
Architectural Design Decisions for
Blockchain-Based Applications

1st Maximilian Wöhrer
University of Vienna, Faculty of Computer Science

Research Group Software Architecture
Vienna, Austria

maximilian.woehrer@univie.ac.at

2nd Uwe Zdun
University of Vienna, Faculty of Computer Science

Research Group Software Architecture
Vienna, Austria

uwe.zdun@univie.ac.at

Abstract—Designing blockchain-based applications is a chal-
lenging task and requires a number of coordinated architec-
ture decisions. To guide decision making in this regard, we
systematically explore this architectural design space and possible
solution strategies. More precisely, we provide architectural
design decisions and decision options in terms of patterns and
practices. Our research shows that most design decisions are
influenced by the need to offset current blockchain drawbacks
such as scalability, privacy, and usability by using centralized
elements. This suggests that a hybrid architecture is beneficial in
many design situations.

Index Terms—blockchain, software architecture, decentralized
application, DApp, smart contract, design pattern

I. INTRODUCTION

Blockchains are distributed peer-to-peer systems which
implement a trustless shared public append-only transaction
ledger [1]. They are being recognized as a useful technology
in a wide variety of business applications to increase opera-
tional efficiency and enable new business models. However,
considering the degree of maturity of blockchain technologies
in practical applications, the acceptance and adoption of the
technology is still in an early stage. Accordingly, there is
currently a lack of a systematic and holistic approach to system
design of blockchain-based applications [2][3]. While there is
academic literature addressing the applicability [4], selection
[5], and configuration of blockchains [6], there is currently
limited work on architectural design decisions covering the
implementation and integration of blockchain-based solutions.
Betzwieser et al. [7] provide a decision model for the im-
plementation of blockchain solutions. Their work highlights
prerequisites, business and technical considerations, as well
as design decisions, but integration aspects are only sparsely
addressed. Wessling et al. [8] propose blockchain tactics as
a means to support the process of integrating decentralized
elements. However, the authors focus on lower level design
patterns and do not provide architectural guidance. Blum et
al. [9] adopt the former tactics idea and propose a design ap-
proach using existing architectural concepts such as strategies,
tactics and design patterns. While relationships between these
concepts are outlined, a discussion of the concepts themselves
is lacking.

So far none of these works provide systematic architecture
guidance in terms of design decisions. To close this gap, we
investigate architectural design options for blockchain-based
software solutions by gathering data from different sources
and applying Grounded Theory (GT) techniques to extract and
identify common practices.

In order to concretize the research objectives, we ask
the following research questions: RQ1) What are the key
architectural design decisions for blockchain-based applica-
tions? RQ2) What are possible design options regarding these
decisions and the associated (best) practices? This paper
focuses on public permissionless blockchains and refers for
illustrative purposes to the Ethereum blockchain, today’s most
popular ecosystem. Please note that the presented concepts are
independent from a particular blockchain implementation.

The paper is structured as follows: First, we elaborate archi-
tectural design decisions and decision options of blockchain-
based solutions as main contribution in Section II. Then, we
discuss our findings and draw conclusions in Section III.

II. BLOCKCHAIN ORIENTED SOFTWARE ENGINEERING

Blockchain-Oriented Software Engineering (BOSE) is a
growing discipline focused on defining and applying software
engineering principles for blockchain-based system design,
development, and deployment. Activities in this context still
represent a challenging endeavor, and the degree to which
blockchain is used today is significantly influenced by charac-
teristics such as performance, usability, and user experience.
A well designed architecture helps to better align and meet
desired requirements including the above criteria. To this
end, this section discusses design guidance for blockchain
integration that we found and coded in our study. For better
illustration, we begin with a feature model that provides a
general outline, and then discuss individual design issues.

A. Feature Model

An overview of elaborated architectural decisions as well
as decision options is given in a feature model representation
in Figure 1. The feature model models possible relationships
(or/alternative) between design options (modeled as features)
via affiliated tags (mandatory/optional) representing various
design aspects or concerns. In addition, drawn relationships978-0-7381-1420-0/21/$31.00 ©2021 IEEE



(requires) indicate necessary design decisions to achieve a
fully decentralized architecture. Note that the design options
have been also evaluated for their positive impact on privacy,
usability, and scalability, where applicable.

Blockchain-
Based
Application

Decentralization
Level

Full

Partial

Identity
Provisioning

Blockchain [P]

Custodial [U]

In-House [U]

Transaction
Handling

User-Tx [P]

Meta-Tx [P,U]

Backend-Tx [U]

Key
Management

User [P]

Backend [U]

Transaction
State Sync

Strict Consistency

Eventual Consistency

Blockchain
Connection

Own Full Node [P]

3rd Party Service [U]

Frontend
Provisioning

Decentr. Storage [S]

Backend Hosting

Application
Logic

On-Chain

Off-Chain [P,S]

Off-Chain
Interaction State Channel [P,S]

Rich
Querying

Frontend DB [U]

Backend DB [U]

Confidential
Storage

Off-Chain Hash Ref. & CAS [P,S]

On-Chain
Ordinary Encr. [P]

Homomorphic Encr. / ZKP [P]

Legend: Abstract
Feature

Concrete
Feature

Mandatory Optional

Or
Group

Alternative
Group Requires [X] Helps

P...Privacy
U...Usability
S...Scalability

Fig. 1. Feature model for a blockchain-based application.

B. Architectural Design Decisions and Decision Options

Software architects are faced with a number of design issues
for which there are usually one or more alternative solutions
(design options). The following is a discussion of some design
issues that arise in the course of developing a blockchain-
based solution. We focus on operational and integration as-
pects rather than matters around the blockchain technology
itself (e.g., blockchain type, consesus mechanism, blockchain
configuration, platform selection), as this has already been
investigated in previous work (see Xu et al. [6]).

1) Decentralization Level: One can use blockchain as a
stand-alone platform capable of implementing a complete
application logic (on top of smart contracts) or as an aux-
iliary tool in enterprise solutions to meaningfully complement
business aspects (e.g., auditable history, asset tracking, etc.).
These are the major decentralization styles discussed below.

a) Fully Decentralized Applications: A decentralized
application (DApp) is a software solution built on top of a
distributed peer-to-peer network. A DApp typically consists
of a Web frontend that makes direct calls to a decentralized
backend infrastructure (i.e., the blockchain executing smart

contracts incorporating the entire application logic). This struc-
ture is similar to a two-tier client-server architecture, with no
intermediate support required for operation. Benefits of DApps
include an increased trust level and resistance to censorship,
as the execution is not relying on a central provider which
makes computation more transparent and further lowers the
risk for a single point of failure. The disadvantages include low
transaction throughput, high response times, difficult updating,
incurring transaction costs (to be paid by the user), fluctuating
transaction costs, and in general an immature technology
stack accompanied by a vendor lock-in. For a comprehensive
empirical study of blockchain-based DApps we refer to [10]
and for an intra-architectural performance comparison to [11].

b) Hybrid (Semi-Decentralized) Applications: Building
fully decentralized applications is a difficult undertaking.
DApps based solely on distributed components quickly reach
their limits due to current technical limitations and usability
challenges. As a result, the current approach in building such
applications is more nuanced. Instead of relying exclusively
on decentralized components, often a hybrid architecture is
realized and centralized components are added where appro-
priate. In this context, a traditional backend is still relevant
and several reasons speak for its use, although it lowers the
trust compared to purely decentralized applications.

2) Identity Provisioning: Blockchain users have a decen-
tralized identity based on asymmetric encryption, also called
public key cryptography. Here, the identity is represented by
a pair of keys. The public key (in a shorter representation)
serves as the account identifier (address) and is derived from
the private key that grants ownership of that account. An
important decision is whether this decentralized identity con-
cept is appropriate for an application scenario, or whether a
typical password-protected centralized account is preferred,
where blockchain operations take place under a designated
application account. A middle ground in the form of custodial
identity management is also possible, i.e., the blockchain iden-
tity is managed for users within an application and linked to a
password-protected centralized account. Overall, this decision
must also be made with regard to transaction handling and key
management, which are explained in more detail below.

3) Transaction Handling: Transactions provide the means
to interact with a blockchain. Essentially, a transaction is a
cryptographically signed instruction that is generated by an
account, serialized and then transmitted to the blockchain for
processing. There are three options how transactions can be
initiated [10][12] which are discussed below.

a) User Signed Transaction: The traditional way to
initiate a transaction is from the user. In this case, the user
interacts directly with a smart contract by signing a transaction
with his private key and then sending it to the blockchain
network along with a payment to cover the execution costs.
This procedure allows the user the highest sovereignty of his
identity, but requires that he has software that supports client-
side interactions (e.g. a wallet) and tokens to pay for the
transaction.



User
Tx

Client Backend Smart
Contract

¤ Ç

Txµ

Meta
Tx

Client Backend Relay
Contract

Smart
Contract

¤ ¤ Ç

qµ Txµ
qµ Txµ

Backend
Tx

Client Backend Smart
Contract

¤ Ç

q Txµ

Fig. 2. An overview of transaction handling options.

b) Meta-Transaction: Transaction costs and the acqui-
sition of tokens to pay for them are a major hindrance to
a mainstream adoption of DApps. Meta-transactions aim to
solve this onboarding issue so that first time users can execute
decentralized transactions without a wallet. The simple idea is
that a third party sends another user’s transaction and pays for
the execution. In this arrangement, the user signs a message
containing information about a transaction the user wants to
execute. This message is then sent free of charge to the off-
chain third party, who subsequently wraps this information in
a transaction and sends it to the blockchain network. This
transaction is usually sent to an intermediate contract that
verifies the user’s signature of the attached transaction payload,
before forwarding a subsequent transaction that executes a user
intended method on the target contract. The advantage of this
method is that the user is in control of his private key and does
not need to bother with transaction fees. On the downside,
the total costs are higher due to the additional costs for the
relay contract and the fact that more transactions are required.
Another issues is that the third party is centralized and could
turn rogue, censoring transactions.

c) Backend Signed Transaction: Another approach to
solving problems related to the accessibility of decentralized
applications is to take the entire transaction signing and
payment process away from the user and handle these matters
in the backend. Although this method offers a high degree
of comfort for the user and is relatively easy to implement,
it destroys the fundamental concept of sovereignty and de-
centralized trusted execution, which is a basic principle of
blockchains. Another downside is lacking transparency as
the application may take unknown or unauthorized actions
on behalf of the user and there is no way to challenge
or reverse misaligned transactions. Further, since users do
not own private keys, they cannot own tokens or perform
operations directly with other smart contracts. The only way
to achieve this is to manage user keys in the backend, which
requires a sophisticated security concept to avoid any attacks.

4) Key Management: There are various ways to manage
and store private keys, and the solutions are always caught
between convenience and security, as the two are difficult
to reconcile. Approaches can be broadly categorized whether
key management is left to the user or to a backend re-
spectively an application. In addition, a distinction is often
made between hot or cold storage, which refers to whether

or not a key management solution has network (Internet)
connectivity. Users typically use wallets for key management,
which can be either a hardware device, a physical medium,
a program, or service that stores a user’s private and public
keys. In addition, wallets may provide the functionality of
encrypting, signing, and forwarding information (transactions)
to the blockchain. For the backend, there are several complex
strategies and different software solutions that allow private
keys to be stored quite securely. Some solutions are based on
geographically distributed databases, while others are built on
specially designed hardware. A service-based approach in the
form of a key management system (KMS) or key vault is used
to abstract the management, control, audit, and execution of
certain actions involving secret keys. This allows for example
a transaction manager (e.g. EthSigner) to sign transactions via
a key vault (e.g., HashiCorp Vault, Azure Key Vault) without
exposing secret keys.

5) Transaction State Synchronization: Blockchain has an
asynchronous character. This is due to the latency in the
execution and confirmation of transactions. An application that
relies on blockchain transactions can deal with this aspect in
two ways. Either the application flow is halted until transaction
finality is reached (synchronous), or the application flow con-
tinues without waiting for transaction finality (asynchronous).
The former implies strict consistency for transactions, which
facilitates state management between the application and the
blockchain, but comes at the cost of lengthy wait times.
The latter assumes an eventual consistency for transactions,
whereby the application expects that any blockchain trans-
action waiting on, will eventually confirm and continues on
as usual. This approach leaves the application in a state
which is ahead of the blockchain, allowing for example an
improved (more immediate) user experience. However, having
two instances of state (i.e. blockchain and application) can
be problematic if state management is not handled carefully
including rollback scenarios; namely, in case a transaction fails
or confirmation takes longer than expected.

6) Blockchain Connection: In order to connect to the
blockchain a blockchain endpoint is needed. A blockchain
endpoint is a device or data point running a piece of software
that implements the blockchain protocol to participate in the
blockchain network. One can either run their own blockchain
endpoint or rely on a service provider (e.g., Infura, QuikNode),
which run node clusters to allow users to interact with the
blockchain without setting up their own node. While the latter
is a hassle-free option used by many, the performance is not
on par with a sovereign private node, which is a necessity if
the blockchain is to be used in a truly private, self-sufficient,
and trustless manner.

7) Frontend Provisioning: The frontend code of a
blockchain-based application is no different from that of a
traditional web application and can therefore be written in
any language. Specially tailored frontend libraries that fusion
blockchain node interaction with popular JavaScript frontend
technologies (e.g., React, Vue) exist to make writing DApp
user interfaces easier (e.g. Drizzle). Regarding hosting, the



frontend code can be hosted either on a dedicated backend or a
decentralized storage like IPFS for which several frameworks
are available to build DApps (e.g., Dappkit, Fission, Fleek,
or Textile). The former is more in line with today’s web
development practices while the latter achieves complete de-
centralization of the application , but can be more cumbersome
to setup also with domain name integration.

As a side note, there are some peculiarities in terms of UI
and UX design for blockchain-based applications. These in-
clude the presentation of hashes and keys that seem “strange”
to users, the lack of an “undo” functionality due to irreversible
blockchain transactions, and dealing with prolonged interac-
tion delays due to the asynchronous nature of blockchain.

8) Application Logic: The logic required to achieve busi-
ness goals can be executed either on or off-chain, whereby a
fundamental design philosophy is to use blockchains sparingly
because they are slow and expensive. The difference between
what is processed on-chain versus off-chain depends largely
on the level of trust and performance required. On-chain pro-
cessing is designed to be trustless, meaning it is suited when
the goal is to perform actions independently and verifiably in
the absence of trust between parties. Off-chain processing is
suitable for cases where no immutable (trans)actions need to
be independently validated and authenticated (i.e., the parties
trust each other), complex computations exceed the blockgas
limit, or a scheme exists to verify off-chain processing results
on-chain. Overall, off-chain transactions may bring lower fees,
instant settlement, and greater anonymity, but they lack the
trust level that on-chain transactions establish.

9) Off-Chain Interaction: As mentioned above, interactions
can be taken off-chain. Instead of using the blockchain as
the primary processing layer, the key idea is to use it as
a settlement layer. State updates occur outside and are only
propagated to the blockchain when necessary (e.g., on dispute
or for final settlement). This approach, also known as a
state channel, allows for faster transaction flow and increased
privacy as participants interact directly. However, there are still
some issues, such as the state channel transparency, transaction
traceability, and the inability to transfer off-chain state back
to the blockchain on an ad-hoc basis [13].

10) Rich Querying: If data is stored on the blockchain, it
is likely that it will also need to be queried, but querying
blockchain data directly is ineffective and there is no built-
in query language. A common solution to this problem is to
create a local replication of relevant on-chain events and data
in a backend that supports caching and indexing to enable
search, filter, sort, and pagination functions. Alternatively, if a
decentralized solution without a dedicated backend is desired,
a frontend database can be used. In this case, a browser
database in JavaScript (e.g., PouchDB, GunDB) synchronizes
all relevant on-chain events or data, but this approach is not
suitable for applications with a high data or event load.

11) Confidential Storage: There are various approaches to
storing confidential data on the blockchain. First, a distinction
can be made between storing data on-chain or off-chain. For
on-chain storage, the most obvious solution is to use ordinary

encryption and then share the decryption keys over another
secure channel. For off-chain storage, a common approach is
to keep the raw data in external storage and only store the
respective hashes on-chain. Here, the external storage allows
a more controlled management of confidential data and access
privileges and may also serve as an exchange channel when a
shared storage is used. Its implementation can take many forms
depending on the type of data, such as a database (e.g., SQL,
NoSQL) or a decentralized content addressable storage (CAS)
(e.g., IPFS, Swarm). In addition to the above, there are also
more advanced techniques to ensure data confidentiality. These
include zero-knowledge proof (ZKP), which allows users to
prove their knowledge of a value without revealing the value
itself, and homomorphic encryption (HE), in which data is
encrypted before being shared on the blockchain in such a way
that it can be analyzed without decryption. These techniques
are promising, but the approaches mentioned earlier may be
better equipped to provide value today.

III. CONCLUSION

Blockchain is considered a disruptive technology that en-
ables new business models and technological solutions. Con-
sequently, new types of architectures and designs are required
to utilize the technology at its best, while addressing currently
associated inefficiencies. To this end, we studied architectural
design solutions from which we inferred architectural design
decisions along with decision options (patterns and practices).
Our research highlights various important design issues that
arise in the course of developing a blockchain-based solution
and points to possible resolution strategies. Thus, our findings
can serve as a guideline for practitioners to asses and design
potential blockchain implementations.

A typical software architecture design requires various
trade-off decisions to balance desired quality attributes. In
the case of blockchain integration, this boils down to striking
a balance between decentralization and scalability, privacy,
and usability. It can be said that the more decentralized a
solution is, the more difficult it is to ensure the above quality
attributes. To tackle this challenge, a hybrid architecture ap-
proach currently offers a good compromise. Decentralized and
centralized components are combined, allowing the advantages
of both to be used. In this light, many of the presented design
options can be understood as a way to circumvent current
blockchain disadvantages by using centralized elements. Thus,
through cleverly tuned design decisions, it is possible to
enable otherwise infeasible tasks, such as performing complex
computations, storing large amounts of data, keeping data
private, or querying blockchain-related data.

In the future, ongoing developments in the area of
blockchains could lead to blockchains becoming more power-
ful and mainstream. Architectures embedding the technology
will likely evolve and provide a promising foundation for
diverse applications. In this context, future research could
investigate generally applicable architectural patterns as well
as migration patterns to transfer existing functionality or
architectural components to blockchain technology.



REFERENCES

[1] S. Tai, J. Eberhardt, and M. Klems, “Not ACID, not BASE, but SALT:
A transaction processing perspective on blockchains,” in CLOSER
2017 - Proceedings of the 7th International Conference on Cloud
Computing and Services Science, 2017.

[2] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-oriented
software engineering: Challenges and new directions,” Proceedings -
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing Companion, ICSE-C 2017, no. February, pp. 169–171, 2017.

[3] G. Wood, “Ethereum: a secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, 2014.

[4] B. A. Scriber, “A Framework for Determining Blockchain Applicabil-
ity,” IEEE Software, vol. 35, no. 4, pp. 70–77, 2018.

[5] S. Farshidi, S. Jansen, S. Espana, and J. Verkleij, “Decision Support
for Blockchain Platform Selection: Three Industry Case Studies,” IEEE
Transactions on Engineering Management, vol. PP, pp. 1–20, 2020.

[6] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso,
and P. Rimba, “A Taxonomy of Blockchain-Based Systems for Archi-
tecture Design,” Proceedings - 2017 IEEE International Conference
on Software Architecture, ICSA 2017, pp. 243–252, 2017.

[7] B. Betzwieser, S. Franzbonenkamp, T. Riasanow, M. Böhm, H.
Kienegger, and H. Krcmar, “A decision model for the implementation
of blockchain solutions,” 25th Americas Conference on Information
Systems, AMCIS 2019, no. Dm, pp. 1–10, 2019.

[8] F. Wessling, C. Ehmke, O. Meyer, and V. Gruhn, “Towards Blockchain
Tactics: Building Hybrid Decentralized Software Architectures,” Pro-
ceedings - 2019 IEEE International Conference on Software Architec-
ture - Companion, ICSA-C 2019, pp. 234–237, 2019.

[9] F. Blum, B. Severin, M. Hettmer, P. Huckinghaus, and V. Gruhn,
“Building Hybrid DApps using Blockchain Tactics -The Meta-
Transaction Example,” IEEE International Conference on Blockchain
and Cryptocurrency, ICBC 2020, 2020.

[10] K. Wu, Y. Ma, G. Huang, and X. Liu, “A first look at blockchain-
based decentralized applications,” Software: Practice and Experience,
no. April, pp. 1–18, 2019.

[11] K. M. Kina-Kina, H. E. Cutipa-Arias, and P. Shiguihara-Juarez, “A
comparison of performance between fully and partially decentralized
applications,” in Proceedings of the 2019 IEEE 26th International
Conference on Electronics, Electrical Engineering and Computing,
INTERCON 2019, 2019.

[12] F. Wessling and V. Gruhn, “Engineering Software Architectures of
Blockchain-Oriented Applications,” Proceedings - 2018 IEEE 15th
International Conference on Software Architecture Companion, ICSA-
C 2018, pp. 45–46, 2018.

[13] B. Podgorelec, M. Herieko, and M. Turkanovic, “State Channel as a
Service Based on a Distributed and Decentralized Web,” IEEE Access,
vol. 8, pp. 64 678–64 691, 2020.


