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MDPs represent interaction with nature and games on graphs represent interaction with an
adversarial environment. We consider two planning problems with k different target sets:
(a) the coverage problem asks whether there is a plan for each individual target set; and
(b) the sequential target reachability problem asks whether the targets can be reached

Ié?:;vsrgj}nes in a given sequence. For the coverage problem, we present a linear-time algorithm for
Conditional lower bounds graphs, and quadratic conditional lower bound for MDPs and games on graphs. For the
Adversarial planning sequential target problem, we present a linear-time algorithm for graphs, a sub-quadratic
Strong exponential time hypothesis algorithm for MDPs, and a quadratic conditional lower bound for games on graphs. Our
Probabilistic planning results with conditional lower bounds, based on the boolean matrix multiplication (BMM)

conjecture and strong exponential time hypothesis (SETH), establish (i) model-separation
results showing that for the coverage problem MDPs and games on graphs are harder
than graphs, and for the sequential reachability problem games on graphs are harder than
MDPs and graphs; and (ii) problem-separation results showing that for MDPs the coverage
problem is harder than the sequential target problem.

© 2021 Published by Elsevier B.V.

1. Introduction

One of the fundamental algorithmic problems in artificial intelligence is the planning problem [1,2]. The most basic plan-
ning problem is the Discrete Feasible Planning problem [1]. The problem has a finite state space and a finite amount of actions
for each state. Starting from an initial state, the planner repeatedly chooses an available action at the current state which, as
a result, produces a new current state as described by a state transition function. The question is if the planner can produce
a state which is in a certain subset of the state space called goal or target.
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Planning models. We study this problem in the following classical models:

e Graphs. Discrete Feasible Planning can be directly translated into a graph search problem: The vertices in the graph
describe the state space and for every action in a state, there is an edge to the vertex which corresponds to the new
state given by the state transition function [1,2].

e MDPs. In the presence of interaction with nature, the graph model is extended with probabilities or stochastic transi-
tions, which gives rise to Markov Decision Processes (MDPs) [3-7].

e Games on graphs. In the presence of interaction with an adversarial environment, the graph model is extended to game
graphs (or AND-OR graphs) [8,9].

Planning problems. The planner tries to solve a planning problem given one of the above-described planning models. The
starting position is not restricted to the vertices controlled by the planner but can be any kind of vertex in the considered
model. We consider the following basic planning problems:

e Basic target reachability. Given a target set T of vertices the goal is to determine if some vertex in T is reachable from
the starting position.

e Coverage. In the coverage problem we are given k different target sets, namely, Tq,..., T, and a starting vertex. The
coverage problem asks whether we can achieve basic target reachability for all target sets T; where 1 <i < k. Coverage
models the following scenario: Consider a robot stationed in an outpost with k different locations of interest. If an event
or an attack happens in one of the locations, then that location must be reached. However, the location of the event or
the attack is not known in advance and the robot must be prepared that the target set could be any of the k target sets.

e AllCoverage. In the AllCoverage problem there are again k different target sets Tq,..., Ty but in contrast to Coverage
we want to determine all starting positions where Coverage with Ty, ..., Ty holds. This corresponds to finding a viable
outpost for robot.

e Sequential target reachability. In the sequential target reachability problem we are given k different target sets, namely,
T1,Ta,..., T and a starting position. The goal is to output whether we can first reach T1, then T, and so on up to Ty
from the starting position. This represents the scenario that the tasks must be completed in a sequence by the planner.

The above are natural planning problems and have been studied widely in the literature, e.g., in robot planning [10-12].

Basic planning questions. For the above problems the basic planning questions are as follows: (a) for graphs, the question
is whether there exists a plan (or a path) such that the planning problem is solved; (b) for MDPs, the basic question is
whether there exists a policy such that the planning problems are satisfied almost-surely (i.e., with probability 1); and
(c) for games on graphs, the basic question is whether there exists a policy that solves the planning problem irrespective
of the choices of the adversary. The almost-sure satisfaction for MDPs is also known as the strong cyclic planning in the
planning literature [13], and games on graphs question represent planning in the presence of a worst-case adversary [8,9]
(aka adversarial planning, strong planning [14], or conformant/contingent planning [15-17]).

Algorithmic study. In this work, we study the planning problems for graphs, MDPs, and games on graphs algorithmically.
For all the above questions, polynomial-time algorithms exist. When polynomial-time algorithms exist, proving an uncon-
ditional lower bound is extremely rare. A new approach in complexity theory aims to establish a conditional lower bound
(CLB) based on a well-known conjecture. Two standard conjectures for CLBs are as follows: The (a) Boolean matrix multi-
plication (BMM) conjecture states that there is no sub-cubic combinatorial algorithm for boolean matrix multiplication; and
the (b) Strong exponential-time hypothesis (SETH) states that there is no sub-exponential time algorithm for the k-SAT prob-
lem when k grows to infinity. Many CLBs have been established based on the above conjectures, e.g., for dynamic graph
algorithms and string matching [18,19].

Previous results and our contributions. We denote by n and m the number of vertices and edges of the underlying model,
and k denotes the number of different target sets. The O notation hides poly-log factors, e.g. 0 (m(logn)*) = 0 (m). We call
a running time near-linear if it is linear in the input but has some additional poly-logarithmic factor, e.g. O (m(log m%). For
the basic target reachability problem, while the graphs and games on graphs problem can be solved in linear time [20,21],
the current best-known bound for MDPs is O (m) [22, Theorem 12]. For the coverage and sequential target reachability,
an O(k - m) upper bound follows for graphs and games on graphs, and an 0k -m) upper bound follows for MDPs. Our
contributions are as follows:

1. Coverage problem: First, we present an O(m—f—Z{-‘:l |T;|) time algorithm for graphs; second, we present an Q2(k-m) lower
bound for MDPs and games on graphs, both under the BMM conjecture and the SETH. For graphs our upper bound is
in linear time, however, if each |T;| is constant and k = 6(n), for MDPs and games on graphs the CLB is quadratic.

2. Sequential target problem: First, we present an O (m + ZLI |T;|) time algorithm for graphs; second, we present an
O(m+ Zif:] |T;]) time algorithm for MDPs; and third, we present an Q(k - m) lower bound for games on graphs, both
under the BMM conjecture and the SETH.
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Table 1

Algorithmic bounds where n and m are the numbers of vertices and edges of the underlying model, and k denotes the number of
different target sets. The Q(-) bounds are conditional lower bounds (CLBs) under the BMM conjecture and SETH. They establish
that polynomial improvements over the given bound are not possible, however, polylogarithmic improvements are not excluded.
Note that CLBs are quadratic for k = ©(n). The new results are highlighted in boldface.

Objectives Graphs MDPs Games
Upper B. Lower B. Upper B. Lower B. Upper B. Lower B.
Basic target o(m) 5(m) 0(m)
Coverage om+Y* 1T O(k-m) Q(k - m) 0 (k-m) Q(k - m)
(Theorem 1) (Theorem 2)
AllCoverage ok-m) Q(k-m) ok -m) Q(k-m) ok -m) Q(k-m)
(Theorem 3) (Theorem 3) (Theorem 3)
Sequential target ~ O(m+ YK, [T;) Om+Y X, m) 0 (k-m) Q(k - m)
(Theorem 4) (Theorem 5) (Theorem 6)

The summary of the results is presented in Table 1. Our most interesting results are the conditional lower bounds for
MDPs and game graphs for the coverage problem, the sub-quadratic algorithm for MDPs with sequential targets, and the
conditional lower bound for game graphs with sequential targets.

Practical significance. The sequential reachability and coverage problems we consider are the tasks defined in [10], where
the problems have been studied for games on graphs and mentioned as future work for MDPs. The applications of these
problems have been demonstrated in robotics applications. We present a complete algorithmic picture for games on graphs
and MDPs, settling open questions related to games and future work mentioned in [10].

Theoretical significance. Our results present a very interesting algorithmic picture for the natural planning questions in the
fundamental models.

1. First, we establish results showing that some models are harder than others. More precisely,
o for the basic target reachability problem, the MDP model seems harder than graphs and games on graphs (linear-time
algorithm for graphs and games on graphs, and only near-linear time algorithms are known for MDPs);
e for the coverage problem, MDPs and games on graphs are harder than graphs (linear-time algorithm for graphs and
quadratic CLBs for MDPs and games on graphs);
o for the sequential target problem, games on graphs are harder than MDPs and graphs (linear-time upper bound for
graphs and sub-quadratic upper bound for MDPs, whereas quadratic CLB for games on graphs).
In summary, we establish model-separation results with CLBs: For the coverage problem, MDPs and games on graphs
are algorithmically harder than graphs; and for the sequential target problem, games on graphs are algorithmically
harder than MDPs and graphs.
2. Second, we also establish problem-separation results. For the model of MDPs consider the different problems: Both for
basic target and sequential target reachability the upper bound is sub-quadratic and in contrast to the coverage problem
we establish a quadratic CLB.

Further related work In this work, our focus lies on the algorithmic complexity of fundamental planning problems and we
consider explicit state-space graphs, MDPs, and game graphs, where the complexities are polynomial. The explicit model and
algorithms for it are widely considered: For example, in LTL Synthesis [10,23-25], Probabilistic Planning [26-29], Nondeter-
ministic Planning [30-34], Contingent Planning [35,36] and Verification [37]. In factored models such as STRIPS and SAS+
the complexities are higher (PSPACE-complete and NP-complete [38,39]), and then heuristics are the focus (e.g., [9]) rather
than the exact algorithmic complexity. Notable exceptions are

1. the work on parameterized complexity of planning problems (e.g., [40]),

2. conditional lower bounds based on the ETH [41] showing that certain general propositional planning problems (e.g.,
propositional STRIPS with negative goals (PSN)) do not admit algorithms with running times of the form 2!"° for
instance size |P| and concrete constants ¢ > 0 [42,43],

3. conditional lower bounds based on the SETH of the form 2048V . poly(|P|) where v is the number of variables and
& > 0 for very large subclasses PSN [43],

4. conditional lower bounds based on the graph colorability problem of the form 2"/2 . poly(v) [43],

5. conditional lower bounds based on the ETH showing that the minimum constraint removal problem, a well-studied
problem in both robotic motion planning, does not admit algorithms with running times of the form 2°™ [44].

2. Preliminaries

We first present formal definitions of the studied problems and then provide the necessary background on conditional
lower bounds that we will use as a technique to classify the complexity of the problems throughout our paper.

3
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2.1. Definition of the problems

Markov Decision Processes (MDPs). A Markov decision process (MDP) P = ((V, E), (V1, V), §) consists of a finite set of vertices
V partitioned into the player-1 vertices V1 and the random vertices Vg, a finite set of edges E C (V x V), and a probabilistic
transition function 8. The probabilistic transition function maps every random vertex in Vg to an element of D(V), where
D(V) is the set of probability distributions over the set of vertices V. A random vertex v has an edge to a vertex w € V, i.e.
(v,w) € E if and only if §(v)[w] > 0. For simplicity, for all random vertices v, we let §(v) be the uniform distribution over
vertices u with (v, u) € E. We explain in Remark 2 why this assumption is without loss of generality. When we say that we
contract a set of vertices X into a player-1 vertex v the resulting MDP P’ has the vertices V' = (V \ X) U {v}, the edge set E’,
which contains (1) all edges of E without a vertex in X and (2) for all edges (u, x), (x,u) where xe X and ue V\ X in P
we include the edges (u, v) and (v, u) respectively. The player-1 vertices V| are defined as (V1 \ X) U{v} and the random
vertices V5 are Vg \ X. The new probabilistic transition function §'(v) for v € V} is, again, the uniform distribution over
vertices u with (v, u) € E. We compare our definition of MDPs with the definition of MDPs used in most planning and Al
literature in Remark 1.

Game Graphs. A game graph I' = ((V, E), (V1, V3)) consists of a finite set of vertices V, a finite set of edges E and a partition
of the vertices V into player-1 vertices V¢ and the adversarial player-2 vertices V;,. We sometimes write player-x (x € {1, 2})
and to describe the adversarial player we write player-x, i.e, Xx=2 if xis 1 and x=1 if x is 2.

Graphs. A graph G = (V, E) is a special case of an MDP with Vg =@ as well as a special case of a game graphs with V, =@.
Let Out(v) ={u € V | (v, u) € E} describe the set of successor vertices of v. The set In(v) ={u € V | (u, v) € E} describes the
set of predecessors of the vertex v. We say that two vertices u and v are strongly connected if there is a path from u to v
and vice-versa.

Remark 1. A standard way to define MDPs, e.g. [7], is to consider vertices with actions and the probabilistic transition
function is defined for every vertex and action. In our model, the choice of actions is represented as the choice of edges
at player-1 vertices and the probabilistic transition function is represented by the random vertices. This allows us to treat
MDPs and game graphs uniformly, and graphs can be described easily as a special case of MDPs.

Plays. We assume without loss of generality that every vertex has an outgoing edge.! A play is an infinite sequence w =
(vo, v1, V2,...) of vertices such that each (vj_q,v;) € E for all i > 1. We denote the set of all plays with Q. A play is
initialized by placing a token on an initial vertex. If the token is on a vertex owned by a player (such as player 1 in MDPs,
or player 1/player 2 in game graphs), then the respective player moves the token along one of the outgoing edges, whereas
if the token is at a random vertex v € Vg, then the next vertex is chosen according to the probability distribution §(v). Thus
an infinite sequence of vertices (or an infinite walk) is formed which is a play.

Policies. Policies are recipes for players to extend finite prefixes of plays (denoted with V*). Formally, a player-x policy is a
function oy : V*- V4 — V which maps every finite prefix w € V*-V, of a play that ends in a player-x vertex v to a successor
vertex ox(w) € V, i.e., (v,o0x(w)) € E. A player-x policy is memoryless if oy(w) = ox(w’) for all w,w’ € V* - V4 that end in
the same vertex v € Vy, i.e., the policy does not depend on the entire prefix, but only on the last vertex.

Outcome of policies. The outcome of a policy is defined as follows for the models:

e In graphs, given a starting vertex, a policy for player 1 induces a unique play in the graph by applying the player-1
policy at every vertex.

e In game graphs, given a starting vertex v, and policies o, 7 for player 1 and player 2 respectively, we define the unique
play w(v,o,m) = (vo, V1, V2, ...), such that vo = v and for all i >0 if v; € V1 then o (v;) = vi;1 and if v; € V3, then
(Vi) = Vi,

e In MDPs given a starting vertex v a policy for player 1 induces a distribution over the possible plays since random
vertices choose their successor according to the probabilistic transition function 4.

Objectives and winning. An objective ¢ is a subset of € (the set of all plays) and describes the “winning plays”. A play w € Q
achieves or is in the objective if w € ¢. We consider the following notion of “winning”:

e Almost-sure winning. In MDPs, let Pr{ (¢) denote the probability that a play starting at vertex v € V, is in ¢ when
player 1 plays policy o. A policy o is almost-sure winning (a.s. winning) from a vertex v € V for an objective ¢ if and
only if Pr{ (¢) = 1. This notion is also considered strong cyclic planning [13].

e Winning. In game graphs a policy o is winning for player 1 starting at vertex v for an objective ¢ if and only if for any
player-2 policy m we have w(v,o,T) € ¢.

1 If a vertex v has no outgoing edge we simply add an edge (v, v). These additional edges do not affect any of the reachability notions we consider in
this work.
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T = {vs} T = {vs}

(a) MDPs

O @O ”2

Fig. 1. Example illustrating the difference between (a) MDPs and (b) game graphs for the reachability objective Reach(T).

(b) Games

Note that in the special case of graphs both of the above winning notions requires that there exists a play from v that
achieves the objective.

Remark 2. In MDPs we consider the notion of a.s. winning where the precise transition probabilities of the transition
function § do not matter because only the support of the transition function is relevant. The a.s. winning notion we use
corresponds to the strong cyclic planning problem. Intuitively, if we visit a random vertex in an MDP infinitely often then
all its successors are visited infinitely often. Therefore, when we consider the almost-sure winning condition in MDPs, only
the underlying graph structure along with the partition of vertices into player-1 and random vertices is relevant, and the
transition function § can be treated as a uniform distribution over the support.

We have defined the notion of objectives in general above, and below we consider specific objectives and queries that
are natural in planning problems. They are all variants of the most fundamental objectives in planning, namely, reachability
objectives.

Basic Target Reachability. For a target set T C V, the basic target reachability objective is the set of plays that contain a vertex
of T, ie, Reach(T) = {(vo,v1,V2,...)€Q|3j=>0:v;eT}.

Sequential Target Reachability. For a tuple of vertex sets 7 = (T1, Ty, ..., T;) the sequential target reachability objective is
the set of plays that contain a vertex of T followed by a vertex of T, and so on up to a vertex of Ty, i.e. Seq(7) =

{{vo, v1,v2,...) €| 3j1, j2, .- jk:vj, €T1,vj, €Ta, ..., vj, €T and j1 < jp <--- < ji}
Coverage and AllCoverage. The Coverage problems cannot be stated as a single objective but are formulated as a query in-
volving several objectives. That is, for k vertex sets, namely Tq, To,..., T, the coverage query Coverage(Tq,..., Ty) asks
whether for each 1 <i <k the basic target reachability objective Reach(T;) can be achieved. That is, a vertex v is winning
for Coverage(T1, ..., Ty) if it is winning for each objective Reach(T;) where 1 <i <k.

In the Coverage problem we are given vertex sets Ty, To,..., T} and a start vertex s and we decide whether there is a
strategy starting at s which is winning for Coverage(T1, ..., Tj). In AllCoverage we are only given vertex sets Tq, T2, ..., T
and have to determine the winning set, i.e., all vertices with a winning strategy for Coverage(Tq, ..., Ti).

In the following example, we illustrate the differences between the notions of reachability in the different models.

Example 1 (Reachability in MDPs and game graphs is not the same). Consider the graph G = (V, E) with vertices V = {vq, v, v3}
and the edges E = {(v1, v2), (v2, V1), (v2,v3)} and let T = {v3} be a target set. We will now consider Reach(T) for (a) the
MDP P = (G, (Vq, VR),8) and (b) the game graph I' = (G, (V1, V3)) with V1 ={vq, v3} and V, = Vg ={v;,}. The example is
illustrated in Fig. 1. In the MDP the vertex v, is a random vertex and, thus, whenever the token is at v, it is moved to v3
with non-zero probability. The player-1 policy o (v1) = v, wins almost-surely for Reach(T) because the transition from v,
to v3 is taken eventually, i.e., v3 is reached almost-surely. Note that in the game graph at vertex v, the adversary can force
vy and, thus, player 1 does not have a policy which almost-surely wins for Reach(T) starting from vi. Thus, reachability in
MDPs does not imply reachability in game graphs.

Relevant parameters. We consider the following input parameters: n denotes the number of vertices, m denotes the number
of edges and k either denotes the number of target sets in the coverage problem or the size of the tuple of target sets in
the sequential target reachability problem.

Algorithmic study. In this work, we study the above basic planning objectives for graphs, game graphs (i.e., winning in game
graphs), and MDPs (a.s. winning in MDPs). Our goal is to clarify the algorithmic complexity of the above questions with
improved algorithms and conditional lower bounds. We define the conjectured lower bounds for conditional lower bounds
next.
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2.2. Conjectured lower bounds

Results from classical complexity are based on standard complexity-theoretic assumptions, e.g., P # NP. Similarly, we
derive polynomial lower bounds which are based on widely believed conjectured lower bounds on well-studied algorithmic
problems.

First of all, we consider conjectures on Boolean Matrix Multiplication [45, Theorem 6.1] and triangle detection in
graphs [18, Conjecture 2]. A triangle in a graph is a triple x, y,z of vertices such that (x, y), (¥, 2), (z,x) € E. In trian-
gle detection we are given a graph and the question is if a triangle exists in the graph. We assume that no self-loops in
instances of triangle detection exist. Note that we can easily establish this assumption by linear-time preprocessing. See
Remark 3 for an explanation of the term “combinatorial algorithm”.

Conjecture 1 (Comb. Boolean Matrix Multiplication Conjecture (BMM)). There is no O (n>~€) time combinatorial algorithm for com-
puting the boolean product of two n x n matrices for any € > 0.

Conjecture 2 (Strong Triangle Conjecture (STC)). There is no algorithm which runs in O (min{n®—¢, m2®/(@+1)=€}y expected time and
no 0 (n®—€) time combinatorial algorithm that can detect whether a graph contains a triangle for any € > 0, where w < 2.373 is the
matrix multiplication exponent.

Williams and Williams [46, Theorem 6.1] showed that BMM is equivalent to the combinatorial part of STC. Moreover, if
we do not restrict ourselves to combinatorial algorithms, STC, still gives a super-linear lower bound.

Remark 3 (Combinatorial algorithm). The notion of combinatorial algorithm is widely used in the field of fine-grained com-
plexity community [47-49], despite the lack of a formal definition. The main intuition is that combinatorial algorithms do
not use fast matrix multiplication [50,51], while non-combinatorial algorithms have the matrix multiplication exponent w
in the running time. To the best of our knowledge, all algorithms for deciding (almost-sure) winning conditions in game
graphs and MDPs are combinatorial so far. Thus, lower bounds for combinatorial algorithms are of particular interest in our
setting. For further discussion on the notion of combinatorial algorithm consider [52,53].

Secondly, we consider the Strong Exponential Time Hypothesis (SETH) used also in [18, Conjecture 1] introduced by [41,
54] for the satisfiability problem of propositional logic and the Orthogonal Vector Conjecture.

The Orthogonal Vectors Problem (OV). Given sets S1, Sy of d-bit vectors with |S1| =|S2| = N and d = w(log N), are there u € Sy
and v € Sy such that Z?:l uj-v;=0?

Conjecture 3 (Strong Exponential Time Hypothesis (SETH)). For each € > 0 there is a k such that k-CNF-SAT on n variables and m
clauses cannot be solved in 0 (21~ poly(m)) time.

Conjecture 4 (Orthogonal Vectors Conjecture (OVC)). There is no O (N2~€) time algorithm for the Orthogonal Vectors Problem for any
€>0.

SETH implies OVC [55, Theorem 5], an explicit reduction is given in the survey article [56, Theorem 3.1]. Whenever
a problem is provably hard assuming OVC it is thus also hard when assuming SETH. For example, in [19, Preliminaries,
A. Hardness Assumptions, OVH] the OVC is assumed to prove conditional lower bounds for the longest common subse-
quence problem. To the best of the author’s knowledge, there is no connection between the former two and the latter two
conjectures.

Remark 4. The conjectures promise that no polynomial improvements over the best-known running times are possible but
do not exclude improvements by sub-polynomial factors such as poly-logarithmic factors or factors of, e.g., 2v108",

3. Basic previous results

In this section, we recall the basic algorithmic results about MDPs and game graphs known in the literature that we
later use in our algorithms. They explain the results of the first row of Table 1. Note that we cannot give any quadratic
conditional lower bounds for any of these problems as they all permit linear time or near-linear time algorithms.

Basic result 1: Maximal End-Component Decomposition. Given an MDP P, an end-component is a set of vertices X C V s.t.
(1) the subgraph induced by X is strongly connected (i.e.,, (X, EN X x X) is strongly connected) and (2) all random vertices
have their outgoing edges in X, i.e., X is closed for random vertices, formally described as: for all v € X N Vg and all
(v,u) € E we have u € X. A maximal end-component (MEC) is an end-component which is maximal under set inclusion. The
importance of MECs is as follows: (i) they generalize strongly connected components (SCCs) in graphs (with Vg = @) and
closed recurrent sets of Markov chains (with V1 =@); and (ii) in a MEC X from all vertices u € X every vertex v € X can be
reached almost-surely.
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Fig. 2. A graph G and an MDP P where we contract all SCCs and MECs respectively into player-1 vertices (removing self-loops) to obtain G’ and P’. The
graph G’ is acyclic whereas the MDP P’ contains a cycle.

Example 2 (Difference between SCC decomposition and MEC decomposition). While in SCC decompositions we have that each
vertex belongs to exactly one SCC, (which might be a trivial SCC just containing that vertex) for MEC decompositions, we
might have a non-empty set of random vertices which do not belong to any MEC (still, each vertex belongs to at most one
MEC). Consequently, if we contract each MECs into a player-1 vertex, the resulting MDP is not necessarily acyclic which
is in contrast to the graph obtained from contracting the SCCs into player-1 vertices, which is always acyclic. In Fig. 2 we
demonstrate this key difference: Contracting all SCCs of the graph G into player-1 vertices yields the DAG G’. Consider the
MDP P where the vertices {vi, vy, v4,v7} of G are random vertices and all edges remain unchanged. If we contract the
MECs, i.e. {{v1,v2,V3}, {vs, ve, v7, v8}} into player-1 vertices {v}, v4} we obtain the MDP P’ which has a cycle. Note that
this is because v4 does not belong to a MEC and is strongly connected with v} or v3 respectively in P’ and P.

The SCC decomposntlon of a graph can be computed in linear time [57, Theorem 13]. MEC decomposition is computed
in 0(n(logn)*) = O(m) time by the fastest algorithm [22, Theorem 11].

Basic result 2: Reachability in MDPs. Given an MDP P and a target set T, the set of starting vertices from which T can be
reached almost-surely can be computed in O (m) time given the MEC decomposition of P [58, Theorem 4.1]. Consequently,
we can solve the basic target reachability problem for MDPs in O (m).

Basic result 3: Reachability in game graphs. Given a game graph I' and a target set T, the player-x attractor characterizes
the set of vertices from which player x can reach T against all polices of the adversarial player x. Formally, the player-x
attractor (x € {1, 2}) Attrx(S,T’) of a given set S C V is defined as the limit of the sequence Ag = S; Ai;1 = A;U{v e Vx|
Out(v) N A; Z @YU {v € Vi | Out(v) C A;} for all i > 0. An attractor A = Attry(S,T") can be computed in O(m) time [20,21].
We will sometimes omit I" from Attry(S, I') if it is clear on which game graph we apply the attractor.

4. Coverage problem

In this section, we consider the coverage query problem in graphs, MDPs, and game graphs. The input is a starting vertex
v and a coverage query. Our goal is to check if a set of player-1 strategies exist such that the resulting plays achieve the
given coverage query when starting at v.

First, we present a linear-time algorithm for graphs and quadratic algorithms for MDPs and game graphs. Then we focus
on the conditional lower bounds for MDPs and game graphs, which establish that there is no subquadratic algorithm for the
coverage problem when one assumes the STC and OV conjectures.

4.1. Algorithms

The results below present the upper bound for graphs, MDPs, and game graphs of the second row of Table 1.

Coverage Problem in Graphs. For the coverage problem in graphs we are given a graph G = (V,E), a coverage query
Coverage(T1,...,T) and a start vertex s € V. The algorithmic problem is to find out if starting from an initial vertex v
the basic target reachability, i.e., Reach(T;), can be achieved for all 1 <i <k. The algorithmic solution is as follows: Initially,
mark each v € T; for 1 <i <k with i. Compute the BFS tree starting from s and check if all the targets are contained in the
resulting BFS tree. This instantly gives an algorithm with a running time in O (m + Z{‘{:o |Ti]). Note that the running time is
linear and thus we cannot hope to find any quadratic lower bounds.

7
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Fig. 3. An example reduction from OV to Coverage in MDPs.

Coverage Problem in MDPs and game graphs. We determine in MDPs and game graphs whether there exists a set of strategies
for a given coverage query with k basic target reachability objectives and start vertex v, by applying the reachability algo-
rithm of the respective model k times, i.e., once for each of the target sets. This yields a solution in O (km) time for MDPs
and O (km) time for game graphs respectively. Notice that for k € ©®(n) the running time is quadratic in the input size.

4.2. Conditional lower bounds

We present conditional lower bounds for the coverage problem in MDPs and game graphs (i.e., the CLBs of the second
row of Table 1). For MDPs and game graphs the conditional lower bounds complement the quadratic algorithms from the
previous subsection. Note that we cannot provide a quadratic lower bound for graphs as a linear-time algorithm exists. The
conditional lower bounds are due to reductions from OV and triangle detection.

4.2.1. MDPs
We present the following conditional lower bounds for MDPs:

Theorem 1. For all € > 0, checking if a vertex has a set of a.s. winning policies for the coverage problem in MDPs does not admit:

1. an 0 (m?~¢€) algorithm under Conjecture 4,
2. an 0 ((k -m)'~€) algorithm under Conjecture 4,
3. a combinatorial O (n3>~€) algorithm under Conjecture 2 and

4. a combinatorial O ((k - nz)]_e) algorithm under Conjecture 2.

Using the OV-Conjecture. Below, we prove the results 1-2 of Theorem 1. We reduce the OV problem to Coverage in MDPs. By
applying Conjecture 4 we infer the result.

Reduction 1. Given two sets S, Sy of d-dimensional vectors (both of size N), we build the MDP P as follows.

e The vertices V of P are given by a start vertex s, sets of vertices S; and S, representing the sets of vectors and vertices
C =/{c;j |1 <i=<dj} representing the coordinates of the vectors in the OVC instance.

e The edges E of P are defined as follows: The start vertex s has an edge to every vertex of S;. Furthermore, for each
x; € S1 there is an edge to ¢; € C if and only if x;[j]=1 and for each y; € S there is an edge from c; € S, to y; if and
only if y;[j]=1. Also, the y; have self-loops so that every vertex has an outgoing edge.

e The set of vertices is partitioned into player-1 vertices V{ = S1 UC U Sy and random vertices Vg = {s}.

Example 3 (Example: Reduction from OV to Coverage). Let the OV instance be S; ={(1,1,0), (1,0,1),(0,1,1)}, S, ={(1,0, 1),
(1,1,0), (0,1, 0)}. Notice that the second vector in S1 and the third vector in S, are orthogonal. Due to the fact that s is a
random vertex, there is a nonzero probability that x, is the successor. There is no path from x, to y3. As T3 = {y3}, there
is no a.s. winning policy from s for the given instance of coverage. We illustrate the example of the reduction in Fig. 3.

Notice that for orthogonal vectors x; and y; we have that for each ¢, € C either x; is not connected to ¢, or y; is not
connected to cy. Thus there is no path from x; to y;. Starting from s there is a non-zero probability to end in x; and, thus,
also a non-zero probability to fail reaching the target set T; = {y;} for all player-1 policies.

Lemma 1. Let P = (V, E, (V1, VR), 8) be the MDP given by Reduction 1 and T; = {y;} for 1 <i < N. There exist orthogonal vectors
x€ Sy, y € Sy ifand only if s is not winning for Coverage({T; | 1 <i < N}).

Proof. The MDP P is constructed in such a way that there is no path between vertex x; and y; if and only if the corre-
sponding vectors are orthogonal in the OV instance: If x; is orthogonal to y;, the outgoing edges lead to no vertex which

has an incoming edge to y; as either x;[k] =0 or y;[k] =0. On the other hand, if there is no path from x; to y; we again

8
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G:

Fig. 4. Reduction from Triangle to Coverage.

have by the construction of the underlying graph that for all 1 <k <d:x;[k] =0 or y;[k] = 0. This is the definition of
orthogonality for x; and y;. When starting from s the token is randomly moved to one of the vertices x; and thus player 1
can reach each y; almost surely from s if and only if it can reach each y; from each x;. Thus, we have that there is an a.s.
winning player 1 policy for Reach(T;) if and only if y; has. Hence, S, has no orthogonal vector in S; if and only if each
Reach(T;) has an a.s. winning player 1 policy. O

The MDP P has only O (N) many vertices and Reduction 1 can be performed in O (N - d) time (recall that d = w(log N)).
The number of edges m is O(N - d) and the number of target sets k € 6(N). Thus the results 1-2 of Theorem 1 follow.

Using the ST-conjecture. Towards the results 3-4 in Theorem 1 we reduce the triangle detection problem to the Coverage
problem in MDPs. By applying Conjecture 2 we infer the result.

Reduction 2. Given an instance of triangle detection, i.e., a graph G = (V,E), we build the following MDP P =
(V' E' (V], V¢), 8).

e The vertices V' are given as four copies V1, V2, V3, V4 of V and a start vertex s.

e The edges E’ of P are defined as follows: There is an edge from s to every vy; € Vq for i=1...|V|. In addition, for
1 < j <4 there is an edge from vj; to v(ji1y if and only if (v;, vi) € E. Finally, vy4; for i=1...|V| has a self-loop.

e The set of vertices V' is partitioned into player-1 vertices V] = and random vertices V = {s}UV; UV, UV3U V4.

Notice that all the vertices of the constructed MDP are random vertices.

Example 4 (Reducing triangle detection to Coverage.). Let G be the graph given in Fig. 4. We construct the MDP P as in
Reduction 2. Notice that G has the triangle (vq, vy, v3) and the constructed MDP P has a nonzero chance to take the
path marked by the fat edges that correspond to this triangle, i.e., player-1 does not have a winning policy from s for the
coverage objective given in the reduction because he cannot satisfy T1. The example is illustrated in Fig. 4.

Lemma 2. Let P be the MDP given by Reduction 2 when applied to a graph G and let Ti = V1 \ {v1i} U V4 \ {v4i} fori=1...|V| be
target sets. The graph G has a triangle if and only if s is not winning for Coverage({T; | 1 <i < |V|})in P.

Proof. First, s is not winning for Coverage(T1, ..., T|y|) iff there is a T; such that player-1 has no a.s. winning policy from
s for Reach(T;). Second, there is a triangle in the graph G iff there is a path from some vertex vq; in the first copy of G to
the same vertex in the fourth copy of G, vy4;. Finally, notice that player 1 does not control any vertex and, thus, the policy
of player 1 does not matter and each possible path is played with non-zero probability. If G has a triangle containing vertex
v; then the corresponding play from vq; to v4; has non-zero probability and is not in Reach(T;). That is, s is not winning
for the query Coverage({T; | 1 <i < N}) for player 1. Now assume that s is not winning for Coverage({T; | 1 <i < N}) and
thus not winning for Reach(T;). Then there is a path from vq; to v4; and thus a triangle in G. O

Moreover, the size and the construction time of the MDP P are linear in the size of the original graph G and we have
k=0(]V]) target sets. Thus 3-4 of Theorem 1 follow.

4.2.2. Game graphs
Next, we describe how the results for MDPs can be extended to game graphs. We prove the following theorem which
states multiple specific lower bounds for checking if a vertex has a set of winning policies for a coverage query.

Theorem 2. For all € > 0, checking if a vertex has a set of winning policies for a coverage query in game graphs does not admit:

1. an 0 (m?~¢€) algorithm under Conjecture 4,
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2. an O((k-m)' %) algorithm under Conjecture 4,
3. a combinatorial O (n>~€) algorithm under Conjecture 2 and

4. a combinatorial O ((k - n2)1_€) algorithm under Conjecture 2.

Using the OV-Conjecture. Below we prove the results 1-2 of Theorem 2. We reduce the OV problem to Coverage in game
graphs. By applying Conjecture 4 we infer the result. In Reduction 3 we change the random starting vertex of Reduction 1
to a player-2 vertex. The rest of the reduction stays the same. The proof then proceeds as before with the adversary now
overtaking the role of the random choices.

Reduction 3. Given two sets S, Sy of d-dimensional vectors, we build the following game graph I'=(V, E, (V1, V3)).

e The vertices V and edges E are defined as before in Reduction 1
e The set of vertices is now partitioned into player-1 vertices V; =S; UC U S, and player-2 vertices V, = {s}.

Lemma 3. Let T’ be the game graph given by Reduction 3 with a coverage query Coverage({T; | 1 <i < n}) where T; = {y;} for
i =1...N. There exist orthogonal vectors x € S1, y € Sy if and only if there is no set of winning policies from start vertex s for the
coverage query.

The game graph I' has only O(N) many vertices and Reduction 3 can be performed in O(N -d) time (recall that d =
w(log N)). The number of edges m is O(N -d) and the number of target sets k € 6(N). Thus the points 1-2 in Theorem 2
follow.

Using the STC conjecture. Below we prove the results 3-4 in Theorem 2. We reduce the triangle detection problem to Coverage
in game graphs. By applying Conjecture 2 we infer the result. In Reduction 4 we change the random vertices of Reduction 2
to player-2 vertices. Notice that the resulting game graph consists of only player-2 vertices. Again, if there is a path starting
from s which violates a reachability objective in the given coverage query then player 2 wins. As the reachability objectives
are defined such that they rule out the triangles of the reduction, player 1 only wins if and only if there is no such path,
i.e,, there is no triangle in the original graph.

Reduction 4. Given an instance of triangle detection, i.e., a graph G = (V, E), we build the following game graph I' =
(V',E', (V], V).

e The vertices V' and edges E’ are the same as in Reduction 2.
e The set of vertices V' is partitioned into player-1 vertices V] = and player-2 vertices V, = {s}UV; UV, UV3U V4.

Lemma 4. Let I be the game graph given by Reduction 4 when applied to a graph G and let T; = V1 \ {v1;} U V4 \ {vy4i} fori=1...n.
The graph G has a triangle if and only if s is winning for Coverage({T; | 1 <i <n})inT.

Moreover, the size and the construction time of game graph I" are linear in the size of the original graph G and we have
k =6(n) target sets. Thus 3-4 in Theorem 2 follow.

5. AllCoverage problem

In this section, we consider the AllCoverage problem. First, we present simple algorithms for all models based on the
algorithms for reachability in the respective models. Then we present a conditional lower bound for graphs which establishes
that the existing algorithm cannot be polynomially improved under the STC and OV conjectures.

5.1. Algorithms

We present a quadratic algorithm for MDPs, games, and graphs. The results present the upper bounds for graphs, MDPs,
and game graphs in the third row of Table 1.

Given the query Coverage({T; | 1 <i < k}) for graphs, MDPs, and game graphs, we propose an algorithm which first
solves the k reachability objectives using the basic results. Notice that the result of the algorithms for solving the basic
target reachability objective is a set of vertices that have a policy to achieve the objective. Then we take the intersection
of the resulting sets. (1) For graphs using BFS which is in O (m) time we obtain an O (k- m) time algorithm. (2) For game
graphs, using the O (m)-time attractor computation (see basic result 3), we have an O (k - m) time algorithm. (3) For MDPs,
the MEC decomposition followed by k many O (m)-time almost-sure reachability computation (see basic result 2), gives an
O (k - m + MEC) time algorithm.

10
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Fig. 5. Reduction from OV to AllCoverage.

5.2. Conditional lower bounds

In this section, we present conditional lower bounds for the AllCoverage problem in graphs (i.e., the CLBs of the third
row of Table 1). For MDPs and game graphs the conditional lower bounds follow from Section 4 because the Coverage
problem can be trivially reduced to the AllCoverage problem, i.e., once we compute all the vertices that can reach a target
it is easy to check whether a specific vertex can reach that target. The conditional lower bounds are due to reductions from
OV and the triangle detection problem.

Theorem 3. For all € > 0, computing the solution of the AllCoverage problem in graphs does not admit

1. an 0 (m%~¢€) algorithm under Conjecture 4,
2. an O((k-m)'=¢) algorithm under Conjecture 4,
3. a combinatorial O (n3~€) algorithm under Conjecture 2 and

4. a combinatorial O ((k - nz)l_é) algorithm under Conjecture 2.

Using the OV-Conjecture. In this section, we prove results 1-2 in Theorem 3. We reduce the OV problem to the AllCoverage
problem in graphs. By applying Conjecture 4 we infer the result.

Reduction 5. Given two sets S1, S of d-dimensional vectors (both of size N), we build the graph G as follows.

e The construction of the graph is the same as in Reduction 1 except that we do not have a vertex s.

Example 5 (Reducing AllCoverage to OV). Let the instance of OV be given by S; ={(1,1,0),(1,0,1),(0,1,1)}, S, ={(1,0,1),
(1,1,0), (0,1,0)}. Notice that the second vector in S; and the third vector in S, are orthogonal. We construct G with
Reduction 5. There is no path from x; to y3. As T3 = {y3}, x is not in the winning set of Coverage({T1, T2, T3}). Fig. 5
illustrates the reduction.

Lemma 5. Let G = (V, E) be the graph given by Reduction 5 with target sets T = {T; | T = {y;} fori=1...N }. A vector x; € Sy is
orthogonal to some vector in S if and only if the vertex x; is not in the winning set of Coverage(T).

Proof. The graph P is constructed in such a way that there is no path between vertex x; and y; iff the corresponding
vectors are orthogonal in the OV instance: If x; is orthogonal to y;, the outgoing edges lead to no vertex which has an
incoming edge to y; as either x;[k] =0 or y;[k] =0. On the other hand, if there is no path from x; to y; we again have by
the construction of the underlying graph that for all 1 <k <d: x;[k] =0 or y;[k] = 0. This is the definition of orthogonality
for x; and y;. Thus, x; is in the winning set of Coverage(T) iff x; is orthogonal to some vector in Sp. O

Notice that we solve the given instance of OV with our reduction as we compute all vectors in S; which are orthogonal
to some vector in S;. The Graph G has only O (N) many vertices and Reduction 1 can be performed in O(N -d) time (recall
that d = w(log N)). The number of edges m is O(N - d) and the number of target sets k € (N). Thus the points 1-2 in
Theorem 3 follow.

Using the ST-Conjecture. Below we prove 3-4 in Theorem 3. We reduce the triangle detection problem to the AllCoverage
problem in graphs. By applying Conjecture 2 we infer the result.

Reduction 6. Given an instance of triangle detection, i.e., a graph G = (V, E), we build the following graph G = (V’, E’). The
vertices and edges are the same as in Reduction 2 except that we have player-1 vertices instead of random vertices and

there is no start vertex s.

Example 6 (Reducing Triangle to AllCoverage). Consider G in Fig. 6. Notice that G has the triangle (v1, v, v3) and there is a
path from vq; to v41 in the constructed MDP P illustrated by the strong edges corresponding to this triangle. The winning

11
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G: P:

Fig. 6. Reduction from Triangle to AllCoverage.

set of Coverage(Tq, T2, T3, T4) contains vq; by using the policy which uses the path from vi; to vg4i1: First we achieve
trivially, Reach(T3), Reach(T3), Reach(T4) with this policy by starting from vq1. Then Reach(T1) is achieved by arriving at
V41.

Lemma 6. Let G be the graph given by Reduction 6 with |V | target set T; = V1 \ {v1i} U{v4i} fori=1...|V|. Agraph G has a triangle
with vertex v; if and only if the vertex v; is in the winning set of the query Coverage(T1, ..., T|v)).

Proof. Notice that there is a triangle in the graph G iff there is a path from some vertex vy; in the first copy of G to the
same vertex in the fourth copy of G, v4;. Also, a path o starting in vq; for 1 <i <|V]| is a viable policy in the Coverage
query for all Reach(T;) 1 <i < |V| objectives iff it is able to visit v4;: By definition, T; includes vq; for 1 < j<|V| and j #i.
Thus o achieves all Reach(T ) for j #i. To achieve Reach(T;), there must be a path from vq; to vy4. Thus, there is a triangle
with vertex v; if and only if vq; is in the winning set of the query Coverage(7). O

Note that we solve the given instance of the triangle detection problem if we know all vertices which are in triangles.
Moreover, the size and the construction time of the MDP P are linear in the size of the original graph G and we have
k=0(]V]) target sets. Thus 3-4 in Theorem 3 follow.

6. Sequential target problem

We consider the sequential target problem in all models. In contrast to the quadratic CLB for the coverage problem, quite
surprisingly, there is a subquadratic algorithm for MDPs. We first present an algorithm for graphs and then build upon that
to present the algorithm for MDPs. For games, we present a quadratic algorithm and a quadratic CLB.

6.1. Algorithms
The following results present the upper bounds of the fourth row of Table 1.

6.1.1. Algorithm for graphs

Given a graph G = (V, E) and the sequential target objective Seq(T1, ..., Tx), we compute the strongly connected com-
ponents, contract each strongly connected component to a single vertex and remove multi-edges. This results in a directed
acyclic graph (DAG). Additionally, the vertex v’ which represents an SCC C in the resulting DAG D, is in all target sets of its
members, i.e., v’ € T; if there exists a vertex u € C such that u € T; for all 1 <i <k. Notice that this step does not change
the reachability conditions of the resulting acyclic graph: Every vertex in an SCC can be reached starting from every other
vertex in the same SCC. Thus, it suffices to give an algorithm for DAGs. Given a DAG D = (V, E), we maintain (a) a set of
unprocessed vertices S, which is initialized with V and (b) a queue Q containing the vertices which are not processed but
where all successors are processed, initialized with all vertices with no outgoing edges. Notice that the queue is initially
non-empty because the bottom SCCs of G are now vertices without outgoing edges in D. Additionally, for each vertex v,
we maintain the values count,, ¢, and best,. The variable count, counts the number of vertices in Out(v) which are not
processed yet. The label ¢, is such that vertex v has a winning policy for the objective Seq(7;,) where 7, = (T, , ..., Ti).
In other words, there is a policy to win from v if we already visited the targets sets 71, ... T, —1. The variable best, is used
to store the minimum label of the already processed successors of v. The algorithm proceeds as follows. While the queue
Q is not empty, we take a vertex v from the queue and call PROCESSVERTEX(-). The function computes the label ¢, of the
vertex v using best, and the target sets where v is in. Then, it removes v from S and updates the variables best,, and
count,, of all predecessors w € In(v). In particular, we set best,, = min(best,,, £,) and decrement count,, by one. When the
queue is empty, all vertices are processed and the algorithm terminates. We show that the described algorithm for DAGs
has a linear running time, i.e., O(m + 2?21 |T;|) and the details are presented in Algorithm 1.
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Algorithm 1: Sequential Targets in Graphs.
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Input: DAG D = (V, E), targets 7 = (Tq, ..., Ty)
S<V;

Ly < {iefl,..., k}|veT} forveV;
count, < |Out(v)| forveV,;

k+1 if Out(v) =
best, <« or 1o (‘{) 4 forveV;
null  otherwise
ly <—null forveV;
Q <« {veV|Out(v)y=0},
while S # ¢ do
v =Q.pop();
PROCESSVERTEX(V);
return {veV |{, =1};

function PROCESSVERTEX(Vertex v)

£y < besty;

while ¢, —1 €L, do
| tvety—1;

S < S\{v}h

for w € In(v) do
best,, <— min(best,, £y);
count,, < county —1;
if count,, =0 then
| Q.push(w);

Proposition 1 (Correctness). Given a DAG D = (V,E) and a sequential reachability objective Seq(T) with target sets T =
{T1, ..., Ty}, Algorithm 1 returns the set of all start vertices with a path for the objective Seq(T).

Observation 1. The input graph has one or more vertices v with Out(v) = ) and thus Q is non-empty after the initialization.

Proof. Note that there is always a vertex v € V where Out(v) = ¢ because we assumed that D is a DAG. O

The invariants below state that (a) the variables (best,, count,, £,) have the intended meaning, (b) Q contains all the

unprocessed vertices whose successors are already processed and (c) that the queue contains vertices as long as S is not
empty.

Lemma 7. The following statements are invariants of the while loop at Line 7.

. county = |Out(v) N S|

veQ ifandonlyifv € S and Out(v) NS =4.

. If S is not empty then the queue Q is not empty.

. besty, =k + 1 forall v e V with Out(v) = @.

. If v € Q then best, # null.

. IfveV\Sthen ¢, #null

. besty, = minycout(v)\s £w, for all v e V with Out(v) \ S # 4.

Proof. 1. The counters count, are initialized as [Out(v)| and S is initialized as V. Thus the claim holds when first entering

3.

the while loop.

Assume the claim holds at the beginning of the iteration where vertex u is processed. The set S is only changed in
Line 15. There u is removed from the set. The counters are only changed in Line 18: All counters of vertices w with
u € Out(w) are decreased by one. Consequently count, = |Out(v) N S| holds for all v € V also after this iteration of the
loop and the claim follows.

. In the initial phase S is set to V and Q is set to {v € V | Out(v) = @}. Thus the claim holds when first entering the

while loop.

Assume the claim holds at the beginning of the iteration where vertex v is processed. The set S is only changed in
Line 15 where v is removed.

First consider a vertex w € Q \ {v}. As w is not removed from the set S and no vertex is added to S the claim is still
true for w. Now consider a vertex w that might be added during the iteration of the loop. This can only happen in
Line 20 and the if conditions ensure that w € S and Out(v) NS =@ (by the previous invariant) and thus the claim also
holds for the newly added vertices.

Due to Observation 1 the claim holds when first entering the while loop.

13
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Assume the claim holds at the beginning of the iteration, where vertex v is processed. The vertex v is removed from S
in Line 15 and if the set S is empty now, the claim follows trivially. On the other hand, if S is non-empty and Q is also
non-empty the claim follows again. In the third case S is non-empty and Q is empty. Assume for contradiction that no
vertex is added at line 20. By invariant (2), every vertex v € S has a successor in S as otherwise, v would be in Q. That
implies that there exists a cycle which is a contradiction with D being a DAG.

4. For v € V with Out(v) = @ the variables best, are initialized with k + 1 (Line 4) and best, is only changed in Line 17
when a successor of the vertex is processed. As v has no successor, best, is not changed during the algorithm.

5. If v € Q initially, it must be due to the initialization and we have best, =k + 1. The claim holds when first entering
the while loop. Assume the claim holds at the beginning of the iteration where v is processed. The only time we add a
vertex w to Q is at Line 20. Notice that we set best,, before at Line 17.

6. Initially, every vertex is in S, thus the claim holds before the first iteration of the while loop. Assume the claim holds
at the beginning of the iteration where v is processed. The only time we remove a vertex from S is at Line 15, i.e, in
PROCESSVERTEX(V). Notice that we set ¢, in Line 12 to best, which cannot be null due to Lemma 7 (5).

7. Initially, V is S, and for all v € V we set ¢,, best, to null. Notice that best, with Out(v) # @ are not changed at Line 4.
Thus the claim holds when the algorithm enters the loop.

Now consider the iteration of vertex v and assume the claim is true at the beginning. The set S is only changed in
Line 15 where v is removed. Let S,;4 be the set at the beginning of the iteration and Spew = Soig \ {v} the updated set.
Due to Lemma 7 (6) £, # null. For a vertex w € In(v), the value best,, is updated to min(best,,, £,,) (Line 17) which by
assumption is equal to minye Oue(w)\Syq)Ufv) €x = MilxeOut(w)\Spew) Lx» 1€, the equation holds. For vertices w ¢ In(v) both
best,, as well as the right hand side of the equation are unchanged. Hence, the claim holds also after the iteration. O

From the following invariants, we obtain the correctness of our algorithm.

Lemma 8. The following statements are invariants of the while loop at Line 7 forall v e V \ S:

1. there exists a path py € Seq(T¢,),
2. there exists no path py € Seq(T¢,—1),

where Ty, ={T¢,, ..., Ty} or &y > k.

Proof. As S is initialized with the set of vertices V the two statements trivially hold after the initialization.

Now consider the iteration where vertex v is processed and assume the invariants hold at the beginning of the iteration.
Let be(v) = minweout(v) £w. By Lemma 7 (2) we have Out(v) NS =@ and by Lemma 7 (6) also £, # null for all w € Out(v).
Thus by Lemma 7 (7) we have be(v) = best, and ¢, can be computed. The while loop in Line 13 decrements ¢, which is
initialized to best, — 1 as long has best, —1 € L,. L, contains ¢, ..., best, — 1 but does not contain ¢, — 1.

1. We next show that there is a path p, in Seq(7¢,): Let w = be(v). A path for vertex w where py, € Seq(7y,,), exists
by induction hypothesis. The targets {T¢,,..., T¢,_,} are visited by starting from v. The path is obtained as follows:
pv =V, pw, Which proves the claim.

2. We next show that there is no path py in Seq(7¢,—1). The current vertex v is not in the set T,,—1 and no successor w
has a path py with py € Seq(7¢,—1) because £, —1 < ¢, < £, (Lines 12-14). Thus there is also no path p, € Seq(7¢,—1)
which concludes the proof. O

Proposition 2. Algorithm 1 has running time O (m + Zf:] | T; ).

Proof. We first argue that the initialization takes O(m + 22‘21 |T;|) time. Initializing the sets L, can be done by first
initializing the set L, as @ (in O(n)) and then iterate over all set T; and for each v € T; add i to L, (in O(Zl-‘:] [Ti])). The
other variables can be initialized by iterating over all vertices and for each vertex consider all outgoing edges. That is in
O (n+m) = 0(m) time. Now consider the main part of the algorithm. In the while loop we process each vertex v € V once
(recall that D is a DAG) and call the function PROCESSVERTEX(V) at Line 9 In the function call PROCESSVERTEX(V), we iterate
over the set L, (Lines 13-14) and all incoming edges of v (Lines 16-20). If we sum over all the vertices we obtain a running
time of O(m+ Y. ,cy ILy)=0m+ Y[, |Ti}). O

Theorem 4. Given a graph G = (V, E), a sequential target objective and a vertex s € V we can decide whether s is winning for Seq(T")
in 0(m+ Y X, |Ti|) time.
6.1.2. Algorithm for MDPs

The algorithm for MDPs builds on the algorithm for graphs. The key difference is that instead of computing an SCC

decomposition and contracting SCCs, for MDPs, we compute a MEC decomposition and contract MECs into player-1 vertices:
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Fig. 7. Key difficulty when computing Sequential Reachability in MDPs.

Given an MDP P = (V, E, (V1, V), §) with the sequential target objective Seq(Tq, ..., Tx), we compute the MEC decomposi-
tion of the MDP. Then, each MEC M is contracted into a player-1 vertex v/ without self-loops. The resulting MDP is P’. The
target sets of P’ are as follows: The vertex v’ is in all the target sets of the corresponding vertices in M, i.e., v’ € T; if there
exists a vertex u € M such that u € T; for all 1 <i < k. Notice that this step does not change the reachability conditions
of the resulting MDP: Every vertex in the MEC can be reached almost-surely starting from every other vertex in the same
MEC, regardless of their type (player-1, random). Thus, it suffices to give an algorithm for MEC-free MDPs.

Key challenge. When computing a MEC decomposition and contracting the MECs we get an MDP that may still contain cycles.
Thus, our MDP algorithm has to deal with cycles unlike the graph setting where we only had to deal with DAGs, i.e., in
Algorithm 1 we maintained a Queue Q which contained all unprocessed vertices where all successors are processed. In each
iteration we process one such vertex. Notice that when the queue is the only mechanism to process the vertices, we need
the fact (which we also show in Lemma 7 (3)) that there either exists a vertex where all successors have been processed
or all vertices have been processed and the algorithm can terminate. When running the algorithm on MEC-free MDPs there
might be a situation where the Queue Q is empty and some vertices have not been processed yet. We illustrate such a
situation in Example 7. Thus, we need an additional mechanism to process vertices in this situation.

Example 7 (Queue empty but graph not processed). Consider the MDP P given in Fig. 7: Contracting the MECs of P into player-1
vertices, we obtain P’. Notice that P’ still contains a cycle. Using only the queue to obtain the next vertex to process we
have the following problem: After v/ is processed, the queue Q is empty because v/, has still has an unprocessed successor,
namely v}. Notice that v/, and v} have not been processed yet.

Algorithm Description. The algorithm for MEC-free MDPs maintains the set of unprocessed vertices S and a queue Q, the
values county, £,, and best, for each vertex v. The value count,, as in Algorithm 1, stores the number of vertices in Out(v)
which are not processed yet. The label ¢, for v is now such that v has an almost-sure winning policy for the objective
Seq(T¢,) where T¢, = (Tq,, ..., Tx). Random vertices might choose the worst possible successor with nonzero probability,
i.e,, the vertex with highest £, whereas player-1 vertices always choose the vertex with the lowest £,. We reflect this fact
as follows in the variable best,: The variable best, stores the maximum (for v € V) / minimum (for v € V1) label of the
already processed successors of v. The set S is initialized with V, and, initially, all vertices with no outgoing edges are
added to the queue Q. Notice that the bottom MECs of P are now vertices without outgoing edges in P’ and thus Q is
initially non-empty. If the queue Q is non-empty, a vertex from the queue is processed as in Algorithm 1. When Q is
empty, the algorithm has to process a vertex where some successors are not processed yet. In that case, we consider all the
random vertices for which at least one successor is processed and choose the random vertex with the maximum best, to
process next. We show that, as the graph has no MECs, whenever Q is empty (and S is not) there exists such a random
vertex. Moreover, whenever Q is empty, all vertices in the set of unprocessed vertices S have a policy that satisfies Seq(7n)
for m = maxyevyns besty: Intuitively, this is due to the fact that all vertices in S can reach a vertex v’ (which is possibly
different to v = argmax, cy,ns besty) in the set of already processed vertices and in the worst case ¢,, =m, i.e, they can
satisfy Seq(7n). For the vertex v = argmaxyey,ns besty all successors w without a label are in S and are going to obtain a
label ¢,, of at most m. The current value of best, is m, i.e., v has a successor w with £,, =m. As v is in V the final value
of best, must be m. Hence, one can process v without knowing the exact label of all the successors. We present the details
in Algorithm 2 and prove a running time which is in O(mlogn + Zf:o |T;|). Notice that the running is near-linear time,
linear up to a logn factor.

Proposition 3 (Correctness). Given an MDP P and a sequential target objective Seq(7) with targets T = (T1, ..., Ty), Algorithm 2
returns the set of all start vertices with a player-1 policy for the objective Seq(T).

We next state the invariants of the while loop (see Line 7) that will enable us to show the correctness of the algorithm.
The invariants state that (a) the variables best, and count, have the meaning as described in the algorithm description for
all veV, (b) Q contains all the unprocessed vertices whose successors are already processed, and (c) that the function
argmax is well-defined whenever called, i.e., there is a random vertex where best, is not null.
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Algorithm 2: Sequential target Reachability for MEC-free MDPs.

w N

14

15
16
17
18

19
20
21
22
23
24

25
26
27

Input: MEC-free MDP P = (V, E, (V1, V), d), targets 7 = (T1, ..., Tx)
Output: All vertices with a policy for Seq(7).

S« V;

Ly« {ie{l,....,k}|veT;} forveV;

count, < |Out(v)| forveV;

best, <« k+1 if Out(\{) =Y forveV;
null  otherwise

Ly < null forveV;
Q < {veV|Out(v)y=0};

while S # ¢ do
if Q #¢ then
v =Q.pop();
PROCESSVERTEX(V);
else

V < argmaxy,cy,ns besty;
PROCESSVERTEX(V);

return {veV |{, =1};

function PROCESSVERTEX (Vertex v)

£y < besty;

while ¢, —1 €L, do
| vty —1;

S < S\{v}h

for w e {w:(w,v)€E}do
if w € V; then
| besty < min(besty, £y)
else
|_ best,, <— max(best,, £)

count,, < county, — 1;
if count,, =0A w € S then
| Q.push(w)

Lemma 9. The following statements are invariants of the while loop in Line 7.

UGN WN -~

[«)]

. Forall v e V with Out(v) \ S # @: best, =

. county = |Out(v) N S|;
.veQifandonlyifveSand Out(v)NS =0;
. besty, =k +1, forall v € V with Out(v) = @.

. If v e Q we have best, # null.

. IfveV\Swehave ¢, # null.

minweOut(v)\S Ly VeV,
maXweout(v)\s bw Vv € VR

L IfS#Wand Q =@ thereisa v € SN Vg such that best, # null.

Proof. The proofs of (1) — (5) proceed as the proofs of the corresponding statements in the proof of Lemma 7.

6. Initially S =V and for all v e V we set ¢, best, to null. Also, best, with Out(v) # ¢ are not changed at Line 4 and the

claim holds when the algorithm enters the loop.
Now consider the iteration of vertex v and assume the claim is true at the beginning. The set S is only changed in
Line 19 where v is removed. Let S,;; be the set at the beginning of the iteration and Spew = Soig \ {v} the updated set.
First notice that best, # null as v is either chosen by (a) as element of Q or (b) by argmax. In the former case we apply
Lemma 9 (4) and in the latter case best, # null by the definition of argmax. For a vertex w € In(v) NV the value best,,
is updated to min(besty,, £y) (Line 22) which by assumption is equal t0 minxeOut(w)\Syq)U{v} €x = Milxe(Out(w)\Snew) £x»
i.e., the equation holds. For a vertex w € In(v) N Vg the value best,, is updated to max(besty,,¢,) (Line 24) which
by assumption is equal to maXxe(ut(w)\Syq)Uiv} £x = MaAXxeOut(w)\Spew) £x» 1-€., the equation holds. For vertices w ¢ In(v)
best,, remains unchanged. Hence, the claim holds for w by the assumption that the invariant is true before the iteration.
. Initially the statement is true as each MEC-free MDP has a vertex v with Out(v) =@ and thus Q is non-empty (other-
wise there would be an SCC with no outgoing edge which thus would be a MEC).
Now consider the iteration processing vertex v and assume the claim is true at the beginning and Q = . Notice that
best,, is set for vertices as soon as one vertex in Out(w) was processed. Towards a contradiction assume that all vertices
w € SN Vg have best,, = null, i.e.,, no vertex w € SN Vg has a successor in V \ S. Note that S contains only the vertices
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which are not processed yet. Each w € S has at least one successor in S as otherwise, w would be in Q. Thus S is
either empty which would make the statement trivially true or has again a bottom SCC (on the induced subgraph Gp)
with more than one vertex that has no random outgoing edges. Again such an SCC would be a MEC and we obtain our
desired contradiction. O

From the following invariant, we obtain the correctness of our algorithm.

Lemma 10. The following statements are invariants of the while loop in Line 7 forall v € V \ S:

1. there exists a player 1 policy o s.t. Pr§ (Seq(T,)) = 1; and
2. there is no player 1 policy o s.t. PrJ (Seq(T¢,—1)) = 1.

where Ty, ={T¢,, ..., Ty} or &y > k.

Proof. As S is initialized as set V the two statements hold after the initialization.

Now consider the iteration where vertex v is processed and assume the invariants hold at the beginning of the iteration.
Notice that we do not change ¢, for any other vertex v’ # v and the invariant holds trivially for v’. We first introduce the
following notation

minweOut(v) Ly veV;

be(v) =
maXyeout(v) w V € VR

We distinguish the case where Q is non-empty and the case where Q is empty.

e Case Q #(: By Lemma 9 (2) we have Out(v) N S = (. Because we only remove vertices from S if we process them, all
w € Out(v) are processed and thus ¢, # null. Thus by Lemma 9 (6) we have be(v) = best,. By the while-loop in Line 17
we have L, D {¢y,...,best, — 1} but does not contain ¢, — 1, i.e., £, — 1 ¢ L,.

(1) Thus we can easily obtain a policy o with Pr (Seq(7¢,)) =1 as follows.

If v € V; pick the vertex w that corresponds to be(v) and then player 1 can follow the existing policy ¢’ for vertex w.
Because the invariant holds for w, there exists a policy o’ such that Prgvl (Seq(Thevy)) = 1.

If v € Vg let vertex w € Out(v) be the randomly chosen vertex. By the invariant which holds during the iteration, w
has a policy o such that Pr$, (Seq(7pe(v))) = 1. Combined with Ly, this is the desired policy, i.e., Pr{ (Seq(7,)) =1

(2) We next show that there is no policy for Seq(7¢,—1). By Line 17 we have v ¢ T,,_1. If v € V1 no successor w &
Out(v) has a policy o with Prg,(Seq(7¢,—1)) =1 as the invariant holds also for w. Thus there is also no policy o for
v such that Pr§ (Seq(7;,—1)) = 1. If v € V there is at least one successor w (because the invariant holds also for w)
which has no policy o such that Pr, (Seq(7¢,—1)) = 1. Consequently there is no policy o for v with Pr{ (Seq(7¢,—1)) =1
as there is a non-zero chance that a vertex w is picked that, by the fact that the invariant holds at the current iteration,
cannot reach a node in T;,_q.

e Case Q = (J: Due to Lemma 9 (7) there is at least one vertex in Vg NS such that best, # null. Let bestmax =

maxyevgns besty.
(1) As we have no MEC (in S), there is a policy o, so that the play almost surely leaves S by using one of the outgoing
edges of a random node: Note that for all random nodes between S and V \ S we have a policy which achieves at
least Seq(Tpest,,,)- The policy o can be arbitrary, except that for a player-1 vertex x € S with an edge (x, y) where
y €V \S we choose o(x) € S (which must exist as x would be in Q otherwise). As there are no MECs (in S) the policy
o1 will eventually lead to a vertex in V \ S using a random node. This implies that from each vertex in S player 1 has
a policy to reach a vertex in V \ S coming from a random vertex. Because the invariant holds at the current iteration
each successor of a random vertex v’ where best,s # null has a policy to satisfy Seq(7Tpest,,,,)- Thus it follows that from
each vertex in S player 1 has a policy to satisfy Seq(7pest,,,, ). Now consider the random vertex v that was chosen by
the algorithm as argmax,cy,ns besty. Because v’ is a random vertex, all successors have a policy to satisfy Seq(7Tpest,qy)
almost-surely. As L, contains £y, ..., best, —1 but does not contain £, — 1 we obtain a policy o with PrJ (Seq(7,)) =1.
(2) By the choice of v there is also a successor (that is chosen with non-zero probability) that, by assumption, has no
policy for Seq(Tpest,,—1) and, moreover, L, does not contain £, — 1. Thus, when starting in v each policy will fail to
satisfy Seq(Tpest,.—1) With non-zero probability, i.e., there is no policy o for Pr{ (Seq(T¢,—1))=1. O

Proposition 4 (Running Time). Algorithm 2 runs in O (mlogn + Z?:o |T;|) time.

Proof. Initializing the algorithm takes O(m + Z?:o |T;]) time and calling the function PROCESSVERTEX(V) takes time
O(|In(v)| + |Ly]) (cf. proof of Proposition 2). Consider the main while-loop at Line 7 where every vertex is processed once
(recall that either Q is nonempty or there exists a v € SN Vg such that best, # null due to Lemma 9). The costly operations
are the calls to the PROCESSVERTEX(-) function and the evaluation of the argmax function. Summing up over all vertices we
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Algorithm 3: Sequential Target Reachability for Games.

Input: Game graph I'=((V, E), (V1, V32)) and
target sets T = (T, ..., Tx)
1 Spp1 <V,
2 Lk
3 while ¢ > 0 do
4 Se < Attri(T¢ N Se41);
5 L <—L—1;

6 return Sq;

Fig. 8. Reduction from OV to Sequential Targets.

obtain a O(m + Zi'(:o |T;]) bound for the calls to PROCESSVERTEX(-). To compute argmax efficiently we have to maintain a
priority queue containing all not yet processed random vertices. As we have O(m) updates this costs only O(mlogn) for
one of the standard implementations of priority queues. Summing up this yields a O (mlogn + Zl'(:o |T;|]) running time for
Algorithm 2. O

By considering also the time MEc for the MEC decomposition we obtain the desired bound and the following theorem.

Theorem 5. Given an MDP P, a start vertex s and a sequential target objective Seq(T"), we can compute whether there is a player-1
policy o1 at s for Seq(T") in O (MEC + mlogn + 2{;0 |Ti|) time.

6.1.3. Algorithm for games

Given a game graphs with sequential target objectives Seq(7) where 7 = (T, ..., Ty), the basic algorithm (stated as
Algorithm 3) performs k player-1 attractor computations. It starts with computing the attractor Sy = Attr1(Ty) of Ty, and
then iteratively computes the sets Sy = Attr1(S¢+1 N Ty) for 1 <€ <k, and finally returns the set S; as the start vertices
from which player 1 can reach all the target sets in the given order. This gives an O (k - m)-time algorithm. Note that for
k = ®(n) the running time is quadratic in the input size.

6.2. Conditional lower bounds

We present CLBs for game graphs based on the conjectures STC and OVC which establish the CLBs for the fourth row of
Table 1. Notice that we cannot provide conditional lower bounds for graphs and MDPs as linear time algorithms for these
two models exist.

Theorem 6. For all € > 0, checking if a vertex has a winning policy for the sequential target problem in game graphs does not admit

. an 0 (m?~¢) algorithm under Conjecture 4,
Lan O((k-m)1=9) algorithm under Conjecture 4,
. a combinatorial O (n3~€) algorithm under Conjecture 2 and

. a combinatorial O ((k - n2)1_€) algorithm under Conjecture 2.

A WN

Using the OV-Conjecture. Below we prove results 1-2 of Theorem 6 by reducing the OV problem to the sequential target
problem in game graphs. The reduction is an extension of Reduction 1, where we (a) produce a player-2 vertex instead of a
random vertex and (b) also every vertex of S, has an edge back to s.

Example 8. Let the OV instance be given by S; ={(1,1,0),(1,0,1),(0,1,1)}, S» ={(1,0, 1), (1,1, 0), (0, 1, 0)}. Notice that
the second vector in S and the third vector in S, are orthogonal. Due to the fact that s is a player-2 verte, it can choose
Xy as the successor. There is no path from x; to y3. As T3 = {y3}, there is no winning policy for player 1 from s for the
given sequential target objective. We illustrate the reduction in Fig. 8.
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G:

Fig. 9. Reduction from Triangle to Sequential Targets.

Reduction 7. Given two sets Sq, S, of d-dimensional vectors (both of size N), we build the following game graph T.

e The vertices V of the game graph are given by a start vertex s, sets of vertices S; and S, representing the sets of
vectors and vertices C = {cj | 1 <i <d} representing the coordinates of the vectors in the OVC instance.

e The edges E of ' are defined as follows: the start vertex s has an edge to every vertex of S; and every vertex of S; has
an edge back to s; furthermore, for each x; € S; there is an edge to cj € C if and only if x;[j]=1 and for each y; € S
there is an edge from cj € S; to y if and only if y;[j]=1.

e The set of vertices is partitioned into player-1 vertices Vi = S; UCU S, and player-2 vertices V;, = {s}.

Lemma 11. Let T" be the game graph given by Reduction 7 with a sequential objective Seq(T) where T = (T1, ..., T) and T; = {y;}
for i =1...N. There exist orthogonal vectors x; € S1, yj € Sz if and only if s has no player-1 policy o1 to ensure winning for the
objective Seq(T).

Proof. Notice that the game graph I' is constructed in such a way that there is no path between x; and y; iff they are
orthogonal in the OV instance. Notice that each play starting at s revisits s every four steps and if there is no path between
x; and y; then player 2 can disrupt player 1 from visiting a target T; by moving the token to x; whenever the token is in s.
However, if there is no such x; and y;, player 2 cannot disrupt player 1 from s because no matter which vertex x; player 2
chooses, player 1 has a policy to reach the next target set. If s has no player-1 policy o1 to ensure winning for the objective
Seq('T) there must be a target player 1 cannot reach. This must be due to the fact that there is no path between some x;
and y; and player 2 always chooses x;. O

The number of vertices in T", constructed by Reduction 1 is O(N) and the construction can be performed in O (N log N)
time (recall that (d = w(log N))). The number of edges m is O (Nlog N) and the number of target sets k € 6(N) = 6(m/logN).
Thus (1-2) in Theorem 6 follow.

Using the ST-Conjecture. In this section, we prove the results 3-4 in Theorem 6. We reduce the triangle detection problem to
the sequential target problem in game graphs. The reduction extends Reduction 2, where we (a) produce player-2 vertices
instead of random vertices and (b) every vertex in the fourth copy has an edge back to s.

Reduction 8. Given an instance of triangle detection, i.e.,, a graph G = (V, E), we build the following game graph I"' =
(V' E', (V], Vo).

e The vertices V' are given as four copies V1, V3, V3, V4 of V and a start vertex s.

e The edges E’ are defined as follows: There is an edge from s to every vi; € V1 where i =1...|V|. In addition for
1 < j <3 there is an edge from vj; to v(jyq) if and only if (vi, v) € E. Furthermore there are edges from every
vy4i € V4 to the start vertex s.

e The set of vertices V’ is partitioned into player-1 vertices Vi = ¢ and player-2 vertices V), ={s}UV; UV, UV3U V4.

Example 9 (Reduction Triangle Detection to Sequential Targets in Games.). Consider the graph G given in Fig. 9. The vertices of
G are player-2 vertices in I and the graph is copied four times. The edges of I go to the same target but to next copy of
the graph. Notice that G has the triangle (vq, v2, v3) and the constructed game graph I' enables player-2 to take the path
marked by the fat edges, i.e., player-1 does not have a winning policy from s for the sequential target objective given in the
reduction because he cannot satisfy T1. We illustrate the example of the reduction in Fig. 9.

Lemma 12. Let T’ be the game graphs given by Reduction 8 with Seq(T) as follows: T = (T1, T2, ..., Ty) where Tj = V1 \ {vq;} U
V4 \ {v4;} fori=1.. k. The graph G has a triangle if and only if there is no policy o to ensure winning for the objective Seq(T") from
start vertex s.
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Proof. For the correctness of the reduction notice that there is a triangle in the graph G iff there is a path from some
vertex vq; in the first copy of G to the same vertex in the fourth copy of G, v4; in P. Player 2 then has a policy to always
visit only vq; from the first copy and only v4; from the fourth copy which prevents player 1 from visiting target T;. O

The size and the construction time of graph I', given by Reduction 2, are linear in the size of the original graph G and
we have k= ®(|V|) target sets. Thus (3-4) in Theorem 6 follow.

7. Discussion and conclusion

In this work, we presented lower bound results for planning objectives in explicit state space. We next discuss impli-
cations from these results for the same planning objectives in factored models and then end this paper with concluding
remarks.

7.1. Implications for factored models

Here we relate our results for the explicit state space to factored models, like STRIPS [2]. For the basic reachability
problem different conditional lower bounds were established in [42,43]. In the following, we discuss to which extent our
conditional lower bounds provide lower bounds for the corresponding problems in the factored models. We use the AllCov-
erage problem on graphs as an example but similar arguments apply to the other planning problems as well. A planning
instance of the AllCoverage problem for graphs in a factored model is given by variables V, the domain of the variables D,
the actions A and a set of conditions defining the target sets s¢,, ..., Sc,. A state is a function that specifies a value in D
to every variable in V. The planner can go from one state to another by applying the actions defined in the function A. A
is a mapping from an input state to an output state, i.e., the possible transition between states is defined by the actions.
The goal of the planner is to output all states which can reach all sets sg; (1 <i <k) using the actions described in A.
We next investigate how our graph-based lower bounds can be interpreted in the factored model. To obtain lower bounds
similar to Theorem 3 we aim encoding the graphs computed by our reductions (see e.g. Reduction 5 and Reduction 6) in the
factored model. A naive encoding that simply numbers the vertices and then uses a binary encoding of these numbers can
represent n states with v = log, n variables. This encoding would give lower bounds w.r.t. the number of variables v (and
thus the state space) that exclude O (k-21=9V . poly(v)) algorithms for the AllCoverage problem in the factored planning
model. However, these lower bounds are only w.r.t. the number of variables and not w.r.t. the total size of the problem
instance which, in particular, also includes the number of actions. The naive encoding requires as many actions as there
are edges in the graph, i.e., the size of the problem instance is dominated by the number of actions. Thus, using this naive
encoding we do not get interesting lower bounds w.r.t. the instance size. To obtain lower bounds w.r.t. the instance size
we have to encode the vertices of the graph in a way that also allows to encode the edges of the graphs compactly. For
our reductions from triangle detection, i.e., Reduction 6, the edge relation can be rather arbitrary and, thus, the reduction is
unlikely to allow for a compact representation in the factored model (without making additional assumptions). In contrast,
our reductions from the OV-problem, i.e., Reduction 5, are well-suited for such a compact encoding as the resulting graphs
are sparse and the edge relation is defined systematically based on the content of the vertices. Thus, if one uses the binary
vectors as a basis for the encoding of the vertices in the factored model then the transitions can be represented with a
relatively low number of actions. However, the details of such an encoding and the corresponding lower bounds depend on
the actual factored model. Investigating such encodings for concrete factored models is beyond the scope of this paper and
we thus leave it open as an interesting direction for future research.

7.2. Concluding remarks

In this work, we study several natural planning problems in graphs, MDPs, and game graphs, which are basic algorithmic
problems in artificial intelligence. Our main contributions are a sub-quadratic algorithm for sequential target in MDPs, and
quadratic conditional lower bounds. Note that graphs are a special case of both MDPs and game graphs, and the algorithmic
problems are simplest for graphs, and in all cases except for AllCoverage, we have linear-time upper bounds. The key
highlight of our results is an interesting separation of MDPs and game graphs: for basic target reachability, MDPs are harder
than game graphs; for the coverage problem, both MDPs and game graphs are hard (quadratic CLBs); for sequential target
reachability, game graphs are harder than MDPs.

In this work, we clarified the algorithmic landscape of basic planning problems with CLBs and better algorithms. An
interesting direction of future work would be to consider CLBs for other polynomial-time problems in planning and Al in
general. For MDPs with sequential targets, we establish sub-quadratic upper bounds, and hence the techniques of the paper
that establish quadratic CLBs are not applicable. Other CLB techniques for this problem are an interesting topic to investigate
as future work.
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