
Specifying with Interface and Trait Abstractions in Abstract State Machines: A

Controlled Experiment

PHILIPP PAULWEBER∗, GEORG SIMHANDL, and UWE ZDUN, University of Vienna, Faculty of

Computer Science, Research Group Software Architecture, Austria

Abstract State Machine (ASM) theory is a well-known state-based formal method. As in other state-based formal

methods, the proposed specification languages for ASMs still lack easy-to-comprehend abstractions to express

structural and behavioral aspects of specifications. Our goal is to investigate object-oriented abstractions such as

interfaces and traits for ASM-based specification languages. We report on a controlled experiment with 98 participants

to study the specification efficiency and effectiveness in which participants needed to comprehend an informal

specification as problem (stimulus) in form of a textual description and express a corresponding solution in form

of a textual ASM specification using either interface or trait syntax extensions. The study was carried out with a

completely randomized design and one alternative (interface or trait) per experimental group. The results indicate

that specification effectiveness of the traits experiment group shows a better performance compared to the interfaces

experiment group, but specification efficiency shows no statistically significant differences. To the best of our knowledge,

this is the first empirical study studying the specification effectiveness and efficiency of object-oriented abstractions in

the context of formal methods.

CCS Concepts: • Software and its engineering → Formal methods; Specification languages; • General

and reference → Empirical studies.

Additional Key Words and Phrases: Empirical Software Engineering, Controlled Experiment, Specification, Effective-

ness, Efficiency, Language Constructs, Interfaces, Traits, Abstract State Machines, CASM

ACM Reference Format:

Philipp Paulweber, Georg Simhandl, and Uwe Zdun. 2021. Specifying with Interface and Trait Abstractions in

Abstract State Machines: A Controlled Experiment. ACM Trans. Softw. Eng. Methodol. 30, 4, Article 47 (July 2021),

31 pages. https://doi.org/10.1145/3461694

1 INTRODUCTION

In 1993, Gurevich [24] described the Abstract State Machine (ASM) theory, which is a well-known state-based

formal method consisting of transition rules and algebraic functions. It has been used extensively by scientists

for a broad research field ranging from software, hardware and system engineering perspectives to specify,

∗Corresponding Author

Authors’ address: Philipp Paulweber, philipp.paulweber@univie.ac.at; Georg Simhandl, georg.simhandl@univie.ac.at; Uwe

Zdun, uwe.zdun@univie.ac.at, University of Vienna, Faculty of Computer Science, Research Group Software Architecture,

Währingerstraße 29, 1090, Vienna, Austria.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/3461694

2 Paulweber et al.

analyze, verify, validate, and construct systems in a formal way [60]. ASMs are used to formally describe

the evolution of function states in a step-by-step manner1 and are used to specify sequential, parallel,

concurrent, reflective, and even quantum algorithms. Based on the ASM theory by Gurevich [24], several

theory improvements and ASM-based language implementations were developed, which were summarized by

Börger and Stärk [8] and Börger and Raschke [7]. The diversity of ASM-based applications ranges from

formal specification of semantics of programming languages, such as those for Java by Stärk et al. [72]

or Very High Speed Integrated Circuit Hardware Description Language (VHDL) by Sasaki [63], compiler

back-end verification by Lezuo [41], software run-time verification by Barnett and Schulte [3], software and

hardware architecture modeling e.g. of Universal Plug and Play (UPnP) by Glässer and Veanes [22], to even

Reduced Instruction Set Computing (RISC) designs by Huggins and Campenhout [31].

Nowadays, there are several ASM language syntax definitions and tool implementations available like

AsmetaL [20], AsmL [26], Corinthian Abstract State Machine (CASM) [42], and CoreASM [19]. AsmetaL and

CoreASM offer a rich tool set to analyze and model ASM specifications and provide a Java-based interpreter

to execute and simulate the ASM models. AsmL and CASM are compiler oriented language implementations

and offer code generation support of modeled ASM specifications. AsmL is based on the .NET framework

whereas CASM provides C/C++ code generation and a high performance interpreter as well. Besides the

mentioned ASM languages and tools there exists AsmGofer [65] and eXtensible ASM (XASM) [2], but those

projects are discontinued.

In addition, many other state-based formal methods besides ASMs exist with their own languages and

associated tools e.g. Alloy [32], DEVS [12], EFSM [10], Event-B [1], STATEMATE [28], Temporal Logic of

Actions (TLA) [39], Vienna Development Method (VDM) [5], and Z [57].

1.1 Problem Statement

For various ASM languages and tools, as well as in most other state-based formal methods, the proposed

modeling languages lack easy-to-comprehend abstractions for describing structural and behavioral aspects

of specifications in a reusable and maintainable manner. Most of today’s specification languages have

implemented basic object-oriented abstractions such as classes and inheritance. As there are known problems

in such abstractions, leading to complexity, ambiguity, and low comprehensibility, such as the diamond

inheritance problem of multiple inheritance [46], it would make sense to study more advanced abstractions as

well. Today, many modern language implementations restrict class-based language constructs to allow only

single inheritance models and add additional abstractions such as interfaces [9] or traits [64] to the language.

A prominent example for ASMs is the modeling language AsmL [26] which uses the class abstraction along

with a single inheritance model to encapsulate the state and behavior. A similar approach can be observed

in the state-based formal methods community. Object-Z [69] or Z++ [40] provide class-based language

constructs with inheritance and polymorphism concepts.

But it is unclear if insights from modern object-oriented programming languages can be transferred to

state-based formal specification languages, as those two kinds of languages are substantially different. For

example, a specification language should be rigorous, simple, and self-explanatory, which is not the case for

1The ASM theory was formerly called Evolving Algebra.

Manuscript submitted to ACM

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 3

many modern programming languages. Therefore, we aim at empirically investigating how a language user

performs by only using one object-oriented abstraction, namely interfaces or traits.

There is a debate in the object-oriented community2, which of the abstractions, interfaces or traits, is

best suited to express behavioral aspects, and many implementations combine different language constructs.

A notable example would be the programming language Scala [49], which offers a trait syntax that is similar

to the Java [58] interface syntax and offers a class-based implementation and extension syntax. Another

example of mixed language constructs, namely interfaces and traits, can be found in the programming

language Rust [47], where the language user has to express interface definitions through traits. Empirical

research on language constructs in ASM languages and similar state-based formal methods can provide

some decision guidance to language designers and compiler engineers on choosing language constructs

in specification language designs and implementations. So far such empirical research is rare. Höfer and

Tichy [29] analyzed 133 reviewed articles of the Journal of Empirical Software Engineering in the timescale

from 1996 to 2006. They have discovered that controlled experiments about formal methods in general

are underrepresented and that “studies about programming languages and programming paradigms are

conspicuously absent”. They further concluded more experiments in this direction would encourage more

discussions on the comprehensability of programming languages and formal methods, and eventually improve

the language engineering process.

Due to the fact that so far studies about state-based formal methods and the comprehensibility of

object-oriented abstractions and language constructs in their context are missing (see Section 2.5), our study

also aims to make a contribution to improve the state of empirical knowledge about formal specification

languages. Prior to this work, we already have conducted another study [55] and investigated the effects on

how language users (experiment participants) understand structural and behavioral aspects of a state-based

formal method language (ASM) by reading a given ASM specification as stimuli and answering questions

about the properties of given specifications. The provided ASM specifications were represented in three

different language constructs – interfaces, mixins, and traits.

1.2 Research Objectives, Hypotheses, and Results

In this empirical study we investigate which of the object-oriented abstraction syntax extensions

– interfaces or traits – is easier to use by a participant while comprehending an informal

textual description and modeling a corresponding specification with a certain textual language

representation in the context of state-based formal methods.

State-based formal methods and their modeling languages are usually based on core concepts that are

significantly different from classes and objects. Reusable and maintainable specifications would be highly

useful in these methods and languages, too, and are largely missing in today’s methods and languages. In

our study, we use ASMs as a representative of state-based formal methods, and the modeling language

CASM [42] [43] [56] [52] as a representative for ASM-based languages and tools. As our study is focused on

the general notion of adding object-oriented language constructs to these languages and tools, we believe

most of our results can have an impact on other ASM languages. In this study the term specification

effectiveness corresponds to how well (reading, understanding, and writing) and the term specification

2See, e.g. https://stackoverflow.com/questions/9205083.

Manuscript submitted to ACM

https://stackoverflow.com/questions/9205083

4 Paulweber et al.

efficiency corresponds to how fast (duration time of processing) a participant comprehends a given stimuli

and specifies an example ASM specification using one of the two object-oriented abstractions. We define the

experiment goal using the Goal Question Metric (GQM) template [74] as follows: Analyze the Interfaces

and Traits object-oriented abstractions (language constructs) for the purpose of their evaluation with

respect to their specification effectiveness and efficiency from the viewpoint of the novice software

developer or designer in the context (environment) of a moderately advanced university software

engineering course. Our hypotheses are influenced by the debate in the object-oriented communities which

seems to favor traits over interfaces. We hypothesized that specification effectiveness measured by the

dependent variable correctness shows a significantly better performance for traits compared to interfaces

as well as that specification efficiency measured by the dependent variable duration shows a significantly

better performance for traits compared to interfaces. This hypothesis was influenced by the debate in the

object-oriented community, which often discusses traits more favorably than interfaces3 or points out that

“Traits are Interfaces”4 with code-level reuse functionality. However, it is not obvious whether or not such

opinions yield a statistically significant difference, and whether or not they can be mapped to the domain of

state-based formal languages. In addition, interfaces are probably the best known abstraction to developers

today, and like most ordinary developers our participants are trained in programming languages offering the

language construct interfaces in Java or how to model interfaces through a C++ abstract class.

For those reasons, it was interesting to perform the empirical study presented in this paper. The obtained

results in this study indeed indicate that the language construct traits show far better understanding

compared to interfaces.

1.3 Structure of this Article

In Section 2, we describe object-oriented abstractions, ASMs, the used ASM-based language representations

used in this study, and present related studies. Section 3 elaborates the planning of this study. In Section 4,

we describe the execution of the experiment, while the results are presented in Section 5 and discussed in

Section 6. We conclude the article in Section 7.

2 BACKGROUND

This section discusses some properties regarding object-oriented abstractions, ASMs, and ASM-based lan-

guage constructs that are of interest in this study. Readers already familiar with object-oriented abstractions,

ASMs, and the discussed language abstractions and their corresponding representations may consider to

skip some parts of this section.

2.1 Object-Oriented Abstractions

Interfaces define a protocol of (typed) operations (signatures) to which an implementer of a certain interface

(type) must conform [9]. An interface defines a type signature. No behavioral or state information can be

defined through interfaces. Each implementer of the interface has to provide an implementation of the

complete interface. Traits are similar to interfaces with the difference that they can define stateless behavior

which depends only on the trait itself [64]. Therefore, each implementer can reuse and rely on existing

3See, e.g. https://stackoverflow.com/questions/9205083.
4See, e.g. https://blog.rust-lang.org/2015/05/11/traits.html.

Manuscript submitted to ACM

https://stackoverflow.com/questions/9205083
https://blog.rust-lang.org/2015/05/11/traits.html

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 5

Interfaces

Interface1 Interface2

Protocol1 Protocol2

Implementer1 Implementer2

Structure1 Structure2

Behavior1 Behavior1

Behavior2

Traits

Trait1 Trait2

Behavior1 Protocol2

Implementer1 Implementer2

Structure1 Structure2

Behavior2

Fig. 1. Overview of Language Construct Properties

behavioral implementations which is not possible through Interfaces. Figure 1 depicts both object-oriented

abstractions and exemplifies the language construct properties. On the left side, an Interface example

with two interfaces is shown. Interface1 gets implemented by Implementer1 and Implementer2, whereas

Interface2 is only implemented by Implementer2. The same scenario is expressed through the object-oriented

abstraction Traits on the right side of the figure. As traits can define not only a protocol, the Trait1 directly

defines Behavior1 in the trait itself. Thus Behavior1 can be reused by both implementers.

2.2 Abstract State Machines

ASMs are used to express calculations in an abstract manner for many different application fields. According

to Gurevich and Tillmann [27], the ASM thesis states that if there is a computer system 𝐴, it can be

simulated in a step-by-step manner by a behaviorally equivalent ASM 𝐵. The resulting ASM theory and

formal method consist of three core concepts: (1) an ASM specification language, which looks similar to

pseudo code to express rule-based computations over algebraic functions with arbitrary data structures

and type domains; (2) a ground model serving as a rigorous form of blueprint and reference model; and

(3) incremental refinement of the reference model by instantiating more and more concrete models which

uphold the properties of the reference model [8].

ASMs has two fields of works – modeling and refinement. In order to model an application or system

through an ASM specification, an ASM language user has to understand the three most important modeling

concepts [7] of ASMs:

States are the notion in ASMs to define the objects and attributes of an application or system through

relations and function types. Therefore, all state information in an ASM specification is expressed

through a function definition (see Section 2.3).

Transactions describe under which conditions the modeled states evolve (value change). The evolving

is expressed through transaction rules. ASMs define several kinds of rules (conditional, iterative

etc.) but the most important one is the update rule. An update rule in ASMs defines which state

(function location) shall be updated with a new value. More than one update during a transaction is

collected in a so called update-set. Since ASM rules allow interleaved parallel and sequential execution

semantics [25], a correct ASM specification does not allow the update (insertion to the update-set) of

Manuscript submitted to ACM

6 Paulweber et al.

1 function counter : -> Integer // variable

2

3 function personsAge : String -> Integer // hash -map

Listing 1. Function Definition Example

1 derived nextCounter -> Integer = counter + 1

2

3 derived isFullAged(name : String) -> Boolean =

4 (personsAge(name) >= 18)

Listing 2. Derived Definition Example

1 // named rule

2 rule incrementOrResetCounter =

3 {

4 // conditional rule (if -then part)

5 if nextCounter != 10 then

6 // update rule

7 counter := nextCounter

8 // conditional rule (else part)

9 else

10 // update rule

11 counter := 0

12 }

Listing 3. Named Rule Definition Example

the same function location twice or more with a different value, which is referred in the literature as

an inconsistent update [7]. A language user can model transactions though named rule definitions (see

Section 2.3).

Agents are the actors of an ASM specification. There can be one (single) agent or multiple agents.

Every agent triggers its top-level rule and applies the collected updates after the rule termination to

the states. This is called an ASM step. Multiple ASM steps of one or multiple agents form the notion

of an ASM run, which ends depending on the termination condition modeled in the ASM specification.

Refinement of a modeled ASM specification can be achieved by one of the three kinds – data, horizontal,

or vertical refinement. A data refinement replaces abstract operations with refined operations which have a

one-to-one mapping (e.g., change or make a type more concrete). A horizontal refinement makes upgrades

to functionalities or changes the environmental settings. A vertical refinement adds more details about the

application or system (e.g., adding another requirement, more states etc.).

A more detailed description and elaboration of the ASM modeling and refinement concepts is given by

Börger and Raschke [7].

2.3 ASM Language Representation

In this study, we use the basic syntax elements from the CASM language5 [52]. The CASM language

elements used can be found in a similar fashion in other ASM languages; hence, we believe it is likely that

our results can be applied to other ASM languages. CASM is a statically typed ASM-based specification

language. Every specification is composed of definition elements. Relevant to this study are the following

three definitions – Function, Derived, and Rule definitions.

Function Definition. A function definition specifies an n-dimensional state (argument types) which maps

to a certain function type (return type). E.g. variables in a programming language are modeled as nullary

functions in ASMs, or hash-maps can be expressed as unary functions in ASMs. Listing 1 illustrates the

concrete syntax and some examples.

Derived Definition. A derived definition specifies functions which state values can only be derived from other

functions or deriveds without modifying the ASM state. Therefore, derived functions are side-effect free.

Listing 2 illustrates the concrete syntax and some examples which use state information from Listing 1.

5See https://casm-lang.org/syntax for CASM language description.

Manuscript submitted to ACM

https://casm-lang.org/syntax

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 7

Rule Definition. A rule definition specifies a named rule (language user defined rule) which describes the

actual computation and transaction of the ASM state evolving expressed through basic ASM rules namely:

(1) update rule to produce a new value for a given state function (location); (2) block rule to express bounded

parallelism of multiple rules; (3) sequential rule to express sequential execution semantics of multiple rules;

(4) conditional rule to specify branching (if-then-else); (5) forall rule to express parallel computations;

(6) choose rule to specify nondeterministic choice; (7) iterate rule to express iterations; and (8) call rule to

invoke named rules (sub-rule call). A more detailed explanation of all ASM rules is given by Börger and

Raschke [7]. Listing 3 illustrates the concrete syntax and an example which depends on some definitions

from Listing 1 and Listing 2.

2.4 Experiment Language Construct Representations

Besides a class concept used in AsmL [26], no other object-oriented language construct has been introduced

in the ASM language and tool landscape. To enable moving the state-of-the-art in advanced object-oriented

abstractions for such formal languages forward, this study tests two language construct representations,

namely interfaces and traits, to search for a suitable object-oriented abstraction to structure state and

behavioral aspects for such languages in general and specifically for CASM. In order to do so, we introduced

three new definitions for this study into the existing CASM syntax – Feature, Structure, and Implement

definitions.

Feature Definition. A feature definition specifies a new type (functionality) together with a set of operations

(derived and rule declarations) which form a protocol.

Structure Definition. A structure definition specifies a composition of (function) states which can be extended

with one or multiple features (functionalities).

Implement Definition. An implement definition specifies which feature gets implemented and used by which

structure. This definition element binds default or extended functionalities (behaviors) to a certain type

(structure).

Please note that we use these very general terms on purpose as they can be mapped to the two language

constructs under investigation. As a consequence, we can avoid bias from participants in the experiment

are who know keywords identifying the language construct through interface or trait which especially

applies for the keyword feature. The syntax of the two language constructs are designed in the style of

modern object-oriented programming languages.

Language Construct Interfaces (Experiment Group A). The feature syntax in the language construct Interfaces

only describes the protocol consisting of the set of operations [45] [9] a structure has to implement. Therefore,

it consists only of derived and/or rule declarations. In order to use a feature, the keyword implement has

to be used to extend the current structure. Listing 4 depicts an example specification with the Interface

language construct6. This syntax is primarily influenced by the Java programming language [58] interface

syntax.

6See form ifaces.pdf at [54].

Manuscript submitted to ACM

8 Paulweber et al.

1 feature Formatting = {

2 derived toString : -> String

3 }

4

5 structure Person implement Formatting = {

6 function name : -> String

7 function age : -> Integer

8

9

10

11 derived getName -> String = this.name

12 derived getAge -> Integer = this.age

13

14 rule setName(name : String

) = this.name := name

15 rule setAge(age : Integer) = this.age := age

16

17

18

19 // encapusalted feature implementation

20 derived toString -> String =

21 this.getName () + (this.getAge () as String)

22 }

Listing 4. Interfaces-Based Example Specification

1 feature Formatting = {

2 derived toString -> String

3 }

4

5 structure Person = {

6 function name : -> String

7 function age : -> Integer

8 }

9

10 implement Person = {

11 derived getName -> String = this.name

12 derived getAge -> Integer = this.age

13

14 rule setName(name : String

) = this.name := name

15 rule setAge(age : Integer) = this.age := age

16 }

17

18 // decoupled feature implementation

19 implement Formatting for Person = {

20 derived toString -> String =

21 this.getName () + (this.getAge () as String)

22 }

Listing 5. Traits-Based Example Specification

Language Construct Traits (Experiment Group B). The feature syntax in the language construct Traits is

equal to Interfaces except that it supports definition of optional default implementations inside the feature

definition itself. A structure only contains the state information. The behavior in the Traits abstraction

is implemented through two different kinds of separated implement definitions: (1) describes the behavior

of the structure; (2) describes the behavior of a certain feature for a structure. It is important to note

here that a default implementation provided in the feature syntax can be overwritten in the implement

definition. Listing 5 depicts an example specification with the Traits language construct7. This feature and

implement syntax is influenced by the Rust programming language [47] trait syntax8.

2.5 Related Studies

So far, interfaces and traits have mainly been studied in the context of programming languages and mainly

by proposing new solutions. A small number of empirical studies exists in this field which are mainly case

studies. For instance, Murphy-Hill et al. present a case study on the potential of traits to reduce code

duplication [48]. However, so far no study comparing the two language constructs interfaces and traits

covered in our study exists and also no controlled experiments.

Interface abstractions have been extensively studied in the context of formal methods [13] [17] [11] and

architecture description languages that offer formal representations [50] [21]. Traits in contrast have not

yet been studied in the context of formal methods. We are not aware of any formal method that unifies or

integrates the two object-oriented language constructs covered in our study.

Overall formal methods have been studied before in only a few empirical studies other than case studies.

An example of the few existing studies is the one by Sobel and Clarkson, who study the aiding effect of

first-order logic formalisms in software development [71]. Czepa and Zdun [16] and Czepa et al. [15] have

studied the understandability of formal methods for temporal property specification using similar research

methods as used in this study.

7See form traits.pdf at [54].
8See https://doc.rust-lang.org/rust-by-example/trait.html for Rust’s trait syntax description.

Manuscript submitted to ACM

https://doc.rust-lang.org/rust-by-example/trait.html

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 9

Snook and Harrison [70] performed structured interviews with formal method users asking them about

scalability, understandability, and tool support issues. A very interesting aspect of this study is that

the participants report that “the precise and accurate nature of the specification makes the coding task

straightforward and the coder is less likely to build in redundant code.” [70]. Another interesting finding

in this study is that the “interviewees thought that the difficulties with using formal specifications were

in finding the useful abstractions from which to create models.” [70]. Snook and Harrison [70] argue that

the problem behind the interviewees statement is that programming languages mainly focus on structural

aspects first whereas formal methods focus on behavioral aspects.

We are not aware of any empirical study systematically investigating object-oriented language constructs

in the context of state-based formal methods. Only, in our own prior work we conducted a study [55] with

105 participants where we analyzed how well experiment participants understand given ASM specifications

which are represented in three different language constructs – interfaces, mixins, and traits. The results of

this experiment showed that the object-oriented abstractions interfaces and traits are better understandable

than mixins.

3 EXPERIMENT PLANNING

This study is structured following the guidelines by Jedlitschka et al. [33] on how empirical research shall be

conducted and reported in software engineering. Moreover, the guidelines by Kitchenham et al. [36], Wohlin

et al. [75], and Juristo and Moreno [34] for empirical research in software engineering were used in our study

design. For the statistical evaluation of the acquired data we considered and applied the robust statistical

method guidelines for empirical software engineering by Kitchenham et al. [35].

3.1 Goals

The goal of this experiment is to measure the construct specification effectiveness and efficiency

on how well and fast a participant understands a given problem provided as informal textual description

and expresses an ASM specification as textual representation using one of the two different language

constructs, namely Interfaces and Traits. The quality focus of the construct specification effectiveness and

efficiency is the correctness and duration of the participant’s modeled ASM specification solution.

3.2 Context and Design

This study reports on a controlled experiment with 98 participants in total to study the specification

effectiveness and efficiency of the language constructs interfaces and traits in the context of ASMs. We used a

completely randomized design with one alternative per experimental group, which is appropriate for the

stated goal. Through this, we tried to avoid learning effects of the participants and experimenter bias in the

assignment of the groups. The statistical evaluation technique is based on measuring how well a participant

understands a given problem by specifying an appropriate solution written as textual representation in an

ASM language.

Manuscript submitted to ACM

10 Paulweber et al.

3.3 Participants

All 98 participants of the experiment are Bachelor of Science (BSc) students of the Faculty of Computer

Science at the University of Vienna, Austria enrolled in the course Software Engineering 2 (SE2)9 in

the winter term 2018/19. The BSc students enrolled in the SE2 course are used as proxies for novice to

moderately advanced software architects, designers, or developers. This course, which is a mandatory part

of the BSc curricula at the University of Vienna, is intended for students in the fourth semester of the

BSc curricula. The content of this course is about teaching principles of the construction and design of

software systems, investigating different methods and tools, design patterns, programming styles, and how to

tackle non-functional requirements. The participants (students) received training in programming, software

engineering, (data) modeling, basic formal methods, algorithms, and mathematics in previous courses.

At the beginning of the SE2 course, the students were informed that during the semester there will be

an opportunity to participate in an experiment. The attendance of the experiment was optional, and the

submitted solutions (filled out survey forms) were rewarded with up to 6 bonus points. There was the

option to receive the 6 bonus points by performing the tasks, but not participate in the experiment (opt out

option). How well (correctness, see Section 5.1) a participant answered the survey determined the bonus

points. In total, there were 98 participants, which were randomly allocated to the treatments (using one

of the two language construct representations in an ASM specification language, see Section 2). Due to

random assignment of the participants to groups – Interfaces (Group A) and Traits (Group B) – the final

distribution resulted in 49 : 49. Some may argue that students as experiment participants are not good

proxies for novice software engineers. The experiment participants are students of an advanced course (SE2)

at the University of Vienna, which trained the students in abstractions needed for the experiment task

domain, and were trained in basic formal methods in prior courses. Easy to understand formalisms are key

to correct specifications in practice. We expect advanced students to be good proxies for inexperienced

developers and architects.

In this study, we do not focus on well trained experts as they are usually also much better trained in

formalisms, because the goal of the study is not to focus on techniques that can only be applied by a few very

well trained experts. Furthermore, according to Kitchenham et al. [36] using students “is not a major issue

as long as you are interested in evaluating the use of a technique by novice or nonexpert software engineers.

Students are the next generation of software professionals and, so, are relatively close to the population

of interest”. This is directly reflected in this study because some of the students who participated in the

experiment show several years of programming experience as well as several years of work experience in the

software and/or hardware industry (see Figure 2d). Other studies by Svahnberg et al. [73] or Salman et al.

[62] would argue even further and state that under certain circumstances, students are valid representatives

for professionals in empirical software engineering experiments.

3.4 Material and Tasks

The experiment is based on a selection of basic software system applications. The selection includes a

Calculator System, an Event Scheduling/Pooling System, and a Traffic Control System as example applications

inspired by some examples provided by Börger and Raschke [7].

9See https://ufind.univie.ac.at/en/course.html?lv=051050&semester=2018W for SE2.

Manuscript submitted to ACM

https://ufind.univie.ac.at/en/course.html?lv=051050&semester=2018W

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 11

The Calculator System example focuses on the aspect on the decomposition of states and behaviors of a

client-server application by defining and reusing a message-based interface or trait between them.

In the Event Scheduling/Pooling System example a participant shall express the use of abstract behavior

by using interface-based or trait-based parameters (behavioral typed parameters) to separate the event

scheduling from the event execution behavior.

The Traffic Control System example focuses expressing, mixing, and reusing multiple behaviors to form

and compose certain structural state properties. Therefore, the key aspect in this example application is to

detect which behavior can be expressed through a proper interface or trait and can be combined to achieve

certain structural state property.

The principles and concepts to comprehend the given example system applications are related to the

subjects taught in the SE2 course. This study consists of two major experiment material artifacts:

(1) Information Sheet An experiment information document10 explaining the ASM language syntax

and semantics without the experiments’ language construct syntax and semantics extensions.

(2) Survey Form Two experiment survey forms11 per experimental group and language construct

containing the actual survey along with the explicit experiments’ language construct syntax

and semantics extension and description per experimental group.

The two experiment survey forms are structured the same way consisting of four parts: (1) a participant

background information questionnaire; (2) the experimental group language construct syntax and semantics

extension description; (3) three experiment tasks (equal to all experiment groups); and (4) an overall

experiment questionnaire at the end. Each experiment task is divided into three sections:

(1) Informal Description of a selected software system application as an informal textual represen-

tation. The students (participants) were instructed to read and understand the given informally

described software system application before they start to process the next section of the experiment

task.

(2) Formal Specification is an open question field where the participants were instructed to write down

the corresponding ASM specification for the given informally described software system application

by using the experimental group assigned language construct syntax extension for the ASM language.

(3) Self Assessment is a questionnaire used to obtain a perspective of the participants’ self assessment

of how correct their answers are with a certain level of confidence.

Important is that all task sections are identical for both experiment groups, since only in the participants’

written solution a difference is visible due to the different assigned treatment (language construct) in the

modeled ASM specification.

3.5 Variables and Hypotheses

The independent variables (factors) for this controlled experiment have two treatments, namely the two

different representations of the language constructs Interfaces and Traits. The dependent variables of this

study are measured through:

10See info.pdf at [54].
11See form ifaces.pdf and form traits.pdf at [54].

Manuscript submitted to ACM

12 Paulweber et al.

(1) Correctness The specification effectiveness (correctness) is derived from the participants’ modeled

ASM specification and examined through evaluation criteria by analyzing structural, behavioral,

reusable, functional, and syntax properties.

The precise description on how the correctness is computed is given in Section 5.1.

(2) Duration The specification efficiency (duration) is the time it took the participants to comprehend

the informal specification (stimuli) and model a corresponding ASM specification by using one of the

two object-oriented abstractions. Important to note here is that the measurement of the duration

variable only includes the processing time (reading, comprehending, and writing) and excludes breaks

(see Section 3.4).

We hypothesized that Traits are easier to comprehend than Interfaces due to the fact that Traits have

the ability to avoid code duplication and clearer separation of state and behavioral aspects by having almost

equal Application Programming Interface (API) declaration styles as Interfaces. Consequently, as suggested

by Wohlin et al. [75] we formulate the following null hypotheses, where specification effectiveness is measured

by the correctness variable and specification efficiency is measured by the duration variable:

H0,1 The specification effectiveness shows no significant difference (similar performance) for Interfaces

compared to Traits.

H0,2 The specification efficiency shows no significant difference (similar performance) for Interfaces

compared to Traits.

From the null hypotheses above we can derived and formulate the following alternative hypotheses, for

this controlled experiment:

HA,1 The specification effectiveness shows a significant difference (better performance) for Traits

compared to Interfaces.

HA,2 The specification efficiency shows a significant difference (better performance) for Traits compared

to Interfaces.

4 EXPERIMENT EXECUTION

This experiment was executed in two steps – a preparation and a procedure phase.

4.1 Preparation

Two weeks before the experiment we handed out the preparation material (the experiment information

sheet, see Section 3.4) through an e-learning platform12. This document provided general information of

the upcoming experiment and an introduction to the ASM language syntax and semantics used without

explaining one of the two language constructs. All ASM language concepts used are depicted with short

example ASM specification snippets. The participants were allowed to use this document during the

experiment in printed form. The main reason why we provided the experiment information document is

that all participants needed to be educated to the same level of detail with regard to a state-based formal

method and specifically to a concrete ASM language representation (see Section 2).

12See https://moodle.org for e-learning platform information.

Manuscript submitted to ACM

https://moodle.org

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 13

4.2 Procedure

The experiment was carried out using paper and pencil, as if it were an (closed book) exam. Participants

were allowed to bring only one aid – the information sheet – to process the experiment survey form as

described in the previous Section 4.1. At the beginning of the experiment, every participant received a

random experiment survey form (see Section 3.4). They were instructed to fill out and process the survey

from the first page to the last page in this particular order. Furthermore, a clock with seconds granularity was

projected onto a wall to provide timestamp information to the participants. They were asked to track start

and stop timestamps during the processing of the experiment tasks. After the experiment every participants’

modeled ASM specification was examined through a list of evaluation criteria (see Section 5.1) and the

results of the examination was recorded in a spreadsheet. The participants’ task start and stop timestamps

were converted to a duration in seconds and summed up to a total duration for all tasks. We used the

four-eyes principle during every manual work step (answer obtaining and timestamp conversion) in the data

collection. The experiment execution and data collection were performed as described in this Section and we

have not observed any form of deviations or unforeseen difficulties.

5 ANALYSIS

All statistical analysis was performed with the software tool R13. The analysis processes14 contain the

following steps: (1) load the prepared data-set from Section 5.1; (2) calculate the descriptive statistics

for the dependent variables which are explained in detail in Section 5.2; (3) perform a group-by-group

comparison with appropriate statistical hypotheses tests which are explained in detail in Section 5.3; (4)

generate table/plot information in order to include this information in this article. In order to reproduce the

analysis results, some R library package dependencies have to be installed15.

5.1 Data-Set Preparation

The raw data16 collected during the experiment execution phase (see Section 4) was prepared17 in the

following manner: (1) the obtained LibreOffice OpenDocument Spreadsheet (ODS) file [51] was exported to

a Comma-Seperated Values (CSV) file [67]; (2) the CSV file was imported for further processing; (3) type

castings of several data rows were performed; (4) the calculation of task-based and overall Duration times;

(5) the calculation of task-based and overall Correctness values; and (6) stored as an R Data-Set (RDS)

file [59] for further processing and analysis.

The calculation of the Correctness value is composed out of a check list of yes-and-no statements18 for

all the different tasks in the experiment survey forms (see Section 3.4). This list of yes-and-no statements

was derived before the experiment execution by specifying ground truth models for both object-oriented

language abstractions variants – interfaces and traits – of the informal described experiments’ example

software application systems. In order to enable a flexible way to compare the participants’ solutions from the

13See https://www.r-project.org for version 3.5.2.
14See analyze.r at [54].
15See install.r at [54].
16In order to enable reproducability of our results, the data-set (README.ods) is made public in the long term open data
archive Zenodo [54] together with all documents and R scripts.
17See prepare.r at [54].
18See README.ods for the complete list of the yes-and-no statements along with the collected data for all participants at [54].

Manuscript submitted to ACM

https://www.r-project.org

14 Paulweber et al.

Table 1. Number of Yes-and-No Statements per Evaluation Criteria and Tasks

Evaluation Criteria Task 1 Task 2 Task 3 All Tasks

Structure 4 3 5 12

Behavior 4 3 5 12

Syntax 5 5 7 17
Reusability 4 4 6 14

Functionality 4 2 4 10

Total 21 17 27 65

experiment, the obtained list of yes-and-no statements reflects generic properties the provided and specified

models by the participants shall contain. The yes-and-no statements are grouped into five evaluation criteria

(categories) – structure, behavior, syntax, reusability, and functionality. The following list depicts for each of

the evaluation criteria an example yes-and-no statement:

(1) Structure Did the participant specify certain structural elements? An example structural evaluation

criteria statement for Task 119 is defined as follows: “Proxy structure defined”?

(2) Behavior Did the participant specify certain behavioral elements? An example behavioral evaluation

criteria statement for Task 119 is defined as follows: “Client implemented default behavior”?

(3) Syntax Did the participant use the correct language construct syntax for the assigned treatment?

An example syntactical evaluation criteria statement for Task 119 is defined as follows: “Server valid

abstraction syntax”?

(4) Reusability Did the participant recognized reusable elements and did (s)he specify it through the

correct language construct syntax for the assigned treatment? An example reusable evaluation criteria

statement for Task 119 is defined as follows: “Operations implemented for Proxy”?

(5) Functionality Did the participant specify certain functionalities? An example functional evaluation

criteria statement for Task 119 is defined as follows: “Message provides unique identification”?

In total there exist 65 yes-and-no statements per experiment participant. By accumulating the percentage

value of all yes-and-no statements a total of 100% correctness20 can be achieved. Table 1 depicts the

number of yes-and-no statements in total and the dissection per evaluation criteria and tasks.

5.2 Descriptive Statistics

Background Information. The participants’ experience and characteristics are captured in the experiment

through eight parameters21 and the results indicate that overall, the random distribution of the participants

to the experiment groups is almost balanced. The participants’ age (see Figure 2a) shows a similar distribution

for both groups with a peak around 23 years. The programming experience of the participants measured in

years (see Figure 2b) indicate that the interfaces group has a more than twice higher density around 3 years

of experience in programming compared to the traits group which has its peak around 2.5. This is the only

background information parameter showing a slightly unbalanced distribution and indicates that the general

programming experience level is higher in the interfaces experiment group. This discrepancy is attributed to

the randomized distribution of the experiment survey to the participants.

19See form ifaces.pdf or form traits.pdf for description of Task 1 at [54].
20For detailed formula, see prepare.r Line 97-250 at [54].
21See appendix.pdf at [54] for more detailed supplementary background information.

Manuscript submitted to ACM

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 15

15 20 25 30 35 40

0.00

0.05

0.10

0.15
D
en

si
ty

Age [year]

Interfaces

Traits

(a) Kernel Density Plot of Participants’ Age

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Exp. Prog. [year]

Interfaces

Traits

(b) Kernel Density Plot of Participants’ Programming Experience in Years

0 2 4 6 8 10

0.0
0.1
0.2
0.3
0.4
0.5

D
en

si
ty

Exp. Spec. [year]

Interfaces

Traits

(c) Kernel Density Plot of Participants’ Specifying Experience in Years

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

Exp. SW+HW [year]

Interfaces

Traits

(d) Kernel Density Plot of Participants’ SW/HW Industry Experience in Years

Table 2. Participants’ Gender

Gender Interfaces Traits

Female 20 17
Male 29 32

Table 3. Participants’ Level of
Education

Education Interfaces Traits

None 42 45

BSc 7 4

Table 4. Participants’ Pro-
gramming Language Knowl-
edge

Language Interfaces Traits

Java 49 49
Cpp 46 48

PHP 41 39

C 13 17
Scala 11 16

Swift 7 3

Assembler 3 5
Basic 2 3

Fortran 2 2
Rust 1 0

Kotlin 0 3

Haskell 0 2

Table 5. Participants’ Prior
Knowledge of Formal Methods

Interfaces Traits

5 4

Fig. 2. Descriptive Plots per Group of Participants’ Background Information

In contrast to the programming experience, the distribution of the participants’ specification (modeling)

experience measured by years (see Figure 2c) is quite similar for both groups with a peak at 2 years. Since

our participants are students, the peak of the software (SW) and hardware (HW) industry experience

measured in years (see Figure 2d) is at zero years, but a number of students show a similar level of industry

experience between 1 to 3 years.

The experiment total ratio between female and male participants is 37 (37.76%) : 61 (62.24%). The

interfaces group has 20 (40.82%) female and 29 (59.18%) male participants and the traits groups has 17

(34.69%) female and 32 (65.31%) male participants.

Manuscript submitted to ACM

16 Paulweber et al.

From the perspective of prior computer science education (see Table 3) only 11 (11.22%) students have a

previous BSc degree and the other 87 (88.78%) participants are undergraduates. The numbers are quite

comparable in the two experiment groups. All participants (100%) are familiar with Java and 94 (95.92%)

participants – 46 (93.88%) interfaces group and 48 (97.96%) traits group – are familiar with C++. That

means the interface abstraction should be more than familiar to both experimental groups. We can further

observe languages offering traits, besides the programming language PHP (total 80 (81.63%) – interfaces

group 41 (83.67%) and traits group 39 (79.59%)), are rather underrepresented in both experimental groups.

This is the case for the programming languages Scala (total 27 (27.55%) – interfaces group 11 (22.45%)

and traits group 16 (32.65%)), Swift22 (total 10 (10.20%) – interfaces group 7 (14.29%) and traits group 3

(6.12%)), and Rust where only one of all participants (interfaces group 2.04%) is familiar with the language.

A very important parameter of the background information is if there are participants which have a

prior knowledge of formal methods (see Table 5). Accordingly to the obtained results, only 9 participants

(9.18%) in total – interfaces group 5 (10.20%) and traits group 4 (8.16%) – have stated that they have prior

knowledge in a formal method.

Dependent Variable Correctness. Table 6 contains the number of observations, central tendency measures,

and dispersion measures per language construct for the dependent variable Correctness23 and this acquired

data is visualized as a kernel density plot in Figure 3b and a box plot in Figure 3c. In the box plot we can

observe that the median of the Interfaces group is almost at the lower quartile value of the Traits group.

There is one outlier in the Interfaces group which performed very well.

The distribution of the Interfaces group is left skewed whereas the Traits group is right skewed. The Traits

group has no outlier at all. According to the kernel density plot, the data does not appear to be normally

distributed, and both distributions look different, which implies unequal variances and both distributions

have two peaks as well. The Interfaces group has one peak at 0.16 and another one at 0.37 whereas the

Traits group has one peak at 0.17 and another one at 0.41.

Dependent Variable Duration. Table 8 contains the number of observations, central tendency measures, and

dispersion measures per language construct for the dependent variable Duration24 and this acquired data

is visualized as a kernel density plot in Figure 4b and a box plot in Figure 4c. In the box plot we can observe

that for both groups the median is almost the same (Interfaces at 3935 and Traits at 3980), but the lower

and upper quantiles of the Traits group indicate a wider distribution which is reflected in Figure 4b. The

latter shows the data does not appear to be normally distributed for the Interfaces group and almost for

the Traits group, and the two distributions look different, which implies unequal variances. The Interfaces

group has its peak at 3950 seconds and the Traits group has its peak at 4000 seconds. Moreover, the box

plot shows three outliers for the Interfaces group – two participants which processed the experiment (survey

form) really fast and one participant who processed it really slow.

22Swift has implemented traits through the protocol extension syntax. See, e.g. https://docs.swift.org/swift-book/
LanguageGuide/Extensions.html.
23Unit is correctness rate between 0.0 and 1.0 (denoted [1]).
24Unit is duration in seconds (denoted [s]).

Manuscript submitted to ACM

https://docs.swift.org/swift-book/LanguageGuide/Extensions.html
https://docs.swift.org/swift-book/LanguageGuide/Extensions.html

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 17

0.0 0.4 0.8

-2

-1

0

1

2

T
h
eo
re
ti
ca
l
Q
u
a
n
ti
le
s

Sample Quantiles

Interfaces

0.0 0.4 0.8

Traits

(a) Normal Q-Q Plot of Correctness

Table 6. Descriptive Statistics per Group of Depen-
dent Variable Correctness

Interfaces Traits

Number of observations [1] 49 49

Mean [1] 0.2585 0.3283

Standard deviation [1] 0.1624 0.1370

Median [1] 0.2206 0.3389
Median abs. deviation [1] 0.1673 0.1737

Minimum [1] 0.0000 0.1044

Maximum [1] 0.7678 0.6059

Skew [1] 0.7353 0.0061
Kurtosis [1] 0.4169 -1.1433

Shapiro-Wilk Test 𝑝 [1] 0.0437 0.0421

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

D
en

si
ty

Correctness [1]

Interfaces

Traits

(b) Kernel Density Plot of Correctness

0.0 0.2 0.4 0.6 0.8 1.0

G
ro
u
p
s

Correctness [1]

Interfaces

Traits

(c) Box Plot of Correctness

Table 7. Hypothesis Tests per
Group Combination of the Depen-
dent Variable Correctness

Interfaces
vs. Traits

Cliff’s 𝛿 0.2932

s𝛿 0.1109

v𝛿 0.0123
z𝛿 2.6449

CIlow 0.0635

CIhigh 0.4934
𝑃 (𝑋 > 𝑌) 0.3528

𝑃 (𝑋 = 𝑌) 0.0012

𝑃 (𝑋 < 𝑌) 0.6460
𝑝 0.0095

𝑝FDR 0.0191

Effect Size small

Fig. 3. Descriptive Plots per Group of the Dependent Variable Correctness

5.3 Hypothesis Testing

Due to the presence of two experiment groups and two dependent variables, the Multivariate Analysis

of Variance (MANOVA) [6] would be a suitable statistical procedure, but necessary assumptions must

be met to apply this method. The investigation of the kernel density plots – Figure 3b for Correctness

and Figure 4b for Duration – indicates that not all distributions of the experiment groups are normally

distributed, which the MANOVA would need in order to be applied. We applied the Shapiro-Wilk normality

test [68] (last row in Table 6 and Table 8) and for both groups (Interfaces and Traits) for the dependent

variable Correctness shows a significant (𝑝 ≤ 0.05) difference to the normal distribution, which would make

MANOVA not suitable for Correctness but suitable for Duration. To finally conclude that the MANOVA

method cannot be applied, we visually inspected the normal Q-Q plots for both dependent variables, which

are depicted in Figure 3a for Correctness and Figure 4a for Duration. All distribution plots indicate

Manuscript submitted to ACM

18 Paulweber et al.

0 2000 5000

-2

-1

0

1

2
T
h
eo
re
ti
ca
l
Q
u
a
n
ti
le
s

Sample Quantiles

Interfaces

0 2000 5000

Traits

(a) Normal Q-Q Plot of Duration

Table 8. Descriptive Statistics per Group of Depen-
dent Variable Duration

Interfaces Traits

Number of observations [1] 49 49

Mean [s] 3937.96 3997.45

Standard deviation [s] 1060.92 960.31

Median [s] 3935.00 3980.00
Median abs. deviation [s] 794.67 1086.75

Minimum [s] 1260.00 2002.00

Maximum [s] 6467.00 5833.00

Skew [1] -0.2517 0.0730
Kurtosis [1] 0.2615 -0.9831

Shapiro-Wilk Test 𝑝 [1] 0.4969 0.4108

0 1000 2000 3000 4000 5000 6000

0e+00

1e-04

2e-04

3e-04

4e-04

D
en

si
ty

Duration [s]

Interfaces

Traits

(b) Kernel Density Plot of Duration

0 1000 2000 3000 4000 5000 6000

G
ro
u
p
s

Duration [s]

Interfaces

Traits

(c) Box Plot of Duration

Table 9. Hypothesis Tests per
Group Combination of the Depen-
dent Variable Duration

Interfaces
vs. Traits

Cliff’s 𝛿 0.0217

s𝛿 0.1179

v𝛿 0.0139
z𝛿 0.1837

CIlow -0.2074

CIhigh 0.2484
𝑃 (𝑋 > 𝑌) 0.4890

𝑃 (𝑋 = 𝑌) 0.0004

𝑃 (𝑋 < 𝑌) 0.5106
𝑝 0.8547

𝑝FDR 0.8546

Effect Size negligible

Fig. 4. Descriptive Plots per Group of the Dependent Variable Duration

that the linearity assumption is not met and the power of the test might be affected. Thus we ruled out

multivariate and parametric testing because it could lead to unreliable results.

Instead, we selected a non-parametric testing method. When we considered our acquired data, according

to Kitchenham et al. [35], we cannot use the Kruskal-Wallis test [38] because it is strongly affected by

unequal variances. Therefore, we select a robust non-parametric test called Cliff’s 𝛿 [14]. This testing method

is unaffected by non-normal data, change in distribution, and (possible) unstable variance.

The results of the Cliff’s 𝛿 test is shown in Table 7 for the dependent variable Correctness and in Table

9 for the dependent variable Duration. Due to the fact that we applied this hypothesis test two times, we

are required to lower the significance level in order to avoid Type I errors, which is about not detecting

an effect that is not present. A suitable approach would be to apply the Bonferroni correction [18], which

suggests to lower the current significance level 𝛼 = 0.05 divided by the times a certain test was applied

Manuscript submitted to ACM

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 19

(𝑛 = 2), which would result into 𝛼′ = 𝛼
𝑛
= 0.05

2
= 0.025. Unfortunately, this significance level correction

is known to increase Type II errors, which is about not detecting an effect that is present. Therefore, we

choose a more robust correction method which does not increase Type II errors, namely the False Discovery

Rate (FDR) adjusted p-values [4]. According to the FDR adjusted 𝑝-values (𝑝FDR) in Table 7 and Table 9,

there is evidence to reject one of the hypotheses of this study (see Section 3.5). For the dependent variable

Correctness we found evidence of a better specification effectiveness of expressing structural, behavioral,

syntactical, reusable, and functional aspects through ASM specifications from a given informal description

of software system applications. The test results on Correctness are significant with a small effect size

magnitude [35] for the comparison of Interfaces and Traits, which suggests to reject H0,1 and to accept

HA,1. For the dependent variable Duration the null hypothesis H0,2 cannot be rejected as the test results

are not significant. Therefore, the alternative hypothesis HA,2 cannot be accepted.

6 DISCUSSION

This section covers the evaluation, implications, threats to validity, inferences, and relevance to practice.

6.1 Evaluation of Results and Implications

The descriptive statistics do directly favor one of the language constructs, because by looking at the dependent

variable Correctness, Traits performs better than Interfaces. The median of the Correctness variable

is for language construct Interfaces 22.06% and Traits 33.89%. Due to the fact that all participants have

almost no prior knowledge (< 10%) of ASMs and formal methods in general (checked by an informational

question in the survey, see Section 5.2), a median for the specification effectiveness (correctness) between

22% to 34% can be considered a rather good result in this study. For the Duration descriptive statistical

results, Interfaces and Traits seem to have a similar distribution. The median of the Duration variable is

for language construct Interfaces 3935𝑠 (1ℎ 5𝑚𝑖𝑛 35𝑠) and Traits 3980𝑠 (1ℎ 6𝑚𝑖𝑛 20𝑠), which are good

results in the scope of the processed survey and the achieved Correctness results with a limited experiment

time of 120𝑚𝑖𝑛 (2ℎ). Note that the highest participant duration was 6467𝑠 (1ℎ 47𝑚𝑖𝑛 47𝑠).

In the inferential statistics Traits show a significantly better performance than Interfaces in terms of

Correctness (specification effectiveness). This significance implies that for the ASM language user (novice

software developer or designer) it is easier and more effective to express informal descriptions and their

properties with Trait-based ASM specifications rather than with Interface-based ASM specifications.

In order to explain and gain more details about the better Correctness results for the Traits group

compared to the Interfaces group, we have dissected the correctness to the five evaluation criteria (see

Section 5.1) and analyzed them individually.

The structural correctness (see Figure 5a) value shows a density about twice as high for the Traits group

with a peak correctness value for both groups around 61%. The distribution of the behavioral correctness

(see Figure 5b) depicts that the participants of the Traits group performed much better (peak around 50%)

in specifying behavioral aspects in the provided ASM specification solution compared to the Interfaces

group (peak around 7.5%). It is interesting that the results on the reusability properties (see Figure 5c) of

the specified ASM specifications performed only slightly better for the Traits group. This indicates, together

with the low correctness values, that the participants had problems to detect possible interfaces inside the

informal descriptions of the software system applications.

Manuscript submitted to ACM

20 Paulweber et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0

D
en

si
ty

Structure [1]

Interfaces

Traits

(a) Kernel Density Plot of Structural Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

D
en

si
ty

Behavior [1]

Interfaces

Traits

(b) Kernel Density Plot of Behavioral Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0

D
en

si
ty

Reusability [1]

Interfaces

Traits

(c) Kernel Density Plot of Reusability Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

D
en

si
ty

Functionality [1]

Interfaces

Traits

(d) Kernel Density Plot of Functionality Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Syntax [1]

Interfaces

Traits

(e) Kernel Density Plot of Syntax Correctness

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Self. Assess. [1]

Interfaces

Traits

(f) Kernel Density Plot of Participants’ Self Assessment

Fig. 5. Descriptive Plots per Group of Correctness Evaluation Criteria and Participants’ Self Assessment

0 2000 5000

0.0

0.2

0.4

0.6

0.8

1.0

dataB[[i]]

d
a
ta
A
[[
i]
]

Interfaces

C
o
rr
ec
tn
es
s
[1
]

Duration [s]

0 2000 5000

0.0

0.2

0.4

0.6

0.8

1.0

dataB[[i]]

d
a
ta
A
[[
i]
]

Traits

Table 10. Correlation per Group of the Dependent
Variables Correctness to Duration

Interfaces Traits

Spearman’s 𝜌 0.4980 0.5596

Pearson’s 𝑟 0.4374 0.5584

Fig. 6. Scatter Plot per Group of the Dependent Variables Correctness to Duration

The distributions of the functionality correctness (Figure 5d) show that a large number of participants of

the Interfaces group were not able to express functionalities very well. The Traits group, in contrast, shows

a very stretched distribution from 0% up to 65%. Apparently the participants were able to express (non

object-oriented related) functionalities better through the Traits-based ASM syntax extension. Figure 5e

Manuscript submitted to ACM

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 21

Table 11. Questionnaire Results Qn

(a) Results of Q1 (Stimuli)

Q1 Interfaces Traits

strongly agree 4 4
agree 20 19

neutral 13 14

disagree 10 8
strongly disagree 2 4

(b) Results of Q2 (Structural)

Q2 Interfaces Traits

strongly agree 2 4
agree 17 10

neutral 11 17

disagree 18 10
strongly disagree 1 8

(c) Results of Q3 (Behavioral)

Q3 Interfaces Traits

strongly agree 1 2

agree 9 5
neutral 11 7

disagree 21 22

strongly disagree 7 13

(d) Results of Q4 (Functionality)

Q4 Interfaces Traits

strongly agree 1 1

agree 8 2
neutral 10 16

disagree 23 15

strongly disagree 7 15

(e) Results of Q5 (Interfaces)

Q5 Interfaces Traits

strongly agree 15 15

agree 22 24

neutral 6 6
disagree 5 1

strongly disagree 1 3

(f) Results of Q6 (Traits)

Q6 Interfaces Traits

strongly agree 2 1

agree 7 5

neutral 3 5
disagree 21 16

strongly disagree 16 22

compares syntactical correctness results. We can observe that both groups’ distribution have two peaks –

7% and 35% for the Interfaces group, and 21% and 45% for the Traits group.

The kernel density plot for the participants’ self assessment is depicted in Figure 5f. The self assessment

was measured by calculating the difference between the actual Correctness value and the participants

Confidence value that a certain solution to a task they worked on was correct. A self assessment value ≤ 0

means the participant overestimated and ≥ 0 means the participant underestimated the Correctness of the

given experiment answers. Both experiment groups show almost a similar self assessment with its peak in

the underestimated section. This implies that both object-oriented abstractions show a similar participants’

self assessment regarding their Confidence in the Correctness of their given solutions.

Studying the scatter plot (Figure 6), Spearman’s rank correlation, and Pearson product-moment correlation

(Table 10) of the two dependent variables Correctness and Duration, we cannot observe a clear (linear

nor a non-linear) monotonic trend that the dependent variables are strongly correlated somehow.

As described in Section 3.4 we also asked the participants to fill in a post experiment questionnaire

where they could provide us answers using six Lickert-scale [44] questions (Qn) with five possible answers:

(1) strongly agree, (2) agree, (3) neutral, (4) disagree, (5) strongly disagree. The questions and their

corresponding results are:

Q1 “Every given specification was easy to read and understand.” According to the obtained answers (see

Table 11a), the perceived difficulty was almost equal. This means that most of the participants in

Manuscript submitted to ACM

22 Paulweber et al.

both groups agree that the provided informal descriptions of the software system applications were

easily understood.

Q2 “I had no trouble to specify structural elements of the given informal specifications.” The results in

Table 11b show that for the Traits group 17 (34.69%) participants rank their expressing of structural

properties neutral. Among the other participants, one half tends to strongly agree and the other half

to strongly disagree. The Interfaces group answers of Q2 are more split with the two biggest groups

saying they agree and the other one disagrees.

Q3 “I had no trouble to specify behavioral elements of the given informal specifications.” The answers of

this question (see Table 11c) reflect that in both language construct groups the participants had more

or less troubles to express behavioral properties, but the results of the behavioral correctness (see

Figure 5b) show clearly that the Traits group performed way better than the Interfaces group.

Q4 “I had no trouble to specify functionality extensions for the given informal specifications.” Similar to

the answers of Q3, Table 11d shows that the participants of the Traits group perceived that they

had troubles to express functionality extensions (reusable protocol and behavioral properties) but

the results for the correctness values of reusability (see Figure 5c) indicate that the Interfaces group

performed worse than the Traits group.

Q5 “I am familiar with the language concept called Interfaces.” Accordingly to the participants’ back-

ground information (see Table 4), 100% of them know Java which is more or less reflected in the

results to this question (see Table 11e), where we asked the participants if they are familiar with the

language construct interfaces.

Q6 “I am familiar with the language concept called Traits.” In contrast to Q5, the results of this question

(see Table 11f) are surprising, because more participants of the Interfaces group know the language

concept traits compared to the Traits experimental group itself. So seemingly the good results for

traits have been achieved, even though more knowledge on traits was present in the interfaces group.

In summary, the post experiment questionnaire shows that the participants believe they understood the

constructs to be used reasonably well, and as expected interfaces are better known than traits before the

experiment. In this light, our results indicating better results for traits are even more remarkable. It would

be interesting to further study how the results would change, if participants would receive training of traits

before the experiment.

6.2 Exploration of Moderating Variables

To increase the value of our findings and the resulting conclusions we investigated and explored the following

moderating variables – subject, experience, and gender.

Subject. For this moderating variable, we are interested to analyze the participants’ task-based performance

and if such increases or decreases. In order to obtain such results, we first investigated if there is a difference

in the processing time. Due to the experiment design (see Section 3.4), we are able to divide the dependent

variable duration into two parts – comprehend (reading/understanding) and specify (modeling/writing).

Figure 7a depicts the comprehend duration for all tasks whereas Figure 7e depicts the specify duration for

all tasks. We can observe from those two kernel density plots that the participants spent more time on the

actual specifying process than reading and comprehending the informal specification of the given tasks. For

Manuscript submitted to ACM

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 23

0 1000 2000 3000 4000

0.0000

0.0005

0.0010

0.0015
D
en

si
ty

Duration [s]

Interfaces

Traits

(a) Kernel Density Plot of Overall Comprehend Duration

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

D
en

si
ty

Correctness [1]

Interfaces

Traits

(b) Kernel Density Plot of Task 1 Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

D
en

si
ty

Correctness [1]

Interfaces

Traits

(c) Kernel Density Plot of Task 2 Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

D
en

si
ty

Correctness [1]

Interfaces

Traits

(d) Kernel Density Plot of Task 3 Correctness

0 1000 2000 3000 4000 5000 6000

0e+00

1e-04

2e-04

3e-04

4e-04

D
en

si
ty

Duration [s]

Interfaces

Traits

(e) Kernel Density Plot of Overall Specify Duration

0 1000 2000 3000 4000 5000 6000

0e+00
1e-04
2e-04
3e-04
4e-04
5e-04
6e-04

D
en

si
ty

Duration [s]

Interfaces

Traits

(f) Kernel Density Plot of Task 1 Specify Duration

0 1000 2000 3000 4000 5000 6000

0e+00

2e-04

4e-04

6e-04

8e-04

D
en

si
ty

Duration [s]

Interfaces

Traits

(g) Kernel Density Plot of Task 2 Specify Duration

0 1000 2000 3000 4000 5000 6000

0e+00

2e-04

4e-04

6e-04

8e-04

1e-03

D
en

si
ty

Duration [s]

Interfaces

Traits

(h) Kernel Density Plot of Task 3 Specify Duration

Fig. 7. Descriptive Plots per Group of Overall and per Tasks Duration and Correctness

both experimental groups the distribution looks very similar. The comprehend and specify duration can be

further analyzed for each task. The comprehend duration has a very similar distribution for all three tasks25.

For the specify duration we can observe a decreasing effect for the processing time which is visualized for

Task 1 at Figure 7f, for Task 2 at Figure 7g, and for Task 3 at Figure 7h. This slight decreasing effect of

the specify duration can have two origins. Either the participants experience experimental fatigue [61] or

a maturation effect [66] took place. In order to analyze those effects we dissected the dependent variable

correctness for each task – Task 1 at Figure 7b, Task 2 at Figure 7c, and Task 3 at Figure 7d. We can

observe that the traits group performs significantly better for Task 1 and Task 2 compared to the interfaces

25See appendix.pdf at [54] for comprehend duration per task plots.

Manuscript submitted to ACM

24 Paulweber et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

D
en

si
ty

Correctness [1]

Interfaces

Traits

(a) Kernel Density Plot of Less Prog. Exp. Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Correctness [1]

Interfaces

Traits

(b) Kernel Density Plot of Less Spec. Exp. Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0

D
en

si
ty

Correctness [1]

Interfaces

Traits

(c) Kernel Density Plot of More Prog. Exp. Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0

D
en

si
ty

Correctness [1]

Interfaces

Traits

(d) Kernel Density Plot of More Spec. Exp. Correctness

Fig. 8. Descriptive Plots per Group of Correctness by Less/More Experience

group. Despite the shorter specify duration (processing time) in Task 2 the correctness and therefore the

participants’ performance does not degrade at all. But for Task 3 we can detect a complete drop of the

participants’ performance for both experimental groups which is the result of experimental fatigue.

Experience. In order to analyze the moderating variable experience we need to determine a classification to

separate the obtained experiment samples. Due to the collected background information we can separately

analyze a participants’ performance in terms of correctness by programming and specifying experience.

Therefore, we derive two classifications – less experience and more experience.

We choose a threshold of 3.25 years in programming experience26 which results into an exactly equal

interfaces to traits sample size ratio for less of 28 : 28 and for more of 21 : 21. Moreover, we defined that

a participant has less specifying experience if years <= 2.5. From this it follows that a participant gets

classified as more experienced if the years > 2.5. This threshold separates the specifying experience27 with

an exactly equal interfaces to traits sample size ratio for less of 32 : 32 and for more of 17 : 17.

The kernel density plots for programming experience – less in Figure 8a and more in Figure 8c – as

well as the specifying experience – less in Figure 8b and more in Figure 8d – indicate in all distributions

the traits group is performing far better than the interfaces group independently of the classification of

their experience. Notable to mention here is that the programming and specifying distributions of the more

experienced participants achieved a high dense correctness value around 0.4. The latter is an indicator why

the traits group is performing better in the overall correctness value despite the number of more experienced

participants is lower than the number of less experienced participants.

Gender. With the moderating variable gender we will determine an indicator if one of the experimental

treatments does perform in terms of correctness better for a certain gender. According to the obtained

26Abbreviated in Figure 8a and Figure 8c as “Prog. Exp.”.
27Abbreviated in Figure 8b and Figure 8d as “Spec. Exp.”.

Manuscript submitted to ACM

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 25

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

D
en

si
ty

Correctness [1]

Interfaces

Traits

(a) Kernel Density Plot of Female Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

D
en

si
ty

Correctness [1]

Interfaces

Traits

(b) Kernel Density Plot of Male Correctness

Fig. 9. Descriptive Plots per Group of Correctness by Gender

participants’ background information (see Section 2) the traits to interfaces sample size ratio for females is

20 : 17 and for males is 29 : 32. Since theses numbers are almost equal within a gender we analyzed for each

gender the correctness distributions. Figure 9a depicts the kernel density plot for the female correctness

whereas Figure 9b depicts the kernel density plot for the male correctness. For both gender the traits group

performs slightly better than the interfaces group.

Furthermore, we can observe in Figure 9a and Figure 9b that the participants in this controlled experiment

show a clear difference in the performance in terms of correctness depending on the gender. Gren [23]

mentions that if there are clear differences in an empirical study based on gender, a proper investigation has

to be done to elaborate such effect. By comparing the gender results with the data of the experience reveals

that one possible explanation for the less correct results of the female group can be attributed to lower prior

programming experience in the female group compared to the male group.

6.3 Threats to Validity

Threats to Internal Validity. During the experiment, we did not observe any disturbing environmental events or

history effects. Due to the total (limited) time of 120 minutes of the experiment, the chances for maturation

(carry-over) effects [66] and experimental fatigue [61] were limited. Furthermore, as every participant is only

tested once, learning effects can be ruled out. Every participant was able to score the same amount of points

and we graded all groups with the same procedures to rule out instrumental bias. Selection bias was limited

due to the random assignment of participants to groups. We cannot rule out cross-contamination between

the groups as a potential threat to internal validity because the participants are computer science students

and share the same social group and interact outside of the research process as well. We have not observed

any demoralization or compensatory rivalry. All participants are graded based on their correctness value in

the processed survey by gaining points for their enrolled course (but had an opt out option, as explained in

Section 3.3).

Threats to External Validity. A possible threat to external validity is that we carried out the experiment

with students as participants because this limits the ability to make generalizations. In addition to the

types of the participants in this experiment (students as novice software developer or designer), it would

be useful to repeat the experiment with broader and more experienced test groups like professionals in

different fields ranging from high-level software design to low-level hardware specifications. Furthermore, the

selected experiment tasks are limited to basic software system applications. Due to the usage of the syntax

keyword feature, we mitigated the risk that the participants are biased by identifying language constructs

Manuscript submitted to ACM

26 Paulweber et al.

through known object-oriented abstraction syntax keywords names like interface or trait. The chosen

language construct representations in CASM syntax or their integration into the CASM language might not

be representative for potential language constructs and their integration in other ASM languages or other

state-based formal languages, and thus our results cannot be generalized to those other languages. We tried

to mitigate this threat by only using CASM abstractions that are widely used in other languages, too, and

by designing the language constructs as closely as possible to canonical definitions of those abstractions.

Threats to Construct Validity. We focus in this study on the specification effectiveness and efficiency of object-

oriented abstractions for an ASM language. The dependent variables correctness and duration are commonly

used to measure the construct specification effectiveness and efficiency, but other studies use different

notations, like Razali et al. [61] which uses Score (Accuracy) for specification effectiveness (correctness)

and Time Taken for specification efficiency (duration). Furthermore, other studies analyze both variables

under construct names like comprehensability (cf. Hoisl et al. [30]) or understandability (Czepa et al.

[15]). It cannot be ruled out that other constructs would be a better to measure the specification effectiveness

and efficiency.

Threats to Content Validity. In this study, we only focus on two object-oriented abstractions, namely interfaces

and traits. The specification effectiveness and efficiency is tested for two ASM syntax variations, not commonly

existing in today’s languages and tools, which use one of the two language constructs (see Section 2.4).

Testing more complex scenarios (more complex software system applications and other language constructs)

would improve the content validity.

Threats to Conclusion Validity. Due to some missing timestamps for the dependent variable duration and

unclear written ASM specification solutions for the dependent variable correctness we cannot rule out that

statistic validity might be affected. Still, those outliers are important measurements because they reflect

that for a certain group of the participants the given problem (informal description) to model it through

an ASM specification by using a certain language construct are too complex and/or not understood at all.

Deleting those would compromise the conclusion validity. To improve the conclusion validity, we selected

robust tests with great statistical power which fits the best explored model assumptions of all statistical

tests suitable for the collected data set.

6.4 Inferences

Based on the evidence found in this research, a possible use of Traits in ASM language designs should provide

a good specification effectiveness and efficiency. As Interfaces perform significantly worse for the dependent

variable Correctness than Traits, they should be used with more caution. Regarding the dependent variable

Duration, it seems that for both language constructs the participants need a similar duration to process

(read, comprehend, and specify) the tasks and without further studies no generalized claim can be drawn

from the gathered results. Taking into account the qualitative measurements, participants using Traits

without even knowing the language construct specify more efficiently than the Interfaces group, which has

high familiarity of the language construct (see Section 6). Furthermore, the proposed language syntax of the

Traits-based ASM specification shows very efficient specification performance for expressing structural and

behavioral aspects (see Table 5a and Table 5b) which is not the case for experimental group Interfaces.

Manuscript submitted to ACM

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 27

6.5 Relevance to Practice

So far many formal specification languages lack in their support for other object-oriented language constructs,

such as Interfaces and Traits. As there were no empirical studies on their use in formal specification languages,

little was known before this study on how they compare relative to each in the formal methods context.

The findings in this study are first indicators for specification language designers in practice to choose,

specify, and implement new language constructs for existing or newly developed programming or specification

languages. This could help to create a more understandable language syntax which can be used more effectively

and efficiently by a language user [37]. Many formalisms, including ASMs, are implemented in different

programming and/or specification languages. Our empirical results can help specification language designers

to choose one of those languages using the available language constructs in the language syntax as a decision

criterion (among others) and/or by considering the extensibility of the language options with regard to

language constructs. The outcome of this study already has made an impact in the state-based formal

method community by introducing a Traits-based language construct in the CASM language [53].

Due to the fact that the specification effectiveness and efficiency of formal methods has not been empirically

investigated to a larger extent so far, these results and future similar empirical studies can contribute to an

increased usage of formal methods in practice. Moreover, the explained methods can be used in communities

of practice, e.g. by conducting online experiments. The feedback of language users is a valuable source for

language engineers of language extensions and further development.

7 CONCLUSION

This article reports on a controlled experiment with 98 participants on the specification effectiveness and

efficiency of the object-oriented abstractions interface and trait, tested for their applicability in the context

of state-based formal methods, with ASMs as a representative method. The objective of this study is

the investigation on how effective and efficient participants are to specify (express) structural, behavioral,

functional, and reusable properties modeled through an ASM-based specification language by using one

of the two CASM language syntax extensions, which are not yet part of CASM or any other ASM-based

language, namely Interfaces and Traits.

According to the results of the descriptive and inferential statistics in this study, the experiment group

which expresses the given problems through Traits-based ASM specifications shows significantly better

results in terms of Correctness compared to the experiment group which uses Interfaces-based ASM

specifications. As only one participant has prior knowledge in Rust, only 27 participants have prior knowledge

in Scala, but all participants know Java, a higher familiarity with Interfaces than with the Traits language

construct can be assumed for our participants. Nonetheless, in our study results, the specification effectiveness

of Traits is in terms of the dependent variable Correctness significantly better than Interfaces, which

might be surprising. One explanation of this surprising effect can be drawn by looking at the gathered

results of the post experiment questionnaire. Participants from the experimental group Traits judge that

their understanding of behavioral aspects like extending functionality is similar to the participants of the

experimental group Interfaces. But the behavioral correctness measurement shows that the results are far

better in the Traits group compared to the Interfaces group.

Manuscript submitted to ACM

28 Paulweber et al.

Furthermore, as both object-oriented abstractions perform very similarly in terms of Duration, more

research is needed to understand the reasons why Interfaces perform worse with regard to only one of the

two dependent variables. In such a follow-up study an investigation is needed to examine if the specification

effectiveness is even better for developers (or professionals) which are highly familiar with Traits.

We further analyzed the dependent variable correctness according to the evaluation criteria groups –

structural, behavioral, reusable, functional, and syntactic, and took into account the qualitative responses of

participants. From this, we concluded that the significant difference between the two language constructs is

due to the fact that even participants who are not yet familiar with the traits language concept specify more

effectively with traits than participants who use the interfaces-based syntax extension and might already

know it well.

We believe that this study is the first step towards more understandable and comprehensible ASM

language design with regard to object-oriented abstractions for expressing state and behavioral aspects in a

maintainable and reusable way. Just like it is the case for CASM, the outcomes of this study can be used

by language designers and compiler engineers to define suitable language constructs in other ASM-based

languages or state-based formal methods.

It would be interesting to study further our results and complement the statistical analysis with a

qualitative analysis of the errors the participants made during the experiment to obtain a more in-depth

knowledge how and why there are significant differences in terms of the effectiveness.

ACKNOWLEDGMENTS

We would like to thank all students who participated in this empirical study of the SE2 course in the winter

term 2018/19. Furthermore, we want to thank Christoph Czepa for the information and help with statistical

procedures and Emmanuel Pescosta for the discussions about object-oriented language abstractions.

REFERENCES

[1] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and Laurent Voisin. 2010.

Rodin: an open toolset for modelling and reasoning in Event-B. International journal on software tools for technology

transfer 12, 6 (2010), 447–466.

[2] Matthias Anlauff. 2000. XASM – An Extensible, Component-based Abstract State Machines Language. In Abstract

State Machines-Theory and Applications. Springer, 69–90.

[3] Mike Barnett and Wolfram Schulte. 2001. Spying on Components: A Runtime Verification Technique. In Proceedings of

the Workshop on Specification and Verification of Component-Based Systems (SAVCBS’01). 7–13.

[4] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to

multiple testing. Journal of the royal statistical society. Series B (Methodological) (1995), 289–300.

[5] Dines Bjørner. 1979. The vienna development method (VDM). In Mathematical Studies of Information Processing.

Springer, 326–359.

[6] Fred H Borgen and Mark J Seling. 1978. Uses of discriminant analysis following MANOVA: Multivariate statistics for

multivariate purposes. Journal of Applied Psychology 63, 6 (1978), 689.

[7] Egon Börger and Alexander Raschke. 2018. Modeling Companion for Software Practitioners. Springer.

[8] Egon Börger and Robert Stärk. 2003. Abstract State Machines: A Method for High-Level System Design and Analysis.

Springer Science & Business Media.

[9] P. S. Canning, W. R. Cook, W. L. Hill, and W. G. Olthoff. 1989. Interfaces for Strongly-typed Object-oriented

Programming. In Conference Proceedings on Object-oriented Programming Systems, Languages and Applications

(New Orleans, Louisiana, USA) (OOPSLA ’89). ACM, New York, NY, USA, 457–467.

[10] Kwang-Ting Cheng and Avinash S Krishnakumar. 1993. Automatic functional test generation using the extended finite

state machine model. In Design Automation, 1993. 30th Conference on. IEEE, 86–91.

Manuscript submitted to ACM

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 29

[11] Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Edwards. 2005. Model variables: Cleanly supporting

abstraction in design by contract. Software: Practice and Experience 35, 6 (2005), 583–599.

[12] Gastón Christen, Alejandro Dobniewski, and Gabriel Wainer. 2004. Modeling state-based DEVS models in CD++. In

proceedings of MGA, advanced simulation technologies conference. 105–110.

[13] Edmund M. Clarke and Jeannette M. Wing. 1996. Formal Methods: State of the Art and Future Directions. ACM

Comput. Surv. 28, 4 (Dec. 1996), 626–643. https://doi.org/10.1145/242223.242257

[14] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological bulletin 114, 3

(1993), 494.

[15] Christoph Czepa, Huy Tran, Uwe Zdun, Thanh Tran Thi Kim, Erhard Weiss, and Christoph Ruhsam. 2017. On the

Understandability of Semantic Constraints for Behavioral Software Architecture Compliance: A Controlled Experiment.

In Software Architecture (ICSA), 2017 IEEE International Conference on. IEEE, 155–164.

[16] Christoph Czepa and Uwe Zdun. 2018. On the Understandability of Temporal Properties Formalized in Linear Temporal

Logic, Property Specification Patterns and Event Processing Language. IEEE Transactions on Software Engineering

(2018).

[17] Luca De Alfaro and Thomas A Henzinger. 2001. Interface theories for component-based design. In International

Workshop on Embedded Software. Springer, 148–165.

[18] Olive Jean Dunn. 1958. Estimation of the means of dependent variables. The Annals of Mathematical Statistics (1958),

1095–1111.

[19] Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glässer. 2007. CoreASM: An Extensible ASM Execution Engine.

Fundamenta Informaticae 77, 1-2 (2007), 71–104.

[20] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. 2008. A Metamodel-based Language and a Simulation

Engine for Abstract State Machines. Journal of Universal Computer Science 14, 12 (2008), 1949–1983.

[21] David Garlan. 2003. Formal modeling and analysis of software architecture: Components, connectors, and events.

In International School on Formal Methods for the Design of Computer, Communication and Software Systems.

Springer, 1–24.

[22] Uwe Glässer and Margus Veanes. 2002. Universal Plug and Play Machine Models. In Design and Analysis of Distributed

Embedded Systems. Springer, 21–30.

[23] Lucas Gren. 2018. On Gender, Ethnicity, and Culture in Empirical Software Engineering Research. In 2018 IEEE/ACM

11th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). IEEE, 77–78.

[24] Yuri Gurevich. 1995. Evolving Algebras 1993: Lipari Guide - Specification and Validation Methods. Oxford University

Press, Inc., New York, NY, USA, 9–36.

[25] Yuri Gurevich. 2000. Sequential Abstract-State Machines Capture Sequential Algorithms. ACM Transactions on

Computational Logic (TOCL) 1, 1 (2000), 77–111.

[26] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. 2004. Semantic Essence of AsmL. In Formal Methods for

Components and Objects. Springer, 240–259.

[27] Yuri Gurevich and Nikolai Tillmann. 2001. Partial Updates: Exploration. Journal of Universal Computer Science 7, 11

(2001), 917–951.

[28] David Harel and Amnon Naamad. 1996. The STATEMATE semantics of statecharts. ACM Transactions on Software

Engineering and Methodology (TOSEM) 5, 4 (1996), 293–333.

[29] Andreas Höfer and Walter F Tichy. 2007. Status of empirical research in software engineering. In Empirical Software

Engineering Issues. Critical Assessment and Future Directions. Springer, 10–19.

[30] Bernhard Hoisl, Stefan Sobernig, and Mark Strembeck. 2014. Comparing three notations for defining scenario-based

model tests: A controlled experiment. In Quality of Information and Communications Technology (QUATIC), 2014

9th International Conference on the. IEEE, 180–189.

[31] James K Huggins and David Van Campenhout. 1998. Specification and verification of pipelining in the ARM2 RISC

microprocessor. ACM Transactions on Design Automation of Electronic Systems (TODAES) 3, 4 (1998), 563–580.

[32] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM Transactions on Software Engineering and

Methodology (TOSEM) 11, 2 (2002), 256–290.

[33] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. 2008. Reporting Experiments in Software Engineering. In

Guide to advanced empirical software engineering. Springer, 201–228.

[34] Natalia Juristo and Ana M Moreno. 2013. Basics of software engineering experimentation. Springer Science & Business

Media.

[35] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton, Stuart Charters, Shirley Gibbs,

and Amnart Pohthong. 2017. Robust Statistical Methods for Empirical Software Engineering. Empirical Software

Engineering 22, 2 (2017), 579–630.

Manuscript submitted to ACM

https://doi.org/10.1145/242223.242257

30 Paulweber et al.

[36] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones, David C. Hoaglin, Khaled El Emam,

and Jarrett Rosenberg. 2002. Preliminary guidelines for empirical research in software engineering. IEEE Transactions

on Software Engineering (TSE) 28, 8 (2002), 721–734.

[37] Anneke G. Kleppe. 2009. Software Language Engineering: Creating Domain-Specific Languages using Metamodels.

Addisson-Wesley 33, 1 (2009).

[38] William H Kruskal and W Allen Wallis. 1952. Use of ranks in one-criterion variance analysis. Journal of the American

statistical Association 47, 260 (1952), 583–621.

[39] Leslie Lamport. 1994. The temporal logic of actions. ACM Transactions on Programming Languages and Systems

(TOPLAS) 16, 3 (1994), 872–923.

[40] Kevin Lano. 1991. Z++, an Object-Orientated Extension to Z. In Z User Workshop, Oxford 1990. Springer, 151–172.

[41] Roland Lezuo. 2014. Scalable Translation Validation; Tools, Techniques and Framework. Ph.D. Dissertation. Wien,

Techn. Univ., Diss.

[42] Roland Lezuo, Gergö Barany, and Andreas Krall. 2013. CASM: Implementing an Abstract State Machine based

Programming Language. In Software Engineering (Workshops). 75–90.

[43] Roland Lezuo, Philipp Paulweber, and Andreas Krall. 2014. CASM - Optimized Compilation of Abstract State Machines.

In SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems (LCTES). ACM,

13–22.

[44] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of psychology (1932).

[45] Barbara Liskov and Stephen Zilles. 1974. Programming with Abstract Data Types. In Proceedings of the ACM

SIGPLAN Symposium on Very High Level Languages (Santa Monica, California, USA). ACM, New York, NY, USA,

50–59. https://doi.org/10.1145/800233.807045

[46] Robert C Martin. 1997. Java and C++ A critical comparison. Technical Note, Object Mentor (1997).

[47] Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM SIGAda Ada Letters, Vol. 34. ACM,

103–104.

[48] Emerson R. Murphy-Hill, Philip J. Quitslund, and Andrew P. Black. 2005. Removing Duplication from Java.Io: A Case

Study Using Traits. In Companion to the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming,

Systems, Languages, and Applications (San Diego, CA, USA) (OOPSLA ’05). ACM, New York, NY, USA, 282–291.

https://doi.org/10.1145/1094855.1094963

[49] Martin Odersky, Lex Spoon, and Bill Venners. 2008. Programming in Scala. Artima Inc.

[50] Flavio Oquendo. 2004. 𝜋-ADL: an Architecture Description Language based on the higher-order typed 𝜋-calculus for

specifying dynamic and mobile software architectures. ACM SIGSOFT Software Engineering Notes 29, 3 (2004), 1–14.

[51] June Jamrich Parsons. 2012. Practical Open Source Office: LibreOffice(TM) and Apache OpenOffice (2nd ed.). Course

Technology Press, Boston, MA, United States.

[52] Philipp Paulweber, Emmanuel Pescosta, and Uwe Zdun. 2018. CASM-IR: Uniform ASM-Based Intermediate Representa-

tion for Model Specification, Execution, and Transformation. In Abstract State Machines, Alloy, B, TLA, VDM, and

Z - 6th International Conference, ABZ 2018 (Lecture Notes in Computer Science 10817). Springer, 39–54.

[53] Philipp Paulweber, Emmanuel Pescosta, and Uwe Zdun. 2020. Structuring the State and Behavior of ASMs: Introducing

a Trait-Based Construct for Abstract State Machine Languages. In International Conference on Rigorous State-Based

Methods (Lecture Notes in Computer Science 12071). Springer, 237–243.

[54] Philipp Paulweber, Georg Simhandl, and Uwe Zdun. 2021. Specifying with Interface and Trait Abstractions in Abstract

State Machines: A Controlled Experiment. https://doi.org/10.5281/zenodo.4517172. Data-Set and Artifacts: Documents,

Forms, and R Scripts for Reproducibility of the Empirical Study.

[55] Philipp Paulweber, Georg Simhandl, and Uwe Zdun. (under major revision). On the Understandability of Language

Constructs to Structure the State and Behavior in Abstract State Machine Specifications: A Controlled Experiment.

submitted paper to JSS.

[56] Philipp Paulweber and Uwe Zdun. 2016. A Model-Based Transformation Approach to Reuse and Retarget CASM

Specifications. In Abstract State Machines, Alloy, B, TLA, VDM, and Z - 5th International Conference, ABZ 2016

(Lecture Notes in Computer Science 9675). Springer, 250–255.

[57] Ben Potter, David Till, and Jane Sinclair. 1996. An introduction to formal specification and Z. Prentice Hall PTR.

[58] Anthony Potts and David H Friedel. 2018. Java programming language handbook. Coriolis Group Books.

[59] R Development Core Team. 2008. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

[60] Alexander Raschke, Dominique Méry, and Frank Houdek. 2020. Rigorous State-Based Methods. In Proceedings of 7th

International Conference, ABZ 2020, Ulm, Germany, May 27–29, 2020. Springer, 8.

[61] Rozilawati Razali, Colin F Snook, Michael R Poppleton, Paul W Garratt, and Robert Walters. 2007. Experimental

Comparison of the Comprehensibility of a UML-based Formal Specification versus a Textual One. In 11th International

Manuscript submitted to ACM

https://doi.org/10.1145/800233.807045
https://doi.org/10.1145/1094855.1094963
https://doi.org/10.5281/zenodo.4517172

Specifying with Interface and Trait Abstractions in ASMs: A Controlled Experiment 31

Conference on Evaluation and Assessment in Software Engineering (EASE) 11. 1–11.

[62] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are students representatives of professionals in software

engineering experiments?. In 37th IEEE/ACM International Conference on Software Engineering (ICSE), Vol. 1.

IEEE, 666–676.

[63] Hisashi Sasaki. 1999. A Formal Semantics for Verilog-VHDL Simulation Interoperability by Abstract State Machine. In

Proceedings of the Conference on Design, Automation and Test in Europe (Munich, Germany) (DATE ’99). ACM,

New York, NY, USA, Article 73.

[64] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. 2003. Traits: Composable units of

behaviour. In European Conference on Object-Oriented Programming. Springer, 248–274.

[65] Joachim Schmid. 2001. Introduction to AsmGofer. http://www.tydo.de/AsmGofer (2001).

[66] SJ Senn. 1992. Is the ‘simple carry-over’model useful? Statistics in Medicine 11, 6 (1992), 715–726.

[67] Y. Shafranovich. 2005. Common Format and MIME Type for Comma-Separated Values (CSV) Files. RFC 4180.

[68] Samuel Sanford Shapiro and Martin B Wilk. 1965. An analysis of variance test for normality. Biometrika 52, 3/4

(1965), 591–611.

[69] Graeme Smith. 2012. The Object-Z Specification Language. Vol. 1. Springer Science & Business Media.

[70] Colin Snook and Rachel Harrison. 2001. Practitioners’ views on the use of formal methods: an industrial survey by

structured interview. Information and Software Technology 43, 4 (2001), 275–283.

[71] Ann E Kelley Sobel and Michael R Clarkson. 2002. Formal methods application: An empirical tale of software

development. IEEE Transactions on Software Engineering 28, 3 (2002), 308–320.

[72] Robert F Stärk, Joachim Schmid, and Egon Börger. 2001. Java and the Java Virtual Machine: Definition, Verification,

Validation. Springer Berlin Heidelberg.

[73] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. 2008. Using students as subjects-an empirical evaluation. In

Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement.

ACM, 288–290.

[74] Rini Van Solingen, Vic Basili, Gianluigi Caldiera, and H Dieter Rombach. 2002. Goal Question Metric (GQM) Approach.

Encyclopedia of software engineering (2002).

[75] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén. 2012. Experimentation

in Software Engineering. Springer Science & Business Media.

Manuscript submitted to ACM

http://www.tydo.de/AsmGofer

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives, Hypotheses, and Results
	1.3 Structure of this Article

	2 Background
	2.1 Object-Oriented Abstractions
	2.2 Abstract State Machines
	2.3 ASM Language Representation
	2.4 Experiment Language Construct Representations
	2.5 Related Studies

	3 Experiment Planning
	3.1 Goals
	3.2 Context and Design
	3.3 Participants
	3.4 Material and Tasks
	3.5 Variables and Hypotheses

	4 Experiment Execution
	4.1 Preparation
	4.2 Procedure

	5 Analysis
	5.1 Data-Set Preparation
	5.2 Descriptive Statistics
	5.3 Hypothesis Testing

	6 Discussion
	6.1 Evaluation of Results and Implications
	6.2 Exploration of Moderating Variables
	6.3 Threats to Validity
	6.4 Inferences
	6.5 Relevance to Practice

	7 Conclusion
	Acknowledgments
	References

