According to Rainer and Williams [22]
there are many benefits in using grey literature sources in software engineering research, including that
“they provide information on practitioners’ contemporary perspectives on important topics relevant to
practice and to research” and “promote the voice of practitioners [22].” As our research questions require
practitioner views, we decided to focus on grey literature sources stemming from practitioners and mixed
groups (practitioners and others). According to Garousi et al. [41] such grey literature sources includes
blog posts, presentations, Wiki articles, technical reports, audio-video material, practitioner book content,
and many other kinds of sources. Garousi et al. [40] also stated that “grey literature sources can be
classified according to the two dimensions: expertise and outlet control.” In our work we are interested

6

in (technical) practitioner knowledge targeted at other practitioners. We thus reviewed each source in
the author team and only if all authors agreed that the content contains knowledge by acknowledged
practitioners we included the source. We excluded sources that seemed to sell a product or a service. As
we intended to use grey literature sources in a GT study, the actual search process was guided by GT’s
theoretical sampling concept and stopped when theoretical saturation emerged.

In social science, interviews are often used as data sources for GT, but it is clearly described in the
literature that GT can be used with any kind of data [20, 21]. Given that we are not studying some general
topic which more or less any software developer can speak about without preparation, and as expertise for
coupling code smells is rather rare, searching for interview candidates could have led to substantial bias
in the selection process. These are the main reasons for using grey literature instead of interviews. Rainer
and Williams [22] summarize some other reasons that have been important for this decision, namely: grey
literature has compensated for the unavailability of other sources of evidence. We were able to access
harder-to-access practitioners, and we could gather information for the research in a non-invasive way.
We were able to scale-up the research to larger number of samples, and complement and triangulate them
with, other sources of data. Finally, it was easier to provide an audit trail of the research, and thus enable
repeatability of the study through public access to original data1.

Using a search engine to find grey literature results in various types of data [43]. One major concern
about search engines in such research is their search algorithm because the results are dependent on the
user [44]. To avoid personal bias in the research, our initial search keywords are taken from “A Taxonomy
for Bad Code Smells” 2. Thus we have initially searched for the following keywords: “Code Smells”,
(“Couplers” or “Coupling”) and “Smells”, “Feature Envy”, “Inappropriate Intimacy”, “Message Chains”,
and “Middle Man.” We used major search engines (e.g., Google, Bing, DuckDuckGo) and topic portals
(e.g., InfoQ, DZone) to find relevant practitioner texts. We have opted against a Multivocal Literature
Review (MLR) where scientific sources are included, as our research goals focus on exploring practitioner
views specifically. Our initial data are from the keywords above. After the coding process, further data
sources emerged in terms of new keywords or new referenced sources. For example, we added synonyms
such as “Object Orgy” or new coupling smell candidates such as ”Data Class” after they appeared the
first time. The data collection process is repeatable with scanning and skimming techniques. During
open and axial coding we studied each included source line by line in-depth during open coding – for
most sources in many iterations. We chose this method over manually browsing selected grey literature
initially because it is replicable [46]. In our open access appendix, each step in the open, axial, and
selective coding, including the emergence of new concepts, is documented. This comes along with traces
which parts of the sources led to which codes in all coding stages.

3.3. Methodology overview
Our application of the research method happened in many iterations. That is, we first searched for

a few new knowledge sources (such as practitioner articles, forum posts, slides) using major search en-
gines and topic portals. Then we applied the GT coding process (modified with UML-based modeling) to
identify candidate categories and compared with the so-far-designed model continuously. We improved
this model incrementally. A crucial question in GT is when to stop this process; here, theoretical satura-
tion [38], explained in Section 3.1, has attained widespread acceptance in qualitative research: We stopped
our analysis when 10-15 additional knowledge sources did not add anything new to our understanding of
the research topic. As a result of this very conservative operationalization of theoretical saturation, we

1We provide all open and axial coding files, derived coded models in Python, and generated models (in UML, Markdown,
and Latex) as a replication package for download in the Zenodo long-term open access archive [42].

2See http://mikamantyla.eu/BadCodeSmellsTaxonomy.html which is part of a scholarly article [45]

7

http://mikamantyla.eu/BadCodeSmellsTaxonomy.html

Constant ComparisonConstant Comparison

Selec�ve CodingAxial CodingOpen Coding
Data Collec�on from
the Grey Literature

Constant Comparison

Theoretical Sampling

Grounded

Theory
Th

eo
re�

cal Satu
ra�

o
n

Select next grey

literature source(s)

Take field notes and

memos

Examine data

Identify discrete

elements in the data

Identify concepts in

the data

Carve out main ideas

of the theory

Correct mistakes and

inconsistencies

Perform reduction and

simplication

Identify categories

in the concepts and

formally model them as

classes, metaclasses,

and stereotypes

Identify data relations

and formally model them

as relations and

stereotypes

Figure 1: Research Method Steps

studied a rather large number of knowledge sources in depth (48 in total, summarized in Table 1 which
is explained in Section 4.1), whereas most qualitative research often saturates with a much lower number
of knowledge sources. We included knowledge sources, if they were advanced practitioner reports on
their experiences or knowledge about coupling smells. We checked that the source texts fulfilled a certain
minimum quality level, as described above.

Figure 1 illustrates the GT research method steps as explained in Section 3.1 in the upper half of the
figure. In the grey box beneath the steps, we detail our specific research methodology steps. In particular,
it can be seen that in the data collection step, we used grey literature as input for the data collection. The
open coding step has been performed very closely to how it would be performed without UML-based
modeling. In the axial coding step, we have then formalized the found concepts and categorized them
using classes, meta-classes, and stereotypes, as well as their formal relations and relation stereotypes.
Constantly, during the selective coding step, we have compared the results of the axial coding with the
big picture to carve out main ideas of the theory, to correct mistakes and inconsistencies, and to perform
reduction and simplification. Those steps have been repeated for each data source.

For modeling, we used our existing CodeableModels tool3, a Python implementation for precisely
specifying meta-models, models, and model instances in code with an intuitive and lightweight inter-
face. Based on CodeableModels, we specified a meta-model and models for our study, extending both
as needed. In addition, we realized automated constraint checkers and PlantUML code generators to
generate graphical visualizations of all meta-models and models, as well as a full textual model output
generation in Markdown and Latex.

To illustrate the coding process, below we show an excerpt of the coding for the knowledge source
S5 as an example, which just covers some lines on a definition of Inappropriate Intimacy. Like this, all
relevant lines in the knowledge source are coded. The open coding provides our initial interpretation of the
source lines. The axial coding then provides the details on how we have categorized and formalized this
knowledge, first in text and then as code. The code excerpts shown here provides the traceability to our

3https://github.com/uzdun/CodeableModels

8

https://github.com/uzdun/CodeableModels

ID Title Archive URL Author
Type

Source Type Example Source
Code

S1 What is the difference between Inappropriate Intimacy and Feature Envy? https://bit.ly/3bFyKQT Practitioner Discussion Forum Post False False

S2 Code Smell https://bit.ly/2S6Ca7K Mixed General Audience Article False False

S3 Code Smells https://bit.ly/354s905 Practitioner Practitioner Audience Article False False

S4 Code Smells https://bit.ly/2VVaELq Practitioner Practitioner Audience Article False False

S5 Smells to Refactorings Cheatsheet https://bit.ly/2VBtqbE Practitioner Practitioner Audience Article False False

S6 Feature Envy https://bit.ly/2VApxE4 Practitioner Tool Documentation True True

S7 Data Class and Feature Envy https://bit.ly/2yO90mP Practitioner Practitioner Audience Article False False

S8 Code Smell: Data Class https://bit.ly/2znerJN Practitioner Practitioner Audience Article True False

S9 Feature Envy Smell https://bit.ly/2KCO3hi Practitioner Practitioner Audience Article False False

S10 Spotting Feature Envy and Refactoring https://bit.ly/355ugAz Practitioner Practitioner Audience Article True True

S11 Resolving Feature Envy in the Domain https://bit.ly/3cLhkm1 Practitioner Practitioner Audience Article True True

S12 Object Orgy https://bit.ly/2Y4XM8k Practitioner Practitioner Audience Article False False

S13 Object Orgy https://bit.ly/3bD3u5j Practitioner Practitioner Audience Article False False

S14 Code Smells https://bit.ly/2yFH6cO Mixed General Audience Article True True

S15 Refactoring Couplers https://bit.ly/354O72Z Practitioner Practitioner Audience Article True True

S16 When to Start Refactoring Code and When to Stop https://bit.ly/2xdpc0M Practitioner Practitioner Audience Article True False

S17 Improving Application Design with a Rich Domain Model https://bit.ly/2VAqT1C Practitioner Slides True True

S18 Code Smell: Feature Envy or Data Envy https://bit.ly/2W0Q5Nx Practitioner Practitioner Audience Article True True

S19 Practical PHP Refactoring: Remove Middle Man https://bit.ly/2S78tTY Practitioner Practitioner Audience Article True True

S20 Rich Domain Model with DDD/TDD Reviewed https://bit.ly/2VDK36P Practitioner Practitioner Audience Article True False

S21 Feature Envy in Component Design https://bit.ly/2VD99mc Practitioner Practitioner Audience Article True True

S22 Write clean code and get rid of code smells with real life examples https://bit.ly/3aCg57r Practitioner Practitioner Audience Article True True

S23 Middle Man Code Smell Resolution with examples https://bit.ly/3aE1lVA Practitioner Practitioner Audience Article True True

S24 Bad smell in Code Inappropriate Intimacy https://bit.ly/3bF2Yng Practitioner Practitioner Audience Article True True

S25 Inappropriate Intimacy Code Smell Resolution https://bit.ly/2Y7fCav Practitioner Practitioner Audience Article True True

S26 Patterns in Practice Cohesion And Coupling https://bit.ly/3bF3GRs Practitioner Practitioner Audience Article True True

S27 Feature envy https://bit.ly/2xQZuQ2 Practitioner Practitioner Audience Article True True

S28 Refactoring a Feature Envy Code https://bit.ly/2KLOqqh Practitioner Practitioner Audience Article True True

S29 Feature Envy - Code Smell https://bit.ly/353QLpP Practitioner Practitioner Audience Article True True

S30 Class: Reek::Smells::FeatureEnvy https://bit.ly/2KzyC9Q Practitioner Tool Documentation True True

S31 Feature Envy Code Smell Resolution with examples https://bit.ly/2VDr7Vz Practitioner Practitioner Audience Article True True

S32 Why are data classes considered a code smell? https://bit.ly/2VQ4vAa Practitioner Discussion Forum Post True False

S33 Coding Best Practices: Clean Code, Refactoring and TDD https://bit.ly/2W0Dlqy Practitioner Practitioner Audience Article False False

S34 Data Class - Is It Really A Smell? https://bit.ly/2KIuggR Practitioner Discussion Forum Post False False

S35 Refactoring: Code Smells https://bit.ly/3bC44jw Practitioner Slides False False

S36 Identifying Code Smells In Java https://bit.ly/2VQQAtE Practitioner Practitioner Audience Article True True

S37 How to identify a Data Class using NDepend https://bit.ly/2S5q6n2 Practitioner Tool Documentation True True

S38 Sharpen your sense of code smell https://bit.ly/3cNOotY Practitioner Practitioner Audience Article False False

S39 How to find the code smell AND do not let it go bad, part 2 https://bit.ly/2VWobT6 Practitioner Practitioner Audience Article True False

S40 Everything you need to know about Code Smells https://bit.ly/2znK9Xj Practitioner Practitioner Audience Article False False

S41 How to identify a Data Class using NDepend https://bit.ly/2Ygi26W Practitioner Tool Documentation True True

S42 thoughts on feature envy https://bit.ly/3aGIg5a Practitioner Practitioner Audience Article False False

S43 Feature envy https://bit.ly/2YfTA5D Practitioner Practitioner Audience Article True True

S44 Inappropriate Intimacy https://bit.ly/3f1i3Bv Practitioner Practitioner Audience Article False False

S45 Feature Envy https://bit.ly/2KItgJB Practitioner Tool Documentation True False

S46 Exploring Smelly Code https://bit.ly/2YigCJ8 Practitioner Practitioner Audience Article True True

S47 Code Smell: Feature Envy https://bit.ly/35k6UY7 Practitioner Practitioner Audience Article True True

S48 Inappropriate Intimacy https://bit.ly/3d16DMe Practitioner Practitioner Audience Article False False

Table 1: Overview of studied knowledge sources

9

Python source code. Finally, selective coding was applied later to find errors and perform improvements:
Here, we improved the categorization by modeling the superclass relations to similar definitions we have
found in other classes.

Lines from the knowledge source (Example from S5):
Sometimes classes become far too intimate and spend too much time delving into each others’ private parts. We may not be prudes when it comes to people,
but we think our classes should follow strict, puritan rules. Over-intimate classes need to be broken up as lovers were in ancient days. [F 85]
Additions during Open Coding:
Definition for Inappropriate Intimacy that implies that two or more classes depend on each other’s private features excessively.
Additions during Axial Coding:
Added new definition class:

ii_def_classes_depend_on_each_others_private_features_excessively = \
CClass(definition, "Two or more classes depend on each other’s private features excessively",

values={
"origins": "classes",
"targets": "private features of classes"

})

Linked S5 to inappropriate_intimacy and ii_def_classes_depend_on_each_others_private_features_excessively codes:

add_links({S5: [..., inappropriate_intimacy,
ii_def_classes_depend_on_each_others_private_features_excessively,
...]},role_name="contained_code")

Changes and Additions during Selective Coding:
This definition can be seen as special case of the two other definitions ii_def_classes_depend_on_each_other_excessively,
ii_def_class_uses_other_class_private_features_excessively. Added them as superclasses to the definition class:

ii_def_classes_depend_on_each_others_private_features_excessively = \
CClass(definition, "Two or more classes depend on each other’s private features excessively",

superclasses=[ii_def_classes_depend_on_each_other_excessively,
ii_def_class_uses_other_class_private_features_excessively], ...)

4. Grounded theory on coupling code smells

4.1. Meta-model
The meta-model of our found theory defines the classification (or categories) of model elements, as

well as their relations, necessary to model the design space of coupling code smells fully. Of course, many
alternative ways to model that design space are possible, such as different naming of model elements or
using more meta-classes instead of stereotypes. Nonetheless, the meta-model reveals interesting insights
of which conceptual elements that are present in practitioner discussions of coupling code smells.

We first present the basic meta-classes derived in the GT study in Figure 24. The basis of our study are
Sources which are texts from which we extracted the GT Codes. Sources are specific kinds of References
used as knowledge sources in the study; other references are used to model links to study-external sources
(such as a book or scientific paper cited by the practitioners). We describe each Reference using a couple of
meta-data attributes: the title, a URL, an archive URL linking to the Web archive version of the source (to
enable reproducibility of our results), and an optional additional bibliographic reference is used to identify
the source. The author type is an enumeration with possible values Practitioner, Academic, Mixed, and
Unknown; in our study we only included sources with Practitioner and Mixed author types. The type of
the source describes which kind of grey literature is used. In our study we included Discussion Forum
Post, General Audience Article, Practitioner Audience Article, Tool Documentation, Blog Post, and Slides
as source types. Further, we indicate whether an example was provided, and whether the example, if
present, includes source code. Please note that the properties explained in this paragraph are reported as
columns in Table 1 for our included knowledge sources.

4Please note that the UML figures used in this article are directly generated from our coded models in our tool using
PlantUML. The figures are only touched to optimize the layout for the article slightly.

10

«metaclass»
Smell

«metaclass»
Practice

«metaclass»
Pattern

«metaclass»
Definition

origins: Origins Type
targets: Targets Type

«metaclass»
Fix

«metaclass»
Liability

*

*

definition option

1

* fix option

*

*

*

*

contains codes
*

*

*

*

reference

*

*

«metaclass»
Code

name: String
description: String

*
*

«metaclass»
Reference

url: String
archive url: String
title: String
bibliographic reference: String
author type: Author Type
type: Source Type
example: Boolean
source code: Boolean

«metaclass»
Source

*

«metaclass»
Technical Debt

*

causes
* violation causes

*

«metaclass»
Principle

*

*

has

*

*
causes

related practices
related
principles

inter-smell
relation

inter-practice
relation

Figure 2: Meta-model main meta-classes

Each Code is described with a name and an optional description. The core code is the Smell, which
can be linked to other smells. The smell has a Definition, which for coupling smells is in detail specified
with the origin and target types in the coupling relation. These are two additional enumerations. In our
study we have found evidence for method, class, classes, or code fragment as origins of the coupling,
and a class’s methods, a class’s public features, a class’s features, a class’s private features, a class’s
implementation details, classes, a class’s data, methods of classes, private features of classes, and clients
are possible targets of the coupling. Moreover, a smell can have Fixes. It has a number of Liabilities
associated which make it a bad smell in code or design that should be resolved. Similar are violations to
Principles the smell can cause. The Smell, as well as its Liabilities and its Principle violations can cause
Technical Debt.

The Association meta-class of the inter-smell relationship is in our model extended by the stereotype
Inter-Smell Relation Type. We have found evidence for the kinds of inter-smell relations depicted at the
top of Figure 3. Smells can be associated to certain (best or common) Practices in our field. Many
such best practices are described in the literature as Patterns. We have found evidence for the kinds of
smell-practice relations depicted at the bottom of Figure 3.

4.2. Coupling smells and their relationships
Figure 4 gives an overview of the coupling smells and their relations. As can be seen we identified

Feature Envy, Inappropriate Intimacy, Data Class, Indecent Exposure, Message Chain, and Middle Man
as immediate sub-classes (is-a relation) of coupling smell. Those major coupling smells will each be
discussed in their own subsection below. Data Envy is a special kind of Feature Envy and will be discussed
together with it below. Those are only included in our study if there was clear evidence that a coupling
smell has some kind of strong relation to the other smell. We only referenced those other smells, but did

11

«stereotype»
is not a smell if it is

«stereotype»
might not be a smell if it

is

«stereotype»
fixing smell might improve

«stereotype»
can be avoided by use of

«stereotype»
can evolve out of

«stereotype»
Inter-Smell Relation Type

«stereotype»
synonym

«stereotype»
enables the occurrence of

«stereotype»
fixing the smell can cause

«stereotype»
is often accompanied by

«stereotype»
is-a

«stereotype»
can cause

«stereotype»
worsens

«stereotype»
Smell-Practice Relation Type

Figure 3: Meta-model stereotypes (extending inter-smell relation and inter-practice relation in Figure 2)

not study them in detail. The coupling smells and their inter-smell relationships are discussed separately
per smell in the following sections.

Table 2 presents all smells and color coding5 in the second row indicates how often the smell appears
in our total of 48 sources. All relations are listed twice for their source and target smell, and the different
color coding in the fourth row indicates how often the relation appears in the total number of sources of
the smell (from the second row).

4.3. Feature Envy
4.3.1. Definitions

Feature Envy is a very commonly discussed coupling smell. With 33 evidences for the smell it occurs
most frequently in our sources. With a total of 9 different definition variants shown in Table 3, it also
has the largest number of possible interpretations. There are two common relations between coupling
origin (i.e. the place where Feature Envy can be spotted) and the coupling targets (i.e. the places the origin
is envious of): 1. the origin makes excessive use of the target; 2. the origin uses specific target features
more often than its own. That is, we can classify Feature Envy definitions in the table into two main
variants: Definition Variant 1 (covering the 3 Feature Envy definitions in Table 3 containing the word
“excessively”) is the broader definition, whereas Variant 2 (covering the definitions not containing the
word “excessively”) is often used in sources (or derived from other original source) where automated
detection or similar operationalization is a goal or at least considered to be a goal. That is, “excessive
use” is less specific and thus hard to judge automatically, whereas “more features of a specific kind” can
be easily counted and compared. Note that Variant 2 is problematic in the sense that it is easy to construct
examples which a human reviewer usually would not accept as Feature Envy, but which would conform

5In the tables we use the following color coding to visualize the frequency of the evidences: < 5%, < 10%, <
20%, < 35%, < 50%, < 70%, >= 70%

12

Smell All Smell Relations Relation
Evidences Evidences

Feature Envy

Data Envy is-a Feature Envy S9, S18
Feature Envy can cause Duplicate Code S4, S10, S42, S46
Inappropriate Intimacy is often accompanied by Feature Envy S15
Feature Envy can cause Long Method S17
Data Class can cause Feature Envy S7, S17, S28, S39

33

Divergent Change fixing the smell can cause Feature Envy S14, S16

Inappropriate Intimacy

Inappropriate Intimacy synonym Object Orgy S2, S12, S13
Indecent Exposure enables the occurrence of Inappropriate Intimacy S3, S5, S15
Inappropriate Intimacy is often accompanied by Data Class S12
Inappropriate Intimacy can cause Duplicate Code S15

21

Inappropriate Intimacy is often accompanied by Feature Envy S15

Data Class

Inappropriate Intimacy is often accompanied by Data Class S12
Data Class can cause Duplicate Code S4, S36
Indecent Exposure worsens Data Class S8

16

Data Class can cause Feature Envy S7, S17, S28, S39

Indecent Exposure
Indecent Exposure enables the occurrence of Inappropriate Intimacy S3, S5, S15
Indecent Exposure worsens Data Class S86

Indecent Exposure synonym Excessive Exposure S15
Message Chain 12 Message Chain fixing the smell can cause Middle Man S4, S39
Middle Man 13 Message Chain fixing the smell can cause Middle Man S4, S39
Data Envy 3 Data Envy is-a Feature Envy S9, S18
Object Orgy 3 Inappropriate Intimacy synonym Object Orgy S2, S12, S13
Excessive Exposure 1 Indecent Exposure synonym Excessive Exposure S15

Duplicate Code
Feature Envy can cause Duplicate Code S4, S10, S42, S46
Data Class can cause Duplicate Code S4, S364

Inappropriate Intimacy can cause Duplicate Code S15
Long Method 1 Feature Envy can cause Long Method S17
Divergent Change 2 Divergent Change fixing the smell can cause Feature Envy S14, S16

Table 2: Overview of coupling smells, their relations, and evidences

13

Coupling Smell : Smell

Feature Envy : Smell

Data Envy : Smell

Inappropriate Intimacy : Smell

Object Orgy : Smell

Indecent Exposure : Smell

Message Chain : Smell

Middle Man : Smell

Data Class : Smell

Duplicate Code : Smell

Excessive Exposure : Smell

Long Method : Smell

Divergent Change : Smell

«is-a»

«can cause»

«can cause»

«can cause»

«is-a»

«is-a»

«synonym»

«is often accompanied by»

«can cause»

«is often accompanied by»

«is-a»

«enables the occurrence of»

«worsens»

«synonym»

«fixing the smell can cause»

«is-a»

«is-a»

«can cause»

«fixing the smell can cause»

«is-a»

Figure 4: Coupling smells and their relations (non-coupling smells are rendered in grey)

to the definition.
The sources are also split among different options where Feature Envy occurs (i.e., the origin): Most

see a single method (or operation in non-object-oriented languages) as the typical Feature Envy origin,
but some see a whole class or a code fragment (e.g. in a method) as places to spot Feature Envy. The
class interpretation can be difficult to judge, as some methods might be envious while many others are
not. Also, it is easy to create long methods with code fragments in it that are envious, where the rest of
the long method is not. Thus the code fragment interpretation sounds appealing in that sense, but would
also make judgments whether it is Feature Envy or not more difficult.

For the coupling target, the sources agree that it is a class, but they see envy occur with different
kinds of features, namely all the class’s features, its public features, its data, or its methods. Methods and
all features are the most frequent options. Note that if all data is accessed via method (i.e., no Indecent
Exposure of data occurs), the variety in targets is rather limited.

The following code shows a simple Feature Envy example6. getTotalPrice() is a method envious of
the features in Item according to both definitions, as it uses 4 methods of Item and 0 methods ofBasket.
class Item { .. }

class Basket {
// ..
float getTotalPrice(Item i) {
float price = i.getPrice() + i.getTax();
if (i.isOnSale())

price = price - i.getSaleDiscount() * price;
return price;

}
}

6Note that we give a few simplistic example to illustrate some of the smells. While they conform to the smell definitions,
they alone might not be seen as harmful by many practitioners. According to our results smells become harmful, when their
“intensity” is high enough.

14

The simple example can also be used to explain the issues with the Variant 2 definition (“more features of
a specific kind”) and code fragment vs. method as origin easily. Consider we add a statement that uses 4
Basket features to the method: Then the code fragment in the first three lines is just as envious as before,
but now it is not Feature Envy according to the Variant 2 definition anymore (assuming method as origin).
float getTotalPrice(Item i) {

float price = i.getPrice() + i.getTax();
if (i.isOnSale())

price = price - i.getSaleDiscount() * price;
if (basketContainsGroupDiscountItems() || isLargeBasketDiscount() || isPriceDiscount())

price = price - basketDiscounts();
return price;

}
}

The discussion in this section might suggest that there are quite different views on Feature Envy in
the practitioner literature, but when reflecting on the practitioner texts more deeply, this is not really the
case. In cases where the practitioners do not just take over a definition from another source, but discuss it
in more detail, it becomes clear that even if they use Definition Variant 2, they rather interpret it loosely.
In contrast, a strict interpretation has the great risk of producing a lot of false positives or negatives in
automated tools.

4.3.2. Relationships to other smells
As shown in Figure 4, sometimes Feature Envy is discussed under the term Data Envy, which thus has

an is-a relation to Feature Envy. It occurred relatively seldom (3 sources) and was defined using the same
two definitions types as observed for Feature Envy.

Feature Envy can be caused by Data Classes. That is, other classes might be envious to the data access
features offered by the Data Class. It is often accompanied by Inappropriate Intimacy, e.g. if the envied
class also has an intimate relation to the envious class or if the envious class uses implementation details
of the envied class.

Patterns such as Strategy and Visitor are used to fix the Divergent Change smell, which refers to
making unrelated changes in the same location. Fixing Divergent Change with means other than such
established patterns might thus accidentally lead to Feature Envy. Feature Envy means many accesses to
another class, e.g., in one method, which might lead to a Long Method. As often the same envious code
is used in multiple places, Feature Envy can cause Duplicate Code.

4.3.3. Liabilities and principle violations
Practitioners often list either liabilities of a smell or principle violations to show why one should

care about the smell (summarized in Table 4). Sometimes liabilities listed here are derived from positive
aspects occurring when the smell is fixed. For Feature Envy a large fraction of the practitioners see high
coupling (and its companion low cohesion) and low code comprehensibility as typical liabilities. Many
practitioners see also various maintainability issues as liabilities such as reduced changeability, missing
encapsulation, misplaced responsibilities, reduced testability, reduced reusability, and high complexity
caused by code duplication.

Feature Envy can lead to violations of the Single Responsibility Principle when a method or class takes
over responsibilities of another class (or its features) it is envious of. Feature Envy can lead to a violation
of the Tell Don’t Ask Principle which means that objects should not ask for details or internals, such as
envied data features, but rather tell other objects what to do.

Note that the liabilities have dependencies, too, such as one liability can cause another one. We
report the liabilities in this article in the way we found them in the sources, without considering such
dependencies, as those dependencies are not discussed in our grey literature sources.

15

Definition Coupling origin(s) Coupling target(s) Definition Evidences
Feature Envy

Method uses class excessively a method a class’s methods S1, S3, S5, S14, S15, S22, S26, S31, S33, S47

Method uses features of another class more often than its own features a method a class’s features S6, S7, S9, S10, S11, S14, S16, S17, S21, S27, S35, S36, S40, S41, S43, S45, S46

Class uses features of another class more often than its own features a class a class’s features S31

Method uses public features of another class more often than its own features a method a class’s public features S1

Class uses class excessively a class a class’s methods S2, S14, S18, S31

Method uses more data of other class more than its own class’s data a method a class’s data S4, S29, S31, S38, S39

Class uses more data of other class more than its own data a class a class’s data S20

Class uses data of another class excessively a class a class’s data S28

Code fragment uses features of another class more often than its own features a code fragment a class’s features S30

Inappropriate Intimacy

Class uses other class’s private features excessively a class a class’s private features S1, S24, S35

Class uses other class’s implementation details a class a class’s implementation details S1, S2, S4, S12, S13, S22, S25, S26, S38, S40

Two or more classes depend on each other excessively classes classes S3, S15, S33, S36

Two or more classes depend on each other’s private features excessively classes private features of classes S5, S14

Method uses other class’s implementation details a method a class’s implementation details S38, S44, S48

Data Class

Class only has data, getters, and setters a class classes S3, S4, S5, S7, S8, S12, S14, S16, S17, S32, S33, S35, S36, S37

Indecent Exposure

Class exposes internal details a class clients S3, S5, S15, S33, S38

Message Chain

Long sequence of method calls a class methods of classes S3, S4, S5, S14, S15, S16, S22, S33, S35, S36, S39, S40

Middle Man

Class only delegates to other classes a class classes S3, S4, S5, S15, S16, S22, S23, S39

Class is merely a wrapper over the other class a class classes S3, S33

Class delegates the majority of the work to other classes a class classes S14, S33, S35, S40

Method is merely a wrapper hiding delegates a method classes S19, S38

Table 3: Definitions of coupling smells and evidences. Color coding indicates how many evidences of a smell containing a
definition contain the specific definition.

4.3.4. Related practices and patterns
As shown in Table 5, Feature Envy has numerous relations to various common practices and patterns.

Many of them are additional reasons why (automated) detection and repair of Feature Envy can be very
hard, as they describe situations that look like Feature Envy but are actually places in the code where
behavior is kept separate from its data for a clear purpose. Examples of this are the Visitor [47] and
Strategy [47] patterns, and practices of self delegation. Delegation classes or Wrappers such as in the
Adapter [47], Decorator [47], or Facade [47] patterns are also places in the code where Feature Envy can
be wrongly identified. Some sources mention utility/helper functions or classes as code that is similar
to Feature Envy but is not Feature Envy. While none of these relations is mentioned by many sources,
overall a lot of sources identify common coding practices and patterns that can be identical in appearance
to Feature Envy. The relation of Feature Envy to inheritance is seen controversially; one source mentions
that the use of superclass features might lead to a wrong identification of Feature Envy.

Quite a number of sources relate Feature Envy to Domain-Driven Design (DDD) [48]. Most of them
mention the general Domain Model pattern [49] but some are mentioning more specific DDD patterns
such as Entity [48], Service [48], Value Object [48], and Ubiquitous Language [48] that make up or
represent the Domain Model. For DDD to have a positive effect on the code and throughout a software’s
evolution, it must be represented well in the code. Feature Envy can lead to the Anemic Domain Model
anti-pattern7, i.e., a Domain Model which does not combine data and process together in its realization.
Thus fixing Feature Envy can greatly improve the realization of those pattern in the code.

In one source it is mentioned that a similar positive effect can also be achieved for the Extension Meth-
ods practice (i.e. methods added to existing types), and another one explains how the Template Method
pattern [47] can be used to avoid Feature Envy.

7See e.g. https://martinfowler.com/bliki/AnemicDomainModel.html.

16

https://martinfowler.com/bliki/AnemicDomainModel.html

Smell Liability/Principle Violation Liability/Principle Violation Evidences

Feature Envy
Number of evidences
discussing liabilities/principles
option: 26

High coupling S1, S6, S7, S15, S18, S20, S26, S28, S30, S31, S43, S47
Low cohesion S6, S7, S26, S30, S43
Low code comprehensibility S4, S6, S11, S26, S29, S30, S31, S43, S47
High complexity caused by code duplication S4, S10, S43
Reduced changeability S6, S15, S20, S21, S26, S30, S31, S46
Missing encapsulation S10, S17, S18, S26, S27, S28, S29, S31
Reduced testability S10, S11, S28
Reduced reusability S11, S21, S26, S46
Misplaced responsibility S21, S27, S30, S31, S39, S43, S46
Maintainability issues S31, S38, S40
Can cause violation of Single Responsibility Principle S7, S15, S28, S29, S31
Can cause violation of Tell Don’t Ask Principle S28

Inappropriate Intimacy
Number of evidences
discussing liabilities/principles
option: 20

Relying on internal details can lead to defects S1
Maintainability issues S2, S25, S31, S36, S38, S40
High complexity S2, S13
Low code comprehensibility S4, S13, S25, S26, S31, S36
Hinders code reuse S4
Missing encapsulation S2, S12, S13, S24, S26, S31
Reduced changeability S15, S24, S26
High complexity caused by code duplication S15
High coupling S15, S24, S25, S26, S31, S36
Low cohesion S24
Reduced reusability S26
Can cause violation of Single Responsibility Principle S15, S25, S26
Can cause violation of Law of Demeter: Only talk to your immediate friends S26, S44

Data Class
Number of evidences
discussing liabilities/principles
option: 13

Low code comprehensibility S4, S34
High complexity caused by code duplication S4
High coupling S8
Low cohesion S8
Misplaced responsibility S16, S32
Reduced changeability S34
Can cause violation of Single Responsibility Principle S7, S32, S34
Can cause violation of Tell Don’t Ask Principle S7, S32

Indecent Exposure
Number of evidences
discussing liabilities/principles
option: 11

High complexity S5
Low code comprehensibility S5
High coupling S15
Reduced changeability S15
Maintainability issues S38
Can cause violation of Single Responsibility Principle S15

Message Chain
Number of evidences
discussing liabilities/principles
option: 15

Low code comprehensibility S4, S15
High coupling S4, S14, S15, S39
Reduced changeability S15, S36
Maintainability issues S40
Can cause violation of Single Responsibility Principle S15
Can cause violation of Law of Demeter: Only talk to your immediate friends S36, S39

Middle Man
Number of evidences
discussing liabilities/principles
option: 13

Low code comprehensibility S4, S15, S23
High complexity S15
High coupling S15, S23
Reduced changeability S15
Missing encapsulation S23
Maintainability issues S38, S40
Can cause violation of Single Responsibility Principle S15

Table 4: Liabilities/principle violations suggested per smell. Color coding indicates how many evidences of a smell containing
liability/principle violations descriptions contain a specific liability/principle violations.

17

Smell Relation Practice/Pattern Smell-Practice Relation Evidences

Feature Envy

is not a smell if it is Behavior is kept separate from its data for a clear purpose (sub
practices/patterns: Visitor, Strategy, Self Delegation)

S4, S14, S16, S27

is not a smell if it is Visitor S4, S14, S16, S27
is not a smell if it is Strategy S4, S14, S16, S27
is not a smell if it is Self Delegation S16
might not be a smell if it is Use of superclass features S9
is not a smell if it is Wrapper S9
is not a smell if it is Adapter S42, S46
is not a smell if it is Decorator S46
is not a smell if it is Facade S42, S47
might not be a smell if it is Utility/Helper Function or Class S6, S42
can be avoided by use of Template Method S27
fixing smell might improve Domain Model S10, S11, S17, S20, S21, S28
fixing smell might improve Entity S10, S20
fixing smell might improve Service S20
fixing smell might improve Extension Methods S20
fixing smell might improve Value Object S10, S11
fixing smell might improve Ubiquitous Language S11

Inappropriate Intimacy
can be avoided by use of Chain of Responsibility S13
might not be a smell if it is Use of superclass features S14

Data Class

is not a smell if it is Data Transfer Object S7, S8, S32, S34
is not a smell if it is Parameter Object S7
is not a smell if it is Data Access Object S32
is not a smell if it is Immutable Data Object S16, S32
fixing smell might improve Domain Model S17, S34
fixing smell might improve Service S17

Middle Man

is not a smell if it is Delegation class with clear purpose (sub practices/patterns:
Adapter, Wrapper, Proxy, Facade, Decorator)

S3, S15, S22

is not a smell if it is Facade S14, S15, S22
is not a smell if it is Wrapper S3
is not a smell if it is Proxy S15, S39
is not a smell if it is Adapter S3, S15
can evolve out of Mediator S14

Table 5: Practice and pattern relations suggested per smell. Color coding indicates how many evidences of a smell contain a
specific practice or pattern.

18

4.3.5. Fix Options
As shown in Table 6 overall 28 sources discuss or list possible fixes for Feature Envy. Most of those

are well-known refactorings. The most often suggested fix is the move method refactoring. In cases like
the second example above before considering to move a method, the envious part of a method might have
to be extracted with the extract method refactoring, which is also often suggested. Sometimes it makes
sense to extract multiple parts at once and apply the extract class refactoring. E.g. when moving a method,
move field might be needed as well.

It is a bit unclear from the rather generic definitions of the smell if Feature Envy can occur within an
inheritance hierarchy. If this is considered, either add higher-level or more abstract feature or subclass and
extend can be considered as fix options. Other options mentioned only by one source are hide delegate,
bundle multiple methods into a single method, hide internal details, or to first use OO metrics to detect
smell before applying other fix options.

The variety of fix options presented and the fact that extract method and other changes to a class might
be needed before move method can be applied underline the points from above: While it can be easy
for humans to spot Feature Envy in a method, automation of detection and fixing is hard. Just consider
an example like the second getTotalPrice() example above, which is a Long Method with alternating
and intertwined code fragments from the own class and multiple other classes the method is envious of.
Refactoring in this situation requires multiple steps combining many of the fix options listed here in a
creative way.

4.4. Inappropriate Intimacy
4.4.1. Definitions

Inappropriate Intimacy has the second highest number of evidences (21 sources) with five different
definition variants in Table 3. Almost a half of the sources define Inappropriate Intimacy as a class using
another class’s implementation details, some interpret implementation details only as private features, and
some others view only a single method as the coupling origin. Another type of definition sees Inappro-
priate Intimacy as two or more classes excessively depending on each other. Two of those sources again
limit the definition to private features.

The following example briefly outlines how a class can make use of another class’s implementation
details. Here the method getAccomodationType() of the class Tenant uses the internal implementation
detail of the class Accomodation. If Accomodation would make similar use of Tenant’s features, the more
narrow “two or more classes excessively depending on each other” kind of definition would be fulfilled,
too.
class Tenant {
private String name;
private Accomodation accomodation;
public String tenantAccomodation = accomodation.type;
// ..
public String getAccomodationType(String newtype){

accomodation.setType(newtype);
if (tenantAccomodation.equals(accomodation.getType()))

return tenantAccomodation;
else

return accomodation.getType();
}

}

4.4.2. Relationships to other smells
As shown in Figure 4, Object Orgy is a synonym of Inappropriate Intimacy often used in the Perl

community. We have confirmed this by studying a number of sources on Object Orgy. Indecent Exposure
is very similar to Inappropriate Intimacy and fosters its occurrence. A couple of possible relations are

19

Smell Fix Option Fix Option Evidences

Feature Envy
Number of evidences
discussing fixes
option: 28

Move method S1, S3, S4, S5, S9, S10, S11, S14, S15, S16, S17, S18, S20, S22, S27, S28, S29, S31, S35, S39, S42, S43, S45, S46, S47
Add higher-level or more abstract feature S1, S21, S27
Extract method S4, S5, S6, S9, S10, S11, S14, S16, S27, S28, S29, S31, S35, S39, S43, S45, S46, S47
Extract class S9, S14
Move field S5, S31, S35
Hide delegate S11
Bundle multiple methods into a single method S15
Hide internal details S20
Use OO metrics to detect smell S41
Subclass and extend S10, S39

Inappropriate Intimacy
Number of evidences
discussing fixes
option: 14

Change target class to only offer public features if possible S1
Change calling class to only use public features if possible S1
Move method S4, S5, S14, S22, S24, S25, S26, S35, S44, S48
Move field S4, S5, S14, S24, S25, S35, S44, S48
Extract class S4, S5, S24, S25, S44, S48
Hide delegate S4, S5, S24, S35, S48
Replace delegation with inheritance S4, S5, S24, S35, S44, S48
Change Bidirectional Association to Unidirectional Association S4, S5, S24, S25, S35, S48
Use reflection with caution S13
Encapsulate field S13, S15, S26
Encapsulate collection S13, S26
Introduce extra class between intimate classes S15
Extract method S22, S25, S26
Subclass and extend S10

Data Class
Number of evidences
discussing fixes
option: 11

Move method S4, S5, S7, S8, S14, S16, S17, S35
Encapsulate field S4, S5, S8, S14, S16, S35
Encapsulate collection S4, S5, S14, S16, S35
Extract method S4, S7, S14, S16, S17
Move data-using methods to data class S4, S8, S17, S32
Remove getters and setters from data class and make fields private S14, S16
Make immutable data object S32
Use OO metrics to detect smell S37
Subclass and extend S10

Indecent Exposure
Number of evidences
discussing fixes
option: 1

Encapsulate field S15
Encapsulate collection S15
Hide behind method S15
Hide behind abstract class or interface S15

Message Chain
Number of evidences
discussing fixes
option: 9

Hide delegate S4, S5, S14, S16, S22, S35, S39
Extract method S4, S5, S14, S16, S39
Move method S4, S5, S14, S16
Ignore, if refactoring leads to middle man S4
Hide behind method S15
Ignore, if it is a small chain which causes little coupling (is harmless) S14
Subclass and extend S10

Middle Man
Number of evidences
discussing fixes
option: 12

Remove middle man S4, S5, S14, S15, S16, S22, S23, S33, S35, S39
Ignore, if middle man is used to reduce interclass dependencies S4
Inline method S5, S16, S35
Replace delegation with inheritance S5, S35
Remove middle man method S19
Subclass and extend S10

Table 6: Fix options suggested per smell. Color coding indicates how many evidences of a smell containing fix option sugges-
tions contain a specific fix option.

20

mentioned only by one source: Inappropriate Intimacy can cause the Duplicate Code smell. Inappropriate
Intimacy might be accompanied by Feature Envy as many intimate relations, as in our example above,
might lead to classes using the other class excessively. Such intimate or excessive use can often be
observed with Data Classes, which also can accompany Inappropriate Intimacy.

4.4.3. Liabilities and principle violations
As shown in Table 4, motivations for avoiding Inappropriate Intimacy are very often maintainability

issues in general or more specific ones such as low code comprehensibility, missing encapsulation, high
coupling, high complexity (maybe caused by code duplication), reduced changeability, low cohesion, and
reuse issues.

Inappropriate Intimacy often violates the Single Responsibility Principle when responsibilities of an-
other class are not delegated to the other class, but performed locally. It also violates the Law of Demeter
(“only talk with your immediately friend”) if classes make excessive use of many classes’ implementation
details and thus have more knowledge about other classes than necessary.

4.4.4. Related practices and patterns
As shown in Table 5, Inappropriate Intimacy has only a few typical links to practices and patterns.

One source brings up the Chain of Responsibility pattern [47]. Its multiple handlers in a chain with clear
interfaces can help to avoid coupling between the classes. Another source sees the use of superclass
features as a harmless symptom only looking like Inappropriate Intimacy.

4.4.5. Fix Options
Inappropriate Intimacy has the widest range of fix options with 14 fix options from 14 sources as

shown in Table 6. Strongly recommended fixes are move method, move field, extract class, hide delegate,
replace delegation with inheritance, and change bidirectional association to unidirectional association.
It is interesting to see that many of those also appear for Feature Envy. Again, the practitioner recommen-
dation often describes fixing as a process in which many of those are applied to resolve a complex design
situation. A couple of sources mention specific fixes for Inappropriate Intimacy, such as recommendation
of increasing encapsulation, focus on public features only, cautious use of reflection, or introducing an
extra class between intimate classes.

4.5. Data Class
4.5.1. Definitions

For Data Class all 16 sources covering the smell conform to the same kind of definition (as shown in
Table 3): It is a class that only offers data. It might have methods but these are only getters and setters for
the data. The following example shows such a pure Data Class:
public class Student {
private int id;
private String name;

public Student(int id){
this.id = id;

}
public void setId(int id){

this.id = id;
}
public void setName(int name){

this.name = name
}
public int getId(){

return id;
}
public String getName(){

21

return name;
}

}

4.5.2. Relationships to other smells
As shown in Figure 4, sometimes Data Class is accompanied by Inappropriate Intimacy, for instance,

if other classes use a Data Class’s private features or implementation details excessively. Data Classes
can cause Feature Envy as classes using Data Classes might be envious to the data access features. If Data
Classes are accessed via private or other internal features, they also suffer from Indecent Exposure, which
can worsen the coupling of the Data Class. Using Data Classes entails the danger of causing Duplicate
Code, if the functionality related to the data in the Data Classes is handled in several places across the
code base.

4.5.3. Liabilities and principle violations
As shown in Table 4, Data Classes are harmful because they lower the code comprehensibility. They

are seen as a misplaced responsibility if code manipulating the data is located elsewhere than the data.
This is also the reason why Data Classes might violate the Single Responsibility and Tell Don’t Ask
Principles. Other liabilities often mentioned are other maintainability issues such as high coupling, high
complexity, low cohesion, and reduced changeability.

4.5.4. Related practices and patterns
Data Class seems rather simple to detect because of its obvious symptoms. But this is deceiving.

Practitioners point out many structurally and behaviorally more or less identical solutions, which are seen
as best practices and not as harmful Data Classes. The most common of those is the Data Transfer
Object [49] which is an object that carries data between processes, e.g. often used in distributed systems.
Immutability is an important principle of functional programming, and thus Immutable Data Objects are
used e.g. where objects and functional programming are combined. Complex parameters can be simplified
with Parameter Objects. Data Access Objects are usually offering data access behavior as well, but some
practitioners point out that they can be confused with Data Classes.

As explained above in Section 4.3.4, Domain-driven Design aims for rich Domain Models with data
and behavior. Data Class can be seen as a symptom of the Anemic Domain Model anti-pattern, and fixing
them can improve the Domain Model as well as the Services relying on domain model classes.

4.5.5. Fix Options
As shown in Table 6, reworking the various classes that use the Data Class’ data by move method,

move data-using methods to data class, and extract method are very often suggested fixes. In addition,
information hiding fix option such as encapsulate field, encapsulate collection and remove getters and
setters from data class and make fields private are often suggested, too. Making data objects immutable
(i.e., turning then into Immutable Data Objects), subclass and extend, and using OO metrics to detect the
smell before other fixes are applied are each suggested by one source.

4.6. Indecent Exposure
4.6.1. Definitions

For Indecent Exposure all 5 sources covering the smell agree about the definition (as shown in Table 3):
It is a class that exposes internal detail. One typical option considered are classes offering public variables,
e.g. in languages like Java. In other languages such as Python this might be seen as less problematic, but
still internal details can be exposed. Finally, many other language options exist, e.g. reflection or pointer
manipulations, that might lead to Indecent Exposure.

22

4.6.2. Relationships to other smells
As shown in Figure 4, Excessive Exposure is another name of Indecent Exposure. Indecent Exposure is

similar to Inappropriate Intimacy and can enable its occurrence. Indecent Exposure makes Data Classes
worse because it reveals their data without any restrictions.

4.6.3. Liabilities and principle violations
For Indecent Exposure maintainability issues such as high complexity, low code comprehensibility,

high coupling, and reduced changeability are discussed as typical liabilities. Indecent Exposure might
lead to violations of the Single Responsibility Principle, if other classes use the exposed features to realize
responsibilities belonging to those features.

4.6.4. Fix Options
Table 6 shows 4 different fix options for Indecent Exposure. They are all about adding more encap-

sulation or information hiding: encapsulate field, encapsulate collection, hide behind method, and hide
behind abstract class or interface.

4.7. Message Chain
4.7.1. Definitions

For Message Chain our 12 sources agree on a single definition: long sequence of method calls. They
often distinguish a call chain, as in the following example, or reaching them same with other means, e.g.
by using temporary variables.
int id = obj.getDepartment().getSubDepartment().getHOD().getId();

4.7.2. Relationships to other smells
Fixing Message Chain can cause the Middle Man smell, if an object is introduced to only coordinate

the calls in the chain.

4.7.3. Liabilities and principle violations
For Message Chain various maintainability issues such as high coupling, low code comprehensibility,

and reduced changeability are discussed as typical liabilities. In a Message Chain calls might combine
various responsibilities in one place, violating the Single Responsibility Principle. Message Chains might
lead to more linked objects through calls, i.e. a violation of the Law of Demeter.

4.7.4. Fix Options
The majority of fix options are about step-wise reworking the Message Chain, i.e. hide delegate,

extract method, move method, hide behind method, and subclass and extend. It is advised to ignore the
smell, if it leads to introduction of a Middle Man or if it is just a small chain causing little coupling.

4.8. Middle Man
4.8.1. Definitions

Middle Man appears in 13 sources shown in Table 3. More than a half of the sources define Middle
Man as a class that only delegates to other classes. Similarly, another definition sees the Middle Man as a
Wrapper. Some practitioners mention that a Middle Man might do other work than only delegating. This
is reflected in one definition variant by stating that the majority of the work is delegated. In another one
it is introduced by making a single method the origin of the coupling, i.e. this way other methods of the
class can perform other tasks than pure delegation.

23

4.8.2. Relationships to other smells
As shown in Table 2, Middle Man can result after resolving Message Chain.

4.8.3. Liabilities and principle violations
For Middle Man various maintainability issues such as low code comprehensibility, high complexity,

high coupling, reduced changeability, and missing encapsulations, are discussed. A Middle Man gathers
responsibilities that likely belong to the wrapped classes, i.e. it often violates the Single Responsibility
Principle.

4.8.4. Related practices and patterns
There are structurally and behaviorally identical situations to Middle Man which are not considered

as a smell. They occur if it is a delegation class with a clear purpose. Examples might be patterns and
practices such as Facade [47], Wrapper, Proxy [47], and Adapter [47]. A Mediator [47] is also structurally
and behaviorally similar, and if its mediation responsibilities shrink during evolution, it might turn into a
mere Middle Man.

4.8.5. Fix Options
Most practitioners agree to resolve the Middle Man smell by a simple remove middle man fix (remove

middle man method is similar to this). Three sources suggest to fix it by inline method. Two sources sug-
gest to fix it by reworking the calls into the inheritance hierarchy: replace delegation with inheritance and
subclass and extend. One source suggests ignore if middle man is used to reduce interclass dependency.

5. Discussion

5.1. Discussion of how practitioners understand coupling smells
In the previous section, we have detailed our finding regarding RQ1, i.e., our derived model how

coupling smells are understood by practitioners. In particular, by describing our meta-model, depicted
in Figure 2, we have outlined some of our findings of RQ1.1, i.e. what the relevant defining factors of
coupling smells are. This is detailed in Figure 3 with possible relationship types. Besides, we have
categorized the definitions of the smells used by practitioners for each of the coupling smells, as well
as the coupling origins and targets in those definitions (see Table 3). Here, it is interesting to observe
that many practitioners have a rather broad and hard to formalize understanding of the smells (such as
“excessive use” based definitions). This means, it requires design expertise to judge whether or not a
certain situation is a smell, making automated smell detection hard. While most coupling smells have
only small variations in their definitions, the scope of Feature Envy is more controversial.

It is worth to note that the practitioners sometimes confuse the various coupling smells. For instances,
a confusion between Feature Envy and Inappropriate Intimacy is mentioned in S1. Some Feature Envy
definitions actually describe Data Envy (e.g. in S28). Feature Envy can also be confused with more simple
structures, e.g. utility functions (see e.g. S6, S42). Some practitioners see a difference between the notions
of Indecent Exposure and Inappropriate Intimacy, for others it is the same smell.

RQ1.2 considers what the relevant quality impacts and trade-offs are. We have mainly found the stated
liabilities and principle violations (see Table 4). Across the different smells, low code comprehensibility,
i.e. impact on understandability qualities, is often mentioned, as well as various kinds of maintainability
issues affecting software qualities such as understandability, changeability, evolvability, testability, and
reusability. Violations to Single Responsibility, Tell Don’t Ask, and Law of Demeter principles are often
reported, too (and closely related to the mentioned liabilities). In a very few cases, impact on Code and
Design Technical Debt are discussed, as well. We have found no evidence for concrete ways to spot,

24

calculate, or pay back technical debt other than smell definitions, fixes, and two sources mentioning
simple OO metrics for detection (S37, S41).

RQ1.3 investigates what the relevant relations among smells and to other software concepts are. We
have found relations between smells (see Table 2), as well as relations to patterns and practices (see
Table 5). For many coupling smells structurally and behaviorally identical solutions exist, which are
considered in the literature as best practices. For example, for Data Class various exceptions to the
definition are discussed, which are actually best practices, that some practitioners doubt whether Data
Class is actually a code smell (see e.g. S32). For this reason, Data Class is, even though structurally very
simple, rather hard to automatically detect without considering human design expertise.

A remarkable observation is that many practitioners relate Domain-Driven-Design to coupling smells.
It seems a good Domain Model design can help to avoid coupling smells, and existing coupling smells
might also need to be considered at the Domain Model level to be fixed well.

An overarching aspect concerning RQ1.2 and RQ1.3 is that simple examples of the smells, such as
those used for illustration in this article, might be not critical enough to be considered harmful. Rather
with enough intensity of the smell, a harmful negative effect on the qualities can arise that requires fixing.
For instance, if multiple smells occur together, the intensity of each single smell might increase. For that
reason, understanding the relations of smells is important.

RQ1.4 studies what the relevant options for fixing coupling smells are. We have found the detailed
lists of fixes outlined in the previous section and summarized in Table 6. Here, it is interesting to observe
that for situations where the smells occur in enough intensity to be harmful, the situations will likely also
be too complex to be fixed by a single fix and often there are many options available for fixing. Complex
interdependencies to other places in the code need to be considered for fixing the smells by applying a
cascade of refactorings or other fix options.

Overall, the relation of many smells to inheritance practices remains unclear to a certain extent. Also,
if inheritance can or should be used to fix the smells remains unclear. Smells might differ in different
programming languages. For example, practices considered as Indecent Exposure in Java might be ac-
ceptable to Python developers. The developer’s perception is also dependent on organization standard and
project size. For example, S40 states that: “Code smell differs from project to project and developer to de-
veloper, according to the design standards that have been set by an organization.” Our results indicate that
understanding the smells’ contexts, such as programming languages, project details, and design methods,
could help understanding the implications of smells better. More research is needed to understand the
impact of the smells’ contexts.

For all of RQ1, it is interesting that practitioners sources often relate to only a few core sources,
especially Fowler’s refactoring book [1],

5.2. Interesting gaps to the scientific literature and future research opportunities and challenges
In this section we discuss the results in the relation to RQ2, i.e., what the gaps in the understanding

of coupling smells between the practitioner’s view and the scientific literature are. From each discussed
aspect we derive lessons as answers to RQ3, i.e., what the resulting opportunities and challenges for future
scientific work are. To illustrate our comparison further, we summarize in Appendix A how smells, smell
definitions, relations, liabilities, related patterns, and fix options are covered in the scientific literature.

5.2.1. Coupling smell definitions and their detection
At first glance, the definitions of coupling smells used in research literature and those in the prac-

titioner texts seem to match well. At the closer inspection performed in our study, this is not the case.
Let us illustrate this using the example of Feature Envy: The scientific detection literature summarized
in Section 2 mostly uses a definition such as “a method (class) uses more features (data) of another class

25

than its own” in a rigorous sense, as this is easily measurable e.g. with distance metrics. As outlined,
many practitioners rather use broader, pragmatic definitions. Practitioners seem to assume some code can
be classified as Feature Envy only if a substantial harmful impact on desired qualities is present. The
relations to practices and patterns found in our study reveal many exceptions that must be made to the
definitions of coupling smells. Overall, researchers rarely take patterns and practices into account [2] and
only by other simple heuristics. For example, there is no structural or behavioral clue if some code de-
tected as having a Feature Envy like structure and/or behavior is not really a Visitor or Strategy pattern. In
response, some approaches tailor their detection heuristics by looking for terms like “visitor” and “strat-
egy” in class and package names, but this approach is futile: Firstly, there is no guarantee that a visitor
instance has “visitor” in its name. Secondly, these patterns are only used as examples by practitioners
for situations where behavior is kept separate from its data for a clear purpose. There are many other
such cases that look like Feature Envy, but are neither Feature Envy nor Visitor or Strategy. The found
relations to domain-driven design practices reveal many additional situations where Feature Envy can be
harmful; thus for detecting Feature Envy well, often a deep understanding of the system’s domain model
is required, too. Finally, often Feature Envy is seen as being harmful only if it occurs intensely enough
in relation with other smells. The empirical study by Palomba et al. [17] confirms this finding. In other
words, an approach to detect Feature Envy could consider all rich relations to the other smells that Feature
Envy has (see Figure 4) into account.

While Feature Envy is the most complex smell in our study, the situation is more or less the same for all
other coupling smells. As a consequence, many of the smell detection results found by current scientific
tools would be considered not being the smell or non-harmful occurrence of the smell by practitioners,
for one or the other of the reasons given above. Note that a couple of the empirical studies with human
participants in Section 2.3 report similar findings (e.g. [16, 15, 18, 19]). For example, Carneiro et al.’s
study [15] confirms our result that practitioners see coupling smell detection as a complex problem, as
opposed to the tools which only use simple heuristics. Mantyla et al.’s study [16] confirms this view,
too, e.g. as they found that conflicting perceptions of different evaluators play a large role. In Mantyla
et al.’s study, metrics-based and practitioner identification of smells do not correlate, a result which our
study would predict as a possible result. Guo et al. [18] found that semantic factors of smells could not
be encoded into their tool, which can also be explained using our results. Yamashita and Moonen [19]
found that interaction effects amongst collocated smells and coupled smells should be taken into account.
This is confirmed by our study, revealing many inter-smell relations. This study has also found that smells
alone cannot predict maintainability issues. This is not surprising according to our results, which indicate
that a considerable number of other aspects need to be taken into account when judging smells.

Lesson 1. The understanding of coupling smells used in scientific studies could benefit from being
broadened: When classifying some code as a coupling smell, it would make sense to consider a qualitative
assessment of the code’s impact on code and design qualities, the relations and interactions with other
smells, and the relations to practices, patterns, and the system’s domain model that sometimes lead to
exceptions or changed quality impacts.

As outlined in Section 2.1, many of the current coupling smell detection approaches assume that
coupling smells can be detected by rather simple heuristics such as metrics, static or dynamic analyses,
or metrics-based rules. Broader understandings of coupling smells, as suggested above, mean that no
heuristic technique can ever take all situations covered by those definitions into account. That is, heuristics
can help to find suspicious places in the code, but cannot solidly decide if it is a code smell or not.

Lesson 2. Scientific studies could stronger focus on providing hints to developers and getting human
design and domain expertise into the loop before classifying some code as being a coupling smell.

Given the typical work pressures of industrial software developers, we speculate that using localized

26

approaches to provide such hints for smell candidates directly during their work on the code, e.g. in the
IDE or code editor, is advisable, instead of tools providing long lists of potential code issues (which
contain a lot of false positives).

5.2.2. Coupling smell fix options
A similar situation as for the detection can actually be observed for the fixes of coupling smells. As

can be seen (see e.g. Table 6), practitioners consider a much broader variety of fix options than usually
considered in the scientific literature discussed in Section 2. Also they often consider doing many more
changes than just one single refactoring. For example, whereas the scientific literature sometimes seems
to imply typical harmful Feature Envy can be easily fixed by moving a method, very often a much more
complex procedure is needed. Consider a complex, central class of a system envious to many other classes,
but intertwined in many ways with those other classes. According to the various practitioner sources many
steps for fixing might be needed. Our GLS results indicate that fixing a complex coupling situation can be
a complex multi-criteria optimization or decision problem that needs deep domain and design experience
to be solved. It is thus explainable that empirical studies where human participants review small code
entities lead to the result that practitioners do not see the smell identified by the researchers as being
problematic (as e.g. in [17]).

Lesson 3. Scientific studies could take into account a broad range of fixing options for a coupling
smell and the trade-offs between various fixing options. They could consider the impacts on other smells,
practices, patterns, the system’s domain model, relevant code and design qualities, and so on. Approaches
could consider getting human design and domain expertise into the loop. They could see fixing a highly
coupled design situation as a complex multi-criteria optimization or decision problem.

5.2.3. Domain-specific and other specializations for coupling smells and related approaches
It is interesting to observe that practitioners explicitly or implicitly discuss the relation to domain

modeling, domain-driven design, and related semantically rich areas of software design quite often. In the
scientific literature discussed in Section 2, these aspects play a very minor role. To explore such relations
could lead to a better understanding of the rich semantic understanding of coupling smells revealed in our
GLS.

Lesson 4. Scientific studies could start to study the relations of domain modeling, domain-driven
design, and related areas to coupling smells more intensely.

Domain modeling and domain-driven design are areas, where more knowledge about the system or
domain can help to improve smell detection and fixing. We have summarized a number of scientific
approaches already going into that direction in Section 2.2. This is an interesting research direction
that could be intensified. Many aspects identified in our study as being rather broad in the view of the
practitioners, such as impact of liabilities and principle violations, relations to practices and patterns,
inter-smell relations, and fix options, might be just that broad because the coupling smells cover every
possible domain and every kind of system. Limiting the view e.g. to software architecture, microservice-
based systems, domain modeling aspects, or enterprise architectures might greatly reduce the breadth of
options and at the same time lead to more specific smells. Guo et al.’s empirical study results [18] confirm
this and suggest to tailor the generic heuristics usually used for detection to take domain-specific factors
into account.

Lesson 5. Scientific studies could consider more specialized coupling smells and related approaches,
for instance, in certain application or technology domains, or consider the smells only in a specific (tech-
nical) context.

27

Note that covering more application or technology domains, and other such specializations, requires
broader views on coupling smells (as suggested by Lesson 1). Very narrow understandings, e.g. in auto-
mated tools, might miss application- or technology-specific smells and fix options.

5.3. Threats to validity
It is important to consider the threats to validity during the design of a study to increase its validity.

As GT is mainly concerned with phenomena that have specifically been observed to exist, threats to
the results’ validity are mainly restricted to inappropriate conceptualization [50]. As we carefully added
practitioner articles until theoretical saturation was reached, and then carefully reviewed and coded each
source in multiple iterations by all authors, we believe the validity of our results as likely to be high. We
do not claim that all practitioners in our data sources are experts for coupling smells. Our study has a
certain mono-method bias as it uses grounded theory for analyzing grey literature only. To mitigate the
threat we contrasted our finding in-depth to the scientific literature.

To increase internal validity or credibility we decided to use practitioner reports that were produced
independent of our study. This avoids bias, e.g. compared to interviews in which the practitioners would
have known that their answers are used in a study. However, this introduces a different threat: Some im-
portant information might be missing in the reports, which would have been revealed in an interview. We
tried to mitigate this threat by looking at many more sources than needed to reach theoretical saturation,
as it is unlikely that all different sources miss the same important information. A major challenge is that
identifying gaps between scientific and practitioner understandings is always prone to a certain level of
interpretation by the researchers.

The different members of the author team have cross-checked all models independently to minimize
researcher bias. The threat to validity that the researcher team is biased in some sense remains, however.
The same applies to our coding procedure and the UML-based modeling: Other researchers might have
coded or modeled differently, leading to different models. As our goal was only to find one model that
can specify all observed phenomena, and this was achieved, we consider this threat not to be a major issue
for our study.

The experience and search-based procedure for finding knowledge sources may have introduced some
kind of bias as well. However, this threat is mitigated to a large extent by the chosen research method,
which requires just additional sources corresponding to the inclusion and exclusion criteria, not a specific
distribution of sources. Note that our procedure is in this regard rather similar to how interview partners are
typically found in qualitative research studies in software engineering today. However, the threat remains
that our procedures introduced some kind of unconscious exclusion of certain sources; we mitigated this
by assembling an author team with many years of experience in the field, and performing very general
and broad searches.

GT aims to explain phenomena that exist, and it neither claims to capture all such phenomena nor to
quantify their frequency or distribution [50]. Therefore, even results derived from a very few sources will
be valid and can be relevant [50]. There is a risk that generalizing from some of our results might be
misleading, but as we do not claim completeness and use a rather high number of sources (many more
than needed for theoretical saturation), it is likely that generalization is valid to at least some extent. Note
that we have provided the number of sources mentioning a phenomenon to give an impression of the data
we gathered; this should not be misinterpreted as quantification of frequency or distribution.

5.4. Experiences, Challenges, and Lessons Learned in the Grey Literature Study
A secondary contribution of our work is the integration of GT with GLS, using the grey literature as

a data source for GT. In our experience, this combination works well for studying existing phenomena in
practice and their relations. For instance, it is very well applicable for studying which smells practitioners

28

are concerned with, and their relations to existing patterns and practices, quality attributes (liabilities),
principles, inter-smell relations, and so on.

Using grey literature compared to interviews avoids the interview situation context and the possibility
to unintentionally leading the interviewees in the expected direction of interviewers. A challenge com-
pared to interviews is that practitioner sources are not written with the goal to fuel a GLS. To address
this challenge we opted to report opportunities and challenges for research, rather than criticizing existing
research directions. Stronger statements would require additional research, e.g. quantitative studies or
surveys, showing that the observed phenomena are relevant for practitioners at a broader scale. Multi-
vocal literature reviews might also be a better option for research in such directions. All those research
methods, however, would lack the explorative nature of our study. We also identified recommendations
for the practitioners, including gaps to the research literature where practitioner approaches could benefit
from the current state of the art in research, as well as many insights on the coupling smells offering a
broader view than a few knowledge sources could offer.

In other GLSs and especially in multi-vocal literature reviews, the search strategy for the grey litera-
ture plays a central role. This is minimized in GT-based research, as GT does not aim to study phenomena
holistically, but rather phenomena that have specifically been observed to exist [50]. This however means
that reporting the literature search strategy in an overview is harder than for other GLS. To enable follow-
ing our coding in detail, we provide all data and code in an open access repository. This downside of GT
has a big advantage nonetheless: In most other GLSs it is hard to define exclusion criteria to avoid having
to include sources of low quality. For example, in our study we could exclude otherwise well written
sources that aimed to sell a product or service by a qualitative review performed by the authors. That is,
the selection process is very similar to interview studies and other such qualitative research – and has the
same threats to validity discussed below.

We combined the GLS with UML-based, rigorous modeling for coding because it is highly beneficial
to precisely represent the results in our experience. A major challenge is that the grey literature usu-
ally consists of rather informal writings and thus any categorization or classification performed by the
researchers has a subjective element to it. Yet, this is the case for all axial coding in GT; it is not a specific
property of our study. In contrast to text-based axial coding, the Python implementation keeps track of re-
lations between codes, auto-layouts visualizations of those relations, and yields an error for many coding
mistakes researchers might make. Such errors might go undetected in text-based coding.

Another big difference to many systematic literature studies is that each included source was not only
scanned for knowledge, but instead analysed in-depth, line-by-line, usually many times. Whenever a later
studied source reveals new insights on a phenomenon studied before, we re-analyzed the related source
studied before. Here, our experience shows that precisely coded trace links can help a lot in guiding
which sources provided evidence for some phenomenon and thus might need to be inspected again. To
enable replicability of such studies, it is important to fully document each coding stage for each source –
as provided in our open access replication package.

6. Conclusions

Based on a Grounded Theory study of grey literature sources containing practitioner views on coupling
smells, this article has found defining factors of coupling smells and relevant impacts on and trade-offs
to be made with regard to code and design quality. We identified Feature Envy, Inappropriate Intimacy,
Data Class, Indecent Exposure, Message Chain, and Middle Man as coupling smells widely discussed
by practitioners. We further studied the relations among those coupling smells, to other related smells,
and to other software code and design concepts, as well as options for fixing coupling smells. Based on
this knowledge, we identified gaps in the understanding of coupling smells between science and practice.

29

Finally, we derived opportunities and challenges for future scientific work. In particular, we have derived
five lessons that represent opportunities and challenges for future research. From those we can conclude
that the definitions of coupling smells used in approaches and tools need to be broadened to the various
practitioner concerns identified in this article. Coupling smells detection tools and approaches could
aim to better include human design expertise in the detection and fixing decisions on coupling smells.
Coupling smell fixing often could be understood as a complex multi-criteria optimization or decision
problem, not simply applying one or a few refactorings. The interaction of coupling smells and domain
modeling could be studied more intensely. As future work, we plan to examine more closely some of the
lessons learned in our study, especially more specialized and domain-driven approaches. We also plan to
confirm some of the lessons learned in other empirical studies. It would be interesting to perform further
quantitative studies specifically focused on the relations of smells to practices, liabilities, fixes, and so on,
which we have found in this article.

References

[1] Refactoring: Improving the Design of Existing Code, Addison-Wesley Longman Publishing Co.,
Inc., USA, 1999.

[2] F. Sabir, F. Palma, G. Rasool, Y.-G. Guéhéneuc, N. Moha, A systematic literature review on the
detection of smells and their evolution in object-oriented and service-oriented systems, Software:
Practice and Experience 49 (1) (2019) 3–39.

[3] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice - Using Software Metrics to Charac-
terize, Evaluate, and Improve the Design of Object-Oriented Systems, Springer, 2006.

[4] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, Jdeodorant: Identification and removal of feature envy
bad smells., in: ICSM, IEEE Computer Society, 2007, pp. 519–520.

[5] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, A. De Lucia, Mining version
histories for detecting code smells, IEEE Transactions on Software Engineering 41 (5) (2015) 462–
489.

[6] A. M. Fard, A. Mesbah, Jsnose: Detecting javascript code smells, in: 2013 IEEE 13th International
Working Conference on Source Code Analysis and Manipulation (SCAM), 2013, pp. 116–125.

[7] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, A. Marino, Comparing and experimenting machine
learning techniques for code smell detection, Empirical Softw. Engg. 21 (3) (2016) 1143–1191.

[8] H. Liu, Z. Xu, Y. Zou, Deep learning based feature envy detection, in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Association
for Computing Machinery, New York, NY, USA, 2018, p. 385–396. doi:10.1145/3238147.
3238166.

[9] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring opportunities, IEEE
Trans. Softw. Eng. 35 (3) (2009) 347–367. doi:10.1109/TSE.2009.1.

[10] V. Sales, R. Terra, L. F. Miranda, M. T. Valente, Recommending move method refactorings using
dependency sets, in: 2013 20th Working Conference on Reverse Engineering (WCRE), IEEE, 2013,
pp. 232–241.

30

https://doi.org/10.1145/3238147.3238166
https://doi.org/10.1145/3238147.3238166
https://doi.org/10.1109/TSE.2009.1

[11] R. Terra, M. T. Valente, S. Miranda, V. Sales, Jmove: A novel heuristic and tool to detect move
method refactoring opportunities, Journal of Systems and Software 138 (2018) 19 – 36. doi:
https://doi.org/10.1016/j.jss.2017.11.073.

[12] A. K. Dipongkor, I. Ahmed, N. Nahar, Move method recommendation using call frequency of meth-
ods and attributes, in: 2018 Joint 7th International Conference on Informatics, Electronics & Vi-
sion (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition
(icIVPR), IEEE, 2018, pp. 76–81.

[13] M. Mantyla, J. Vanhanen, C. Lassenius, A taxonomy and an initial empirical study of bad smells
in code, in: International Conference on Software Maintenance, 2003. ICSM 2003. Proceedings.,
2003, pp. 381–384.

[14] R. Marticorena, C. López, Y. Crespo, Extending a taxonomy of bad code smells with metrics, in:
Proceedings of 7th International Workshop on Object-Oriented Reengineering (WOOR), Citeseer,
2006, p. 6.

[15] G. d. F. Carneiro, M. Silva, L. Mara, E. Figueiredo, C. Sant’Anna, A. Garcia, M. Mendonça, Iden-
tifying code smells with multiple concern views, in: 2010 Brazilian Symposium on Software Engi-
neering, 2010, pp. 128–137.

[16] M. V. Mantyla, J. Vanhanen, C. Lassenius, Bad smells - humans as code critics, in: 20th IEEE
International Conference on Software Maintenance, 2004. Proceedings., 2004, pp. 399–408.

[17] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia, Do they really smell bad? a study
on developers’ perception of bad code smells, in: 2014 IEEE International Conference on Software
Maintenance and Evolution, 2014, pp. 101–110.

[18] Y. Guo, C. Seaman, N. Zazworka, F. Shull, Domain-specific tailoring of code smells: An empirical
study, in: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 2, ICSE ’10, Association for Computing Machinery, New York, NY, USA, 2010, p.
167–170. doi:10.1145/1810295.1810321.

[19] A. Yamashita, L. Moonen, To what extent can maintenance problems be predicted by code smell
detection?–an empirical study, Information and Software Technology 55 (12) (2013) 2223–2242.

[20] B. G. Glaser, A. L. Strauss, The Discovery of Grounded Theory: Strategies for Qualitative Research,
de Gruyter, New York, NY, 1967.

[21] J. Corbin, A. L. Strauss, Grounded theory research: Procedures, canons, and evaluative criteria,
Qualitative Sociology 13 (1990) 3–20.

[22] A. Rainer, A. Williams, Using blog-like documents to investigate software practice: benefits, chal-
lenges and research directions, Journal of Software: Evolution and Process (8 2019). doi:
10.1002/smr.2197.

[23] U. Zdun, M. Stocker, O. Zimmermann, C. Pautasso, D. Lübke, Guiding architectural decision mak-
ing on quality aspects in microservice apis, in: C. Pahl, M. Vukovic, J. Yin, Q. Yu (Eds.), Service-
Oriented Computing - 16th International Conference, ICSOC 2018, Hangzhou, China, November
12-15, 2018, Proceedings, Vol. 11236 of Lecture Notes in Computer Science, Springer, 2018, pp.
73–89. doi:10.1007/978-3-030-03596-9_5.

31

https://doi.org/https://doi.org/10.1016/j.jss.2017.11.073
https://doi.org/https://doi.org/10.1016/j.jss.2017.11.073
https://doi.org/10.1145/1810295.1810321
https://doi.org/10.1002/smr.2197
https://doi.org/10.1002/smr.2197
https://doi.org/10.1007/978-3-030-03596-9_5

[24] U. Zdun, E. Ntentos, K. Plakidas, A. E. Malki, D. Schall, F. Li, On the design and architecture of
deployment pipelines in cloud- and service-based computing - A model-based qualitative study, in:
E. Bertino, C. K. Chang, P. Chen, E. Damiani, M. Goul, K. Oyama (Eds.), 2019 IEEE International
Conference on Services Computing, SCC 2019, Milan, Italy, July 8-13, 2019, IEEE, 2019, pp. 141–
145. doi:10.1109/SCC.2019.00033.

[25] A. E. Malki, U. Zdun, Guiding architectural decision making on service mesh based microservice
architectures, in: T. Bures, L. Duchien, P. Inverardi (Eds.), Software Architecture - 13th European
Conference, ECSA 2019, Paris, France, September 9-13, 2019, Proceedings, Vol. 11681 of Lecture
Notes in Computer Science, Springer, 2019, pp. 3–19. doi:10.1007/978-3-030-29983-5\
_1.

[26] E. Ntentos, U. Zdun, K. Plakidas, D. Schall, F. Li, S. Meixner, Supporting architectural decision
making on data management in microservice architectures, in: T. Bures, L. Duchien, P. Inverardi
(Eds.), Software Architecture - 13th European Conference, ECSA 2019, Paris, France, September
9-13, 2019, Proceedings, Vol. 11681 of Lecture Notes in Computer Science, Springer, 2019, pp.
20–36. doi:10.1007/978-3-030-29983-5_2.

[27] A. Chatzigeorgiou, A. Manakos, Investigating the evolution of bad smells in object-oriented code,
in: 2010 Seventh International Conference on the Quality of Information and Communications Tech-
nology, 2010, pp. 106–115.

[28] F. Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshyvanyk, A. De Lucia, Land-
fill: An open dataset of code smells with public evaluation, in: 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, 2015, pp. 482–485.

[29] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, Ten years of jdeodorant: Lessons learned from the
hunt for smells, in: 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2018, pp. 4–14.

[30] M. M. Rahman, R. R. Riyadh, M. R. Rahman, Recommendation of move method refactorings using
coupling, cohesion and contextual similarity, in: 2017 IEEE International Conference on Imaging,
Vision & Pattern Recognition (icIVPR), IEEE, 2017, pp. 1–6.

[31] F. A. Fontana, V. Ferme, M. Zanoni, Towards assessing software architecture quality by exploiting
code smell relations, in: 2015 IEEE/ACM 2nd International Workshop on Software Architecture and
Metrics, 2015, pp. 1–7.

[32] S. Vidal, E. Guimaraes, W. Oizumi, A. Garcia, A. D. Pace, C. Marcos, Identifying architectural
problems through prioritization of code smells, in: 2016 X Brazilian Symposium on Software Com-
ponents, Architectures and Reuse (SBCARS), 2016, pp. 41–50.

[33] J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying architectural bad smells, in: Proc.
of the 13th European Conference on Software Maintenance and Reengineering (CSMR), 2009, pp.
255–258.

[34] D. Taibi, V. Lenarduzzi, On the definition of microservice bad smells, IEEE software 35 (3) (2018)
56–62.

32

https://doi.org/10.1109/SCC.2019.00033
https://doi.org/10.1007/978-3-030-29983-5_1
https://doi.org/10.1007/978-3-030-29983-5_1
https://doi.org/10.1007/978-3-030-29983-5_2

[35] D. Ratiu, S. Ducasse, T. Gîrba, R. Marinescu, Using history information to improve design flaws
detection, in: Proceedings of the Eighth Euromicro Working Conference on Software Maintenance
and Reengineering (CSMR’04), CSMR ’04, IEEE Computer Society, USA, 2004, p. 223.

[36] C. Marinescu, Identification of design roles for the assessment of design quality in enterprise appli-
cations, in: 14th IEEE International Conference on Program Comprehension (ICPC’06), 2006, pp.
169–180.

[37] F. Arcelli Fontana, V. Ferme, M. Zanoni, Filtering code smells detection results, in: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, Vol. 2, 2015, pp. 803–804.

[38] R. B. Johnson, L. Christensen, Educational research: Quantitative, qualitative, and mixed ap-
proaches, SAGE Publications, Incorporated, 2019.

[39] M. Kenny, R. Fourie, Contrasting classic, straussian, and constructivist grounded theory: Method-
ological and philosophical conflicts, Qualitative Report 20 (2015) 1270–1289.

[40] V. Garousi, M. Felderer, M. V. Mäntylä, A. Rainer, Benefitting from the grey literature in software
engineering research, CoRR (2019).
URL http://arxiv.org/abs/1911.12038

[41] V. Garousi, M. Felderer, M. V. Mäntylä, Guidelines for including grey literature and conducting
multivocal literature reviews in software engineering, Inf. Softw. Technol. 106 (2019) 101–121.
doi:10.1016/j.infsof.2018.09.006.

[42] A. Singjai, G. Simhandl, U. Zdun, On the Practitioners’ Understanding of Coupling Smells – A
Grey Literature Based Grounded-Theory Study: Dataset and Code, Zenodo (Jan. 2021). doi:
10.5281/zenodo.4476077.
URL https://doi.org/10.5281/zenodo.4476077

[43] C. Hagstrom, S. Kendall, H. Cunningham, Googling for grey: Using google and duckduckgo to find
grey literature, in: 23rd Cochrane Colloquium. Cochrane database systematic reviews supplements,
2015, pp. 1–327.

[44] J. Piasecki, M. Waligora, V. Dranseika, Google search as an additional source in systematic reviews,
Science and engineering ethics 24 (2) (2018) 809–810.

[45] M. V. Mäntylä, C. Lassenius, Subjective evaluation of software evolvability using code smells: An
empirical study, Empirical Software Engineering 11 (3) (2006) 395–431.

[46] K.-J. Stol, P. Ralph, B. Fitzgerald, Grounded theory in software engineering research: a critical re-
view and guidelines, in: Proceedings of the 38th International Conference on Software Engineering,
2016, pp. 120–131.

[47] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Longman Publishing Co., Inc., USA, 1995.

[48] E. Evans, Domain-Driven Design: Tacking Complexity In the Heart of Software, Addison-Wesley
Longman Publishing Co., Inc., USA, 2003.

[49] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley Longman Publishing
Co., Inc., USA, 2002.

33

http://arxiv.org/abs/1911.12038
http://arxiv.org/abs/1911.12038
http://arxiv.org/abs/1911.12038
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.5281/zenodo.4476077
https://doi.org/10.5281/zenodo.4476077
https://doi.org/10.5281/zenodo.4476077
https://doi.org/10.5281/zenodo.4476077
https://doi.org/10.5281/zenodo.4476077

References Smell Name Definition Relations to Liabilities / Principle Related Fix
Other Smells Violations Patterns Options

[3] Feature Envy Yes Yes Yes No Yes

[3] Data Class Yes Yes Yes No Yes

[4] Feature Envy Yes No Yes No Yes

[5] Feature Envy Yes No No No Yes

[31] Data Class Yes Yes Yes No Yes

[31] Message Chains Yes Yes Yes No No

[6] Long message chain Yes No Yes No Yes

[8] Feature Envy Yes No Yes No Yes

[35] Data Class Yes No Yes No Yes

[36] Feature Envy Yes Yes Yes Yes Yes

[36] Data Class Yes Yes Yes Yes No

[15] Feature Envy Yes No No No No

[16] Middle Man Yes No No No No

[16] Feature Envy Yes No No No No

[17] Feature Envy Yes No No No No

[17] Inappropriate Intimacy Yes No Yes No No

[17] Middle Man Yes No No No No

[19] Data Class Yes Yes Yes No No

[19] Feature Envy Yes Yes Yes No No

Table A.7: Summary: Smells in the Scientific Literature

[50] F. Zieris, L. Prechelt, On knowledge transfer skill in pair programming, in: Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM’14, Association for Computing Machinery, New York, NY, USA, 2014. doi:10.1145/
2652524.2652529.

Appendix A. Smell Investigation in the Scientific Literature

Table A.7 summarizes how smells, smell definitions, relations, liabilities/principles violations, related
practices and patterns, and fix options are covered in the scientific literature.

34

https://doi.org/10.1145/2652524.2652529
https://doi.org/10.1145/2652524.2652529

	Introduction
	Related work
	Research works on coupling and related smells detection and repair
	Research works on improving smell detection and repair with additional knowledge
	Systematic studies of coupling and related smells

	Research Method
	Grounded Theory
	Grey Literature Study
	Methodology overview

	Grounded theory on coupling code smells
	Meta-model
	Coupling smells and their relationships
	Feature Envy
	Definitions
	Relationships to other smells
	Liabilities and principle violations
	Related practices and patterns
	Fix Options

	Inappropriate Intimacy
	Definitions
	Relationships to other smells
	Liabilities and principle violations
	Related practices and patterns
	Fix Options

	Data Class
	Definitions
	Relationships to other smells
	Liabilities and principle violations
	Related practices and patterns
	Fix Options

	Indecent Exposure
	Definitions
	Relationships to other smells
	Liabilities and principle violations
	Fix Options

	Message Chain
	Definitions
	Relationships to other smells
	Liabilities and principle violations
	Fix Options

	Middle Man
	Definitions
	Relationships to other smells
	Liabilities and principle violations
	Related practices and patterns
	Fix Options

	Discussion
	Discussion of how practitioners understand coupling smells
	Interesting gaps to the scientific literature and future research opportunities and challenges
	Coupling smell definitions and their detection
	Coupling smell fix options
	Domain-specific and other specializations for coupling smells and related approaches

	Threats to validity
	Experiences, Challenges, and Lessons Learned in the Grey Literature Study

	Conclusions
	Smell Investigation in the Scientific Literature

