
Artificial Intelligence 297 (2021) 103499
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Algorithms and conditional lower bounds for planning

problems

Krishnendu Chatterjee a, Wolfgang Dvořák b, Monika Henzinger c,
Alexander Svozil c,∗
a IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
b TU Wien, Institute of Logic and Computation, Favoritenstraße 9–11, A-1040 Wien, Austria
c University of Vienna, Faculty of Computer Science, Währinger Strasse 29, A-1090 Wien, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 November 2020
Received in revised form 8 March 2021
Accepted 8 March 2021
Available online 16 March 2021

Keywords:
Graph games
Conditional lower bounds
Adversarial planning
Strong exponential time hypothesis
Probabilistic planning

We consider planning problems for graphs, Markov Decision Processes (MDPs), and games
on graphs in an explicit state space. While graphs represent the most basic planning model,
MDPs represent interaction with nature and games on graphs represent interaction with an
adversarial environment. We consider two planning problems with k different target sets:
(a) the coverage problem asks whether there is a plan for each individual target set; and
(b) the sequential target reachability problem asks whether the targets can be reached
in a given sequence. For the coverage problem, we present a linear-time algorithm for
graphs, and quadratic conditional lower bound for MDPs and games on graphs. For the
sequential target problem, we present a linear-time algorithm for graphs, a sub-quadratic
algorithm for MDPs, and a quadratic conditional lower bound for games on graphs. Our
results with conditional lower bounds, based on the boolean matrix multiplication (BMM)
conjecture and strong exponential time hypothesis (SETH), establish (i) model-separation
results showing that for the coverage problem MDPs and games on graphs are harder
than graphs, and for the sequential reachability problem games on graphs are harder than
MDPs and graphs; and (ii) problem-separation results showing that for MDPs the coverage
problem is harder than the sequential target problem.

© 2021 Published by Elsevier B.V.

1. Introduction

One of the fundamental algorithmic problems in artificial intelligence is the planning problem [1,2]. The most basic plan-
ning problem is the Discrete Feasible Planning problem [1]. The problem has a finite state space and a finite amount of actions
for each state. Starting from an initial state, the planner repeatedly chooses an available action at the current state which, as
a result, produces a new current state as described by a state transition function. The question is if the planner can produce
a state which is in a certain subset of the state space called goal or target.

* Corresponding author.
E-mail addresses: krish.chat@ist.ac.at (K. Chatterjee), dvorak@dbai.tuwien.ac.at (W. Dvořák), monika.henzinger@univie.ac.at (M. Henzinger),

alexander.svozil@univie.ac.at (A. Svozil).
https://doi.org/10.1016/j.artint.2021.103499
0004-3702/© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.artint.2021.103499
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2021.103499&domain=pdf
mailto:krish.chat@ist.ac.at
mailto:dvorak@dbai.tuwien.ac.at
mailto:monika.henzinger@univie.ac.at
mailto:alexander.svozil@univie.ac.at
https://doi.org/10.1016/j.artint.2021.103499

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Planning models. We study this problem in the following classical models:

• Graphs. Discrete Feasible Planning can be directly translated into a graph search problem: The vertices in the graph
describe the state space and for every action in a state, there is an edge to the vertex which corresponds to the new
state given by the state transition function [1,2].

• MDPs. In the presence of interaction with nature, the graph model is extended with probabilities or stochastic transi-
tions, which gives rise to Markov Decision Processes (MDPs) [3–7].

• Games on graphs. In the presence of interaction with an adversarial environment, the graph model is extended to game
graphs (or AND-OR graphs) [8,9].

Planning problems. The planner tries to solve a planning problem given one of the above-described planning models. The
starting position is not restricted to the vertices controlled by the planner but can be any kind of vertex in the considered
model. We consider the following basic planning problems:

• Basic target reachability. Given a target set T of vertices the goal is to determine if some vertex in T is reachable from
the starting position.

• Coverage. In the coverage problem we are given k different target sets, namely, T1, . . . , Tk , and a starting vertex. The
coverage problem asks whether we can achieve basic target reachability for all target sets Ti where 1 ≤ i ≤ k. Coverage
models the following scenario: Consider a robot stationed in an outpost with k different locations of interest. If an event
or an attack happens in one of the locations, then that location must be reached. However, the location of the event or
the attack is not known in advance and the robot must be prepared that the target set could be any of the k target sets.

• AllCoverage. In the AllCoverage problem there are again k different target sets T1, . . . , Tk but in contrast to Coverage
we want to determine all starting positions where Coverage with T1, . . . , Tk holds. This corresponds to finding a viable
outpost for robot.

• Sequential target reachability. In the sequential target reachability problem we are given k different target sets, namely,
T1, T2, . . . , Tk and a starting position. The goal is to output whether we can first reach T1, then T2 and so on up to Tk

from the starting position. This represents the scenario that the tasks must be completed in a sequence by the planner.

The above are natural planning problems and have been studied widely in the literature, e.g., in robot planning [10–12].

Basic planning questions. For the above problems the basic planning questions are as follows: (a) for graphs, the question
is whether there exists a plan (or a path) such that the planning problem is solved; (b) for MDPs, the basic question is
whether there exists a policy such that the planning problems are satisfied almost-surely (i.e., with probability 1); and
(c) for games on graphs, the basic question is whether there exists a policy that solves the planning problem irrespective
of the choices of the adversary. The almost-sure satisfaction for MDPs is also known as the strong cyclic planning in the
planning literature [13], and games on graphs question represent planning in the presence of a worst-case adversary [8,9]
(aka adversarial planning, strong planning [14], or conformant/contingent planning [15–17]).

Algorithmic study. In this work, we study the planning problems for graphs, MDPs, and games on graphs algorithmically.
For all the above questions, polynomial-time algorithms exist. When polynomial-time algorithms exist, proving an uncon-
ditional lower bound is extremely rare. A new approach in complexity theory aims to establish a conditional lower bound
(CLB) based on a well-known conjecture. Two standard conjectures for CLBs are as follows: The (a) Boolean matrix multi-
plication (BMM) conjecture states that there is no sub-cubic combinatorial algorithm for boolean matrix multiplication; and
the (b) Strong exponential-time hypothesis (SETH) states that there is no sub-exponential time algorithm for the k-SAT prob-
lem when k grows to infinity. Many CLBs have been established based on the above conjectures, e.g., for dynamic graph
algorithms and string matching [18,19].

Previous results and our contributions. We denote by n and m the number of vertices and edges of the underlying model,
and k denotes the number of different target sets. The Õ notation hides poly-log factors, e.g. O (m(log n)4) = Õ (m). We call
a running time near-linear if it is linear in the input but has some additional poly-logarithmic factor, e.g. O (m(log n)4). For
the basic target reachability problem, while the graphs and games on graphs problem can be solved in linear time [20,21],
the current best-known bound for MDPs is Õ (m) [22, Theorem 12]. For the coverage and sequential target reachability,
an O (k · m) upper bound follows for graphs and games on graphs, and an Õ (k · m) upper bound follows for MDPs. Our
contributions are as follows:

1. Coverage problem: First, we present an O (m +∑k
i=1 |Ti |) time algorithm for graphs; second, we present an �(k ·m) lower

bound for MDPs and games on graphs, both under the BMM conjecture and the SETH. For graphs our upper bound is
in linear time, however, if each |Ti | is constant and k = θ(n), for MDPs and games on graphs the CLB is quadratic.

2. Sequential target problem: First, we present an O (m + ∑k
i=1 |Ti |) time algorithm for graphs; second, we present an

Õ (m + ∑k
i=1 |Ti |) time algorithm for MDPs; and third, we present an �(k · m) lower bound for games on graphs, both

under the BMM conjecture and the SETH.
2

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Table 1
Algorithmic bounds where n and m are the numbers of vertices and edges of the underlying model, and k denotes the number of
different target sets. The �̃(·) bounds are conditional lower bounds (CLBs) under the BMM conjecture and SETH. They establish
that polynomial improvements over the given bound are not possible, however, polylogarithmic improvements are not excluded.
Note that CLBs are quadratic for k = �(n). The new results are highlighted in boldface.

Objectives Graphs MDPs Games

Upper B. Lower B. Upper B. Lower B. Upper B. Lower B.

Basic target O (m) Õ (m) O (m)

Coverage O (m + ∑k
i=1 |Ti |) Õ (k · m) �̃(k · m) O (k · m) �̃(k · m)

(Theorem 1) (Theorem 2)
AllCoverage O (k · m) �̃(k · m) O (k · m) �̃(k · m) O (k · m) �̃(k · m)

(Theorem 3) (Theorem 3) (Theorem 3)
Sequential target O(m + ∑k

i=1 |Ti|) Õ(m + ∑k
i=1 |Ti|) O (k · m) �̃(k · m)

(Theorem 4) (Theorem 5) (Theorem 6)

The summary of the results is presented in Table 1. Our most interesting results are the conditional lower bounds for
MDPs and game graphs for the coverage problem, the sub-quadratic algorithm for MDPs with sequential targets, and the
conditional lower bound for game graphs with sequential targets.

Practical significance. The sequential reachability and coverage problems we consider are the tasks defined in [10], where
the problems have been studied for games on graphs and mentioned as future work for MDPs. The applications of these
problems have been demonstrated in robotics applications. We present a complete algorithmic picture for games on graphs
and MDPs, settling open questions related to games and future work mentioned in [10].

Theoretical significance. Our results present a very interesting algorithmic picture for the natural planning questions in the
fundamental models.

1. First, we establish results showing that some models are harder than others. More precisely,
• for the basic target reachability problem, the MDP model seems harder than graphs and games on graphs (linear-time

algorithm for graphs and games on graphs, and only near-linear time algorithms are known for MDPs);
• for the coverage problem, MDPs and games on graphs are harder than graphs (linear-time algorithm for graphs and

quadratic CLBs for MDPs and games on graphs);
• for the sequential target problem, games on graphs are harder than MDPs and graphs (linear-time upper bound for

graphs and sub-quadratic upper bound for MDPs, whereas quadratic CLB for games on graphs).
In summary, we establish model-separation results with CLBs: For the coverage problem, MDPs and games on graphs
are algorithmically harder than graphs; and for the sequential target problem, games on graphs are algorithmically
harder than MDPs and graphs.

2. Second, we also establish problem-separation results. For the model of MDPs consider the different problems: Both for
basic target and sequential target reachability the upper bound is sub-quadratic and in contrast to the coverage problem
we establish a quadratic CLB.

Further related work In this work, our focus lies on the algorithmic complexity of fundamental planning problems and we
consider explicit state-space graphs, MDPs, and game graphs, where the complexities are polynomial. The explicit model and
algorithms for it are widely considered: For example, in LTL Synthesis [10,23–25], Probabilistic Planning [26–29], Nondeter-
ministic Planning [30–34], Contingent Planning [35,36] and Verification [37]. In factored models such as STRIPS and SAS+
the complexities are higher (PSPACE-complete and NP-complete [38,39]), and then heuristics are the focus (e.g., [9]) rather
than the exact algorithmic complexity. Notable exceptions are

1. the work on parameterized complexity of planning problems (e.g., [40]),
2. conditional lower bounds based on the ETH [41] showing that certain general propositional planning problems (e.g.,

propositional STRIPS with negative goals (PSN)) do not admit algorithms with running times of the form 2|P |c
for

instance size |P | and concrete constants c > 0 [42,43],
3. conditional lower bounds based on the SETH of the form 2(1+ε)v · poly(|P |) where v is the number of variables and

ε > 0 for very large subclasses PSN [43],
4. conditional lower bounds based on the graph colorability problem of the form 2v/2 · poly(v) [43],
5. conditional lower bounds based on the ETH showing that the minimum constraint removal problem, a well-studied

problem in both robotic motion planning, does not admit algorithms with running times of the form 2o(n) [44].

2. Preliminaries

We first present formal definitions of the studied problems and then provide the necessary background on conditional
lower bounds that we will use as a technique to classify the complexity of the problems throughout our paper.
3

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
2.1. Definition of the problems

Markov Decision Processes (MDPs). A Markov decision process (MDP) P = ((V , E), 〈V 1, V R〉, δ) consists of a finite set of vertices
V partitioned into the player-1 vertices V 1 and the random vertices V R , a finite set of edges E ⊆ (V × V), and a probabilistic
transition function δ. The probabilistic transition function maps every random vertex in V R to an element of D(V), where
D(V) is the set of probability distributions over the set of vertices V . A random vertex v has an edge to a vertex w ∈ V , i.e.
(v, w) ∈ E if and only if δ(v)[w] > 0. For simplicity, for all random vertices v , we let δ(v) be the uniform distribution over
vertices u with (v, u) ∈ E . We explain in Remark 2 why this assumption is without loss of generality. When we say that we
contract a set of vertices X into a player-1 vertex v the resulting MDP P ′ has the vertices V ′ = (V \ X) ∪ {v}, the edge set E ′ ,
which contains (1) all edges of E without a vertex in X and (2) for all edges (u, x), (x, u) where x ∈ X and u ∈ V \ X in P
we include the edges (u, v) and (v, u) respectively. The player-1 vertices V ′

1 are defined as (V 1 \ X) ∪ {v} and the random
vertices V ′

R are V R \ X . The new probabilistic transition function δ′(v) for v ∈ V ′
R is, again, the uniform distribution over

vertices u with (v, u) ∈ E . We compare our definition of MDPs with the definition of MDPs used in most planning and AI
literature in Remark 1.

Game Graphs. A game graph � = ((V , E), 〈V 1, V 2〉) consists of a finite set of vertices V , a finite set of edges E and a partition
of the vertices V into player-1 vertices V 1 and the adversarial player-2 vertices V 2. We sometimes write player-x (x ∈ {1, 2})
and to describe the adversarial player we write player-x̄, i.e., x̄ = 2 if x is 1 and x̄ = 1 if x is 2.

Graphs. A graph G = (V , E) is a special case of an MDP with V R = ∅ as well as a special case of a game graphs with V 2 = ∅.
Let Out(v) = {u ∈ V | (v, u) ∈ E} describe the set of successor vertices of v . The set In(v) = {u ∈ V | (u, v) ∈ E} describes the
set of predecessors of the vertex v . We say that two vertices u and v are strongly connected if there is a path from u to v
and vice-versa.

Remark 1. A standard way to define MDPs, e.g. [7], is to consider vertices with actions and the probabilistic transition
function is defined for every vertex and action. In our model, the choice of actions is represented as the choice of edges
at player-1 vertices and the probabilistic transition function is represented by the random vertices. This allows us to treat
MDPs and game graphs uniformly, and graphs can be described easily as a special case of MDPs.

Plays. We assume without loss of generality that every vertex has an outgoing edge.1 A play is an infinite sequence ω =
〈v0, v1, v2, . . .〉 of vertices such that each (vi−1, vi) ∈ E for all i ≥ 1. We denote the set of all plays with �. A play is
initialized by placing a token on an initial vertex. If the token is on a vertex owned by a player (such as player 1 in MDPs,
or player 1/player 2 in game graphs), then the respective player moves the token along one of the outgoing edges, whereas
if the token is at a random vertex v ∈ V R , then the next vertex is chosen according to the probability distribution δ(v). Thus
an infinite sequence of vertices (or an infinite walk) is formed which is a play.

Policies. Policies are recipes for players to extend finite prefixes of plays (denoted with V ∗). Formally, a player-x policy is a
function σx : V ∗ · V x �→ V which maps every finite prefix ω ∈ V ∗ · V x of a play that ends in a player-x vertex v to a successor
vertex σx(ω) ∈ V , i.e., (v, σx(ω)) ∈ E . A player-x policy is memoryless if σx(ω) = σx(ω

′) for all ω, ω′ ∈ V ∗ · V x that end in
the same vertex v ∈ V x , i.e., the policy does not depend on the entire prefix, but only on the last vertex.

Outcome of policies. The outcome of a policy is defined as follows for the models:

• In graphs, given a starting vertex, a policy for player 1 induces a unique play in the graph by applying the player-1
policy at every vertex.

• In game graphs, given a starting vertex v , and policies σ , π for player 1 and player 2 respectively, we define the unique
play ω(v, σ , π) = 〈v0, v1, v2, . . .〉, such that v0 = v and for all i ≥ 0 if vi ∈ V 1 then σ(vi) = vi+1 and if vi ∈ V 2, then
π(vi) = vi+1.

• In MDPs given a starting vertex v a policy for player 1 induces a distribution over the possible plays since random
vertices choose their successor according to the probabilistic transition function δ.

Objectives and winning. An objective φ is a subset of � (the set of all plays) and describes the “winning plays”. A play ω ∈ �

achieves or is in the objective if ω ∈ φ. We consider the following notion of “winning”:

• Almost-sure winning. In MDPs, let Prσv (φ) denote the probability that a play starting at vertex v ∈ V , is in φ when
player 1 plays policy σ . A policy σ is almost-sure winning (a.s. winning) from a vertex v ∈ V for an objective φ if and
only if Prσv (φ) = 1. This notion is also considered strong cyclic planning [13].

• Winning. In game graphs a policy σ is winning for player 1 starting at vertex v for an objective φ if and only if for any
player-2 policy π we have ω(v, σ , π) ∈ φ.

1 If a vertex v has no outgoing edge we simply add an edge (v, v). These additional edges do not affect any of the reachability notions we consider in
this work.
4

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Fig. 1. Example illustrating the difference between (a) MDPs and (b) game graphs for the reachability objective Reach(T).

Note that in the special case of graphs both of the above winning notions requires that there exists a play from v that
achieves the objective.

Remark 2. In MDPs we consider the notion of a.s. winning where the precise transition probabilities of the transition
function δ do not matter because only the support of the transition function is relevant. The a.s. winning notion we use
corresponds to the strong cyclic planning problem. Intuitively, if we visit a random vertex in an MDP infinitely often then
all its successors are visited infinitely often. Therefore, when we consider the almost-sure winning condition in MDPs, only
the underlying graph structure along with the partition of vertices into player-1 and random vertices is relevant, and the
transition function δ can be treated as a uniform distribution over the support.

We have defined the notion of objectives in general above, and below we consider specific objectives and queries that
are natural in planning problems. They are all variants of the most fundamental objectives in planning, namely, reachability
objectives.

Basic Target Reachability. For a target set T ⊆ V , the basic target reachability objective is the set of plays that contain a vertex
of T , i.e., Reach(T) = {〈v0, v1, v2, . . .〉 ∈ � | ∃ j ≥ 0 : v j ∈ T }.

Sequential Target Reachability. For a tuple of vertex sets T = (T1, T2, . . . , Tk) the sequential target reachability objective is
the set of plays that contain a vertex of T1 followed by a vertex of T2 and so on up to a vertex of Tk , i.e., Seq(T) =
{〈v0, v1, v2, . . .〉 ∈ � | ∃ j1, j2, . . . jk : v j1 ∈ T1, v j2 ∈ T2, . . . , v jk ∈ Tk and j1 ≤ j2 ≤ · · · ≤ jk}.

Coverage and AllCoverage. The Coverage problems cannot be stated as a single objective but are formulated as a query in-
volving several objectives. That is, for k vertex sets, namely T1, T2, . . . , Tk , the coverage query Coverage(T1, . . . , Tk) asks
whether for each 1 ≤ i ≤ k the basic target reachability objective Reach(Ti) can be achieved. That is, a vertex v is winning
for Coverage(T1, . . . , Tk) if it is winning for each objective Reach(Ti) where 1 ≤ i ≤ k.

In the Coverage problem we are given vertex sets T1, T2, . . . , Tk and a start vertex s and we decide whether there is a
strategy starting at s which is winning for Coverage(T1, . . . , Tk). In AllCoverage we are only given vertex sets T1, T2, . . . , Tk
and have to determine the winning set, i.e., all vertices with a winning strategy for Coverage(T1, . . . , Tk).

In the following example, we illustrate the differences between the notions of reachability in the different models.

Example 1 (Reachability in MDPs and game graphs is not the same). Consider the graph G = (V , E) with vertices V = {v1, v2, v3}
and the edges E = {(v1, v2), (v2, v1), (v2, v3)} and let T = {v3} be a target set. We will now consider Reach(T) for (a) the
MDP P = (G, 〈V 1, V R〉, δ) and (b) the game graph � = (G, 〈V 1, V 2〉) with V 1 = {v1, v3} and V 2 = V R = {v2}. The example is
illustrated in Fig. 1. In the MDP the vertex v2 is a random vertex and, thus, whenever the token is at v2 it is moved to v3
with non-zero probability. The player-1 policy σ(v1) = v2 wins almost-surely for Reach(T) because the transition from v2
to v3 is taken eventually, i.e., v3 is reached almost-surely. Note that in the game graph at vertex v2 the adversary can force
v1 and, thus, player 1 does not have a policy which almost-surely wins for Reach(T) starting from v1. Thus, reachability in
MDPs does not imply reachability in game graphs.

Relevant parameters. We consider the following input parameters: n denotes the number of vertices, m denotes the number
of edges and k either denotes the number of target sets in the coverage problem or the size of the tuple of target sets in
the sequential target reachability problem.

Algorithmic study. In this work, we study the above basic planning objectives for graphs, game graphs (i.e., winning in game
graphs), and MDPs (a.s. winning in MDPs). Our goal is to clarify the algorithmic complexity of the above questions with
improved algorithms and conditional lower bounds. We define the conjectured lower bounds for conditional lower bounds
next.
5

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
2.2. Conjectured lower bounds

Results from classical complexity are based on standard complexity-theoretic assumptions, e.g., P �= NP. Similarly, we
derive polynomial lower bounds which are based on widely believed conjectured lower bounds on well-studied algorithmic
problems.

First of all, we consider conjectures on Boolean Matrix Multiplication [45, Theorem 6.1] and triangle detection in
graphs [18, Conjecture 2]. A triangle in a graph is a triple x, y, z of vertices such that (x, y), (y, z), (z, x) ∈ E . In trian-
gle detection we are given a graph and the question is if a triangle exists in the graph. We assume that no self-loops in
instances of triangle detection exist. Note that we can easily establish this assumption by linear-time preprocessing. See
Remark 3 for an explanation of the term “combinatorial algorithm”.

Conjecture 1 (Comb. Boolean Matrix Multiplication Conjecture (BMM)). There is no O (n3−ε) time combinatorial algorithm for com-
puting the boolean product of two n × n matrices for any ε > 0.

Conjecture 2 (Strong Triangle Conjecture (STC)). There is no algorithm which runs in O (min{nω−ε , m2ω/(ω+1)−ε}) expected time and
no O (n3−ε) time combinatorial algorithm that can detect whether a graph contains a triangle for any ε > 0, where ω < 2.373 is the
matrix multiplication exponent.

Williams and Williams [46, Theorem 6.1] showed that BMM is equivalent to the combinatorial part of STC. Moreover, if
we do not restrict ourselves to combinatorial algorithms, STC, still gives a super-linear lower bound.

Remark 3 (Combinatorial algorithm). The notion of combinatorial algorithm is widely used in the field of fine-grained com-
plexity community [47–49], despite the lack of a formal definition. The main intuition is that combinatorial algorithms do
not use fast matrix multiplication [50,51], while non-combinatorial algorithms have the matrix multiplication exponent ω
in the running time. To the best of our knowledge, all algorithms for deciding (almost-sure) winning conditions in game
graphs and MDPs are combinatorial so far. Thus, lower bounds for combinatorial algorithms are of particular interest in our
setting. For further discussion on the notion of combinatorial algorithm consider [52,53].

Secondly, we consider the Strong Exponential Time Hypothesis (SETH) used also in [18, Conjecture 1] introduced by [41,
54] for the satisfiability problem of propositional logic and the Orthogonal Vector Conjecture.

The Orthogonal Vectors Problem (OV). Given sets S1, S2 of d-bit vectors with |S1| = |S2| = N and d = ω(log N), are there u ∈ S1

and v ∈ S2 such that
∑d

i=1 ui · vi = 0?

Conjecture 3 (Strong Exponential Time Hypothesis (SETH)). For each ε > 0 there is a k such that k-CNF-SAT on n variables and m
clauses cannot be solved in O (2(1−ε)n poly(m)) time.

Conjecture 4 (Orthogonal Vectors Conjecture (OVC)). There is no O (N2−ε) time algorithm for the Orthogonal Vectors Problem for any
ε > 0.

SETH implies OVC [55, Theorem 5], an explicit reduction is given in the survey article [56, Theorem 3.1]. Whenever
a problem is provably hard assuming OVC it is thus also hard when assuming SETH. For example, in [19, Preliminaries,
A. Hardness Assumptions, OVH] the OVC is assumed to prove conditional lower bounds for the longest common subse-
quence problem. To the best of the author’s knowledge, there is no connection between the former two and the latter two
conjectures.

Remark 4. The conjectures promise that no polynomial improvements over the best-known running times are possible but
do not exclude improvements by sub-polynomial factors such as poly-logarithmic factors or factors of, e.g., 2

√
log n .

3. Basic previous results

In this section, we recall the basic algorithmic results about MDPs and game graphs known in the literature that we
later use in our algorithms. They explain the results of the first row of Table 1. Note that we cannot give any quadratic
conditional lower bounds for any of these problems as they all permit linear time or near-linear time algorithms.

Basic result 1: Maximal End-Component Decomposition. Given an MDP P , an end-component is a set of vertices X ⊆ V s.t.
(1) the subgraph induced by X is strongly connected (i.e., (X, E ∩ X × X) is strongly connected) and (2) all random vertices
have their outgoing edges in X , i.e., X is closed for random vertices, formally described as: for all v ∈ X ∩ V R and all
(v, u) ∈ E we have u ∈ X . A maximal end-component (MEC) is an end-component which is maximal under set inclusion. The
importance of MECs is as follows: (i) they generalize strongly connected components (SCCs) in graphs (with V R = ∅) and
closed recurrent sets of Markov chains (with V 1 = ∅); and (ii) in a MEC X from all vertices u ∈ X every vertex v ∈ X can be
reached almost-surely.
6

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Fig. 2. A graph G and an MDP P where we contract all SCCs and MECs respectively into player-1 vertices (removing self-loops) to obtain G ′ and P ′ . The
graph G ′ is acyclic whereas the MDP P ′ contains a cycle.

Example 2 (Difference between SCC decomposition and MEC decomposition). While in SCC decompositions we have that each
vertex belongs to exactly one SCC, (which might be a trivial SCC just containing that vertex) for MEC decompositions, we
might have a non-empty set of random vertices which do not belong to any MEC (still, each vertex belongs to at most one
MEC). Consequently, if we contract each MECs into a player-1 vertex, the resulting MDP is not necessarily acyclic which
is in contrast to the graph obtained from contracting the SCCs into player-1 vertices, which is always acyclic. In Fig. 2 we
demonstrate this key difference: Contracting all SCCs of the graph G into player-1 vertices yields the DAG G ′ . Consider the
MDP P where the vertices {v1, v2, v4, v7} of G are random vertices and all edges remain unchanged. If we contract the
MECs, i.e. {{v1, v2, v3}, {v5, v6, v7, v8}} into player-1 vertices {v ′

1, v
′
3} we obtain the MDP P ′ which has a cycle. Note that

this is because v4 does not belong to a MEC and is strongly connected with v ′
1 or v3 respectively in P ′ and P .

The SCC decomposition of a graph can be computed in linear time [57, Theorem 13]. MEC decomposition is computed
in O (m(log n)4) = Õ (m) time by the fastest algorithm [22, Theorem 11].

Basic result 2: Reachability in MDPs. Given an MDP P and a target set T , the set of starting vertices from which T can be
reached almost-surely can be computed in O (m) time given the MEC decomposition of P [58, Theorem 4.1]. Consequently,
we can solve the basic target reachability problem for MDPs in Õ (m).

Basic result 3: Reachability in game graphs. Given a game graph � and a target set T , the player-x attractor characterizes
the set of vertices from which player x can reach T against all polices of the adversarial player x̄. Formally, the player-x
attractor (x ∈ {1, 2}) Attrx(S, �) of a given set S ⊆ V is defined as the limit of the sequence A0 = S; Ai+1 = Ai ∪ {v ∈ V x |
Out(v) ∩ Ai �= ∅} ∪ {v ∈ V x̄ | Out(v) ⊆ Ai} for all i ≥ 0. An attractor A = Attrx(S, �) can be computed in O (m) time [20,21].
We will sometimes omit � from Attrx(S, �) if it is clear on which game graph we apply the attractor.

4. Coverage problem

In this section, we consider the coverage query problem in graphs, MDPs, and game graphs. The input is a starting vertex
v and a coverage query. Our goal is to check if a set of player-1 strategies exist such that the resulting plays achieve the
given coverage query when starting at v .

First, we present a linear-time algorithm for graphs and quadratic algorithms for MDPs and game graphs. Then we focus
on the conditional lower bounds for MDPs and game graphs, which establish that there is no subquadratic algorithm for the
coverage problem when one assumes the STC and OV conjectures.

4.1. Algorithms

The results below present the upper bound for graphs, MDPs, and game graphs of the second row of Table 1.

Coverage Problem in Graphs. For the coverage problem in graphs we are given a graph G = (V , E), a coverage query
Coverage(T1, . . . , Tk) and a start vertex s ∈ V . The algorithmic problem is to find out if starting from an initial vertex v
the basic target reachability, i.e., Reach(Ti), can be achieved for all 1 ≤ i ≤ k. The algorithmic solution is as follows: Initially,
mark each v ∈ Ti for 1 ≤ i ≤ k with i. Compute the BFS tree starting from s and check if all the targets are contained in the
resulting BFS tree. This instantly gives an algorithm with a running time in O (m + ∑k

i=0 |Ti |). Note that the running time is
linear and thus we cannot hope to find any quadratic lower bounds.
7

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Fig. 3. An example reduction from OV to Coverage in MDPs.

Coverage Problem in MDPs and game graphs. We determine in MDPs and game graphs whether there exists a set of strategies
for a given coverage query with k basic target reachability objectives and start vertex v , by applying the reachability algo-
rithm of the respective model k times, i.e., once for each of the target sets. This yields a solution in Õ (km) time for MDPs
and O (km) time for game graphs respectively. Notice that for k ∈ �(n) the running time is quadratic in the input size.

4.2. Conditional lower bounds

We present conditional lower bounds for the coverage problem in MDPs and game graphs (i.e., the CLBs of the second
row of Table 1). For MDPs and game graphs the conditional lower bounds complement the quadratic algorithms from the
previous subsection. Note that we cannot provide a quadratic lower bound for graphs as a linear-time algorithm exists. The
conditional lower bounds are due to reductions from OV and triangle detection.

4.2.1. MDPs
We present the following conditional lower bounds for MDPs:

Theorem 1. For all ε > 0, checking if a vertex has a set of a.s. winning policies for the coverage problem in MDPs does not admit:

1. an O (m2−ε) algorithm under Conjecture 4,
2. an O ((k · m)1−ε) algorithm under Conjecture 4,
3. a combinatorial O (n3−ε) algorithm under Conjecture 2 and

4. a combinatorial O ((k · n2)
1−ε

) algorithm under Conjecture 2.

Using the OV-Conjecture. Below, we prove the results 1–2 of Theorem 1. We reduce the OV problem to Coverage in MDPs. By
applying Conjecture 4 we infer the result.

Reduction 1. Given two sets S1, S2 of d-dimensional vectors (both of size N), we build the MDP P as follows.

• The vertices V of P are given by a start vertex s, sets of vertices S1 and S2 representing the sets of vectors and vertices
C = {ci | 1 ≤ i ≤ d} representing the coordinates of the vectors in the OVC instance.

• The edges E of P are defined as follows: The start vertex s has an edge to every vertex of S1. Furthermore, for each
xi ∈ S1 there is an edge to c j ∈ C if and only if xi[j] = 1 and for each yi ∈ S2 there is an edge from c j ∈ S2 to yi if and
only if yi[j] = 1. Also, the yi have self-loops so that every vertex has an outgoing edge.

• The set of vertices is partitioned into player-1 vertices V 1 = S1 ∪ C ∪ S2 and random vertices V R = {s}.

Example 3 (Example: Reduction from OV to Coverage). Let the OV instance be S1 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, S2 = {(1, 0, 1),

(1, 1, 0), (0, 1, 0)}. Notice that the second vector in S1 and the third vector in S2 are orthogonal. Due to the fact that s is a
random vertex, there is a nonzero probability that x2 is the successor. There is no path from x2 to y3. As T3 = {y3}, there
is no a.s. winning policy from s for the given instance of coverage. We illustrate the example of the reduction in Fig. 3.

Notice that for orthogonal vectors xi and y j we have that for each c ∈ C either xi is not connected to c or y j is not
connected to c . Thus there is no path from xi to yi . Starting from s there is a non-zero probability to end in xi and, thus,
also a non-zero probability to fail reaching the target set T j = {y j} for all player-1 policies.

Lemma 1. Let P = (V , E, 〈V 1, V R〉, δ) be the MDP given by Reduction 1 and Ti = {yi} for 1 ≤ i ≤ N. There exist orthogonal vectors
x ∈ S1 , y ∈ S2 if and only if s is not winning for Coverage({Ti | 1 ≤ i ≤ N}).

Proof. The MDP P is constructed in such a way that there is no path between vertex xi and y j if and only if the corre-
sponding vectors are orthogonal in the OV instance: If xi is orthogonal to y j , the outgoing edges lead to no vertex which
has an incoming edge to y j as either xi[k] = 0 or y j[k] = 0. On the other hand, if there is no path from xi to y j we again
8

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Fig. 4. Reduction from Triangle to Coverage.

have by the construction of the underlying graph that for all 1 ≤ k ≤ d : xi[k] = 0 or y j[k] = 0. This is the definition of
orthogonality for xi and y j . When starting from s the token is randomly moved to one of the vertices xi and thus player 1
can reach each y j almost surely from s if and only if it can reach each y j from each xi . Thus, we have that there is an a.s.
winning player 1 policy for Reach(Ti) if and only if yi has. Hence, S2 has no orthogonal vector in S1 if and only if each
Reach(Ti) has an a.s. winning player 1 policy. �

The MDP P has only O (N) many vertices and Reduction 1 can be performed in O (N · d) time (recall that d = ω(log N)).
The number of edges m is O (N · d) and the number of target sets k ∈ θ(N). Thus the results 1–2 of Theorem 1 follow.

Using the ST-conjecture. Towards the results 3–4 in Theorem 1 we reduce the triangle detection problem to the Coverage
problem in MDPs. By applying Conjecture 2 we infer the result.

Reduction 2. Given an instance of triangle detection, i.e., a graph G = (V , E), we build the following MDP P =
(V ′, E ′, 〈V ′

1, V
′
R〉, δ).

• The vertices V ′ are given as four copies V 1, V 2, V 3, V 4 of V and a start vertex s.
• The edges E ′ of P are defined as follows: There is an edge from s to every v1i ∈ V 1 for i = 1 . . . |V |. In addition, for

1 ≤ j ≤ 4 there is an edge from v ji to v(j+1)k if and only if (vi, vk) ∈ E . Finally, v4i for i = 1 . . . |V | has a self-loop.
• The set of vertices V ′ is partitioned into player-1 vertices V ′

1 = ∅ and random vertices V ′
R = {s} ∪ V 1 ∪ V 2 ∪ V 3 ∪ V 4.

Notice that all the vertices of the constructed MDP are random vertices.

Example 4 (Reducing triangle detection to Coverage.). Let G be the graph given in Fig. 4. We construct the MDP P as in
Reduction 2. Notice that G has the triangle (v1, v2, v3) and the constructed MDP P has a nonzero chance to take the
path marked by the fat edges that correspond to this triangle, i.e., player-1 does not have a winning policy from s for the
coverage objective given in the reduction because he cannot satisfy T1. The example is illustrated in Fig. 4.

Lemma 2. Let P be the MDP given by Reduction 2 when applied to a graph G and let Ti = V 1 \ {v1i} ∪ V 4 \ {v4i} for i = 1 . . . |V | be
target sets. The graph G has a triangle if and only if s is not winning for Coverage({Ti | 1 ≤ i ≤ |V |}) in P .

Proof. First, s is not winning for Coverage(T1, . . . , T |V |) iff there is a Ti such that player-1 has no a.s. winning policy from
s for Reach(Ti). Second, there is a triangle in the graph G iff there is a path from some vertex v1i in the first copy of G to
the same vertex in the fourth copy of G , v4i . Finally, notice that player 1 does not control any vertex and, thus, the policy
of player 1 does not matter and each possible path is played with non-zero probability. If G has a triangle containing vertex
vi then the corresponding play from v1i to v4i has non-zero probability and is not in Reach(Ti). That is, s is not winning
for the query Coverage({Ti | 1 ≤ i ≤ N}) for player 1. Now assume that s is not winning for Coverage({Ti | 1 ≤ i ≤ N}) and
thus not winning for Reach(Ti). Then there is a path from v1i to v4i and thus a triangle in G . �

Moreover, the size and the construction time of the MDP P are linear in the size of the original graph G and we have
k = θ(|V |) target sets. Thus 3–4 of Theorem 1 follow.

4.2.2. Game graphs
Next, we describe how the results for MDPs can be extended to game graphs. We prove the following theorem which

states multiple specific lower bounds for checking if a vertex has a set of winning policies for a coverage query.

Theorem 2. For all ε > 0, checking if a vertex has a set of winning policies for a coverage query in game graphs does not admit:

1. an O (m2−ε) algorithm under Conjecture 4,
9

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
2. an O ((k · m)1−ε) algorithm under Conjecture 4,
3. a combinatorial O (n3−ε) algorithm under Conjecture 2 and

4. a combinatorial O ((k · n2)
1−ε

) algorithm under Conjecture 2.

Using the OV-Conjecture. Below we prove the results 1–2 of Theorem 2. We reduce the OV problem to Coverage in game
graphs. By applying Conjecture 4 we infer the result. In Reduction 3 we change the random starting vertex of Reduction 1
to a player-2 vertex. The rest of the reduction stays the same. The proof then proceeds as before with the adversary now
overtaking the role of the random choices.

Reduction 3. Given two sets S1, S2 of d-dimensional vectors, we build the following game graph � = (V , E, 〈V 1, V 2〉).

• The vertices V and edges E are defined as before in Reduction 1
• The set of vertices is now partitioned into player-1 vertices V 1 = S1 ∪ C ∪ S2 and player-2 vertices V 2 = {s}.

Lemma 3. Let � be the game graph given by Reduction 3 with a coverage query Coverage({Ti | 1 ≤ i ≤ n}) where Ti = {yi} for
i = 1 . . . N. There exist orthogonal vectors x ∈ S1 , y ∈ S2 if and only if there is no set of winning policies from start vertex s for the
coverage query.

The game graph � has only O (N) many vertices and Reduction 3 can be performed in O (N · d) time (recall that d =
ω(log N)). The number of edges m is O (N · d) and the number of target sets k ∈ θ(N). Thus the points 1–2 in Theorem 2
follow.

Using the STC conjecture. Below we prove the results 3–4 in Theorem 2. We reduce the triangle detection problem to Coverage
in game graphs. By applying Conjecture 2 we infer the result. In Reduction 4 we change the random vertices of Reduction 2
to player-2 vertices. Notice that the resulting game graph consists of only player-2 vertices. Again, if there is a path starting
from s which violates a reachability objective in the given coverage query then player 2 wins. As the reachability objectives
are defined such that they rule out the triangles of the reduction, player 1 only wins if and only if there is no such path,
i.e., there is no triangle in the original graph.

Reduction 4. Given an instance of triangle detection, i.e., a graph G = (V , E), we build the following game graph � =
(V ′, E ′, 〈V ′

1, V
′
2〉).

• The vertices V ′ and edges E ′ are the same as in Reduction 2.
• The set of vertices V ′ is partitioned into player-1 vertices V ′

1 = ∅ and player-2 vertices V ′
2 = {s} ∪ V 1 ∪ V 2 ∪ V 3 ∪ V 4.

Lemma 4. Let � be the game graph given by Reduction 4 when applied to a graph G and let Ti = V 1 \ {v1i} ∪ V 4 \ {v4i} for i = 1 . . .n.
The graph G has a triangle if and only if s is winning for Coverage({Ti | 1 ≤ i ≤ n}) in �.

Moreover, the size and the construction time of game graph � are linear in the size of the original graph G and we have
k = θ(n) target sets. Thus 3–4 in Theorem 2 follow.

5. AllCoverage problem

In this section, we consider the AllCoverage problem. First, we present simple algorithms for all models based on the
algorithms for reachability in the respective models. Then we present a conditional lower bound for graphs which establishes
that the existing algorithm cannot be polynomially improved under the STC and OV conjectures.

5.1. Algorithms

We present a quadratic algorithm for MDPs, games, and graphs. The results present the upper bounds for graphs, MDPs,
and game graphs in the third row of Table 1.

Given the query Coverage({Ti | 1 ≤ i ≤ k}) for graphs, MDPs, and game graphs, we propose an algorithm which first
solves the k reachability objectives using the basic results. Notice that the result of the algorithms for solving the basic
target reachability objective is a set of vertices that have a policy to achieve the objective. Then we take the intersection
of the resulting sets. (1) For graphs using BFS which is in O (m) time we obtain an O (k · m) time algorithm. (2) For game
graphs, using the O (m)-time attractor computation (see basic result 3), we have an O (k · m) time algorithm. (3) For MDPs,
the MEC decomposition followed by k many O (m)-time almost-sure reachability computation (see basic result 2), gives an
O (k · m + mec) time algorithm.
10

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Fig. 5. Reduction from OV to AllCoverage.

5.2. Conditional lower bounds

In this section, we present conditional lower bounds for the AllCoverage problem in graphs (i.e., the CLBs of the third
row of Table 1). For MDPs and game graphs the conditional lower bounds follow from Section 4 because the Coverage
problem can be trivially reduced to the AllCoverage problem, i.e., once we compute all the vertices that can reach a target
it is easy to check whether a specific vertex can reach that target. The conditional lower bounds are due to reductions from
OV and the triangle detection problem.

Theorem 3. For all ε > 0, computing the solution of the AllCoverage problem in graphs does not admit

1. an O (m2−ε) algorithm under Conjecture 4,
2. an O ((k · m)1−ε) algorithm under Conjecture 4,
3. a combinatorial O (n3−ε) algorithm under Conjecture 2 and

4. a combinatorial O ((k · n2)
1−ε

) algorithm under Conjecture 2.

Using the OV-Conjecture. In this section, we prove results 1–2 in Theorem 3. We reduce the OV problem to the AllCoverage
problem in graphs. By applying Conjecture 4 we infer the result.

Reduction 5. Given two sets S1, S2 of d-dimensional vectors (both of size N), we build the graph G as follows.

• The construction of the graph is the same as in Reduction 1 except that we do not have a vertex s.

Example 5 (Reducing AllCoverage to OV). Let the instance of OV be given by S1 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, S2 = {(1, 0, 1),

(1, 1, 0), (0, 1, 0)}. Notice that the second vector in S1 and the third vector in S2 are orthogonal. We construct G with
Reduction 5. There is no path from x2 to y3. As T3 = {y3}, x2 is not in the winning set of Coverage({T1, T2, T3}). Fig. 5
illustrates the reduction.

Lemma 5. Let G = (V , E) be the graph given by Reduction 5 with target sets T = {Ti | Ti = {yi} for i = 1 . . . N }. A vector xi ∈ S1 is
orthogonal to some vector in S2 if and only if the vertex xi is not in the winning set of Coverage(T).

Proof. The graph P is constructed in such a way that there is no path between vertex xi and y j iff the corresponding
vectors are orthogonal in the OV instance: If xi is orthogonal to y j , the outgoing edges lead to no vertex which has an
incoming edge to y j as either xi[k] = 0 or y j[k] = 0. On the other hand, if there is no path from xi to y j we again have by
the construction of the underlying graph that for all 1 ≤ k ≤ d : xi[k] = 0 or y j[k] = 0. This is the definition of orthogonality
for xi and y j . Thus, xi is in the winning set of Coverage(T) iff xi is orthogonal to some vector in S2. �

Notice that we solve the given instance of OV with our reduction as we compute all vectors in S1 which are orthogonal
to some vector in S2. The Graph G has only O (N) many vertices and Reduction 1 can be performed in O (N · d) time (recall
that d = ω(log N)). The number of edges m is O (N · d) and the number of target sets k ∈ θ(N). Thus the points 1–2 in
Theorem 3 follow.

Using the ST-Conjecture. Below we prove 3–4 in Theorem 3. We reduce the triangle detection problem to the AllCoverage
problem in graphs. By applying Conjecture 2 we infer the result.

Reduction 6. Given an instance of triangle detection, i.e., a graph G = (V , E), we build the following graph G = (V ′, E ′). The
vertices and edges are the same as in Reduction 2 except that we have player-1 vertices instead of random vertices and
there is no start vertex s.

Example 6 (Reducing Triangle to AllCoverage). Consider G in Fig. 6. Notice that G has the triangle (v1, v2, v3) and there is a
path from v11 to v41 in the constructed MDP P illustrated by the strong edges corresponding to this triangle. The winning
11

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Fig. 6. Reduction from Triangle to AllCoverage.

set of Coverage(T1, T2, T3, T4) contains v11 by using the policy which uses the path from v11 to v41: First we achieve
trivially, Reach(T2), Reach(T3), Reach(T4) with this policy by starting from v11. Then Reach(T1) is achieved by arriving at
v41.

Lemma 6. Let G be the graph given by Reduction 6 with |V | target set Ti = V 1 \ {v1i} ∪{v4i} for i = 1 . . . |V |. A graph G has a triangle
with vertex vi if and only if the vertex v1i is in the winning set of the query Coverage(T1, . . . , T |V |).

Proof. Notice that there is a triangle in the graph G iff there is a path from some vertex v1i in the first copy of G to the
same vertex in the fourth copy of G , v4i . Also, a path σ starting in v1i for 1 ≤ i ≤ |V | is a viable policy in the Coverage
query for all Reach(Ti) 1 ≤ i ≤ |V | objectives iff it is able to visit v4i : By definition, T j includes v1i for 1 ≤ j ≤ |V | and j �= i.
Thus σ achieves all Reach(T j) for j �= i. To achieve Reach(Ti), there must be a path from v1i to v4i . Thus, there is a triangle
with vertex vi if and only if v1i is in the winning set of the query Coverage(T). �

Note that we solve the given instance of the triangle detection problem if we know all vertices which are in triangles.
Moreover, the size and the construction time of the MDP P are linear in the size of the original graph G and we have
k = θ(|V |) target sets. Thus 3–4 in Theorem 3 follow.

6. Sequential target problem

We consider the sequential target problem in all models. In contrast to the quadratic CLB for the coverage problem, quite
surprisingly, there is a subquadratic algorithm for MDPs. We first present an algorithm for graphs and then build upon that
to present the algorithm for MDPs. For games, we present a quadratic algorithm and a quadratic CLB.

6.1. Algorithms

The following results present the upper bounds of the fourth row of Table 1.

6.1.1. Algorithm for graphs
Given a graph G = (V , E) and the sequential target objective Seq(T1, . . . , Tk), we compute the strongly connected com-

ponents, contract each strongly connected component to a single vertex and remove multi-edges. This results in a directed
acyclic graph (DAG). Additionally, the vertex v ′ which represents an SCC C in the resulting DAG D , is in all target sets of its
members, i.e., v ′ ∈ Ti if there exists a vertex u ∈ C such that u ∈ Ti for all 1 ≤ i ≤ k. Notice that this step does not change
the reachability conditions of the resulting acyclic graph: Every vertex in an SCC can be reached starting from every other
vertex in the same SCC. Thus, it suffices to give an algorithm for DAGs. Given a DAG D = (V , E), we maintain (a) a set of
unprocessed vertices S , which is initialized with V and (b) a queue Q containing the vertices which are not processed but
where all successors are processed, initialized with all vertices with no outgoing edges. Notice that the queue is initially
non-empty because the bottom SCCs of G are now vertices without outgoing edges in D . Additionally, for each vertex v ,
we maintain the values countv , v and bestv . The variable countv counts the number of vertices in Out(v) which are not
processed yet. The label v is such that vertex v has a winning policy for the objective Seq(Tv) where Tv = (Tv , . . . , Tk).
In other words, there is a policy to win from v if we already visited the targets sets T1, . . . Tv −1. The variable bestv is used
to store the minimum label of the already processed successors of v . The algorithm proceeds as follows. While the queue
Q is not empty, we take a vertex v from the queue and call ProcessVertex(·). The function computes the label v of the
vertex v using bestv and the target sets where v is in. Then, it removes v from S and updates the variables bestw and
countw of all predecessors w ∈ In(v). In particular, we set bestw = min(bestw , v) and decrement countw by one. When the
queue is empty, all vertices are processed and the algorithm terminates. We show that the described algorithm for DAGs
has a linear running time, i.e., O (m + ∑n

i=1 |Ti |) and the details are presented in Algorithm 1.
12

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Algorithm 1: Sequential Targets in Graphs.
Input: DAG D = (V , E), targets T = (T1, . . . , Tk)

1 S ← V ;
2 Lv ← {i ∈ {1, . . . , k} | v ∈ Ti } for v ∈ V ;
3 countv ← |Out(v)| for v ∈ V ;

4 bestv ←
{

k + 1 if Out(v) = ∅
null otherwise

for v ∈ V ;

5 v ← null for v ∈ V ;
6 Q ← {v ∈ V | Out(v) = ∅};

7 while S �= ∅ do
8 v = Q .pop();
9 ProcessVertex(v);

10 return {v ∈ V | v = 1};

11 function ProcessVertex(Vertex v)

12 v ← bestv ;
13 while v − 1 ∈ Lv do
14 v ← v − 1;

15 S ← S \ {v};
16 for w ∈ In(v) do
17 bestw ← min(bestw , v);
18 countw ← countw − 1;
19 if countw = 0 then
20 Q .push(w);

Proposition 1 (Correctness). Given a DAG D = (V , E) and a sequential reachability objective Seq(T) with target sets T =
{T1, . . . , Tk}, Algorithm 1 returns the set of all start vertices with a path for the objective Seq(T).

Observation 1. The input graph has one or more vertices v with Out(v) = ∅ and thus Q is non-empty after the initialization.

Proof. Note that there is always a vertex v ∈ V where Out(v) = ∅ because we assumed that D is a DAG. �
The invariants below state that (a) the variables (bestv , countv , v) have the intended meaning, (b) Q contains all the

unprocessed vertices whose successors are already processed and (c) that the queue contains vertices as long as S is not
empty.

Lemma 7. The following statements are invariants of the while loop at Line 7.

1. countv = |Out(v) ∩ S|
2. v ∈ Q if and only if v ∈ S and Out(v) ∩ S = ∅.
3. If S is not empty then the queue Q is not empty.
4. bestv = k + 1 for all v ∈ V with Out(v) = ∅.
5. If v ∈ Q then bestv �= null.
6. If v ∈ V \ S then v �= null.
7. bestv = minw∈Out(v)\S w , for all v ∈ V with Out(v) \ S �= ∅.

Proof. 1. The counters countv are initialized as |O ut(v)| and S is initialized as V . Thus the claim holds when first entering
the while loop.
Assume the claim holds at the beginning of the iteration where vertex u is processed. The set S is only changed in
Line 15. There u is removed from the set. The counters are only changed in Line 18: All counters of vertices w with
u ∈ Out(w) are decreased by one. Consequently countv = |Out(v) ∩ S| holds for all v ∈ V also after this iteration of the
loop and the claim follows.

2. In the initial phase S is set to V and Q is set to {v ∈ V | Out(v) = ∅}. Thus the claim holds when first entering the
while loop.
Assume the claim holds at the beginning of the iteration where vertex v is processed. The set S is only changed in
Line 15 where v is removed.
First consider a vertex w ∈ Q \ {v}. As w is not removed from the set S and no vertex is added to S the claim is still
true for w . Now consider a vertex w that might be added during the iteration of the loop. This can only happen in
Line 20 and the if conditions ensure that w ∈ S and Out(v) ∩ S = ∅ (by the previous invariant) and thus the claim also
holds for the newly added vertices.

3. Due to Observation 1 the claim holds when first entering the while loop.
13

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Assume the claim holds at the beginning of the iteration, where vertex v is processed. The vertex v is removed from S
in Line 15 and if the set S is empty now, the claim follows trivially. On the other hand, if S is non-empty and Q is also
non-empty the claim follows again. In the third case S is non-empty and Q is empty. Assume for contradiction that no
vertex is added at line 20. By invariant (2), every vertex v ∈ S has a successor in S as otherwise, v would be in Q . That
implies that there exists a cycle which is a contradiction with D being a DAG.

4. For v ∈ V with Out(v) = ∅ the variables bestv are initialized with k + 1 (Line 4) and bestv is only changed in Line 17
when a successor of the vertex is processed. As v has no successor, bestv is not changed during the algorithm.

5. If v ∈ Q initially, it must be due to the initialization and we have bestv = k + 1. The claim holds when first entering
the while loop. Assume the claim holds at the beginning of the iteration where v is processed. The only time we add a
vertex w to Q is at Line 20. Notice that we set bestw before at Line 17.

6. Initially, every vertex is in S , thus the claim holds before the first iteration of the while loop. Assume the claim holds
at the beginning of the iteration where v is processed. The only time we remove a vertex from S is at Line 15, i.e., in
ProcessVertex(v). Notice that we set v in Line 12 to bestv which cannot be null due to Lemma 7 (5).

7. Initially, V is S , and for all v ∈ V we set v , bestv to null. Notice that bestv with Out(v) �= ∅ are not changed at Line 4.
Thus the claim holds when the algorithm enters the loop.
Now consider the iteration of vertex v and assume the claim is true at the beginning. The set S is only changed in
Line 15 where v is removed. Let Sold be the set at the beginning of the iteration and Snew = Sold \ {v} the updated set.
Due to Lemma 7 (6) v �= null. For a vertex w ∈ In(v), the value bestw is updated to min(bestw , v) (Line 17) which by
assumption is equal to minx∈(Out(w)\Sold)∪{v} x = minx∈(Out(w)\Snew) x , i.e., the equation holds. For vertices w /∈ In(v) both
bestw as well as the right hand side of the equation are unchanged. Hence, the claim holds also after the iteration. �

From the following invariants, we obtain the correctness of our algorithm.

Lemma 8. The following statements are invariants of the while loop at Line 7 for all v ∈ V \ S:

1. there exists a path pv ∈ Seq(Tv),
2. there exists no path pv ∈ Seq(Tv −1),

where Tv = {Tv , . . . , Tk} or v > k.

Proof. As S is initialized with the set of vertices V the two statements trivially hold after the initialization.

Now consider the iteration where vertex v is processed and assume the invariants hold at the beginning of the iteration.
Let be(v) = minw∈Out(v) w . By Lemma 7 (2) we have Out(v) ∩ S = ∅ and by Lemma 7 (6) also w �= null for all w ∈ Out(v).
Thus by Lemma 7 (7) we have be(v) = bestv and v can be computed. The while loop in Line 13 decrements v which is
initialized to bestv − 1 as long has bestv − 1 ∈ Lv . Lv contains v , . . . , bestv − 1 but does not contain v − 1.

1. We next show that there is a path pv in Seq(Tv): Let w = be(v). A path for vertex w where pw ∈ Seq(Tw), exists
by induction hypothesis. The targets {Tv , . . . , Tw−1 } are visited by starting from v . The path is obtained as follows:
pv = v, pw , which proves the claim.

2. We next show that there is no path pv in Seq(Tv −1). The current vertex v is not in the set Tv −1 and no successor w
has a path pw with pw ∈ Seq(Tv −1) because v −1 < v ≤ w (Lines 12–14). Thus there is also no path pv ∈ Seq(Tv −1)

which concludes the proof. �
Proposition 2. Algorithm 1 has running time O (m + ∑k

i=1 |Ti |).

Proof. We first argue that the initialization takes O (m + ∑k
i=1 |Ti |) time. Initializing the sets Lv can be done by first

initializing the set Lv as ∅ (in O (n)) and then iterate over all set Ti and for each v ∈ Ti add i to Lv (in O (
∑k

i=1 |Ti |)). The
other variables can be initialized by iterating over all vertices and for each vertex consider all outgoing edges. That is in
O (n + m) = O (m) time. Now consider the main part of the algorithm. In the while loop we process each vertex v ∈ V once
(recall that D is a DAG) and call the function ProcessVertex(v) at Line 9 In the function call ProcessVertex(v), we iterate
over the set Lv (Lines 13–14) and all incoming edges of v (Lines 16–20). If we sum over all the vertices we obtain a running
time of O (m + ∑

v∈V |Lv |) = O (m + ∑n
i=1 |Ti |). �

Theorem 4. Given a graph G = (V , E), a sequential target objective and a vertex s ∈ V we can decide whether s is winning for Seq(T)

in O (m + ∑k
i=1 |Ti |) time.

6.1.2. Algorithm for MDPs
The algorithm for MDPs builds on the algorithm for graphs. The key difference is that instead of computing an SCC

decomposition and contracting SCCs, for MDPs, we compute a MEC decomposition and contract MECs into player-1 vertices:
14

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Fig. 7. Key difficulty when computing Sequential Reachability in MDPs.

Given an MDP P = (V , E, 〈V 1, V R〉, δ) with the sequential target objective Seq(T1, . . . , Tk), we compute the MEC decomposi-
tion of the MDP. Then, each MEC M is contracted into a player-1 vertex v ′ without self-loops. The resulting MDP is P ′ . The
target sets of P ′ are as follows: The vertex v ′ is in all the target sets of the corresponding vertices in M , i.e., v ′ ∈ Ti if there
exists a vertex u ∈ M such that u ∈ Ti for all 1 ≤ i ≤ k. Notice that this step does not change the reachability conditions
of the resulting MDP: Every vertex in the MEC can be reached almost-surely starting from every other vertex in the same
MEC, regardless of their type (player-1, random). Thus, it suffices to give an algorithm for MEC-free MDPs.

Key challenge. When computing a MEC decomposition and contracting the MECs we get an MDP that may still contain cycles.
Thus, our MDP algorithm has to deal with cycles unlike the graph setting where we only had to deal with DAGs, i.e., in
Algorithm 1 we maintained a Queue Q which contained all unprocessed vertices where all successors are processed. In each
iteration we process one such vertex. Notice that when the queue is the only mechanism to process the vertices, we need
the fact (which we also show in Lemma 7 (3)) that there either exists a vertex where all successors have been processed
or all vertices have been processed and the algorithm can terminate. When running the algorithm on MEC-free MDPs there
might be a situation where the Queue Q is empty and some vertices have not been processed yet. We illustrate such a
situation in Example 7. Thus, we need an additional mechanism to process vertices in this situation.

Example 7 (Queue empty but graph not processed). Consider the MDP P given in Fig. 7: Contracting the MECs of P into player-1
vertices, we obtain P ′ . Notice that P ′ still contains a cycle. Using only the queue to obtain the next vertex to process we
have the following problem: After v ′

3 is processed, the queue Q is empty because v ′
2 has still has an unprocessed successor,

namely v ′
1. Notice that v ′

2 and v ′
1 have not been processed yet.

Algorithm Description. The algorithm for MEC-free MDPs maintains the set of unprocessed vertices S and a queue Q , the
values countv , v , and bestv for each vertex v . The value countv , as in Algorithm 1, stores the number of vertices in Out(v)

which are not processed yet. The label v for v is now such that v has an almost-sure winning policy for the objective
Seq(Tv) where Tv = (Tv , . . . , Tk). Random vertices might choose the worst possible successor with nonzero probability,
i.e., the vertex with highest v , whereas player-1 vertices always choose the vertex with the lowest v . We reflect this fact
as follows in the variable bestv : The variable bestv stores the maximum (for v ∈ V R) / minimum (for v ∈ V 1) label of the
already processed successors of v . The set S is initialized with V , and, initially, all vertices with no outgoing edges are
added to the queue Q . Notice that the bottom MECs of P are now vertices without outgoing edges in P ′ and thus Q is
initially non-empty. If the queue Q is non-empty, a vertex from the queue is processed as in Algorithm 1. When Q is
empty, the algorithm has to process a vertex where some successors are not processed yet. In that case, we consider all the
random vertices for which at least one successor is processed and choose the random vertex with the maximum bestv to
process next. We show that, as the graph has no MECs, whenever Q is empty (and S is not) there exists such a random
vertex. Moreover, whenever Q is empty, all vertices in the set of unprocessed vertices S have a policy that satisfies Seq(Tm)

for m = maxv∈V R ∩S bestv : Intuitively, this is due to the fact that all vertices in S can reach a vertex v ′ (which is possibly
different to v = argmaxv∈V R∩S bestv) in the set of already processed vertices and in the worst case v ′ = m, i.e., they can
satisfy Seq(Tm). For the vertex v = arg maxv∈V R ∩S bestv all successors w without a label are in S and are going to obtain a
label w of at most m. The current value of bestv is m, i.e., v has a successor w with w = m. As v is in V R the final value
of bestv must be m. Hence, one can process v without knowing the exact label of all the successors. We present the details
in Algorithm 2 and prove a running time which is in O (m logn + ∑k

i=0 |Ti |). Notice that the running is near-linear time,
linear up to a log n factor.

Proposition 3 (Correctness). Given an MDP P and a sequential target objective Seq(T) with targets T = (T1, . . . , Tk), Algorithm 2
returns the set of all start vertices with a player-1 policy for the objective Seq(T).

We next state the invariants of the while loop (see Line 7) that will enable us to show the correctness of the algorithm.
The invariants state that (a) the variables bestv and countv have the meaning as described in the algorithm description for
all v ∈ V , (b) Q contains all the unprocessed vertices whose successors are already processed, and (c) that the function
argmax is well-defined whenever called, i.e., there is a random vertex where bestv is not null.
15

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Algorithm 2: Sequential target Reachability for MEC-free MDPs.
Input: MEC-free MDP P = (V , E, 〈V 1, V R 〉, δ), targets T = (T1, . . . , Tk)

Output: All vertices with a policy for Seq(T).
1 S ← V ;
2 Lv ← {i ∈ {1, . . . , k} | v ∈ Ti } for v ∈ V ;
3 countv ← |Out(v)| for v ∈ V ;

4 bestv ←
{

k + 1 if Out(v) = ∅
null otherwise

for v ∈ V ;

5 v ← null for v ∈ V ;
6 Q ← {v ∈ V | Out(v) = ∅};

7 while S �= ∅ do
8 if Q �= ∅ then
9 v = Q .pop();

10 ProcessVertex(v);

11 else
12 v ← argmaxv∈V R ∩S bestv ;
13 ProcessVertex(v);

14 return {v ∈ V | v = 1};

15 function ProcessVertex(Vertex v)

16 v ← bestv ;
17 while v − 1 ∈ Lv do
18 v ← v − 1;

19 S ← S \ {v};
20 for w ∈ {w : (w, v) ∈ E} do
21 if w ∈ V 1 then
22 bestw ← min(bestw , v)

23 else
24 bestw ← max(bestw , v)

25 countw ← countw − 1;
26 if countw = 0 ∧ w ∈ S then
27 Q .push(w)

Lemma 9. The following statements are invariants of the while loop in Line 7.

1. countv = |O ut(v) ∩ S|;
2. v ∈ Q if and only if v ∈ S and Out(v) ∩ S = ∅;
3. bestv = k + 1, for all v ∈ V with Out(v) = ∅.
4. If v ∈ Q we have bestv �= null.
5. If v ∈ V \ S we have v �= null.

6. For all v ∈ V with Out(v) \ S �= ∅: bestv =
{

minw∈Out(v)\S w v ∈ V 1

maxw∈Out(v)\S w v ∈ V R

7. If S �= ∅ and Q = ∅ there is a v ∈ S ∩ V R such that bestv �= null.

Proof. The proofs of (1) — (5) proceed as the proofs of the corresponding statements in the proof of Lemma 7.

6. Initially S = V and for all v ∈ V we set v , bestv to null. Also, bestv with Out(v) �= ∅ are not changed at Line 4 and the
claim holds when the algorithm enters the loop.
Now consider the iteration of vertex v and assume the claim is true at the beginning. The set S is only changed in
Line 19 where v is removed. Let Sold be the set at the beginning of the iteration and Snew = Sold \ {v} the updated set.
First notice that bestv �= null as v is either chosen by (a) as element of Q or (b) by argmax. In the former case we apply
Lemma 9 (4) and in the latter case bestv �= null by the definition of argmax. For a vertex w ∈ In(v) ∩ V 1 the value bestw

is updated to min(bestw , v) (Line 22) which by assumption is equal to minx∈(Out(w)\Sold)∪{v} x = minx∈(Out(w)\Snew) x ,
i.e., the equation holds. For a vertex w ∈ In(v) ∩ V R the value bestw is updated to max(bestw , v) (Line 24) which
by assumption is equal to maxx∈(Out(w)\Sold)∪{v} x = maxx∈(Out(w)\Snew) x , i.e., the equation holds. For vertices w /∈ In(v)

bestw remains unchanged. Hence, the claim holds for w by the assumption that the invariant is true before the iteration.
7. Initially the statement is true as each MEC-free MDP has a vertex v with Out(v) = ∅ and thus Q is non-empty (other-

wise there would be an SCC with no outgoing edge which thus would be a MEC).
Now consider the iteration processing vertex v and assume the claim is true at the beginning and Q = ∅. Notice that
bestw is set for vertices as soon as one vertex in Out(w) was processed. Towards a contradiction assume that all vertices
w ∈ S ∩ V R have bestw = null, i.e., no vertex w ∈ S ∩ V R has a successor in V \ S . Note that S contains only the vertices
16

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
which are not processed yet. Each w ∈ S has at least one successor in S as otherwise, w would be in Q . Thus S is
either empty which would make the statement trivially true or has again a bottom SCC (on the induced subgraph G P)
with more than one vertex that has no random outgoing edges. Again such an SCC would be a MEC and we obtain our
desired contradiction. �

From the following invariant, we obtain the correctness of our algorithm.

Lemma 10. The following statements are invariants of the while loop in Line 7 for all v ∈ V \ S:

1. there exists a player 1 policy σ s.t. Prσv (Seq(Tv)) = 1; and
2. there is no player 1 policy σ s.t. Prσv (Seq(Tv −1)) = 1.

where Tv = {Tv , . . . , Tk} or v > k.

Proof. As S is initialized as set V the two statements hold after the initialization.
Now consider the iteration where vertex v is processed and assume the invariants hold at the beginning of the iteration.

Notice that we do not change ′
v for any other vertex v ′ �= v and the invariant holds trivially for v ′ . We first introduce the

following notation

be(v) =
{

minw∈Out(v) w v ∈ V 1

maxw∈Out(v) w v ∈ V R

We distinguish the case where Q is non-empty and the case where Q is empty.

• Case Q �= ∅: By Lemma 9 (2) we have Out(v) ∩ S = ∅. Because we only remove vertices from S if we process them, all
w ∈ Out(v) are processed and thus w �= null. Thus by Lemma 9 (6) we have be(v) = bestv . By the while-loop in Line 17
we have Lv ⊇ {v , . . . , bestv − 1} but does not contain v − 1, i.e., v − 1 /∈ Lv .
(1) Thus we can easily obtain a policy σ with Prσv (Seq(Tv)) = 1 as follows.
If v ∈ V 1 pick the vertex w that corresponds to be(v) and then player 1 can follow the existing policy σ ′ for vertex w .
Because the invariant holds for w , there exists a policy σ ′ such that Prσ

′
w (Seq(Tbe(v))) = 1.

If v ∈ V R let vertex w ∈ Out(v) be the randomly chosen vertex. By the invariant which holds during the iteration, w
has a policy σ such that Prσw(Seq(Tbe(v))) = 1. Combined with Lv , this is the desired policy, i.e., Prσv (Seq(Tv)) = 1
(2) We next show that there is no policy for Seq(Tv −1). By Line 17 we have v /∈ Tv −1. If v ∈ V 1 no successor w ∈
Out(v) has a policy σ with Prσw(Seq(Tv −1)) = 1 as the invariant holds also for w . Thus there is also no policy σ for
v such that Prσv (Seq(Tv −1)) = 1. If v ∈ V R there is at least one successor w (because the invariant holds also for w)
which has no policy σ such that Prσw(Seq(Tv −1)) = 1. Consequently there is no policy σ for v with Prσv (Seq(Tv −1)) = 1
as there is a non-zero chance that a vertex w is picked that, by the fact that the invariant holds at the current iteration,
cannot reach a node in Tlv −1.

• Case Q = ∅: Due to Lemma 9 (7) there is at least one vertex in V R ∩ S such that bestv �= null. Let bestmax =
maxv∈V R ∩S bestv .
(1) As we have no MEC (in S), there is a policy σ , so that the play almost surely leaves S by using one of the outgoing
edges of a random node: Note that for all random nodes between S and V \ S we have a policy which achieves at
least Seq(Tbestmax). The policy σ can be arbitrary, except that for a player-1 vertex x ∈ S with an edge (x, y) where
y ∈ V \ S we choose σ(x) ∈ S (which must exist as x would be in Q otherwise). As there are no MECs (in S) the policy
σ1 will eventually lead to a vertex in V \ S using a random node. This implies that from each vertex in S player 1 has
a policy to reach a vertex in V \ S coming from a random vertex. Because the invariant holds at the current iteration
each successor of a random vertex v ′ where bestv ′ �= null has a policy to satisfy Seq(Tbestmax). Thus it follows that from
each vertex in S player 1 has a policy to satisfy Seq(Tbestmax). Now consider the random vertex v that was chosen by
the algorithm as argmaxv∈V R ∩S bestv . Because v ′ is a random vertex, all successors have a policy to satisfy Seq(Tbestmax)

almost-surely. As Lv contains v , . . . , bestv −1 but does not contain v −1 we obtain a policy σ with Prσv (Seq(Tv)) = 1.
(2) By the choice of v there is also a successor (that is chosen with non-zero probability) that, by assumption, has no
policy for Seq(Tbestmax−1) and, moreover, Lv does not contain v − 1. Thus, when starting in v each policy will fail to
satisfy Seq(Tbestmax−1) with non-zero probability, i.e., there is no policy σ for Prσv (Seq(Tv −1)) = 1. �

Proposition 4 (Running Time). Algorithm 2 runs in O (m logn + ∑k
i=0 |Ti |) time.

Proof. Initializing the algorithm takes O (m + ∑k
i=0 |Ti |) time and calling the function ProcessVertex(v) takes time

O (|In(v)| + |Lv |) (cf. proof of Proposition 2). Consider the main while-loop at Line 7 where every vertex is processed once
(recall that either Q is nonempty or there exists a v ∈ S ∩ V R such that bestv �= null due to Lemma 9). The costly operations
are the calls to the ProcessVertex(·) function and the evaluation of the argmax function. Summing up over all vertices we
17

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Algorithm 3: Sequential Target Reachability for Games.
Input: Game graph � = ((V , E), 〈V 1, V 2〉) and

target sets T = (T1, . . . , Tk)

1 Sk+1 ← V ;
2 ← k;
3 while > 0 do
4 S ← Attr1(T ∩ S+1);
5 ← − 1;

6 return S1;

Fig. 8. Reduction from OV to Sequential Targets.

obtain a O (m + ∑k
i=0 |Ti |) bound for the calls to ProcessVertex(·). To compute argmax efficiently we have to maintain a

priority queue containing all not yet processed random vertices. As we have O (m) updates this costs only O (m log n) for
one of the standard implementations of priority queues. Summing up this yields a O (m log n + ∑k

i=0 |Ti |) running time for
Algorithm 2. �

By considering also the time mec for the MEC decomposition we obtain the desired bound and the following theorem.

Theorem 5. Given an MDP P , a start vertex s and a sequential target objective Seq(T), we can compute whether there is a player-1
policy σ1 at s for Seq(T) in O (mec + m logn + ∑k

i=0 |Ti |) time.

6.1.3. Algorithm for games
Given a game graphs with sequential target objectives Seq(T) where T = (T1, . . . , Tk), the basic algorithm (stated as

Algorithm 3) performs k player-1 attractor computations. It starts with computing the attractor Sk = Attr1(Tk) of Tk , and
then iteratively computes the sets S = Attr1(S+1 ∩ T) for 1 ≤ < k, and finally returns the set S1 as the start vertices
from which player 1 can reach all the target sets in the given order. This gives an O (k · m)-time algorithm. Note that for
k = �(n) the running time is quadratic in the input size.

6.2. Conditional lower bounds

We present CLBs for game graphs based on the conjectures STC and OVC which establish the CLBs for the fourth row of
Table 1. Notice that we cannot provide conditional lower bounds for graphs and MDPs as linear time algorithms for these
two models exist.

Theorem 6. For all ε > 0, checking if a vertex has a winning policy for the sequential target problem in game graphs does not admit

1. an O (m2−ε) algorithm under Conjecture 4,
2. an O ((k · m)1−ε) algorithm under Conjecture 4,
3. a combinatorial O (n3−ε) algorithm under Conjecture 2 and

4. a combinatorial O ((k · n2)
1−ε

) algorithm under Conjecture 2.

Using the OV-Conjecture. Below we prove results 1–2 of Theorem 6 by reducing the OV problem to the sequential target
problem in game graphs. The reduction is an extension of Reduction 1, where we (a) produce a player-2 vertex instead of a
random vertex and (b) also every vertex of S2 has an edge back to s.

Example 8. Let the OV instance be given by S1 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, S2 = {(1, 0, 1), (1, 1, 0), (0, 1, 0)}. Notice that
the second vector in S1 and the third vector in S2 are orthogonal. Due to the fact that s is a player-2 vertex, it can choose
x2 as the successor. There is no path from x2 to y3. As T3 = {y3}, there is no winning policy for player 1 from s for the
given sequential target objective. We illustrate the reduction in Fig. 8.
18

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Fig. 9. Reduction from Triangle to Sequential Targets.

Reduction 7. Given two sets S1, S2 of d-dimensional vectors (both of size N), we build the following game graph �.

• The vertices V of the game graph are given by a start vertex s, sets of vertices S1 and S2 representing the sets of
vectors and vertices C = {ci | 1 ≤ i ≤ d} representing the coordinates of the vectors in the OVC instance.

• The edges E of � are defined as follows: the start vertex s has an edge to every vertex of S1 and every vertex of S2 has
an edge back to s; furthermore, for each xi ∈ S1 there is an edge to c j ∈ C if and only if xi[j] = 1 and for each yi ∈ S2
there is an edge from c j ∈ S2 to y if and only if yi[j] = 1.

• The set of vertices is partitioned into player-1 vertices V 1 = S1 ∪ C ∪ S2 and player-2 vertices V 2 = {s}.

Lemma 11. Let � be the game graph given by Reduction 7 with a sequential objective Seq(T) where T = (T1, . . . , Tk) and Ti = {yi}
for i = 1 . . . N. There exist orthogonal vectors xi ∈ S1 , y j ∈ S2 if and only if s has no player-1 policy σ1 to ensure winning for the
objective Seq(T).

Proof. Notice that the game graph � is constructed in such a way that there is no path between xi and y j iff they are
orthogonal in the OV instance. Notice that each play starting at s revisits s every four steps and if there is no path between
xi and y j then player 2 can disrupt player 1 from visiting a target T j by moving the token to xi whenever the token is in s.
However, if there is no such xi and y j , player 2 cannot disrupt player 1 from s because no matter which vertex xi player 2
chooses, player 1 has a policy to reach the next target set. If s has no player-1 policy σ1 to ensure winning for the objective
Seq(T) there must be a target player 1 cannot reach. This must be due to the fact that there is no path between some xi

and y j and player 2 always chooses xi . �
The number of vertices in �, constructed by Reduction 1 is O (N) and the construction can be performed in O (N log N)

time (recall that (d = ω(log N))). The number of edges m is O (N log N) and the number of target sets k ∈ θ(N) = θ(m/ log N).
Thus (1–2) in Theorem 6 follow.

Using the ST-Conjecture. In this section, we prove the results 3–4 in Theorem 6. We reduce the triangle detection problem to
the sequential target problem in game graphs. The reduction extends Reduction 2, where we (a) produce player-2 vertices
instead of random vertices and (b) every vertex in the fourth copy has an edge back to s.

Reduction 8. Given an instance of triangle detection, i.e., a graph G = (V , E), we build the following game graph � =
(V ′, E ′, 〈V ′

1, V
′
2〉).

• The vertices V ′ are given as four copies V 1, V 2, V 3, V 4 of V and a start vertex s.
• The edges E ′ are defined as follows: There is an edge from s to every v1i ∈ V 1 where i = 1 . . . |V |. In addition for

1 ≤ j ≤ 3 there is an edge from v ji to v(j+1)k if and only if (vi, vk) ∈ E . Furthermore there are edges from every
v4i ∈ V 4 to the start vertex s.

• The set of vertices V ′ is partitioned into player-1 vertices V ′
1 = ∅ and player-2 vertices V ′

2 = {s} ∪ V 1 ∪ V 2 ∪ V 3 ∪ V 4.

Example 9 (Reduction Triangle Detection to Sequential Targets in Games.). Consider the graph G given in Fig. 9. The vertices of
G are player-2 vertices in � and the graph is copied four times. The edges of � go to the same target but to next copy of
the graph. Notice that G has the triangle (v1, v2, v3) and the constructed game graph � enables player-2 to take the path
marked by the fat edges, i.e., player-1 does not have a winning policy from s for the sequential target objective given in the
reduction because he cannot satisfy T1. We illustrate the example of the reduction in Fig. 9.

Lemma 12. Let �′ be the game graphs given by Reduction 8 with Seq(T) as follows: T = (T1, T2, . . . , Tk) where Ti = V 1 \ {v1i} ∪
V 4 \ {v4i} for i = 1 . . .k. The graph G has a triangle if and only if there is no policy σ1 to ensure winning for the objective Seq(T) from
start vertex s.
19

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Proof. For the correctness of the reduction notice that there is a triangle in the graph G iff there is a path from some
vertex v1i in the first copy of G to the same vertex in the fourth copy of G , v4i in P . Player 2 then has a policy to always
visit only v1i from the first copy and only v4i from the fourth copy which prevents player 1 from visiting target Ti . �

The size and the construction time of graph �, given by Reduction 2, are linear in the size of the original graph G and
we have k = �(|V |) target sets. Thus (3–4) in Theorem 6 follow.

7. Discussion and conclusion

In this work, we presented lower bound results for planning objectives in explicit state space. We next discuss impli-
cations from these results for the same planning objectives in factored models and then end this paper with concluding
remarks.

7.1. Implications for factored models

Here we relate our results for the explicit state space to factored models, like STRIPS [2]. For the basic reachability
problem different conditional lower bounds were established in [42,43]. In the following, we discuss to which extent our
conditional lower bounds provide lower bounds for the corresponding problems in the factored models. We use the AllCov-
erage problem on graphs as an example but similar arguments apply to the other planning problems as well. A planning
instance of the AllCoverage problem for graphs in a factored model is given by variables V , the domain of the variables D ,
the actions A and a set of conditions defining the target sets sG1 , . . . , sGk . A state is a function that specifies a value in D
to every variable in V . The planner can go from one state to another by applying the actions defined in the function A. A
is a mapping from an input state to an output state, i.e., the possible transition between states is defined by the actions.
The goal of the planner is to output all states which can reach all sets sGi (1 ≤ i ≤ k) using the actions described in A.
We next investigate how our graph-based lower bounds can be interpreted in the factored model. To obtain lower bounds
similar to Theorem 3 we aim encoding the graphs computed by our reductions (see e.g. Reduction 5 and Reduction 6) in the
factored model. A naive encoding that simply numbers the vertices and then uses a binary encoding of these numbers can
represent n states with v = log2 n variables. This encoding would give lower bounds w.r.t. the number of variables v (and
thus the state space) that exclude O (k · 2(1−ε)v · poly(v)) algorithms for the AllCoverage problem in the factored planning
model. However, these lower bounds are only w.r.t. the number of variables and not w.r.t. the total size of the problem
instance which, in particular, also includes the number of actions. The naive encoding requires as many actions as there
are edges in the graph, i.e., the size of the problem instance is dominated by the number of actions. Thus, using this naive
encoding we do not get interesting lower bounds w.r.t. the instance size. To obtain lower bounds w.r.t. the instance size
we have to encode the vertices of the graph in a way that also allows to encode the edges of the graphs compactly. For
our reductions from triangle detection, i.e., Reduction 6, the edge relation can be rather arbitrary and, thus, the reduction is
unlikely to allow for a compact representation in the factored model (without making additional assumptions). In contrast,
our reductions from the OV-problem, i.e., Reduction 5, are well-suited for such a compact encoding as the resulting graphs
are sparse and the edge relation is defined systematically based on the content of the vertices. Thus, if one uses the binary
vectors as a basis for the encoding of the vertices in the factored model then the transitions can be represented with a
relatively low number of actions. However, the details of such an encoding and the corresponding lower bounds depend on
the actual factored model. Investigating such encodings for concrete factored models is beyond the scope of this paper and
we thus leave it open as an interesting direction for future research.

7.2. Concluding remarks

In this work, we study several natural planning problems in graphs, MDPs, and game graphs, which are basic algorithmic
problems in artificial intelligence. Our main contributions are a sub-quadratic algorithm for sequential target in MDPs, and
quadratic conditional lower bounds. Note that graphs are a special case of both MDPs and game graphs, and the algorithmic
problems are simplest for graphs, and in all cases except for AllCoverage, we have linear-time upper bounds. The key
highlight of our results is an interesting separation of MDPs and game graphs: for basic target reachability, MDPs are harder
than game graphs; for the coverage problem, both MDPs and game graphs are hard (quadratic CLBs); for sequential target
reachability, game graphs are harder than MDPs.

In this work, we clarified the algorithmic landscape of basic planning problems with CLBs and better algorithms. An
interesting direction of future work would be to consider CLBs for other polynomial-time problems in planning and AI in
general. For MDPs with sequential targets, we establish sub-quadratic upper bounds, and hence the techniques of the paper
that establish quadratic CLBs are not applicable. Other CLB techniques for this problem are an interesting topic to investigate
as future work.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
20

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
Acknowledgements

A preliminary version of this work appeared in the Proceedings of the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS ’18) [59]. The authors are very grateful to the anonymous referees from ICAPS’18 and the
journal of Artificial Intelligence for their valuable comments that helped to greatly improve the presentation of this work.
A.S. is fully supported by the Vienna Science and Technology Fund (WWTF) through project ICT15–003. K.C. is supported by
the Austrian Science Fund (FWF) NFN Grant No. S11407-N23 (RiSE/SHiNE) and by the ERC CoG 863818 (ForM-SMArt). For
M.H. the research leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreement No. 340506.

References

[1] S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.
[2] S.J. Russell, P. Norvig, Artificial Intelligence - A Modern Approach, Third International Edition, Pearson Education, 2010.
[3] H. Howard, Dynamic Programming and Markov Processes, MIT Press, 1960.
[4] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, 1994.
[5] J.A. Filar, K. Vrieze, Competitive Markov Decision Processes, Springer, 1997.
[6] C.H. Papadimitriou, J.N. Tsitsiklis, The complexity of Markov decision processes, Math. Oper. Res. 12 (1987) 441–450.
[7] C. Guestrin, D. Koller, R. Parr, S. Venkataraman, Efficient solution algorithms for factored MDPs, J. Artif. Intell. Res. 19 (2003) 399–468.
[8] A. Mahanti, A. Bagchi, AND/OR graph heuristic search methods, J. ACM 32 (1985) 28–51.
[9] E.A. Hansen, S. Zilberstein, Heuristic search in cyclic AND/OR graphs, in: AAAI, 1998, pp. 412–418.

[10] H. Kress-Gazit, G.E. Fainekos, G.J. Pappas, Temporal-logic-based reactive mission and motion planning, IEEE Trans. Robot. 25 (2009) 1370–1381.
[11] L.P. Kaelbling, M.L. Littman, A.R. Cassandra, Planning and acting in partially observable stochastic domains, Artif. Intell. 101 (1998) 99–134.
[12] H.M. Choset, Principles of Robot Motion: Theory, Algorithms, and Implementation, MIT Press, 2005.
[13] A. Cimatti, M. Pistore, M. Roveri, P. Traverso, Weak, strong, and strong cyclic planning via symbolic model checking, Artif. Intell. 147 (2003) 35–84.
[14] S. Maliah, R. Brafman, E. Karpas, G. Shani, Partially observable online contingent planning using landmark heuristics, in: ICAPS, 2014, pp. 163–171.
[15] B. Bonet, H. Geffner, Planning with incomplete information as heuristic search in belief space, in: AIPS, 2000, pp. 52–61.
[16] J. Hoffmann, R. Brafman, Contingent planning via heuristic forward search with implicit belief states, in: ICAPS, 2005, pp. 71–88.
[17] H. Palacios, H. Geffner, From conformant into classical planning: efficient translations that may be complete too, in: ICAPS, 2007, pp. 264–271.
[18] A. Abboud, V.V. Williams, Popular conjectures imply strong lower bounds for dynamic problems, in: FOCS, 2014, pp. 434–443.
[19] K. Bringmann, M. Künnemann, Quadratic conditional lower bounds for string problems and dynamic time warping, in: FOCS, 2015, pp. 79–97.
[20] C. Beeri, On the membership problem for functional and multivalued dependencies in relational databases, ACM Trans. Database Syst. 5 (1980)

241–259.
[21] N. Immerman, Number of quantifiers is better than number of tape cells, J. Comput. Syst. Sci. 22 (1981) 384–406.
[22] K. Chatterjee, W. Dvořák, M. Henzinger, A. Svozil, Near-linear time algorithms for Streett objectives in graphs and MDPs, in: CONCUR, 2019,

pp. 7:1–7:16.
[23] A. Camacho, J.A. Baier, C. Muise, S.A. McIlraith, Finite LTL synthesis as planning, in: ICAPS, 2018, pp. 29–38.
[24] A. Camacho, C.J. Muise, J.A. Baier, S.A. McIlraith, LTL realizability via safety and reachability games, in: IJCAI, 2018, pp. 4683–4691.
[25] A. Camacho, M. Bienvenu, S.A. McIlraith, Finite LTL synthesis with environment assumptions and quality measures, in: KR, 2018, pp. 454–463.
[26] A. Kolobov Mausam, D.S. Weld, H. Geffner, Heuristic search for generalized stochastic shortest path MDPs, in: ICAPS, 2011, pp. 130–137.
[27] F. Teichteil-Königsbuch, Stochastic safest and shortest path problems, in: J. Hoffmann, B. Selman (Eds.), AAAI, 2012, pp. 1826–1831.
[28] T. Keller, P. Eyerich, PROST: probabilistic planning based on UCT, in: L. McCluskey, B.C. Williams, J.R. Silva, B. Bonet (Eds.), ICAPS, 2012, pp. 119–127.
[29] A. Camacho, C.J. Muise, S.A. McIlraith, From FOND to robust probabilistic planning: computing compact policies that bypass avoidable deadends, in:

ICAPS, 2016, pp. 65–69.
[30] R. Mattmüller, M. Ortlieb, M. Helmert, P. Bercher, Pattern database heuristics for fully observable nondeterministic planning, in: R.I. Brafman, H. Geffner,

J. Hoffmann, H.A. Kautz (Eds.), ICAPS, AAAI, 2010, pp. 105–112.
[31] J. Fu, V. Ng, F.B. Bastani, I. Yen, Simple and fast strong cyclic planning for fully-observable nondeterministic planning problems, in: T. Walsh (Ed.), IJCAI,

IJCAI/AAAI, 2011, pp. 1949–1954.
[32] C.J. Muise, S.A. McIlraith, J.C. Beck, Improved non-deterministic planning by exploiting state relevance, in: L. McCluskey, B.C. Williams, J.R. Silva, B.

Bonet (Eds.), ICAPS, AAAI, 2012, pp. 172–180.
[33] R. Alford, U. Kuter, D.S. Nau, R.P. Goldman, Plan aggregation for strong cyclic planning in nondeterministic domains, Artif. Intell. 216 (2014) 206–232.
[34] A. Camacho, E. Triantafillou, C.J. Muise, J.A. Baier, S.A. McIlraith, Non-deterministic planning with temporally extended goals: LTL over finite and infinite

traces, in: AAAI, 2017, pp. 3716–3724.
[35] C.J. Muise, V. Belle, S.A. McIlraith, Computing contingent plans via fully observable non-deterministic planning, in: AAAI, 2014, pp. 2322–2329.
[36] B. Bonet, H. Geffner, Planning under partial observability by classical replanning: theory and experiments, in: T. Walsh (Ed.), IJCAI, 2011, pp. 1936–1941.
[37] K. Chatterjee, M. Henzinger, Efficient and dynamic algorithms for alternating Büchi games and maximal end-component decomposition, J. ACM 61

(2014) 15:1–15:40.
[38] T. Bylander, The computational complexity of propositional STRIPS planning, Artif. Intell. 69 (1994) 165–204.
[39] C. Bäckström, B. Nebel, Complexity results for SAS+ planning, Comput. Intell. 11 (1995) 625–656.
[40] M. Kronegger, A. Pfandler, R. Pichler, Parameterized complexity of optimal planning: a detailed map, in: IJCAI, 2013, pp. 954–961.
[41] R. Impagliazzo, R. Paturi, Complexity of k-SAT, in: CCC, 1999, pp. 237–240.
[42] M. Aghighi, C. Bäckström, P. Jonsson, S. Ståhlberg, Refining complexity analyses in planning by exploiting the exponential time hypothesis, Ann. Math.

Artif. Intell. 78 (2016) 157–175.
[43] C. Bäckström, P. Jonsson, Time and space bounds for planning, J. Artif. Intell. Res. 60 (2017) 595–638.
[44] E. Eiben, J. Gemmell, I.A. Kanj, A. Youngdahl, Improved results for minimum constraint removal, in: AAAI, 2018, pp. 6477–6484.
[45] V.V. Williams, R. Williams, Subcubic equivalences between path, matrix, and triangle problems, J. ACM 65 (2018) 27:1–27:38.
[46] V.V. Williams, R. Williams, Subcubic equivalences between path, matrix and triangle problems, in: FOCS, 2010, pp. 645–654.
[47] A. Abboud, A. Backurs, V.V. Williams, If the current clique algorithms are optimal, so is Valiant’s parser, SIAM J. Comput. 47 (2018) 2527–2555.
[48] A. Lincoln, V.V. Williams, R.R. Williams, Tight hardness for shortest cycles and paths in sparse graphs, in: SODA, 2018, pp. 1236–1252.
[49] K. Bringmann, N. Fischer, M. Künnemann, A fine-grained analogue of Schaefer’s theorem in P: dichotomy of existsk-forall-quantified first-order graph

properties, in: CCC, 2019, pp. 31:1–31:27.
[50] V.V. Williams, Multiplying matrices faster than Coppersmith-Winograd, in: STOC, 2012, pp. 887–898.
21

http://refhub.elsevier.com/S0004-3702(21)00050-3/bibD1D6185BBD8432D91961A1FEB85530CFs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib4E729DE7F8F15138AECB1B4FD9B9B4D6s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibB9F70CBB473C65C19063CC40E14BE4C4s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib1431CD195051ACC10EACD9FA0D3D803As1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib7A407966703FD6C6D367B7A28AE6B366s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibDE4A6C51A9B0DABF9CBF193F78E22416s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib1535CDEB76D5B09928C496F4724BE19Cs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib9701668CBD391599DB865290871345EFs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib05EB23F062EE72797EF1ED4E3241A6CFs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib28566D8B072389CC93AFE6EC6F0E6806s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibEEB438BA8A61811B004052E09C9BD617s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib51574839CF1C60E92E172D7C72AF6644s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibD7871A54AC7373ECB9266CF493A20A5Bs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib4FBC8C855E6BF17E0CD49129102B1A95s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibB43954FE52C20A9C74300BF767079D64s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib753EFD9995AA8ABBB6C1A700ED80D728s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib6447D2DFDA63FFE6D9991E2E9CA73D4Ds1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibD7594584C76EB86FCEF13B252CEDB355s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibC3D4C7D04D00344677321A3B9F461C32s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib17A449A19A0ECFB26802A306114D47AEs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib17A449A19A0ECFB26802A306114D47AEs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib84E1288656757F4B4528392650D132A5s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibD11F17D033248E6171C876EF2FBCDEE2s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibD11F17D033248E6171C876EF2FBCDEE2s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib924A4D0470B042AAE635E27468CE8541s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibB7F7250E95F8F511513C603FF6D244CCs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibBEA24BA4DD5CBA2E934AB1C1981FE4DEs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib25310C191E3F7552456881B25F18180Fs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib3AABB2EFA255103A4A11945D8EDE4987s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib72CD9E046A3B453765E89D3D063BAFBAs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibB4E97697E4B99276624FD55593BC7A65s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibB4E97697E4B99276624FD55593BC7A65s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibD1F543AC0E5E84288056687C2FCB7C2Es1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibD1F543AC0E5E84288056687C2FCB7C2Es1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib9386DA8E6B7A1DD58AC3B818EA8C0118s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib9386DA8E6B7A1DD58AC3B818EA8C0118s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibCE4CAB7FD80122A468B8027317A36CF4s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibCE4CAB7FD80122A468B8027317A36CF4s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib4F3650E04621E83C3F0FF8E23AC22811s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib6CA6FC0FBDBEF31EB594D094E486A813s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib6CA6FC0FBDBEF31EB594D094E486A813s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibD1BE143E16EEF82A1F3F89FAEF22CEFAs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibB55F010014A9739409730A6518AF201Bs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibC24B785716B9FC003B5F22D42EB6D301s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibC24B785716B9FC003B5F22D42EB6D301s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibA2864EB1C88B5EDA480C724F83D32484s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibF3BA0DE6CF2E90935621819F79920B37s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib11C148F165AE4A7B28FA1DC3D7DCDA4Es1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib5F9BA99BC7440C0DBFF9913094146CF3s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib1CDF82019BD5669974A1AA7D0B9B7764s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib1CDF82019BD5669974A1AA7D0B9B7764s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib66EBCA23A6AA54C3A833154BA4727CE5s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib1109C65D02CB54164CB117380DBB2057s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib704E0FA45C29EB5427CDEBBAE633E4E2s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibB962CF13B1675EEB8E71ACF52D3FADD4s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibD29D9FAB14A738D7D812EEF6AA8A6A25s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibE3E12C9D511A686EF9D9C9F3EF1531E3s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib62E412FCD6F7E9F77540BEFA776341A4s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib62E412FCD6F7E9F77540BEFA776341A4s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibAEFE76718F20D260C6E52B72ABC68FA9s1

K. Chatterjee, W. Dvořák, M. Henzinger et al. Artificial Intelligence 297 (2021) 103499
[51] F. Le Gall, Powers of tensors and fast matrix multiplication, in: ISSAC, 2014, pp. 296–303.
[52] G. Ballard, J. Demmel, O. Holtz, O. Schwartz, Graph expansion and communication costs of fast matrix multiplication, J. ACM 59 (2012) 32:1–32:23.
[53] M. Henzinger, S. Krinninger, D. Nanongkai, T. Saranurak, Unifying and strengthening hardness for dynamic problems via the online matrix-vector

multiplication conjecture, in: STOC, 2015, pp. 21–30.
[54] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly exponential complexity?, in: FOCS, 1998, pp. 653–662.
[55] R. Williams, A new algorithm for optimal 2-constraint satisfaction and its implications, Theor. Comput. Sci. 348 (2005) 357–365.
[56] V. Vassilevska-Williams, On some fine-grained questions in algorithms and complexity, in: ICM, 2018, pp. 3447–3487.
[57] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146–160.
[58] K. Chatterjee, W. Dvořák, M. Henzinger, V. Loitzenbauer, Model and objective separation with conditional lower bounds: disjunction is harder than

conjunction, in: LICS, 2016, pp. 197–206.
[59] K. Chatterjee, W. Dvořák, M. Henzinger, A. Svozil, Algorithms and conditional lower bounds for planning problems, in: ICAPS, AAAI Press, 2018,

pp. 56–64.
22

http://refhub.elsevier.com/S0004-3702(21)00050-3/bib4A7D1D4578546A31C8A46B39679555A4s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib1C2CFB1BFCD51B529648EB1DAE4078F1s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibF97B7F512390568C87F5B582FC6D1C1Es1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibF97B7F512390568C87F5B582FC6D1C1Es1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibC6D0C7F8554FB815760BBCE65BD10D83s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib7919EC1B9F121380F0D9A9197B0900D6s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibA4F62FBBC88E3C6FE1B8D6D7482BEDC5s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib7F1DB30144A3011865087498880AAD81s1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib07D46D66F923AB2B6E4010B684BCA72Cs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bib07D46D66F923AB2B6E4010B684BCA72Cs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibB07A1D929C2AC3C419C30A0E89964EDFs1
http://refhub.elsevier.com/S0004-3702(21)00050-3/bibB07A1D929C2AC3C419C30A0E89964EDFs1

	Algorithms and conditional lower bounds for planning problems
	1 Introduction
	2 Preliminaries
	2.1 Definition of the problems
	2.2 Conjectured lower bounds

	3 Basic previous results
	4 Coverage problem
	4.1 Algorithms
	4.2 Conditional lower bounds
	4.2.1 MDPs
	4.2.2 Game graphs

	5 AllCoverage problem
	5.1 Algorithms
	5.2 Conditional lower bounds

	6 Sequential target problem
	6.1 Algorithms
	6.1.1 Algorithm for graphs
	6.1.2 Algorithm for MDPs
	6.1.3 Algorithm for games

	6.2 Conditional lower bounds

	7 Discussion and conclusion
	7.1 Implications for factored models
	7.2 Concluding remarks

	Declaration of competing interest
	Acknowledgements
	References

