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We consider planning problems for graphs, Markov Decision Processes (MDPs), and games 
on graphs in an explicit state space. While graphs represent the most basic planning model, 
MDPs represent interaction with nature and games on graphs represent interaction with an 
adversarial environment. We consider two planning problems with k different target sets: 
(a) the coverage problem asks whether there is a plan for each individual target set; and 
(b) the sequential target reachability problem asks whether the targets can be reached 
in a given sequence. For the coverage problem, we present a linear-time algorithm for 
graphs, and quadratic conditional lower bound for MDPs and games on graphs. For the 
sequential target problem, we present a linear-time algorithm for graphs, a sub-quadratic 
algorithm for MDPs, and a quadratic conditional lower bound for games on graphs. Our 
results with conditional lower bounds, based on the boolean matrix multiplication (BMM) 
conjecture and strong exponential time hypothesis (SETH), establish (i) model-separation 
results showing that for the coverage problem MDPs and games on graphs are harder 
than graphs, and for the sequential reachability problem games on graphs are harder than 
MDPs and graphs; and (ii) problem-separation results showing that for MDPs the coverage 
problem is harder than the sequential target problem.

© 2021 Published by Elsevier B.V.

1. Introduction

One of the fundamental algorithmic problems in artificial intelligence is the planning problem [1,2]. The most basic plan-
ning problem is the Discrete Feasible Planning problem [1]. The problem has a finite state space and a finite amount of actions
for each state. Starting from an initial state, the planner repeatedly chooses an available action at the current state which, as 
a result, produces a new current state as described by a state transition function. The question is if the planner can produce 
a state which is in a certain subset of the state space called goal or target.
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Planning models. We study this problem in the following classical models:

• Graphs. Discrete Feasible Planning can be directly translated into a graph search problem: The vertices in the graph 
describe the state space and for every action in a state, there is an edge to the vertex which corresponds to the new 
state given by the state transition function [1,2].

• MDPs. In the presence of interaction with nature, the graph model is extended with probabilities or stochastic transi-
tions, which gives rise to Markov Decision Processes (MDPs) [3–7].

• Games on graphs. In the presence of interaction with an adversarial environment, the graph model is extended to game 
graphs (or AND-OR graphs) [8,9].

Planning problems. The planner tries to solve a planning problem given one of the above-described planning models. The 
starting position is not restricted to the vertices controlled by the planner but can be any kind of vertex in the considered 
model. We consider the following basic planning problems:

• Basic target reachability. Given a target set T of vertices the goal is to determine if some vertex in T is reachable from 
the starting position.

• Coverage. In the coverage problem we are given k different target sets, namely, T1, . . . , Tk , and a starting vertex. The 
coverage problem asks whether we can achieve basic target reachability for all target sets Ti where 1 ≤ i ≤ k. Coverage 
models the following scenario: Consider a robot stationed in an outpost with k different locations of interest. If an event 
or an attack happens in one of the locations, then that location must be reached. However, the location of the event or 
the attack is not known in advance and the robot must be prepared that the target set could be any of the k target sets.

• AllCoverage. In the AllCoverage problem there are again k different target sets T1, . . . , Tk but in contrast to Coverage 
we want to determine all starting positions where Coverage with T1, . . . , Tk holds. This corresponds to finding a viable 
outpost for robot.

• Sequential target reachability. In the sequential target reachability problem we are given k different target sets, namely, 
T1, T2, . . . , Tk and a starting position. The goal is to output whether we can first reach T1, then T2 and so on up to Tk

from the starting position. This represents the scenario that the tasks must be completed in a sequence by the planner.

The above are natural planning problems and have been studied widely in the literature, e.g., in robot planning [10–12].

Basic planning questions. For the above problems the basic planning questions are as follows: (a) for graphs, the question 
is whether there exists a plan (or a path) such that the planning problem is solved; (b) for MDPs, the basic question is 
whether there exists a policy such that the planning problems are satisfied almost-surely (i.e., with probability 1); and 
(c) for games on graphs, the basic question is whether there exists a policy that solves the planning problem irrespective 
of the choices of the adversary. The almost-sure satisfaction for MDPs is also known as the strong cyclic planning in the 
planning literature [13], and games on graphs question represent planning in the presence of a worst-case adversary [8,9]
(aka adversarial planning, strong planning [14], or conformant/contingent planning [15–17]).

Algorithmic study. In this work, we study the planning problems for graphs, MDPs, and games on graphs algorithmically. 
For all the above questions, polynomial-time algorithms exist. When polynomial-time algorithms exist, proving an uncon-
ditional lower bound is extremely rare. A new approach in complexity theory aims to establish a conditional lower bound 
(CLB) based on a well-known conjecture. Two standard conjectures for CLBs are as follows: The (a) Boolean matrix multi-
plication (BMM) conjecture states that there is no sub-cubic combinatorial algorithm for boolean matrix multiplication; and 
the (b) Strong exponential-time hypothesis (SETH) states that there is no sub-exponential time algorithm for the k-SAT prob-
lem when k grows to infinity. Many CLBs have been established based on the above conjectures, e.g., for dynamic graph 
algorithms and string matching [18,19].

Previous results and our contributions. We denote by n and m the number of vertices and edges of the underlying model, 
and k denotes the number of different target sets. The Õ notation hides poly-log factors, e.g. O (m(log n)4) = Õ (m). We call 
a running time near-linear if it is linear in the input but has some additional poly-logarithmic factor, e.g. O (m(log n)4). For 
the basic target reachability problem, while the graphs and games on graphs problem can be solved in linear time [20,21], 
the current best-known bound for MDPs is Õ (m) [22, Theorem 12]. For the coverage and sequential target reachability, 
an O (k · m) upper bound follows for graphs and games on graphs, and an Õ (k · m) upper bound follows for MDPs. Our 
contributions are as follows:

1. Coverage problem: First, we present an O (m +∑k
i=1 |Ti |) time algorithm for graphs; second, we present an �(k ·m) lower 

bound for MDPs and games on graphs, both under the BMM conjecture and the SETH. For graphs our upper bound is 
in linear time, however, if each |Ti | is constant and k = θ(n), for MDPs and games on graphs the CLB is quadratic.

2. Sequential target problem: First, we present an O (m + ∑k
i=1 |Ti |) time algorithm for graphs; second, we present an 

Õ (m + ∑k
i=1 |Ti |) time algorithm for MDPs; and third, we present an �(k · m) lower bound for games on graphs, both 

under the BMM conjecture and the SETH.
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Table 1
Algorithmic bounds where n and m are the numbers of vertices and edges of the underlying model, and k denotes the number of 
different target sets. The �̃(·) bounds are conditional lower bounds (CLBs) under the BMM conjecture and SETH. They establish 
that polynomial improvements over the given bound are not possible, however, polylogarithmic improvements are not excluded. 
Note that CLBs are quadratic for k = �(n). The new results are highlighted in boldface.

Objectives Graphs MDPs Games

Upper B. Lower B. Upper B. Lower B. Upper B. Lower B.

Basic target O (m) Õ (m) O (m)

Coverage O (m + ∑k
i=1 |Ti |) Õ (k · m) �̃(k · m) O (k · m) �̃(k · m)

(Theorem 1) (Theorem 2)
AllCoverage O (k · m) �̃(k · m) O (k · m) �̃(k · m) O (k · m) �̃(k · m)

(Theorem 3) (Theorem 3) (Theorem 3)
Sequential target O(m + ∑k

i=1 |Ti|) Õ(m + ∑k
i=1 |Ti|) O (k · m) �̃(k · m)

(Theorem 4) (Theorem 5) (Theorem 6)

The summary of the results is presented in Table 1. Our most interesting results are the conditional lower bounds for 
MDPs and game graphs for the coverage problem, the sub-quadratic algorithm for MDPs with sequential targets, and the 
conditional lower bound for game graphs with sequential targets.

Practical significance. The sequential reachability and coverage problems we consider are the tasks defined in [10], where 
the problems have been studied for games on graphs and mentioned as future work for MDPs. The applications of these 
problems have been demonstrated in robotics applications. We present a complete algorithmic picture for games on graphs 
and MDPs, settling open questions related to games and future work mentioned in [10].

Theoretical significance. Our results present a very interesting algorithmic picture for the natural planning questions in the 
fundamental models.

1. First, we establish results showing that some models are harder than others. More precisely,
• for the basic target reachability problem, the MDP model seems harder than graphs and games on graphs (linear-time 

algorithm for graphs and games on graphs, and only near-linear time algorithms are known for MDPs);
• for the coverage problem, MDPs and games on graphs are harder than graphs (linear-time algorithm for graphs and 

quadratic CLBs for MDPs and games on graphs);
• for the sequential target problem, games on graphs are harder than MDPs and graphs (linear-time upper bound for 

graphs and sub-quadratic upper bound for MDPs, whereas quadratic CLB for games on graphs).
In summary, we establish model-separation results with CLBs: For the coverage problem, MDPs and games on graphs 
are algorithmically harder than graphs; and for the sequential target problem, games on graphs are algorithmically 
harder than MDPs and graphs.

2. Second, we also establish problem-separation results. For the model of MDPs consider the different problems: Both for 
basic target and sequential target reachability the upper bound is sub-quadratic and in contrast to the coverage problem 
we establish a quadratic CLB.

Further related work In this work, our focus lies on the algorithmic complexity of fundamental planning problems and we 
consider explicit state-space graphs, MDPs, and game graphs, where the complexities are polynomial. The explicit model and 
algorithms for it are widely considered: For example, in LTL Synthesis [10,23–25], Probabilistic Planning [26–29], Nondeter-
ministic Planning [30–34], Contingent Planning [35,36] and Verification [37]. In factored models such as STRIPS and SAS+ 
the complexities are higher (PSPACE-complete and NP-complete [38,39]), and then heuristics are the focus (e.g., [9]) rather 
than the exact algorithmic complexity. Notable exceptions are

1. the work on parameterized complexity of planning problems (e.g., [40]),
2. conditional lower bounds based on the ETH [41] showing that certain general propositional planning problems (e.g., 

propositional STRIPS with negative goals (PSN)) do not admit algorithms with running times of the form 2|P |c
for 

instance size |P | and concrete constants c > 0 [42,43],
3. conditional lower bounds based on the SETH of the form 2(1+ε)v · poly(|P |) where v is the number of variables and 

ε > 0 for very large subclasses PSN [43],
4. conditional lower bounds based on the graph colorability problem of the form 2v/2 · poly(v) [43],
5. conditional lower bounds based on the ETH showing that the minimum constraint removal problem, a well-studied 

problem in both robotic motion planning, does not admit algorithms with running times of the form 2o(n) [44].

2. Preliminaries

We first present formal definitions of the studied problems and then provide the necessary background on conditional 
lower bounds that we will use as a technique to classify the complexity of the problems throughout our paper.
3
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2.1. Definition of the problems

Markov Decision Processes (MDPs). A Markov decision process (MDP) P = ((V , E), 〈V 1, V R〉, δ) consists of a finite set of vertices 
V partitioned into the player-1 vertices V 1 and the random vertices V R , a finite set of edges E ⊆ (V × V ), and a probabilistic 
transition function δ. The probabilistic transition function maps every random vertex in V R to an element of D(V ), where 
D(V ) is the set of probability distributions over the set of vertices V . A random vertex v has an edge to a vertex w ∈ V , i.e. 
(v, w) ∈ E if and only if δ(v)[w] > 0. For simplicity, for all random vertices v , we let δ(v) be the uniform distribution over 
vertices u with (v, u) ∈ E . We explain in Remark 2 why this assumption is without loss of generality. When we say that we 
contract a set of vertices X into a player-1 vertex v the resulting MDP P ′ has the vertices V ′ = (V \ X) ∪ {v}, the edge set E ′ , 
which contains (1) all edges of E without a vertex in X and (2) for all edges (u, x), (x, u) where x ∈ X and u ∈ V \ X in P
we include the edges (u, v) and (v, u) respectively. The player-1 vertices V ′

1 are defined as (V 1 \ X) ∪ {v} and the random 
vertices V ′

R are V R \ X . The new probabilistic transition function δ′(v) for v ∈ V ′
R is, again, the uniform distribution over 

vertices u with (v, u) ∈ E . We compare our definition of MDPs with the definition of MDPs used in most planning and AI 
literature in Remark 1.

Game Graphs. A game graph � = ((V , E), 〈V 1, V 2〉) consists of a finite set of vertices V , a finite set of edges E and a partition 
of the vertices V into player-1 vertices V 1 and the adversarial player-2 vertices V 2. We sometimes write player-x (x ∈ {1, 2})
and to describe the adversarial player we write player-x̄, i.e., x̄ = 2 if x is 1 and x̄ = 1 if x is 2.

Graphs. A graph G = (V , E) is a special case of an MDP with V R = ∅ as well as a special case of a game graphs with V 2 = ∅. 
Let Out(v) = {u ∈ V | (v, u) ∈ E} describe the set of successor vertices of v . The set In(v) = {u ∈ V | (u, v) ∈ E} describes the 
set of predecessors of the vertex v . We say that two vertices u and v are strongly connected if there is a path from u to v
and vice-versa.

Remark 1. A standard way to define MDPs, e.g. [7], is to consider vertices with actions and the probabilistic transition 
function is defined for every vertex and action. In our model, the choice of actions is represented as the choice of edges 
at player-1 vertices and the probabilistic transition function is represented by the random vertices. This allows us to treat 
MDPs and game graphs uniformly, and graphs can be described easily as a special case of MDPs.

Plays. We assume without loss of generality that every vertex has an outgoing edge.1 A play is an infinite sequence ω =
〈v0, v1, v2, . . .〉 of vertices such that each (vi−1, vi) ∈ E for all i ≥ 1. We denote the set of all plays with �. A play is 
initialized by placing a token on an initial vertex. If the token is on a vertex owned by a player (such as player 1 in MDPs, 
or player 1/player 2 in game graphs), then the respective player moves the token along one of the outgoing edges, whereas 
if the token is at a random vertex v ∈ V R , then the next vertex is chosen according to the probability distribution δ(v). Thus 
an infinite sequence of vertices (or an infinite walk) is formed which is a play.

Policies. Policies are recipes for players to extend finite prefixes of plays (denoted with V ∗). Formally, a player-x policy is a 
function σx : V ∗ · V x �→ V which maps every finite prefix ω ∈ V ∗ · V x of a play that ends in a player-x vertex v to a successor 
vertex σx(ω) ∈ V , i.e., (v, σx(ω)) ∈ E . A player-x policy is memoryless if σx(ω) = σx(ω

′) for all ω, ω′ ∈ V ∗ · V x that end in 
the same vertex v ∈ V x , i.e., the policy does not depend on the entire prefix, but only on the last vertex.

Outcome of policies. The outcome of a policy is defined as follows for the models:

• In graphs, given a starting vertex, a policy for player 1 induces a unique play in the graph by applying the player-1 
policy at every vertex.

• In game graphs, given a starting vertex v , and policies σ , π for player 1 and player 2 respectively, we define the unique 
play ω(v, σ , π) = 〈v0, v1, v2, . . .〉, such that v0 = v and for all i ≥ 0 if vi ∈ V 1 then σ(vi) = vi+1 and if vi ∈ V 2, then 
π(vi) = vi+1.

• In MDPs given a starting vertex v a policy for player 1 induces a distribution over the possible plays since random 
vertices choose their successor according to the probabilistic transition function δ.

Objectives and winning. An objective φ is a subset of � (the set of all plays) and describes the “winning plays”. A play ω ∈ �

achieves or is in the objective if ω ∈ φ. We consider the following notion of “winning”:

• Almost-sure winning. In MDPs, let Prσv (φ) denote the probability that a play starting at vertex v ∈ V , is in φ when 
player 1 plays policy σ . A policy σ is almost-sure winning (a.s. winning) from a vertex v ∈ V for an objective φ if and 
only if Prσv (φ) = 1. This notion is also considered strong cyclic planning [13].

• Winning. In game graphs a policy σ is winning for player 1 starting at vertex v for an objective φ if and only if for any 
player-2 policy π we have ω(v, σ , π) ∈ φ.

1 If a vertex v has no outgoing edge we simply add an edge (v, v). These additional edges do not affect any of the reachability notions we consider in 
this work.
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Fig. 1. Example illustrating the difference between (a) MDPs and (b) game graphs for the reachability objective Reach(T ).

Note that in the special case of graphs both of the above winning notions requires that there exists a play from v that 
achieves the objective.

Remark 2. In MDPs we consider the notion of a.s. winning where the precise transition probabilities of the transition 
function δ do not matter because only the support of the transition function is relevant. The a.s. winning notion we use 
corresponds to the strong cyclic planning problem. Intuitively, if we visit a random vertex in an MDP infinitely often then 
all its successors are visited infinitely often. Therefore, when we consider the almost-sure winning condition in MDPs, only 
the underlying graph structure along with the partition of vertices into player-1 and random vertices is relevant, and the 
transition function δ can be treated as a uniform distribution over the support.

We have defined the notion of objectives in general above, and below we consider specific objectives and queries that 
are natural in planning problems. They are all variants of the most fundamental objectives in planning, namely, reachability 
objectives.

Basic Target Reachability. For a target set T ⊆ V , the basic target reachability objective is the set of plays that contain a vertex 
of T , i.e., Reach(T ) = {〈v0, v1, v2, . . .〉 ∈ � | ∃ j ≥ 0 : v j ∈ T }.

Sequential Target Reachability. For a tuple of vertex sets T = (T1, T2, . . . , Tk) the sequential target reachability objective is 
the set of plays that contain a vertex of T1 followed by a vertex of T2 and so on up to a vertex of Tk , i.e., Seq(T ) =
{〈v0, v1, v2, . . .〉 ∈ � | ∃ j1, j2, . . . jk : v j1 ∈ T1, v j2 ∈ T2, . . . , v jk ∈ Tk and j1 ≤ j2 ≤ · · · ≤ jk}.

Coverage and AllCoverage. The Coverage problems cannot be stated as a single objective but are formulated as a query in-
volving several objectives. That is, for k vertex sets, namely T1, T2, . . . , Tk , the coverage query Coverage(T1, . . . , Tk) asks 
whether for each 1 ≤ i ≤ k the basic target reachability objective Reach(Ti) can be achieved. That is, a vertex v is winning 
for Coverage(T1, . . . , Tk) if it is winning for each objective Reach(Ti) where 1 ≤ i ≤ k.

In the Coverage problem we are given vertex sets T1, T2, . . . , Tk and a start vertex s and we decide whether there is a 
strategy starting at s which is winning for Coverage(T1, . . . , Tk). In AllCoverage we are only given vertex sets T1, T2, . . . , Tk
and have to determine the winning set, i.e., all vertices with a winning strategy for Coverage(T1, . . . , Tk).

In the following example, we illustrate the differences between the notions of reachability in the different models.

Example 1 (Reachability in MDPs and game graphs is not the same). Consider the graph G = (V , E) with vertices V = {v1, v2, v3}
and the edges E = {(v1, v2), (v2, v1), (v2, v3)} and let T = {v3} be a target set. We will now consider Reach(T ) for (a) the 
MDP P = (G, 〈V 1, V R〉, δ) and (b) the game graph � = (G, 〈V 1, V 2〉) with V 1 = {v1, v3} and V 2 = V R = {v2}. The example is 
illustrated in Fig. 1. In the MDP the vertex v2 is a random vertex and, thus, whenever the token is at v2 it is moved to v3
with non-zero probability. The player-1 policy σ(v1) = v2 wins almost-surely for Reach(T ) because the transition from v2
to v3 is taken eventually, i.e., v3 is reached almost-surely. Note that in the game graph at vertex v2 the adversary can force 
v1 and, thus, player 1 does not have a policy which almost-surely wins for Reach(T ) starting from v1. Thus, reachability in 
MDPs does not imply reachability in game graphs.

Relevant parameters. We consider the following input parameters: n denotes the number of vertices, m denotes the number 
of edges and k either denotes the number of target sets in the coverage problem or the size of the tuple of target sets in 
the sequential target reachability problem.

Algorithmic study. In this work, we study the above basic planning objectives for graphs, game graphs (i.e., winning in game 
graphs), and MDPs (a.s. winning in MDPs). Our goal is to clarify the algorithmic complexity of the above questions with 
improved algorithms and conditional lower bounds. We define the conjectured lower bounds for conditional lower bounds 
next.
5
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2.2. Conjectured lower bounds

Results from classical complexity are based on standard complexity-theoretic assumptions, e.g., P �= NP. Similarly, we 
derive polynomial lower bounds which are based on widely believed conjectured lower bounds on well-studied algorithmic 
problems.

First of all, we consider conjectures on Boolean Matrix Multiplication [45, Theorem 6.1] and triangle detection in 
graphs [18, Conjecture 2]. A triangle in a graph is a triple x, y, z of vertices such that (x, y), (y, z), (z, x) ∈ E . In trian-
gle detection we are given a graph and the question is if a triangle exists in the graph. We assume that no self-loops in 
instances of triangle detection exist. Note that we can easily establish this assumption by linear-time preprocessing. See 
Remark 3 for an explanation of the term “combinatorial algorithm”.

Conjecture 1 (Comb. Boolean Matrix Multiplication Conjecture (BMM)). There is no O (n3−ε) time combinatorial algorithm for com-
puting the boolean product of two n × n matrices for any ε > 0.

Conjecture 2 (Strong Triangle Conjecture (STC)). There is no algorithm which runs in O (min{nω−ε , m2ω/(ω+1)−ε}) expected time and 
no O (n3−ε) time combinatorial algorithm that can detect whether a graph contains a triangle for any ε > 0, where ω < 2.373 is the 
matrix multiplication exponent.

Williams and Williams [46, Theorem 6.1] showed that BMM is equivalent to the combinatorial part of STC. Moreover, if 
we do not restrict ourselves to combinatorial algorithms, STC, still gives a super-linear lower bound.

Remark 3 (Combinatorial algorithm). The notion of combinatorial algorithm is widely used in the field of fine-grained com-
plexity community [47–49], despite the lack of a formal definition. The main intuition is that combinatorial algorithms do 
not use fast matrix multiplication [50,51], while non-combinatorial algorithms have the matrix multiplication exponent ω
in the running time. To the best of our knowledge, all algorithms for deciding (almost-sure) winning conditions in game 
graphs and MDPs are combinatorial so far. Thus, lower bounds for combinatorial algorithms are of particular interest in our 
setting. For further discussion on the notion of combinatorial algorithm consider [52,53].

Secondly, we consider the Strong Exponential Time Hypothesis (SETH) used also in [18, Conjecture 1] introduced by [41,
54] for the satisfiability problem of propositional logic and the Orthogonal Vector Conjecture.

The Orthogonal Vectors Problem (OV). Given sets S1, S2 of d-bit vectors with |S1| = |S2| = N and d = ω(log N), are there u ∈ S1

and v ∈ S2 such that 
∑d

i=1 ui · vi = 0?

Conjecture 3 (Strong Exponential Time Hypothesis (SETH)). For each ε > 0 there is a k such that k-CNF-SAT on n variables and m
clauses cannot be solved in O (2(1−ε)n poly(m)) time.

Conjecture 4 (Orthogonal Vectors Conjecture (OVC)). There is no O (N2−ε) time algorithm for the Orthogonal Vectors Problem for any 
ε > 0.

SETH implies OVC [55, Theorem 5], an explicit reduction is given in the survey article [56, Theorem 3.1]. Whenever 
a problem is provably hard assuming OVC it is thus also hard when assuming SETH. For example, in [19, Preliminaries, 
A. Hardness Assumptions, OVH] the OVC is assumed to prove conditional lower bounds for the longest common subse-
quence problem. To the best of the author’s knowledge, there is no connection between the former two and the latter two 
conjectures.

Remark 4. The conjectures promise that no polynomial improvements over the best-known running times are possible but 
do not exclude improvements by sub-polynomial factors such as poly-logarithmic factors or factors of, e.g., 2

√
log n .

3. Basic previous results

In this section, we recall the basic algorithmic results about MDPs and game graphs known in the literature that we 
later use in our algorithms. They explain the results of the first row of Table 1. Note that we cannot give any quadratic 
conditional lower bounds for any of these problems as they all permit linear time or near-linear time algorithms.

Basic result 1: Maximal End-Component Decomposition. Given an MDP P , an end-component is a set of vertices X ⊆ V s.t. 
(1) the subgraph induced by X is strongly connected (i.e., (X, E ∩ X × X) is strongly connected) and (2) all random vertices 
have their outgoing edges in X , i.e., X is closed for random vertices, formally described as: for all v ∈ X ∩ V R and all 
(v, u) ∈ E we have u ∈ X . A maximal end-component (MEC) is an end-component which is maximal under set inclusion. The 
importance of MECs is as follows: (i) they generalize strongly connected components (SCCs) in graphs (with V R = ∅) and 
closed recurrent sets of Markov chains (with V 1 = ∅); and (ii) in a MEC X from all vertices u ∈ X every vertex v ∈ X can be 
reached almost-surely.
6
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Fig. 2. A graph G and an MDP P where we contract all SCCs and MECs respectively into player-1 vertices (removing self-loops) to obtain G ′ and P ′ . The 
graph G ′ is acyclic whereas the MDP P ′ contains a cycle.

Example 2 (Difference between SCC decomposition and MEC decomposition). While in SCC decompositions we have that each 
vertex belongs to exactly one SCC, (which might be a trivial SCC just containing that vertex) for MEC decompositions, we 
might have a non-empty set of random vertices which do not belong to any MEC (still, each vertex belongs to at most one 
MEC). Consequently, if we contract each MECs into a player-1 vertex, the resulting MDP is not necessarily acyclic which 
is in contrast to the graph obtained from contracting the SCCs into player-1 vertices, which is always acyclic. In Fig. 2 we 
demonstrate this key difference: Contracting all SCCs of the graph G into player-1 vertices yields the DAG G ′ . Consider the 
MDP P where the vertices {v1, v2, v4, v7} of G are random vertices and all edges remain unchanged. If we contract the 
MECs, i.e. {{v1, v2, v3}, {v5, v6, v7, v8}} into player-1 vertices {v ′

1, v
′
3} we obtain the MDP P ′ which has a cycle. Note that 

this is because v4 does not belong to a MEC and is strongly connected with v ′
1 or v3 respectively in P ′ and P .

The SCC decomposition of a graph can be computed in linear time [57, Theorem 13]. MEC decomposition is computed 
in O (m(log n)4) = Õ (m) time by the fastest algorithm [22, Theorem 11].

Basic result 2: Reachability in MDPs. Given an MDP P and a target set T , the set of starting vertices from which T can be 
reached almost-surely can be computed in O (m) time given the MEC decomposition of P [58, Theorem 4.1]. Consequently, 
we can solve the basic target reachability problem for MDPs in Õ (m).

Basic result 3: Reachability in game graphs. Given a game graph � and a target set T , the player-x attractor characterizes 
the set of vertices from which player x can reach T against all polices of the adversarial player x̄. Formally, the player-x
attractor (x ∈ {1, 2}) Attrx(S, �) of a given set S ⊆ V is defined as the limit of the sequence A0 = S; Ai+1 = Ai ∪ {v ∈ V x |
Out(v) ∩ Ai �= ∅} ∪ {v ∈ V x̄ | Out(v) ⊆ Ai} for all i ≥ 0. An attractor A = Attrx(S, �) can be computed in O (m) time [20,21]. 
We will sometimes omit � from Attrx(S, �) if it is clear on which game graph we apply the attractor.

4. Coverage problem

In this section, we consider the coverage query problem in graphs, MDPs, and game graphs. The input is a starting vertex 
v and a coverage query. Our goal is to check if a set of player-1 strategies exist such that the resulting plays achieve the 
given coverage query when starting at v .

First, we present a linear-time algorithm for graphs and quadratic algorithms for MDPs and game graphs. Then we focus 
on the conditional lower bounds for MDPs and game graphs, which establish that there is no subquadratic algorithm for the 
coverage problem when one assumes the STC and OV conjectures.

4.1. Algorithms

The results below present the upper bound for graphs, MDPs, and game graphs of the second row of Table 1.

Coverage Problem in Graphs. For the coverage problem in graphs we are given a graph G = (V , E), a coverage query 
Coverage(T1, . . . , Tk) and a start vertex s ∈ V . The algorithmic problem is to find out if starting from an initial vertex v
the basic target reachability, i.e., Reach(Ti), can be achieved for all 1 ≤ i ≤ k. The algorithmic solution is as follows: Initially, 
mark each v ∈ Ti for 1 ≤ i ≤ k with i. Compute the BFS tree starting from s and check if all the targets are contained in the 
resulting BFS tree. This instantly gives an algorithm with a running time in O (m + ∑k

i=0 |Ti |). Note that the running time is 
linear and thus we cannot hope to find any quadratic lower bounds.
7
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Fig. 3. An example reduction from OV to Coverage in MDPs.

Coverage Problem in MDPs and game graphs. We determine in MDPs and game graphs whether there exists a set of strategies 
for a given coverage query with k basic target reachability objectives and start vertex v , by applying the reachability algo-
rithm of the respective model k times, i.e., once for each of the target sets. This yields a solution in Õ (km) time for MDPs 
and O (km) time for game graphs respectively. Notice that for k ∈ �(n) the running time is quadratic in the input size.

4.2. Conditional lower bounds

We present conditional lower bounds for the coverage problem in MDPs and game graphs (i.e., the CLBs of the second 
row of Table 1). For MDPs and game graphs the conditional lower bounds complement the quadratic algorithms from the 
previous subsection. Note that we cannot provide a quadratic lower bound for graphs as a linear-time algorithm exists. The 
conditional lower bounds are due to reductions from OV and triangle detection.

4.2.1. MDPs
We present the following conditional lower bounds for MDPs:

Theorem 1. For all ε > 0, checking if a vertex has a set of a.s. winning policies for the coverage problem in MDPs does not admit:

1. an O (m2−ε) algorithm under Conjecture 4,
2. an O ((k · m)1−ε) algorithm under Conjecture 4,
3. a combinatorial O (n3−ε) algorithm under Conjecture 2 and

4. a combinatorial O ((k · n2)
1−ε

) algorithm under Conjecture 2.

Using the OV-Conjecture. Below, we prove the results 1–2 of Theorem 1. We reduce the OV problem to Coverage in MDPs. By 
applying Conjecture 4 we infer the result.

Reduction 1. Given two sets S1, S2 of d-dimensional vectors (both of size N), we build the MDP P as follows.

• The vertices V of P are given by a start vertex s, sets of vertices S1 and S2 representing the sets of vectors and vertices 
C = {ci | 1 ≤ i ≤ d} representing the coordinates of the vectors in the OVC instance.

• The edges E of P are defined as follows: The start vertex s has an edge to every vertex of S1. Furthermore, for each 
xi ∈ S1 there is an edge to c j ∈ C if and only if xi[ j] = 1 and for each yi ∈ S2 there is an edge from c j ∈ S2 to yi if and 
only if yi[ j] = 1. Also, the yi have self-loops so that every vertex has an outgoing edge.

• The set of vertices is partitioned into player-1 vertices V 1 = S1 ∪ C ∪ S2 and random vertices V R = {s}.

Example 3 (Example: Reduction from OV to Coverage). Let the OV instance be S1 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, S2 = {(1, 0, 1),

(1, 1, 0), (0, 1, 0)}. Notice that the second vector in S1 and the third vector in S2 are orthogonal. Due to the fact that s is a 
random vertex, there is a nonzero probability that x2 is the successor. There is no path from x2 to y3. As T3 = {y3}, there 
is no a.s. winning policy from s for the given instance of coverage. We illustrate the example of the reduction in Fig. 3.

Notice that for orthogonal vectors xi and y j we have that for each c ∈ C either xi is not connected to c or y j is not 
connected to c . Thus there is no path from xi to yi . Starting from s there is a non-zero probability to end in xi and, thus, 
also a non-zero probability to fail reaching the target set T j = {y j} for all player-1 policies.

Lemma 1. Let P = (V , E, 〈V 1, V R〉, δ) be the MDP given by Reduction 1 and Ti = {yi} for 1 ≤ i ≤ N. There exist orthogonal vectors 
x ∈ S1 , y ∈ S2 if and only if s is not winning for Coverage({Ti | 1 ≤ i ≤ N}).

Proof. The MDP P is constructed in such a way that there is no path between vertex xi and y j if and only if the corre-
sponding vectors are orthogonal in the OV instance: If xi is orthogonal to y j , the outgoing edges lead to no vertex which 
has an incoming edge to y j as either xi[k] = 0 or y j[k] = 0. On the other hand, if there is no path from xi to y j we again 
8
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Fig. 4. Reduction from Triangle to Coverage.

have by the construction of the underlying graph that for all 1 ≤ k ≤ d : xi[k] = 0 or y j[k] = 0. This is the definition of 
orthogonality for xi and y j . When starting from s the token is randomly moved to one of the vertices xi and thus player 1 
can reach each y j almost surely from s if and only if it can reach each y j from each xi . Thus, we have that there is an a.s. 
winning player 1 policy for Reach(Ti) if and only if yi has. Hence, S2 has no orthogonal vector in S1 if and only if each 
Reach(Ti) has an a.s. winning player 1 policy. �

The MDP P has only O (N) many vertices and Reduction 1 can be performed in O (N · d) time (recall that d = ω(log N)). 
The number of edges m is O (N · d) and the number of target sets k ∈ θ(N). Thus the results 1–2 of Theorem 1 follow.

Using the ST-conjecture. Towards the results 3–4 in Theorem 1 we reduce the triangle detection problem to the Coverage 
problem in MDPs. By applying Conjecture 2 we infer the result.

Reduction 2. Given an instance of triangle detection, i.e., a graph G = (V , E), we build the following MDP P =
(V ′, E ′, 〈V ′

1, V
′
R〉, δ).

• The vertices V ′ are given as four copies V 1, V 2, V 3, V 4 of V and a start vertex s.
• The edges E ′ of P are defined as follows: There is an edge from s to every v1i ∈ V 1 for i = 1 . . . |V |. In addition, for 

1 ≤ j ≤ 4 there is an edge from v ji to v( j+1)k if and only if (vi, vk) ∈ E . Finally, v4i for i = 1 . . . |V | has a self-loop.
• The set of vertices V ′ is partitioned into player-1 vertices V ′

1 = ∅ and random vertices V ′
R = {s} ∪ V 1 ∪ V 2 ∪ V 3 ∪ V 4.

Notice that all the vertices of the constructed MDP are random vertices.

Example 4 (Reducing triangle detection to Coverage.). Let G be the graph given in Fig. 4. We construct the MDP P as in 
Reduction 2. Notice that G has the triangle (v1, v2, v3) and the constructed MDP P has a nonzero chance to take the 
path marked by the fat edges that correspond to this triangle, i.e., player-1 does not have a winning policy from s for the 
coverage objective given in the reduction because he cannot satisfy T1. The example is illustrated in Fig. 4.

Lemma 2. Let P be the MDP given by Reduction 2 when applied to a graph G and let Ti = V 1 \ {v1i} ∪ V 4 \ {v4i} for i = 1 . . . |V | be 
target sets. The graph G has a triangle if and only if s is not winning for Coverage({Ti | 1 ≤ i ≤ |V |}) in P .

Proof. First, s is not winning for Coverage(T1, . . . , T |V |) iff there is a Ti such that player-1 has no a.s. winning policy from 
s for Reach(Ti). Second, there is a triangle in the graph G iff there is a path from some vertex v1i in the first copy of G to 
the same vertex in the fourth copy of G , v4i . Finally, notice that player 1 does not control any vertex and, thus, the policy 
of player 1 does not matter and each possible path is played with non-zero probability. If G has a triangle containing vertex 
vi then the corresponding play from v1i to v4i has non-zero probability and is not in Reach(Ti). That is, s is not winning 
for the query Coverage({Ti | 1 ≤ i ≤ N}) for player 1. Now assume that s is not winning for Coverage({Ti | 1 ≤ i ≤ N}) and 
thus not winning for Reach(Ti). Then there is a path from v1i to v4i and thus a triangle in G . �

Moreover, the size and the construction time of the MDP P are linear in the size of the original graph G and we have 
k = θ(|V |) target sets. Thus 3–4 of Theorem 1 follow.

4.2.2. Game graphs
Next, we describe how the results for MDPs can be extended to game graphs. We prove the following theorem which 

states multiple specific lower bounds for checking if a vertex has a set of winning policies for a coverage query.

Theorem 2. For all ε > 0, checking if a vertex has a set of winning policies for a coverage query in game graphs does not admit:

1. an O (m2−ε) algorithm under Conjecture 4,
9
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2. an O ((k · m)1−ε) algorithm under Conjecture 4,
3. a combinatorial O (n3−ε) algorithm under Conjecture 2 and

4. a combinatorial O ((k · n2)
1−ε

) algorithm under Conjecture 2.

Using the OV-Conjecture. Below we prove the results 1–2 of Theorem 2. We reduce the OV problem to Coverage in game 
graphs. By applying Conjecture 4 we infer the result. In Reduction 3 we change the random starting vertex of Reduction 1
to a player-2 vertex. The rest of the reduction stays the same. The proof then proceeds as before with the adversary now 
overtaking the role of the random choices.

Reduction 3. Given two sets S1, S2 of d-dimensional vectors, we build the following game graph � = (V , E, 〈V 1, V 2〉).

• The vertices V and edges E are defined as before in Reduction 1
• The set of vertices is now partitioned into player-1 vertices V 1 = S1 ∪ C ∪ S2 and player-2 vertices V 2 = {s}.

Lemma 3. Let � be the game graph given by Reduction 3 with a coverage query Coverage({Ti | 1 ≤ i ≤ n}) where Ti = {yi} for 
i = 1 . . . N. There exist orthogonal vectors x ∈ S1 , y ∈ S2 if and only if there is no set of winning policies from start vertex s for the 
coverage query.

The game graph � has only O (N) many vertices and Reduction 3 can be performed in O (N · d) time (recall that d =
ω(log N)). The number of edges m is O (N · d) and the number of target sets k ∈ θ(N). Thus the points 1–2 in Theorem 2
follow.

Using the STC conjecture. Below we prove the results 3–4 in Theorem 2. We reduce the triangle detection problem to Coverage 
in game graphs. By applying Conjecture 2 we infer the result. In Reduction 4 we change the random vertices of Reduction 2
to player-2 vertices. Notice that the resulting game graph consists of only player-2 vertices. Again, if there is a path starting 
from s which violates a reachability objective in the given coverage query then player 2 wins. As the reachability objectives 
are defined such that they rule out the triangles of the reduction, player 1 only wins if and only if there is no such path, 
i.e., there is no triangle in the original graph.

Reduction 4. Given an instance of triangle detection, i.e., a graph G = (V , E), we build the following game graph � =
(V ′, E ′, 〈V ′

1, V
′
2〉).

• The vertices V ′ and edges E ′ are the same as in Reduction 2.
• The set of vertices V ′ is partitioned into player-1 vertices V ′

1 = ∅ and player-2 vertices V ′
2 = {s} ∪ V 1 ∪ V 2 ∪ V 3 ∪ V 4.

Lemma 4. Let � be the game graph given by Reduction 4 when applied to a graph G and let Ti = V 1 \ {v1i} ∪ V 4 \ {v4i} for i = 1 . . .n. 
The graph G has a triangle if and only if s is winning for Coverage({Ti | 1 ≤ i ≤ n}) in �.

Moreover, the size and the construction time of game graph � are linear in the size of the original graph G and we have 
k = θ(n) target sets. Thus 3–4 in Theorem 2 follow.

5. AllCoverage problem

In this section, we consider the AllCoverage problem. First, we present simple algorithms for all models based on the 
algorithms for reachability in the respective models. Then we present a conditional lower bound for graphs which establishes 
that the existing algorithm cannot be polynomially improved under the STC and OV conjectures.

5.1. Algorithms

We present a quadratic algorithm for MDPs, games, and graphs. The results present the upper bounds for graphs, MDPs, 
and game graphs in the third row of Table 1.

Given the query Coverage({Ti | 1 ≤ i ≤ k}) for graphs, MDPs, and game graphs, we propose an algorithm which first 
solves the k reachability objectives using the basic results. Notice that the result of the algorithms for solving the basic 
target reachability objective is a set of vertices that have a policy to achieve the objective. Then we take the intersection 
of the resulting sets. (1) For graphs using BFS which is in O (m) time we obtain an O (k · m) time algorithm. (2) For game 
graphs, using the O (m)-time attractor computation (see basic result 3), we have an O (k · m) time algorithm. (3) For MDPs, 
the MEC decomposition followed by k many O (m)-time almost-sure reachability computation (see basic result 2), gives an 
O (k · m + mec) time algorithm.
10
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Fig. 5. Reduction from OV to AllCoverage.

5.2. Conditional lower bounds

In this section, we present conditional lower bounds for the AllCoverage problem in graphs (i.e., the CLBs of the third 
row of Table 1). For MDPs and game graphs the conditional lower bounds follow from Section 4 because the Coverage 
problem can be trivially reduced to the AllCoverage problem, i.e., once we compute all the vertices that can reach a target 
it is easy to check whether a specific vertex can reach that target. The conditional lower bounds are due to reductions from 
OV and the triangle detection problem.

Theorem 3. For all ε > 0, computing the solution of the AllCoverage problem in graphs does not admit

1. an O (m2−ε) algorithm under Conjecture 4,
2. an O ((k · m)1−ε) algorithm under Conjecture 4,
3. a combinatorial O (n3−ε) algorithm under Conjecture 2 and

4. a combinatorial O ((k · n2)
1−ε

) algorithm under Conjecture 2.

Using the OV-Conjecture. In this section, we prove results 1–2 in Theorem 3. We reduce the OV problem to the AllCoverage 
problem in graphs. By applying Conjecture 4 we infer the result.

Reduction 5. Given two sets S1, S2 of d-dimensional vectors (both of size N), we build the graph G as follows.

• The construction of the graph is the same as in Reduction 1 except that we do not have a vertex s.

Example 5 (Reducing AllCoverage to OV). Let the instance of OV be given by S1 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, S2 = {(1, 0, 1),

(1, 1, 0), (0, 1, 0)}. Notice that the second vector in S1 and the third vector in S2 are orthogonal. We construct G with 
Reduction 5. There is no path from x2 to y3. As T3 = {y3}, x2 is not in the winning set of Coverage({T1, T2, T3}). Fig. 5
illustrates the reduction.

Lemma 5. Let G = (V , E) be the graph given by Reduction 5 with target sets T = {Ti | Ti = {yi} for i = 1 . . . N }. A vector xi ∈ S1 is 
orthogonal to some vector in S2 if and only if the vertex xi is not in the winning set of Coverage(T ).

Proof. The graph P is constructed in such a way that there is no path between vertex xi and y j iff the corresponding 
vectors are orthogonal in the OV instance: If xi is orthogonal to y j , the outgoing edges lead to no vertex which has an 
incoming edge to y j as either xi[k] = 0 or y j[k] = 0. On the other hand, if there is no path from xi to y j we again have by 
the construction of the underlying graph that for all 1 ≤ k ≤ d : xi[k] = 0 or y j[k] = 0. This is the definition of orthogonality 
for xi and y j . Thus, xi is in the winning set of Coverage(T ) iff xi is orthogonal to some vector in S2. �

Notice that we solve the given instance of OV with our reduction as we compute all vectors in S1 which are orthogonal 
to some vector in S2. The Graph G has only O (N) many vertices and Reduction 1 can be performed in O (N · d) time (recall 
that d = ω(log N)). The number of edges m is O (N · d) and the number of target sets k ∈ θ(N). Thus the points 1–2 in 
Theorem 3 follow.

Using the ST-Conjecture. Below we prove 3–4 in Theorem 3. We reduce the triangle detection problem to the AllCoverage 
problem in graphs. By applying Conjecture 2 we infer the result.

Reduction 6. Given an instance of triangle detection, i.e., a graph G = (V , E), we build the following graph G = (V ′, E ′). The 
vertices and edges are the same as in Reduction 2 except that we have player-1 vertices instead of random vertices and 
there is no start vertex s.

Example 6 (Reducing Triangle to AllCoverage). Consider G in Fig. 6. Notice that G has the triangle (v1, v2, v3) and there is a 
path from v11 to v41 in the constructed MDP P illustrated by the strong edges corresponding to this triangle. The winning 
11
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Fig. 6. Reduction from Triangle to AllCoverage.

set of Coverage(T1, T2, T3, T4) contains v11 by using the policy which uses the path from v11 to v41: First we achieve 
trivially, Reach(T2), Reach(T3), Reach(T4) with this policy by starting from v11. Then Reach(T1) is achieved by arriving at 
v41.

Lemma 6. Let G be the graph given by Reduction 6 with |V | target set Ti = V 1 \ {v1i} ∪{v4i} for i = 1 . . . |V |. A graph G has a triangle 
with vertex vi if and only if the vertex v1i is in the winning set of the query Coverage(T1, . . . , T |V |).

Proof. Notice that there is a triangle in the graph G iff there is a path from some vertex v1i in the first copy of G to the 
same vertex in the fourth copy of G , v4i . Also, a path σ starting in v1i for 1 ≤ i ≤ |V | is a viable policy in the Coverage 
query for all Reach(Ti) 1 ≤ i ≤ |V | objectives iff it is able to visit v4i : By definition, T j includes v1i for 1 ≤ j ≤ |V | and j �= i. 
Thus σ achieves all Reach(T j) for j �= i. To achieve Reach(Ti), there must be a path from v1i to v4i . Thus, there is a triangle 
with vertex vi if and only if v1i is in the winning set of the query Coverage(T ). �

Note that we solve the given instance of the triangle detection problem if we know all vertices which are in triangles. 
Moreover, the size and the construction time of the MDP P are linear in the size of the original graph G and we have 
k = θ(|V |) target sets. Thus 3–4 in Theorem 3 follow.

6. Sequential target problem

We consider the sequential target problem in all models. In contrast to the quadratic CLB for the coverage problem, quite 
surprisingly, there is a subquadratic algorithm for MDPs. We first present an algorithm for graphs and then build upon that 
to present the algorithm for MDPs. For games, we present a quadratic algorithm and a quadratic CLB.

6.1. Algorithms

The following results present the upper bounds of the fourth row of Table 1.

6.1.1. Algorithm for graphs
Given a graph G = (V , E) and the sequential target objective Seq(T1, . . . , Tk), we compute the strongly connected com-

ponents, contract each strongly connected component to a single vertex and remove multi-edges. This results in a directed 
acyclic graph (DAG). Additionally, the vertex v ′ which represents an SCC C in the resulting DAG D , is in all target sets of its 
members, i.e., v ′ ∈ Ti if there exists a vertex u ∈ C such that u ∈ Ti for all 1 ≤ i ≤ k. Notice that this step does not change 
the reachability conditions of the resulting acyclic graph: Every vertex in an SCC can be reached starting from every other 
vertex in the same SCC. Thus, it suffices to give an algorithm for DAGs. Given a DAG D = (V , E), we maintain (a) a set of 
unprocessed vertices S , which is initialized with V and (b) a queue Q containing the vertices which are not processed but 
where all successors are processed, initialized with all vertices with no outgoing edges. Notice that the queue is initially 
non-empty because the bottom SCCs of G are now vertices without outgoing edges in D . Additionally, for each vertex v , 
we maintain the values countv , v and bestv . The variable countv counts the number of vertices in Out(v) which are not 
processed yet. The label v is such that vertex v has a winning policy for the objective Seq(Tv ) where Tv = (Tv , . . . , Tk). 
In other words, there is a policy to win from v if we already visited the targets sets T1, . . . Tv −1. The variable bestv is used 
to store the minimum label of the already processed successors of v . The algorithm proceeds as follows. While the queue 
Q is not empty, we take a vertex v from the queue and call ProcessVertex(·). The function computes the label v of the 
vertex v using bestv and the target sets where v is in. Then, it removes v from S and updates the variables bestw and 
countw of all predecessors w ∈ In(v). In particular, we set bestw = min(bestw , v) and decrement countw by one. When the 
queue is empty, all vertices are processed and the algorithm terminates. We show that the described algorithm for DAGs 
has a linear running time, i.e., O (m + ∑n

i=1 |Ti |) and the details are presented in Algorithm 1.
12
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Algorithm 1: Sequential Targets in Graphs.
Input: DAG D = (V , E), targets T = (T1, . . . , Tk)

1 S ← V ;
2 Lv ← {i ∈ {1, . . . , k} | v ∈ Ti } for v ∈ V ;
3 countv ← |Out(v)| for v ∈ V ;

4 bestv ←
{

k + 1 if Out(v) = ∅
null otherwise

for v ∈ V ;

5 v ← null for v ∈ V ;
6 Q ← {v ∈ V | Out(v) = ∅};

7 while S �= ∅ do
8 v = Q .pop();
9 ProcessVertex(v);

10 return {v ∈ V | v = 1};

11 function ProcessVertex(Vertex v)

12 v ← bestv ;
13 while v − 1 ∈ Lv do
14 v ← v − 1;

15 S ← S \ {v};
16 for w ∈ In(v) do
17 bestw ← min(bestw , v );
18 countw ← countw − 1;
19 if countw = 0 then
20 Q .push(w);

Proposition 1 (Correctness). Given a DAG D = (V , E) and a sequential reachability objective Seq(T ) with target sets T =
{T1, . . . , Tk}, Algorithm 1 returns the set of all start vertices with a path for the objective Seq(T ).

Observation 1. The input graph has one or more vertices v with Out(v) = ∅ and thus Q is non-empty after the initialization.

Proof. Note that there is always a vertex v ∈ V where Out(v) = ∅ because we assumed that D is a DAG. �
The invariants below state that (a) the variables (bestv , countv , v ) have the intended meaning, (b) Q contains all the 

unprocessed vertices whose successors are already processed and (c) that the queue contains vertices as long as S is not 
empty.

Lemma 7. The following statements are invariants of the while loop at Line 7.

1. countv = |Out(v) ∩ S|
2. v ∈ Q if and only if v ∈ S and Out(v) ∩ S = ∅.
3. If S is not empty then the queue Q is not empty.
4. bestv = k + 1 for all v ∈ V with Out(v) = ∅.
5. If v ∈ Q then bestv �= null.
6. If v ∈ V \ S then v �= null.
7. bestv = minw∈Out(v)\S w , for all v ∈ V with Out(v) \ S �= ∅.

Proof. 1. The counters countv are initialized as |O ut(v)| and S is initialized as V . Thus the claim holds when first entering 
the while loop.
Assume the claim holds at the beginning of the iteration where vertex u is processed. The set S is only changed in 
Line 15. There u is removed from the set. The counters are only changed in Line 18: All counters of vertices w with 
u ∈ Out(w) are decreased by one. Consequently countv = |Out(v) ∩ S| holds for all v ∈ V also after this iteration of the 
loop and the claim follows.

2. In the initial phase S is set to V and Q is set to {v ∈ V | Out(v) = ∅}. Thus the claim holds when first entering the 
while loop.
Assume the claim holds at the beginning of the iteration where vertex v is processed. The set S is only changed in 
Line 15 where v is removed.
First consider a vertex w ∈ Q \ {v}. As w is not removed from the set S and no vertex is added to S the claim is still 
true for w . Now consider a vertex w that might be added during the iteration of the loop. This can only happen in 
Line 20 and the if conditions ensure that w ∈ S and Out(v) ∩ S = ∅ (by the previous invariant) and thus the claim also 
holds for the newly added vertices.

3. Due to Observation 1 the claim holds when first entering the while loop.
13
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Assume the claim holds at the beginning of the iteration, where vertex v is processed. The vertex v is removed from S
in Line 15 and if the set S is empty now, the claim follows trivially. On the other hand, if S is non-empty and Q is also 
non-empty the claim follows again. In the third case S is non-empty and Q is empty. Assume for contradiction that no 
vertex is added at line 20. By invariant (2), every vertex v ∈ S has a successor in S as otherwise, v would be in Q . That 
implies that there exists a cycle which is a contradiction with D being a DAG.

4. For v ∈ V with Out(v) = ∅ the variables bestv are initialized with k + 1 (Line 4) and bestv is only changed in Line 17
when a successor of the vertex is processed. As v has no successor, bestv is not changed during the algorithm.

5. If v ∈ Q initially, it must be due to the initialization and we have bestv = k + 1. The claim holds when first entering 
the while loop. Assume the claim holds at the beginning of the iteration where v is processed. The only time we add a 
vertex w to Q is at Line 20. Notice that we set bestw before at Line 17.

6. Initially, every vertex is in S , thus the claim holds before the first iteration of the while loop. Assume the claim holds 
at the beginning of the iteration where v is processed. The only time we remove a vertex from S is at Line 15, i.e., in 
ProcessVertex(v). Notice that we set v in Line 12 to bestv which cannot be null due to Lemma 7 (5).

7. Initially, V is S , and for all v ∈ V we set v , bestv to null. Notice that bestv with Out(v) �= ∅ are not changed at Line 4. 
Thus the claim holds when the algorithm enters the loop.
Now consider the iteration of vertex v and assume the claim is true at the beginning. The set S is only changed in 
Line 15 where v is removed. Let Sold be the set at the beginning of the iteration and Snew = Sold \ {v} the updated set. 
Due to Lemma 7 (6) v �= null. For a vertex w ∈ In(v), the value bestw is updated to min(bestw , v) (Line 17) which by 
assumption is equal to minx∈(Out(w)\Sold)∪{v} x = minx∈(Out(w)\Snew ) x , i.e., the equation holds. For vertices w /∈ In(v) both 
bestw as well as the right hand side of the equation are unchanged. Hence, the claim holds also after the iteration. �

From the following invariants, we obtain the correctness of our algorithm.

Lemma 8. The following statements are invariants of the while loop at Line 7 for all v ∈ V \ S:

1. there exists a path pv ∈ Seq(Tv ),
2. there exists no path pv ∈ Seq(Tv −1),

where Tv = {Tv , . . . , Tk} or v > k.

Proof. As S is initialized with the set of vertices V the two statements trivially hold after the initialization.

Now consider the iteration where vertex v is processed and assume the invariants hold at the beginning of the iteration. 
Let be(v) = minw∈Out(v) w . By Lemma 7 (2) we have Out(v) ∩ S = ∅ and by Lemma 7 (6) also w �= null for all w ∈ Out(v). 
Thus by Lemma 7 (7) we have be(v) = bestv and v can be computed. The while loop in Line 13 decrements v which is 
initialized to bestv − 1 as long has bestv − 1 ∈ Lv . Lv contains v , . . . , bestv − 1 but does not contain v − 1.

1. We next show that there is a path pv in Seq(Tv ): Let w = be(v). A path for vertex w where pw ∈ Seq(Tw ), exists 
by induction hypothesis. The targets {Tv , . . . , Tw−1 } are visited by starting from v . The path is obtained as follows: 
pv = v, pw , which proves the claim.

2. We next show that there is no path pv in Seq(Tv −1). The current vertex v is not in the set Tv −1 and no successor w
has a path pw with pw ∈ Seq(Tv −1) because v −1 < v ≤ w (Lines 12–14). Thus there is also no path pv ∈ Seq(Tv −1)

which concludes the proof. �
Proposition 2. Algorithm 1 has running time O (m + ∑k

i=1 |Ti |).

Proof. We first argue that the initialization takes O (m + ∑k
i=1 |Ti |) time. Initializing the sets Lv can be done by first 

initializing the set Lv as ∅ (in O (n)) and then iterate over all set Ti and for each v ∈ Ti add i to Lv (in O (
∑k

i=1 |Ti |)). The 
other variables can be initialized by iterating over all vertices and for each vertex consider all outgoing edges. That is in 
O (n + m) = O (m) time. Now consider the main part of the algorithm. In the while loop we process each vertex v ∈ V once 
(recall that D is a DAG) and call the function ProcessVertex(v) at Line 9 In the function call ProcessVertex(v), we iterate 
over the set Lv (Lines 13–14) and all incoming edges of v (Lines 16–20). If we sum over all the vertices we obtain a running 
time of O (m + ∑

v∈V |Lv |) = O (m + ∑n
i=1 |Ti |). �

Theorem 4. Given a graph G = (V , E), a sequential target objective and a vertex s ∈ V we can decide whether s is winning for Seq(T )

in O (m + ∑k
i=1 |Ti |) time.

6.1.2. Algorithm for MDPs
The algorithm for MDPs builds on the algorithm for graphs. The key difference is that instead of computing an SCC 

decomposition and contracting SCCs, for MDPs, we compute a MEC decomposition and contract MECs into player-1 vertices: 
14
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Fig. 7. Key difficulty when computing Sequential Reachability in MDPs.

Given an MDP P = (V , E, 〈V 1, V R〉, δ) with the sequential target objective Seq(T1, . . . , Tk), we compute the MEC decomposi-
tion of the MDP. Then, each MEC M is contracted into a player-1 vertex v ′ without self-loops. The resulting MDP is P ′ . The 
target sets of P ′ are as follows: The vertex v ′ is in all the target sets of the corresponding vertices in M , i.e., v ′ ∈ Ti if there 
exists a vertex u ∈ M such that u ∈ Ti for all 1 ≤ i ≤ k. Notice that this step does not change the reachability conditions 
of the resulting MDP: Every vertex in the MEC can be reached almost-surely starting from every other vertex in the same 
MEC, regardless of their type (player-1, random). Thus, it suffices to give an algorithm for MEC-free MDPs.

Key challenge. When computing a MEC decomposition and contracting the MECs we get an MDP that may still contain cycles. 
Thus, our MDP algorithm has to deal with cycles unlike the graph setting where we only had to deal with DAGs, i.e., in 
Algorithm 1 we maintained a Queue Q which contained all unprocessed vertices where all successors are processed. In each 
iteration we process one such vertex. Notice that when the queue is the only mechanism to process the vertices, we need 
the fact (which we also show in Lemma 7 (3)) that there either exists a vertex where all successors have been processed 
or all vertices have been processed and the algorithm can terminate. When running the algorithm on MEC-free MDPs there 
might be a situation where the Queue Q is empty and some vertices have not been processed yet. We illustrate such a 
situation in Example 7. Thus, we need an additional mechanism to process vertices in this situation.

Example 7 (Queue empty but graph not processed). Consider the MDP P given in Fig. 7: Contracting the MECs of P into player-1 
vertices, we obtain P ′ . Notice that P ′ still contains a cycle. Using only the queue to obtain the next vertex to process we 
have the following problem: After v ′

3 is processed, the queue Q is empty because v ′
2 has still has an unprocessed successor, 

namely v ′
1. Notice that v ′

2 and v ′
1 have not been processed yet.

Algorithm Description. The algorithm for MEC-free MDPs maintains the set of unprocessed vertices S and a queue Q , the 
values countv , v , and bestv for each vertex v . The value countv , as in Algorithm 1, stores the number of vertices in Out(v)

which are not processed yet. The label v for v is now such that v has an almost-sure winning policy for the objective 
Seq(Tv ) where Tv = (Tv , . . . , Tk). Random vertices might choose the worst possible successor with nonzero probability, 
i.e., the vertex with highest v , whereas player-1 vertices always choose the vertex with the lowest v . We reflect this fact 
as follows in the variable bestv : The variable bestv stores the maximum (for v ∈ V R ) / minimum (for v ∈ V 1) label of the 
already processed successors of v . The set S is initialized with V , and, initially, all vertices with no outgoing edges are 
added to the queue Q . Notice that the bottom MECs of P are now vertices without outgoing edges in P ′ and thus Q is 
initially non-empty. If the queue Q is non-empty, a vertex from the queue is processed as in Algorithm 1. When Q is 
empty, the algorithm has to process a vertex where some successors are not processed yet. In that case, we consider all the 
random vertices for which at least one successor is processed and choose the random vertex with the maximum bestv to 
process next. We show that, as the graph has no MECs, whenever Q is empty (and S is not) there exists such a random 
vertex. Moreover, whenever Q is empty, all vertices in the set of unprocessed vertices S have a policy that satisfies Seq(Tm)

for m = maxv∈V R ∩S bestv : Intuitively, this is due to the fact that all vertices in S can reach a vertex v ′ (which is possibly 
different to v = argmaxv∈V R∩S bestv ) in the set of already processed vertices and in the worst case v ′ = m, i.e., they can 
satisfy Seq(Tm). For the vertex v = arg maxv∈V R ∩S bestv all successors w without a label are in S and are going to obtain a 
label w of at most m. The current value of bestv is m, i.e., v has a successor w with w = m. As v is in V R the final value 
of bestv must be m. Hence, one can process v without knowing the exact label of all the successors. We present the details 
in Algorithm 2 and prove a running time which is in O (m logn + ∑k

i=0 |Ti |). Notice that the running is near-linear time, 
linear up to a log n factor.

Proposition 3 (Correctness). Given an MDP P and a sequential target objective Seq(T ) with targets T = (T1, . . . , Tk), Algorithm 2
returns the set of all start vertices with a player-1 policy for the objective Seq(T ).

We next state the invariants of the while loop (see Line 7) that will enable us to show the correctness of the algorithm. 
The invariants state that (a) the variables bestv and countv have the meaning as described in the algorithm description for 
all v ∈ V , (b) Q contains all the unprocessed vertices whose successors are already processed, and (c) that the function 
argmax is well-defined whenever called, i.e., there is a random vertex where bestv is not null.
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Algorithm 2: Sequential target Reachability for MEC-free MDPs.
Input: MEC-free MDP P = (V , E, 〈V 1, V R 〉, δ), targets T = (T1, . . . , Tk)

Output: All vertices with a policy for Seq(T ).
1 S ← V ;
2 Lv ← {i ∈ {1, . . . , k} | v ∈ Ti } for v ∈ V ;
3 countv ← |Out(v)| for v ∈ V ;

4 bestv ←
{

k + 1 if Out(v) = ∅
null otherwise

for v ∈ V ;

5 v ← null for v ∈ V ;
6 Q ← {v ∈ V | Out(v) = ∅};

7 while S �= ∅ do
8 if Q �= ∅ then
9 v = Q .pop();

10 ProcessVertex(v);

11 else
12 v ← argmaxv∈V R ∩S bestv ;
13 ProcessVertex(v);

14 return {v ∈ V | v = 1};

15 function ProcessVertex(Vertex v)

16 v ← bestv ;
17 while v − 1 ∈ Lv do
18 v ← v − 1;

19 S ← S \ {v};
20 for w ∈ {w : (w, v) ∈ E} do
21 if w ∈ V 1 then
22 bestw ← min(bestw , v )

23 else
24 bestw ← max(bestw , v )

25 countw ← countw − 1;
26 if countw = 0 ∧ w ∈ S then
27 Q .push(w)

Lemma 9. The following statements are invariants of the while loop in Line 7.

1. countv = |O ut(v) ∩ S|;
2. v ∈ Q if and only if v ∈ S and Out(v) ∩ S = ∅;
3. bestv = k + 1, for all v ∈ V with Out(v) = ∅.
4. If v ∈ Q we have bestv �= null.
5. If v ∈ V \ S we have v �= null.

6. For all v ∈ V with Out(v) \ S �= ∅: bestv =
{

minw∈Out(v)\S w v ∈ V 1

maxw∈Out(v)\S w v ∈ V R

7. If S �= ∅ and Q = ∅ there is a v ∈ S ∩ V R such that bestv �= null.

Proof. The proofs of (1) — (5) proceed as the proofs of the corresponding statements in the proof of Lemma 7.

6. Initially S = V and for all v ∈ V we set v , bestv to null. Also, bestv with Out(v) �= ∅ are not changed at Line 4 and the 
claim holds when the algorithm enters the loop.
Now consider the iteration of vertex v and assume the claim is true at the beginning. The set S is only changed in 
Line 19 where v is removed. Let Sold be the set at the beginning of the iteration and Snew = Sold \ {v} the updated set. 
First notice that bestv �= null as v is either chosen by (a) as element of Q or (b) by argmax. In the former case we apply 
Lemma 9 (4) and in the latter case bestv �= null by the definition of argmax. For a vertex w ∈ In(v) ∩ V 1 the value bestw

is updated to min(bestw , v) (Line 22) which by assumption is equal to minx∈(Out(w)\Sold)∪{v} x = minx∈(Out(w)\Snew ) x , 
i.e., the equation holds. For a vertex w ∈ In(v) ∩ V R the value bestw is updated to max(bestw , v) (Line 24) which 
by assumption is equal to maxx∈(Out(w)\Sold)∪{v} x = maxx∈(Out(w)\Snew ) x , i.e., the equation holds. For vertices w /∈ In(v)

bestw remains unchanged. Hence, the claim holds for w by the assumption that the invariant is true before the iteration.
7. Initially the statement is true as each MEC-free MDP has a vertex v with Out(v) = ∅ and thus Q is non-empty (other-

wise there would be an SCC with no outgoing edge which thus would be a MEC).
Now consider the iteration processing vertex v and assume the claim is true at the beginning and Q = ∅. Notice that 
bestw is set for vertices as soon as one vertex in Out(w) was processed. Towards a contradiction assume that all vertices 
w ∈ S ∩ V R have bestw = null, i.e., no vertex w ∈ S ∩ V R has a successor in V \ S . Note that S contains only the vertices 
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which are not processed yet. Each w ∈ S has at least one successor in S as otherwise, w would be in Q . Thus S is 
either empty which would make the statement trivially true or has again a bottom SCC (on the induced subgraph G P ) 
with more than one vertex that has no random outgoing edges. Again such an SCC would be a MEC and we obtain our 
desired contradiction. �

From the following invariant, we obtain the correctness of our algorithm.

Lemma 10. The following statements are invariants of the while loop in Line 7 for all v ∈ V \ S:

1. there exists a player 1 policy σ s.t. Prσv (Seq(Tv )) = 1; and
2. there is no player 1 policy σ s.t. Prσv (Seq(Tv −1)) = 1.

where Tv = {Tv , . . . , Tk} or v > k.

Proof. As S is initialized as set V the two statements hold after the initialization.
Now consider the iteration where vertex v is processed and assume the invariants hold at the beginning of the iteration. 

Notice that we do not change ′
v for any other vertex v ′ �= v and the invariant holds trivially for v ′ . We first introduce the 

following notation

be(v) =
{

minw∈Out(v) w v ∈ V 1

maxw∈Out(v) w v ∈ V R

We distinguish the case where Q is non-empty and the case where Q is empty.

• Case Q �= ∅: By Lemma 9 (2) we have Out(v) ∩ S = ∅. Because we only remove vertices from S if we process them, all 
w ∈ Out(v) are processed and thus w �= null. Thus by Lemma 9 (6) we have be(v) = bestv . By the while-loop in Line 17
we have Lv ⊇ {v , . . . , bestv − 1} but does not contain v − 1, i.e., v − 1 /∈ Lv .
(1) Thus we can easily obtain a policy σ with Prσv (Seq(Tv )) = 1 as follows.
If v ∈ V 1 pick the vertex w that corresponds to be(v) and then player 1 can follow the existing policy σ ′ for vertex w . 
Because the invariant holds for w , there exists a policy σ ′ such that Prσ

′
w (Seq(Tbe(v))) = 1.

If v ∈ V R let vertex w ∈ Out(v) be the randomly chosen vertex. By the invariant which holds during the iteration, w
has a policy σ such that Prσw(Seq(Tbe(v))) = 1. Combined with Lv , this is the desired policy, i.e., Prσv (Seq(Tv )) = 1
(2) We next show that there is no policy for Seq(Tv −1). By Line 17 we have v /∈ Tv −1. If v ∈ V 1 no successor w ∈
Out(v) has a policy σ with Prσw(Seq(Tv −1)) = 1 as the invariant holds also for w . Thus there is also no policy σ for 
v such that Prσv (Seq(Tv −1)) = 1. If v ∈ V R there is at least one successor w (because the invariant holds also for w) 
which has no policy σ such that Prσw(Seq(Tv −1)) = 1. Consequently there is no policy σ for v with Prσv (Seq(Tv −1)) = 1
as there is a non-zero chance that a vertex w is picked that, by the fact that the invariant holds at the current iteration, 
cannot reach a node in Tlv −1.

• Case Q = ∅: Due to Lemma 9 (7) there is at least one vertex in V R ∩ S such that bestv �= null. Let bestmax =
maxv∈V R ∩S bestv .
(1) As we have no MEC (in S), there is a policy σ , so that the play almost surely leaves S by using one of the outgoing 
edges of a random node: Note that for all random nodes between S and V \ S we have a policy which achieves at 
least Seq(Tbestmax ). The policy σ can be arbitrary, except that for a player-1 vertex x ∈ S with an edge (x, y) where 
y ∈ V \ S we choose σ(x) ∈ S (which must exist as x would be in Q otherwise). As there are no MECs (in S) the policy 
σ1 will eventually lead to a vertex in V \ S using a random node. This implies that from each vertex in S player 1 has 
a policy to reach a vertex in V \ S coming from a random vertex. Because the invariant holds at the current iteration 
each successor of a random vertex v ′ where bestv ′ �= null has a policy to satisfy Seq(Tbestmax ). Thus it follows that from 
each vertex in S player 1 has a policy to satisfy Seq(Tbestmax). Now consider the random vertex v that was chosen by 
the algorithm as argmaxv∈V R ∩S bestv . Because v ′ is a random vertex, all successors have a policy to satisfy Seq(Tbestmax )

almost-surely. As Lv contains v , . . . , bestv −1 but does not contain v −1 we obtain a policy σ with Prσv (Seq(Tv )) = 1.
(2) By the choice of v there is also a successor (that is chosen with non-zero probability) that, by assumption, has no 
policy for Seq(Tbestmax−1) and, moreover, Lv does not contain v − 1. Thus, when starting in v each policy will fail to 
satisfy Seq(Tbestmax−1) with non-zero probability, i.e., there is no policy σ for Prσv (Seq(Tv −1)) = 1. �

Proposition 4 (Running Time). Algorithm 2 runs in O (m logn + ∑k
i=0 |Ti |) time.

Proof. Initializing the algorithm takes O (m + ∑k
i=0 |Ti |) time and calling the function ProcessVertex(v) takes time 

O (|In(v)| + |Lv |) (cf. proof of Proposition 2). Consider the main while-loop at Line 7 where every vertex is processed once 
(recall that either Q is nonempty or there exists a v ∈ S ∩ V R such that bestv �= null due to Lemma 9). The costly operations 
are the calls to the ProcessVertex(·) function and the evaluation of the argmax function. Summing up over all vertices we 
17
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Algorithm 3: Sequential Target Reachability for Games.
Input: Game graph � = ((V , E), 〈V 1, V 2〉) and

target sets T = (T1, . . . , Tk)

1 Sk+1 ← V ;
2  ← k;
3 while  > 0 do
4 S ← Attr1(T ∩ S+1);
5  ←  − 1;

6 return S1;

Fig. 8. Reduction from OV to Sequential Targets.

obtain a O (m + ∑k
i=0 |Ti |) bound for the calls to ProcessVertex(·). To compute argmax efficiently we have to maintain a 

priority queue containing all not yet processed random vertices. As we have O (m) updates this costs only O (m log n) for 
one of the standard implementations of priority queues. Summing up this yields a O (m log n + ∑k

i=0 |Ti |) running time for 
Algorithm 2. �

By considering also the time mec for the MEC decomposition we obtain the desired bound and the following theorem.

Theorem 5. Given an MDP P , a start vertex s and a sequential target objective Seq(T ), we can compute whether there is a player-1 
policy σ1 at s for Seq(T ) in O (mec + m logn + ∑k

i=0 |Ti |) time.

6.1.3. Algorithm for games
Given a game graphs with sequential target objectives Seq(T ) where T = (T1, . . . , Tk), the basic algorithm (stated as 

Algorithm 3) performs k player-1 attractor computations. It starts with computing the attractor Sk = Attr1(Tk) of Tk , and 
then iteratively computes the sets S = Attr1(S+1 ∩ T) for 1 ≤  < k, and finally returns the set S1 as the start vertices 
from which player 1 can reach all the target sets in the given order. This gives an O (k · m)-time algorithm. Note that for 
k = �(n) the running time is quadratic in the input size.

6.2. Conditional lower bounds

We present CLBs for game graphs based on the conjectures STC and OVC which establish the CLBs for the fourth row of 
Table 1. Notice that we cannot provide conditional lower bounds for graphs and MDPs as linear time algorithms for these 
two models exist.

Theorem 6. For all ε > 0, checking if a vertex has a winning policy for the sequential target problem in game graphs does not admit

1. an O (m2−ε) algorithm under Conjecture 4,
2. an O ((k · m)1−ε) algorithm under Conjecture 4,
3. a combinatorial O (n3−ε) algorithm under Conjecture 2 and

4. a combinatorial O ((k · n2)
1−ε

) algorithm under Conjecture 2.

Using the OV-Conjecture. Below we prove results 1–2 of Theorem 6 by reducing the OV problem to the sequential target 
problem in game graphs. The reduction is an extension of Reduction 1, where we (a) produce a player-2 vertex instead of a 
random vertex and (b) also every vertex of S2 has an edge back to s.

Example 8. Let the OV instance be given by S1 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, S2 = {(1, 0, 1), (1, 1, 0), (0, 1, 0)}. Notice that 
the second vector in S1 and the third vector in S2 are orthogonal. Due to the fact that s is a player-2 vertex, it can choose 
x2 as the successor. There is no path from x2 to y3. As T3 = {y3}, there is no winning policy for player 1 from s for the 
given sequential target objective. We illustrate the reduction in Fig. 8.
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Fig. 9. Reduction from Triangle to Sequential Targets.

Reduction 7. Given two sets S1, S2 of d-dimensional vectors (both of size N), we build the following game graph �.

• The vertices V of the game graph are given by a start vertex s, sets of vertices S1 and S2 representing the sets of 
vectors and vertices C = {ci | 1 ≤ i ≤ d} representing the coordinates of the vectors in the OVC instance.

• The edges E of � are defined as follows: the start vertex s has an edge to every vertex of S1 and every vertex of S2 has 
an edge back to s; furthermore, for each xi ∈ S1 there is an edge to c j ∈ C if and only if xi[ j] = 1 and for each yi ∈ S2
there is an edge from c j ∈ S2 to y if and only if yi[ j] = 1.

• The set of vertices is partitioned into player-1 vertices V 1 = S1 ∪ C ∪ S2 and player-2 vertices V 2 = {s}.

Lemma 11. Let � be the game graph given by Reduction 7 with a sequential objective Seq(T ) where T = (T1, . . . , Tk) and Ti = {yi}
for i = 1 . . . N. There exist orthogonal vectors xi ∈ S1 , y j ∈ S2 if and only if s has no player-1 policy σ1 to ensure winning for the 
objective Seq(T ).

Proof. Notice that the game graph � is constructed in such a way that there is no path between xi and y j iff they are 
orthogonal in the OV instance. Notice that each play starting at s revisits s every four steps and if there is no path between 
xi and y j then player 2 can disrupt player 1 from visiting a target T j by moving the token to xi whenever the token is in s. 
However, if there is no such xi and y j , player 2 cannot disrupt player 1 from s because no matter which vertex xi player 2 
chooses, player 1 has a policy to reach the next target set. If s has no player-1 policy σ1 to ensure winning for the objective 
Seq(T ) there must be a target player 1 cannot reach. This must be due to the fact that there is no path between some xi

and y j and player 2 always chooses xi . �
The number of vertices in �, constructed by Reduction 1 is O (N) and the construction can be performed in O (N log N)

time (recall that (d = ω(log N))). The number of edges m is O (N log N) and the number of target sets k ∈ θ(N) = θ(m/ log N). 
Thus (1–2) in Theorem 6 follow.

Using the ST-Conjecture. In this section, we prove the results 3–4 in Theorem 6. We reduce the triangle detection problem to 
the sequential target problem in game graphs. The reduction extends Reduction 2, where we (a) produce player-2 vertices 
instead of random vertices and (b) every vertex in the fourth copy has an edge back to s.

Reduction 8. Given an instance of triangle detection, i.e., a graph G = (V , E), we build the following game graph � =
(V ′, E ′, 〈V ′

1, V
′
2〉).

• The vertices V ′ are given as four copies V 1, V 2, V 3, V 4 of V and a start vertex s.
• The edges E ′ are defined as follows: There is an edge from s to every v1i ∈ V 1 where i = 1 . . . |V |. In addition for 

1 ≤ j ≤ 3 there is an edge from v ji to v( j+1)k if and only if (vi, vk) ∈ E . Furthermore there are edges from every 
v4i ∈ V 4 to the start vertex s.

• The set of vertices V ′ is partitioned into player-1 vertices V ′
1 = ∅ and player-2 vertices V ′

2 = {s} ∪ V 1 ∪ V 2 ∪ V 3 ∪ V 4.

Example 9 (Reduction Triangle Detection to Sequential Targets in Games.). Consider the graph G given in Fig. 9. The vertices of 
G are player-2 vertices in � and the graph is copied four times. The edges of � go to the same target but to next copy of 
the graph. Notice that G has the triangle (v1, v2, v3) and the constructed game graph � enables player-2 to take the path 
marked by the fat edges, i.e., player-1 does not have a winning policy from s for the sequential target objective given in the 
reduction because he cannot satisfy T1. We illustrate the example of the reduction in Fig. 9.

Lemma 12. Let �′ be the game graphs given by Reduction 8 with Seq(T ) as follows: T = (T1, T2, . . . , Tk) where Ti = V 1 \ {v1i} ∪
V 4 \ {v4i} for i = 1 . . .k. The graph G has a triangle if and only if there is no policy σ1 to ensure winning for the objective Seq(T ) from 
start vertex s.
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Proof. For the correctness of the reduction notice that there is a triangle in the graph G iff there is a path from some 
vertex v1i in the first copy of G to the same vertex in the fourth copy of G , v4i in P . Player 2 then has a policy to always 
visit only v1i from the first copy and only v4i from the fourth copy which prevents player 1 from visiting target Ti . �

The size and the construction time of graph �, given by Reduction 2, are linear in the size of the original graph G and 
we have k = �(|V |) target sets. Thus (3–4) in Theorem 6 follow.

7. Discussion and conclusion

In this work, we presented lower bound results for planning objectives in explicit state space. We next discuss impli-
cations from these results for the same planning objectives in factored models and then end this paper with concluding 
remarks.

7.1. Implications for factored models

Here we relate our results for the explicit state space to factored models, like STRIPS [2]. For the basic reachability 
problem different conditional lower bounds were established in [42,43]. In the following, we discuss to which extent our 
conditional lower bounds provide lower bounds for the corresponding problems in the factored models. We use the AllCov-
erage problem on graphs as an example but similar arguments apply to the other planning problems as well. A planning 
instance of the AllCoverage problem for graphs in a factored model is given by variables V , the domain of the variables D , 
the actions A and a set of conditions defining the target sets sG1 , . . . , sGk . A state is a function that specifies a value in D
to every variable in V . The planner can go from one state to another by applying the actions defined in the function A. A
is a mapping from an input state to an output state, i.e., the possible transition between states is defined by the actions. 
The goal of the planner is to output all states which can reach all sets sGi (1 ≤ i ≤ k) using the actions described in A. 
We next investigate how our graph-based lower bounds can be interpreted in the factored model. To obtain lower bounds 
similar to Theorem 3 we aim encoding the graphs computed by our reductions (see e.g. Reduction 5 and Reduction 6) in the 
factored model. A naive encoding that simply numbers the vertices and then uses a binary encoding of these numbers can 
represent n states with v = log2 n variables. This encoding would give lower bounds w.r.t. the number of variables v (and 
thus the state space) that exclude O (k · 2(1−ε)v · poly(v)) algorithms for the AllCoverage problem in the factored planning 
model. However, these lower bounds are only w.r.t. the number of variables and not w.r.t. the total size of the problem 
instance which, in particular, also includes the number of actions. The naive encoding requires as many actions as there 
are edges in the graph, i.e., the size of the problem instance is dominated by the number of actions. Thus, using this naive 
encoding we do not get interesting lower bounds w.r.t. the instance size. To obtain lower bounds w.r.t. the instance size 
we have to encode the vertices of the graph in a way that also allows to encode the edges of the graphs compactly. For 
our reductions from triangle detection, i.e., Reduction 6, the edge relation can be rather arbitrary and, thus, the reduction is 
unlikely to allow for a compact representation in the factored model (without making additional assumptions). In contrast, 
our reductions from the OV-problem, i.e., Reduction 5, are well-suited for such a compact encoding as the resulting graphs 
are sparse and the edge relation is defined systematically based on the content of the vertices. Thus, if one uses the binary 
vectors as a basis for the encoding of the vertices in the factored model then the transitions can be represented with a 
relatively low number of actions. However, the details of such an encoding and the corresponding lower bounds depend on 
the actual factored model. Investigating such encodings for concrete factored models is beyond the scope of this paper and 
we thus leave it open as an interesting direction for future research.

7.2. Concluding remarks

In this work, we study several natural planning problems in graphs, MDPs, and game graphs, which are basic algorithmic 
problems in artificial intelligence. Our main contributions are a sub-quadratic algorithm for sequential target in MDPs, and 
quadratic conditional lower bounds. Note that graphs are a special case of both MDPs and game graphs, and the algorithmic 
problems are simplest for graphs, and in all cases except for AllCoverage, we have linear-time upper bounds. The key 
highlight of our results is an interesting separation of MDPs and game graphs: for basic target reachability, MDPs are harder 
than game graphs; for the coverage problem, both MDPs and game graphs are hard (quadratic CLBs); for sequential target 
reachability, game graphs are harder than MDPs.

In this work, we clarified the algorithmic landscape of basic planning problems with CLBs and better algorithms. An 
interesting direction of future work would be to consider CLBs for other polynomial-time problems in planning and AI in 
general. For MDPs with sequential targets, we establish sub-quadratic upper bounds, and hence the techniques of the paper 
that establish quadratic CLBs are not applicable. Other CLB techniques for this problem are an interesting topic to investigate 
as future work.
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[58] K. Chatterjee, W. Dvořák, M. Henzinger, V. Loitzenbauer, Model and objective separation with conditional lower bounds: disjunction is harder than 

conjunction, in: LICS, 2016, pp. 197–206.
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