
TWSO - Transactional Web Service Orchestrations

Peter Hrastnik
ec3 - Electronic Commerce Competence Center
Donau-City-Strasse 1, A–1220 Vienna, Austria

peter.hrastnik@ec3.at

Werner Winiwarter
Institute of Scientific Computing

University of Vienna
Universitätsstraße 5, A–1010 Vienna, Austria

werner.winiwarter@univie.ac.at

Abstract

Software industry responded to the need for transactions
in the Web service world by publishing several proposals,
that are quite alike. These proposals define basically com-
munication protocols that indirectly implement advanced
transaction models. However, the rather obvious ques-
tion “How can I use transactions in Web service orchestra-
tions?” is not covered anywhere satisfyingly. The use of ar-
bitrary advanced transaction models is provided by some of
the proposals, but likely requires an update of various trans-
action system components. This paper introduces TWSO
(Transactional Web Service Orchestrations), an approach
to integrate transactional processing with Web service or-
chestrations. It tries to overcome the hassles stated above
and provides an XML vocabulary (TWSOL) that is intended
to be incorporated in Web service orchestrations. The us-
age pattern of TWSO is designed to resemble the program-
ming pattern used when nowadays application developers
use transaction–enabled components like databases or ap-
plication servers. Moreover, arbitrary advanced transac-
tion models can be synthesized by using a set of transaction
building blocks without the demand for system–updates.

1 Introduction

Recently a couple of proposals for Web service transac-
tions have been published. They describe communication–
protocols between transaction–systems and Web services
that take part in a transaction and embed these protocols in
a transaction processing architecture that fits into the Web
service world. Such protocols adhere to the semantics of ad-
vanced transaction models (ATMs) [8]. ATMs try to relax
the rigid demands of ACID transactions. In tightly coupled
systems (for example, a client that uses a remote relational
database), transactional processing that follows the ACID
principles [8] is ubiquitous and works well [11]. However,
transactions that follow ACID principles may not be practi-

cal in systems composed of Web services. Potts et al. [11]
assert that “transaction semantics that work in a tightly cou-
pled single enterprise cannot be successfully used in loosely
coupled multi-enterprise networks such as the Internet”.

In general, if an application programmer uses ACID
transactions, a ubiquitous pattern is used. First, a new trans-
action is begun. Then (in the context of the new transaction)
business logic is executed. If business logic was executed
successfully, the transaction is committed to make poten-
tial business logic’s state changes persistent and visible. In
case of any error during execution of the business logic,
the transaction is aborted and application logic’s (tentative)
state changes are undone without leaving any traces.

The industrial proposals for Web service transactions do
not provide such a usage pattern. They just provide the
communication protocol (under which circumstances which
transaction related command can be called) but no clear un-
derstanding on how the application developer can use Web
service transactions. Such an understanding would support
the basic ideas of transaction–oriented processing, namely
“relieving the application programmer from worrying about
failure and concurrency interleaving” [7].

Considering Web service orchestrations1, using transac-
tion concepts may facilitate their design and development in
terms of [7]. Recent technologies for Web service orches-
trations either lack (XPDL) or offer only marginal trans-
actional concepts (BPML states that its implementations
should support existing transaction proposals but omits how
to do this, BPEL4WS offers explicit compensation only).
Thus, there is a significant gap between current proposals
for Web service orchestrations and Web service transac-
tions. We present an approach called TWSO (Transactional
Web Service Orchestrations) that tries to fill this gap and
allows to integrate transactional processing with Web ser-
vice orchestrations to relieve the Web service orchestration
designer from worrying about failure and concurrency in-
terleaving.

1Web service orchestrations tie together a set of existing Web services
to create a total new service by employing workflow technologies [9].



2 Related Work

2.1 Advanced Transaction Models, Advanced
Transaction Meta Models

Advanced transaction models (ATMs) were presented to
overcome the restrictions of ACID style transactions, which
are unsuitable for some domains. They offer appropriate
transaction semantics for such domains by relaxing the rigid
semantics of ACID transactions. For example, nested trans-
actions is a well known ATM. For Web service environ-
ments, the concept of compensation actions that are used
by some ATMs (e.g. multilevel transactions or sagas) can
be useful. A compensation action is a “forward” action that
makes some adjustments to reverse the original action. Af-
ter a compensation action, the fact that the original action
took place is visible. In contrast, a rollback undoes an ac-
tion so that it seems like the action never took place.

To describe ATMs, advanced transaction meta models
can be used. For instance ACTA is a framework that can
be used to specify, analyze, and synthesize ATMs [5]. It
is a very comprehensive meta–model for advanced transac-
tions and it is unlikely that a particular idea for a custom
ATM cannot be represented in ACTA. However, this com-
pleteness causes complexity, and ACTA itself is not easy
to use. Specialized approaches that use ACTA for defin-
ing ATMs have been proposed. For example, ASSET [1]
and Bourgogne transactions [12] use the ideas of ACTA but
simplify the usage of ACTA significantly. Both approaches
are based on a set of general transaction building blocks that
can be applied to define customized transaction models. In
ASSET, these transaction building blocks are intended to be
used in arbitrary programming languages while Bourgogne
transactions target the Java Enterprise Edition (J2EE).

Another advanced transaction meta model was proposed
in [8] by Jim Gray and Andreas Reuter. It is based on
event–state diagrams and is well suited to describe and an-
alyze ATMs in a formal way. In [10], Hrastnik and Wini-
warter present an approach for using this advanced trans-
action meta–model in Web service environments, which is
appropriate for a formal description of Web service ATMs.

2.2 Web Service Transaction Proposals

Industrial organizations have published proposals that
deal with transactional processing in the Web service world,
namely Business Transaction Protocol (BTP) [4] (Oracle,
Sun, and Bea under patronage of OASIS), WS–Transactions
(WS–TX) [3] (IBM, Microsoft and BEA), and WS Com-
posite Framework (WS–CAF) [2] (Oracle and Sun). These
proposals are very similar and differ only in details while
the basic building blocks are elementary the same. They
describe an architecture of a Web service transaction sys-

tem, which includes participating Web services and a hier-
archy of central components that offer transaction–related
services and communicate transaction–related matters to af-
fected participating components. Based on this framework,
different protocols that handle communication between all
affected components are defined. These protocols adhere
to certain transaction semantics. Thus, if protocol px con-
forms to transaction semantic sx, and a transaction ta is ex-
ecuted using px, the semantics of ta conform to sx. The
offered transaction communication protocols are based on
the semantics of ATMs. The usage of arbitrary ATMs is
provided by WS–TX and WS–CAF. However, to do so it
is necessary to introduce a new communication protocol.
How this is done is not standardized in the proposals. In
addition, this seems to be unwieldy because it is likely that
most of the transaction system has to be updated in order to
be aware of such new communication protocols.

3 Architecture of a TWSO Environment

Figure 1 shows an architecture of a TWSO environment.
The orchestration engine combines Web services in terms of
workflow, i.e. it calls Web services in some particular order.
In addition, it issues transaction specific matters (transac-
tion primitives and transaction structure, see Sect. 4) to a
transaction monitor component. Based on such transaction
matters, the transaction monitor may send transaction com-
mands to affected Web services. Transaction matters are
communicated using Web service techniques, e.g. SOAP.

Figure 1. Architecture of a TWSO system

4 Building Blocks of TWSO

TWSO is inspired by the ideas of [1], [12], and [5]. Sim-
ilar as in ACTA, we distinguish between Web service calls
and transaction primitives. Web service calls are operations
on the Web service state that may be influenced by exe-
cuted transaction primitives, e.g. an abort of transaction t
may undo all changes of the call of Web service ws. TWSO
constructs are intended to be embedded in arbitrary (as
far as possible) orchestration host–languages, like XPDL
or BPEL4WS. Furthermore, TWSO follows the design of
ACTA and Gray and Reuter’s transaction meta model [8]



and models ATMs as compositions of one or more individ-
ual transactions and (as necessary) their interdependencies.

TWSO consists of three building blocks. Transaction
primitives control transactions and are used directly in the
orchestration. The transaction structure models the interde-
pendencies of the used individual transactions in a TWSO
orchestration. The combination of transaction primitives
and interdependencies of transactions in an orchestration
implements arbitrary ATMs2. Furthermore, we need some
technical means to be able to glue TWSO to as many or-
chestration host–languages as possible.

TWSO is based on the following set of transaction prim-
itives. Begin simply starts a transaction. Commit may be
issued if the transaction’s outcome is considered to be suc-
cessful and should be finished. A Web service may, for ex-
ample, persist the transaction’s changes and make them visi-
ble to all users. Abort can be issued if the transaction should
be aborted while running. Typically, a classic rollback will
be executed by the Web service. In case the changes of a
Web service should be undone even after a commit, com-
pensate can be used. To assign the responsibility of termi-
nation of a transaction to another transaction, the delegate
primitive can be applied. E.g. in nested transactions, del-
egate would be issued when a child transaction is ready to
commit so that the parent transaction takes command over
termination of its child transaction. Only termination obli-
gations (i.e. compensate, abort, commit) and only all of
them at once can be delegated. It should be noted, that
solely the Web service is responsible for taking the right
steps according to a received transaction primitive.

The introduced transaction primitives should be suffi-
cient for many applications. However, if needed, the set
could be enhanced easily by using XML-Namespaces, as
described below. Of course, all participating components
(e.g. transaction managers, Web services, etc.) have to be
aware of the new transaction primitives.

The transaction primitives cannot be issued in arbitrary
order. Thus, we define states of a transaction, valid trans-
action primitives on this state and state transitions based on
the issued transaction primitive. The following states are
defined. Initiated indicates that a transaction was setup. Af-
ter a transaction has been begun, it is in the in–progress
state. Based on the kind of termination, a transaction can be
committed, aborted or compensated. If delegation has been
applied, the corresponding transaction (i.e. the transaction
from which termination obligations have been withdrawn)
goes into the delegated state. Table 1 shows possible state
transitions and effects of issued transaction primitives on
the transaction.

It is possible to synthesize ATMs using these prim-

2It should be stressed that in contrast to the industrial Web service trans-
action proposals, there is no need for any software updates when using new
transaction models in TWSO.

itives and (massive) explicit control flow logic artic-
ulated in the orchestration host–language. For ex-
ample, to express the parent–child dependencies in
nested transactions, one would have to perform some-
thing like “if (state(t parent) == ABORT)
abort(t child)” explicitly. However, such an ap-
proach is not preferable since it mingles control–flow with
transaction logic and obviously violates the separation
of concerns principle [6]. Thus, it is desirable to remove
as much transaction logic as possible from control flow
logic by specifying the dependencies between transactions
elsewhere and elsewise.

In TWSO, we define transaction dependencies as fol-
lows. A dependency consists of either a single transaction
source state or a combination of transaction source states
and one or more transaction primitives on transaction(s).
As soon as the transaction gets into the source state or the
combination of source states of more transactions goes into
effect, the transaction primitives are issued to the affected
transaction(s). For example, we could define a dependency
saying that as soon as ts1 gets into state aborted and ts2 gets
into state compensated, td1 and td2 should do a commit. It
is possible to express this in the orchestration language us-
ing “if then” statements in suitable places of the workflow.
However, if we wanted to change the logic of the depen-
dency, we would have to fiddle the control flow. Using an
explicit dependency, we would just change that. Control
flow is not touched and separation of concerns is honored.

As stated before, a claim is that TWSO concepts should
be able to be incorporated in as many Web service orches-
tration host–languages as possible. Moreover, TWSO con-
cepts should interfere with the original orchestration host–
language as little as possible. Because of flexibility and the
separation of concerns principle, it should be possible to re-
move, add, and modify transaction logic in orchestrations
with as little perturbation of the (by the orchestration ex-
pressed) business logic as possible. Since XML is capable
to satisfy our demands, we decided to express the concepts
of TWSO in XML. Furthermore, virtually all Web service
standards are represented in XML. Thus, it is highly reason-
able to stick to this de facto standard. The resulting XML
language is called TWSOL (Transactional Web Service Or-
chestration Language) and is introduced in Sect. 5. We in-
tersperse TWSOL elements in Web service orchestration
XML documents in order to embed transaction logic into
orchestrations. By using XML–Namespaces to discriminate
TWSOL elements from the original orchestration elements,
we can satisfy the claims above to a high degree. XML–
Namespaces also allow to extend TWSOL elements in a
clean way. New transaction primitives can be introduced by
defining them in new namespaces. Execution environments
may decide on the basis of the found namespace whether
they can execute the namespace’s primitive.



Table 1. Transaction primitives and transaction states
initiated in–progress committed aborted compensated delegated

begin ⇒in−progress 7 7 7 7 7

commit 7 ⇒committed X 7 7 7

abort 7 ⇒aborted 7 X 7 7

compensate 7 ⇒compensated ⇒compensated X X 7

delegate 7 ⇒delegated ⇒delegated ⇒delegated ⇒delegated ⇒delegated

⇒s = transition to state s, 7 = exception, X= valid operation but no state transition

5 TWSOL – XML Language for TWSO

In this section, we present TWSOL XML elements that
can be interspersed in orchestration host–languages. We
show the syntax of TWSOL elements using XML–Schema.

To setup a transaction, we need a unique id by which
the transaction is identified. Furthermore, we also need to
associate the transaction to one or more orchestration work
items (a transaction can control more than one work item)
that it is intended to manage. This setup information is kept
in the <initiate> element:
<xs:element name="initiate"><xs:complexType>

<xs:sequence>
<xs:element ref="tx:activityRef" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="id_tx" type="xs:ID" use="required"/>

</xs:complexType></xs:element>

The <activityRef> element includes ways to ref-
erence activities that occur in the orchestration in order to
specify which activities should be managed by the transac-
tion. How this is done depends on the orchestration host–
language, therefore the XML–Schema simply allows any
type of content in <activityRef>. If the orchestra-
tion host–language considers unique identifiers for activi-
ties, <activityRef> could simply contain the matching
identifier. If not, techniques that identify an element unam-
biguously in an XML document (e.g. XPath) can be used,
too.

To define transaction dependencies, the
<dependency> element is used:
<xs:element name="dependency"><xs:complexType>

<xs:sequence>
<xs:element ref="tx:from"/> <xs:element ref="tx:to"/>

</xs:sequence>
<xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType></xs:element>

<dependency> contains two children. The <from>
child–element specifies the state(s) that have to be in ef-
fect in order to trigger the transaction primitive(s) in the
<to> child–element. The state of a transaction is speci-
fied with <transactionState> elements. These con-
tain the type of the state and the id of the concerned trans-
action. The transaction primitive(s) that should be executed
is (are) defined via <txPrimitive> elements (details of
this element are covered below) in the <to> element:
<xs:element name="from"><xs:complexType>

<xs:choice>

<xs:element ref="tx:transactionState"/>
<xs:element ref="tx:stateConcatenation"/>

</xs:choice>
</xs:complexType></xs:element>

<xs:element name="transactionState"><xs:complexType>
<xs:attribute name="type" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="transaction" type="xs:IDREF" use="required"/>

</xs:complexType></xs:element>

<xs:element name="to"><xs:complexType>
<xs:sequence>

<xs:element ref="tx:txPrimitive" minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType></xs:element>

If the <from> element contains more than one trans-
action primitive, the question how they should be com-
bined arises: What combination of transaction primitives
have to occur in order to trigger the target transaction prim-
itives? We provide two nestable (a recursion is defined in
the XML–Schema of the <stateConcatenation> el-
ement) different concatenation types: “and” and “or” (the
semantic of “and” and “or” is the same as seen in numerous
programming languages):
<xs:element name="stateConcatenation">

<xs:complexType>
<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element ref="tx:transactionState"/>
<xs:element ref="tx:stateConcatenation"/>

</xs:choice>
<xs:attribute name="type" type="tx:concatenationType" use="required"/>

</xs:complexType>
</xs:element>

After we setup the transactions, we have to provide a
possibility to issue transaction primitives in the orchestra-
tion. We can intersperse <txPrimitive> elements in
suitable places of the orchestration host–language. For ex-
ample, in XPDL, an XPDL activity element could contain
transaction primitive commands.

The <txPrimitive> element has a type attribute
that specifies the type of the transaction primitive and the
namespace it originates from, e.g. tx base:commit. To
specify the affected transactions, a to and a from at-
tribute (not to be confused with <to> and <from> in
<dependency>) may be used. to defines the target trans-
action and, if necessary, from can be used to define a
source of a transaction primitive. For example, if one wants
to delegate responsibilities using the transaction primitive
type tx base:delegate, both, the from and to at-
tribute have to be given: Responsibilities will be transferred
from the transaction specified in from to the transaction
specified in to:



<xs:element name="txPrimitive">
<xs:complexType>

<xs:attribute name="type" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="to" type="xs:IDREF" use="optional"/>
<xs:attribute name="from" type="xs:IDREF" use="optional"/>

</xs:complexType>
</xs:element>

6 Example

To give a deeper understanding of TWSO and TWSOL,
we provide an example here. We will intersperse TWSOL
elements into XPDL by using XPDL’s built–in extension
mechanism, namely “extended attributes”.

Let us suppose that we want to synthesize a transaction
based on the following scenario for a holiday booking: A
flight should be booked, a rental car should be provided at
the destination airport, and a hotel room should be prepared.
We assume that the local car rental service needs 2 days to
provisionally reserve a car and the airline needs just 2 min-
utes to provisionally reserve a free seat. Because it is prob-
ably unacceptable for any airline to hide the seat from other
transactions for 2 days as it would be required for a classical
ACID transaction (isolation), we have to consider compen-
sation and immediate commitment of successful operations.
Moreover, we reckon that if we have a car, it is much eas-
ier to find a hotel, and if we have a hotel room, we have a
place to stay and can try to rent a car on–site. Thus, we re-
quire that the hotel booking and/or the car booking have to
be successful to book the itinerary. If both, the car booking
and the hotel booking fail, the whole transaction should fail,
too. Moreover, if the flight booking fails, the whole transac-
tion should fail because, if we cannot reach the destination,
the on–site services would be useless.

This scenario can be modeled using the ideas of mul-
tilevel transactions [13]. Significant parts of the corre-
sponding orchestration are illustrated in Fig. 2 in an in-
formal way. Circles represent a single unit of work (ac-
tivity), the lighter ones represent transaction related activ-
ities, and the darker ones business related activities like
Web service calls. If there are more outgoing transitions,
the sibling activities are executed concurrently. If there are
more outgoing transitions and one is marked with an expres-
sion like “[condition]”, it means conditional execution. If
[condition] evaluates to true, the corresponding transition
is followed. Else, the transition(s) without a condition ex-
pression is (are) followed. The dark bars in Fig. 2 represent
synchronization activities. Synchronization activities wait
until all previous concurrently executed paths are finished.

Most transaction related semantics are specified at the
beginning of the workflow in the setup transactions
activity. Here, three transactions and their dependencies
are specified. Since XPDL requires unique identifiers
for activities, we can simply refer to activities by quot-
ing identifiers in the <activityRef> elements. The

Figure 2. TWSO Web service orchestration
using multilevel transaction semantics

flight aborts dependency causes the compensation
of tx bookHotel and tx bookCar at the moment
tx bookFlight aborts. The localServices abort
dependency causes the compensation of tx bookFlight
in case both, tx bookCar and tx bookFlight, abort.
This is expressed by the concatenation element of type
“and” in this dependency:
<Activity id="setup_transactions">

<xpdl:Implementation> <xpdl:No/> </xpdl:Implementation>
<xpdl:ExtendedAttributes><xpdl:ExtendedAttribute name="tx">

<tx:initiate id="tx_bookFlight">
<tx:activityRef>bookFlight</tx:activityRef>

</tx:initiate>

<!-- <initiate> definitions of tx_bookHotel and tx_bookCar
are analogous to tx_bookFlight -->

<tx:dependency id="flight_aborts">
<tx:from>

<tx:transactionState type="tx_base:aborted" transaction="tx_bookFlight"/>
</tx:from>
<tx:to>

<tx:txPrimitive type="tx_base:compensate" to="tx_bookHotel"/>
<tx:txPrimitive type="tx_base:compensate" to="tx_bookCar"/>

</tx:to>
</tx:dependency>
<tx:dependency id="localServices_abort">
<tx:from>

<tx:concatenation type="and">
<tx:transactionState type="tx_base:aborted"

transaction="tx_bookHotel"/>
<tx:transactionState type="tx_base:aborted"

transaction="tx_bookCar"/>
</tx:concatenation>

</tx:from>
<tx:to>

<tx:txPrimitive type="tx_base:compensate" to="tx_bookFlight"/>
</tx:to>

</tx:dependency>

</xpdl:ExtendedAttribute></xpdl:ExtendedAttributes>
</Activity>

After specifying the transactions and their dependencies,
we start them in activity begin all transactions.
Let us assume that this activity includes a begin primitive
for each transaction.

The actual work is done concurrently, i.e. the flight book-
ing is done at the same time as the car and hotel book-
ing, and the car booking and hotel booking is done concur-
rently3, too. If an exception happens while doing the par-
ticular bookings, the corresponding transaction is aborted,
otherwise it is committed. To give an example for an activ-

3We separated flight booking logic and local services logic to enhance
readability. book local services is a dummy activity that empha-
sizes this segmentation. Considering functionality, concurrent booking of
the three services without this segmentation would not differ in any way.



ity that causes such a transaction related action, we present
the commit tx flight activity. All other transaction re-
lated activities are defined in an analogous way:
<xpdl:Activity id="commit_tx_flight">

<xpdl:Implementation> <xpdl:No/> </xpdl:Implementation>
<xpdl:ExtendedAttributes><xpdl:ExtendedAttribute name="tx">

<tx:txPrimitive type="tx_base:commit" to="tx_bookFlight"/>
</xpdl:ExtendedAttribute></xpdl:ExtendedAttributes>

</xpdl:Activity>

In case a transaction is aborted, suitable dependencies are
applied. For example, if the flight booking is aborted, the
hotel booking and the car booking will be compensated.
Execution stops at the synchronization activities until the
local services booking path and the flight booking path fin-
ish, and, inside the local services booking path, the hotel
booking path and the car booking path are finished.

7 Conclusion and Next Steps

We have introduced TWSO, an approach for
transaction–oriented processing in Web service envi-
ronments. Recent Web service transaction proposals
mainly define communication protocols and infrastructure
for Web service transactions. TWSO focuses on upgrading
the ubiquitous usage pattern for ACID transactions (i.e.
“begin transaction → do business logic → commit/abort
transaction”) for Web service environments. It is intended
to be used and easily integrateable in Web service orchestra-
tions. Virtually any ATM can be synthesized using TWSO
without any need for software updates. TWSO is founded
on ACTA, a formal advanced transaction meta model.
TWSO offers a comprehensive set of transaction primitives
and the possibility to define inter–transaction dependencies
to satisfy the demands of Web service transaction systems.
We have presented TWSOL, an XML representation of our
approach that should be integrateable with existing Web
service orchestration languages without inconveniences.
To enhance comprehension and prove capabilities of the
approach, we have presented a real–world example that is
based on the multilevel transactions model.

Future work will focus on the implementation of a
TWSO system for executing transactional Web service or-
chestrations. This can involve either the incorporation of
native TWSO(L) support into an existing Web service or-
chestration engine or the translation of orchestrations en-
riched with TWSOL to pure standard orchestrations, like
clean XPDL. To execute such an orchestration, we will im-
plement a TWSO transaction monitor component.

References

[1] A. Biliris et al. ASSET: A system for support-
ing extended transactions. In R. T. Snodgrass and
M. Winslett, editors, Proceedings of the 1994 ACM

SIGMOD International Conference on Management
of Data, pages 44–54, Minneapolis, Minnesota, 1994.

[2] D. Bunting et al. Web services composite application
framework, 2003.

[3] L. F. Carbrera et al. Web services coordination, web
services business activity framework, web services
atomic transaction, 2004.

[4] A. Ceponkus et al. Business transaction protocol, June
2002.

[5] P. K. Chrysanthis and K. Ramamritham. Synthesis
of extended transaction models using ACTA. ACM
Transactions on Database Systems, 19(3):450–491,
1994.

[6] E. W. Dijkstra. A Discipline of Programming. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1st edition,
October 1997.

[7] A. Fekete et al. Transactions in loosely coupled dis-
tributed systems. In Proceedings of the Fourteenth
Australasian Database Conference on Database tech-
nologies, Adelaide, Australia, 2003. Australian Com-
puter Society, Inc.

[8] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann Publishers,
San Francisco, California, 9th edition, 2002.

[9] P. Hrastnik. Execution of business processes based
on web services. International Journal of Electronic
Business, 2(5):550–556, 2004.

[10] P. Hrastnik and W. Winiwarter. An advanced trans-
action meta–model for web services environments.
In The Sixth International Conference on Informa-
tion Integration and Web–based Applications & Ser-
vices (iiWAS2004), pages 303–312, Jakarta, Indone-
sia, September 2004. Austrian Computer Society.

[11] M. Potts et al. Business Transaction Protocol Primer.
2002. cited on 2005-01-28.

[12] M. Prochazka. Advanced Transactions in Component-
Based Software Architectures. PhD thesis, Charles
University, Faculty of Mathematics and Physics,
Department of Software Engineering, Malostranske
namest i 25, 118 00 Prague 1, Czech Republic, 2002.

[13] G. Weikum and H. J. Schek. Multi-level transactions
and open nested transactions. In Data Engineering,
volume 14, pages 60–64, Los Alamitos, California,
March 1991. IEEE Computer Society Press.


