The final authenticated version is available online at https://doi.org/10.1007/978-3-030-79108-7_3

BPMN Extensions for Modeling Continuous
Processes *

Diana Viktoria Strutzenberger!:2, Juergen Mangler®, Stefanie Rinderle-Ma3

! Austrian Center for Digital Production, Vienna,
2 Faculty of Computer Science, University of Vienna, Austria
3 Department for Informatics, Technical University of Munich, Germany
diana.strutzenbergerQacdp.at,
{juergen.mangler, stefanie.rinderle-ma}@tum.de

Abstract. Business process management has focused on discrete pro-
cesses so far, i.e., processes with identifiable distinct outcomes (e.g., in
manufacturing). By contrast, processes known from process and control
engineering, e.g., chemical synthesis, have not been fully considered yet.
Such processes can be discrete or continuous, i.e., require real-time con-
trol systems with constant inlet and outlet flows as well as temporally
stable conditions. This paper models continuous processes with existing
and standardized means, i.e., BPMN, and provides an exact definition
of the parameters and loop conditions. The capabilities of BPMN for
modeling continuous processes are analyzed and necessary extensions
are provided. The concepts are applied to several real-world use cases
from process and control engineering.

Keywords: Process and Control Engineering, Continuous Processes,
Process Modeling and Execution, BPMN Extensions

1 Introduction

In process engineering, the design of control systems focuses on the formal de-
scription of processes that deal with measuring and controlling complex systems,
such as chemical reactors [4] or heat exchangers [5], which are typically applied
in mining, production, electricity, gas and water supply as well as waste manage-
ment. While closed-loop systems take a measured value into consideration for
the next control operation (e.g. thermostat), open-loop systems ignore the effect
of their output on the system (e.g. temperature control knob on a radiator) [12].

Open-loop systems can be represented as discrete processes, closed-loop
systems as continuous processes. Brewing beer, for example, can be operated
as a discrete process, in which a reactor is filled with the ingredients, then started,
and at some point in time the next batch of beer is ready. For the continuous
operation of the reactor ingredients are continuously added on one side, while

* Acknowledgements. This work has been partially supported and funded by the
Austrian Research Promotion Agency (FFG) via the Austrian Competence Center
for Digital Production (CDP) under the contract number 854187.

https://doi.org/10.1007/978-3-030-79108-7_3

beer continuously comes out on the other side. The reactor can run forever, its
inside is in certain defined states, but it is not possible to track the contents of
a glass of water that is added on one side, while it becomes beer.

With ongoing efforts to introduce semantically rich modeling notations such
as BPMNE into domains like manufacturing [g], it becomes apparent that for re-
ducing the complexity of a system, it is beneficial to model all of its behavior in a
single notation, instead of having a collection of modeling and planning artefacts.
BPMN is a widely applied standard for modeling business processes and there-
fore proves to be the right medium to communicate complex processes across
industries. Manufacturing processes have already been modeled and orchestrated
using BPMN in the Cloud Process Execution Engine (CPEE)H [8], enabling dy-
namic models of complex processes and respective flow description. By contrast,
continuous processes still lack such a digital representation despite its advantages
for interoperability and for creating digital twins in process engineering; the lat-
ter constitutes a research topic which has strongly gained interest in the last
years [2]9]. Based on a set of requirements derived from real-world scenarios, the
following artefacts are elaborated and evaluated based on real-world use cases:
1) A BPMN extension to simplify the modeling of continuous processes, while
increasing their understandability through custom gateways and events. 2) A set
of examples that cover the commonly used control engineering patterns, in order
to exemplify the expressiveness of our approach. The remainder is structured as
follows. Section [2] introduces a set of examples as an evaluation baseline. In Sect.
requirements for modeling continuous processes are described. Section [4] intro-
duces BPMN extensions to realize the requirements. In Sect. [f] the solution is
evaluated. The paper closes related work in Sect. [6] and conclusion in Sect. [7}

2 Scenario Analysis

To provide a clear understanding of the approach, it is important to analyse
how the terms discrete and continuous are used in the fields that specialize on
continuous processes, i.e., process and control engineering.

Discrete and Continuous Processes in Process Engineering: In terms
of process engineering, processes are divided into two groups, i.e., batch and
continuous processes. According to [4], continuous processes are characterized
by constant inlet and outlet flows as well as temporally stable conditions. This
steady state approach implies a constant progression of the process variables,
which can only be achieved after the start-up phase. In contrast, batch or discrete
processes present themselves as a one-time input of the materials to be processed.
The process steps to be performed mostly run sequentially or are least limited
in time by a certain condition or state.

Discrete and Continuous Processes in Control Engineering: According
to [I2] continuous systems are characterized by parameters which may take any
value in a defined boundary. Further [I2] conclude that the frequency in which

! BPMN: Business Process Modeling and Notation, www.bpmn-standard.org
% cpee.org

www.bpmn-standard.org
cpee.org

data access and control tasks are performed determines a discontinuous behav-
ior which needs to be counteracted by finding a fitting control strategy. Due to
hardware performance constraints truly continuous behavior may not be real-
ized as physical sensors can only provide data in short time intervals. Among
others, control engineering mainly deals with the following three frequently used
patterns explained using sample processes.

Feedback and Feedforward Control - Heat Exchanger: As described in [5] there
are different options for the implementation of the control system for a heat
exchanger. A simple feedback controller such as a PID controller measures the
system output, compares the value to the set point and reacts accordingly. Feed-
forward control is another option for controlling a heat exchanger and reacts to
disturbances before they influence the system. A coupled feedback controller
compensates the remaining errors [5]. The process model in BPMN is shown in

Fig. [
X
= = Cancel
?;“e lag t"“e lag = ume lag = ume lag = lcondition
True?

Measure Control Measure Control Cleanup & Set
flow_in FeedForward T out p_valve Exit =True

< | %4

<

Fig. 1. BPMN Model of a Feedforward Control System for a Heat Exchanger [5].

Exit True?

Cascade Control - Position Control in Machine Tool: For the position control of
drives in machine tools, the cascade control method is usually used. The control
model consists of control loops that are nested within each other [I1]. The output
variable of one control loop is the input variable of the following control loop.
Therefore, a direct time dependency between the individual control loops is
evident and must be displayed in the workflow. The BPMN workflow model of
the control procedure is shown in Fig.

3 Modeling Requirements

Modeling languages and implementation environments must support the realistic
representation of continuous processes. Based on the application scenarios pre-
sented in Sect. [2, the following modeling requirements for continuous processes
are derived that serve as basis for assessing existing modeling languages:
Req.1 - Continuity Continuity needs to be presented in form of a loop. The
process model shall imply a continuous flow without having to set a limited
number of repetitions or a time limit from the beginning. BPMN supports loop
characteristics for tasks and sub-processes [1]. However, this modeling option is
confined to individual tasks and sub-processes and thus may lead to complex,
multi-level process flows.

O
>
©
(®)
+

v 1] L

Measure Measure Measure
PosX_act Rpm_act Power_act
T I

(PosX)

Exit True?

Time already up?

Cancel Condition 2 True?

<

Cancel Condition1 True?

y

Cleanup & Set Cleanup & Set
Exit =True Exit =True
Control PI
(Power)

e

Fig. 2. BPMN Model of a Cascade Control System for Position Control [11].

Req.2 - Break Conditions Break conditions can be applied to tasks and sub-
processes with loop characteristics [I]. For defining the termination handling of a
continuous process and allowing the option to define clean up sequences, Cancel
Events can be used. However, for Intermediate Cancelling Events only Boundary
Interrupting Events are defined.

Req.3 - Real-Time Process Due to the critical impact of time regarding
continuous processes the role of time needs to be clearly defined. According to
[12], a real-time system reacts to simultaneously occurring process signals in
time with a corresponding output. BPMN supports Timer Events which need
to be applied correctly and comprehensibly in order to understand the implied
constraints and display them correctly.

Req.4 - Parallelism Parallel processing of tasks and task sequences needs to be
supported by the chosen modeling environment. Parallelism can be modeled in
a way similar to loops in form of attributes for tasks and sub-processes [I]. The
orientation of the attribute marker indicates whether the multiple sequences are
processed in parallel or sequentially. Again, increasing complexity of the process
leads to an incomprehensible model.

Req.5 - Exception Handling Mechanisms for exception handling have to be
available as assurance for real-time processing and determinism. For exception
handling BPMN already implies the usage of Intermediate Events [I]. Timer
events can be applied to deal with time restrictions which are fundamental for
continuous processes.

Req.6 - Limited Complexity If all necessary details of a continuous process
are included in the model, the level of complexity must not exceed to a point at
which users no longer understand the process behind the model. To prevent this

drawback, modeling conventions need to compensate complex relations, but still
lead to a detailed and comprehensible process models.

4 BPMN Extensions for Modeling Continuous Processes

The newly defined symbols are based on common BPMN symbols which have
been used to depict similar process models as introduced in Sect. [2} Achieving
a completely consistent representation of real control logic for continuous pro-
cesses is difficult to depict at a reasonable level of complexity. In addition, the
requirements set out in Section [3| have to be met. Using the standard modeling
capabilities in BPMN might result in a complex sequence behind a single control
task as demonstrated by the example in Fig.

Closed-Loop Sub-System Gateway: The Closed-Loop Sub-System is a com-
bined version of an Inclusive and an Event-Based Gateway. A Closed-Loop Sub-
System combines the advantages of the described gateways and the attributes of
loop and multiple-instance characteristics defined in [I]. The symbol and basic
definitions of a Closed-Loop Sub-System is introduced in Tab. [I} Event-based
Gateways do not allow Cancel triggers for Intermediate events used in branches
after the gateways. Closed-Loop Sub-Systems let tokens traverse each branch
which allows processing multiple parallel branches simultaneously (Req. 4). Each
branch starts with newly introduced Intermediate Event markers — Measuring,
Control and Cancel. Measuring and Control are Intermediate Timer Events in-
dicating an execution interval for each branch as well as individual sections of a
sequence to illustrate gradually changing intervals and also dependencies (Reg.
3). Cancel is an Intermediate Catching Event which includes conditions for end-
ing the loop (Req. 2). Similar to features of Inclusive and Event-Based Gateways,
the Closed-Loop Sub-System is passed through in cycles, which is indicated by
an arrow leading back from the converging marker after the branches have been
traversed to the first diverging marker (Req. 1). A return to the first marker is
only allowed as long as no Cancel Catching Intermediate Event is triggered (Req.
5). The Gateway Direction of a Closed-Loop Sub-System is diverging. It MUST
have at least two outgoing Sequence Flows, one starting with a Measuring Inter-
mediate Catching Event and one starting with a Cancel Intermediate Catching
Event. It MAY further have multiple outgoing Sequence Flows but MUST have
no more than one incoming Sequence Flow. The Closed-Loop Sub-System allows
to model continuous processes in a simple structure with necessary attributes,
but clearly arranged at one level (Req. 6). Further modeling conventions are
described in Tab. [l

Intermediate Catching Event Types: To indicate which tasks are executed
in one of the parallel branches under the Closed-Loop Sub-System Gateway,
three new symbols based on Intermediate Catching Events are proposed in this
work. The symbols are shown and described in Tab.

Table 1. Closed-Loop Sub-System Attributes and Model Associations

Attribute Name Description/Usage
Interval duration overrun: When wait, the following iteration
) starts when all branches are fin-
wait cancel ished and the defined interval du-

ration is reached.

When cancel, the interval dura-
tion defines exactly the time each
branch takes to finish. If the tasks
in a branch are finished early, the
branch waits. If not all tasks are fin-
ished yet, they are terminated.

Measure-control cycle execution: |When parallel, tasks after Mea-
suring and Control Intermediate
Catching Events are performed in
parallel.

When sequential, the tasks af-
ter Control Intermediate Catching
Events are performed only after all
tasks after Measuring Intermediate
Catching Events are finished.

parallel sequential

Marker Description

Closed-Loop Sub-System Gateway:|Closed-Loop Sub-System
Gateway: contains branches
which are triggered for the measur-
ing and control phases of the cycle,

as well as branches executed when
cancellation events are received.
Intermediate Catching Events: Measuring: Receiving events to
perform measuring cycles
Control: Receiving events to per-

form control cycles
Cancel: Receiving events to abort
closed-loop systems

5 Application

Measuring Control Cancel

In addition to standard functionalities for modeling with BPMN and support for
common workflow patterns the suggested extensions to BPMN are implemented
in the CPEE. In order to show the advantages of the proposed extensions in
modeling and understanding processes, the process examples identified by the
literature study from Sec. [2[were implemented. In the following, some examples
are presented. The model of a heat exchanger with a combination of feedback
and feedforward control in CPEE is shown in Fig. [3]on the left. The Closed-Loop
Sub-System is implemented with the cancel attribute set. The control system

cancels the execution of every branch in which the tasks are not finished in the
given time interval. A position control system with cascade controller is shown
in Fig. 3] on the right. The model is implemented in CPEE with the cancel
attribute set in order to guarantee real-time behavior. Multiple control tasks
with different execution frequencies are modeled sequentially to show the order
for the execution of the controller elements. Regarding Fig. |2 the effort involved
in changing the model can lead to errors in the model and thus the intended
semantics of the real process. The modeling convention depicted in Fig. [3] allows
the user to modify the model much easier (insert into one branch vs. insert into
a combination of loop and parallel as well as inserting additional events and
connections).

CB cancel CQ cancel

measure: f = 1 Hz (flow_in) measure: f= 0.1 Hz (posX_act)
£ Get value flow_in Get posX_act
e measure: f = 0.5 Hz (temp_out) measure: f = 0.2 Hz (rpm_act)
l} Get value temp_out Get rpm_act
@ control: f = 1 Hz (flow_in) measure: f = 0.4 Hz (power_act)
'a' Calc Feedforward Get power_act

control: f= 0.1 Hz (posX_act)

@ control: f = 0.5 Hz (temp_out)
& Calc Feedback (PID) + control p_valve

Cancel Condition == true
Clean u
s P

P

control: f = 0.2 Hz (rpm_act)

Pl

control: f = 0.4 Hz (power_act)

Pl
data.state == :emergency

Clean up

data.state == :shutdown
‘:’ Clean up
(_% e

Fig. 3. Feedforward (left) and Cascade Control (right) - Process Model with Extensions
in CPEE.

6 Related Work

Tools for process and control engineering include Aspen Plus [7] and Mat-
lab/Simulink [13]. In general, a common practice is the separation of model-
ing and execution environment. The linkage between both environments is real-
ized via a code generating solution as presented in [3]. Process patterns provide

(partly complex) constructs for describing process flows such as time [6] and
resource patterns [10]. Based on the features described in Sect. 3| the usability
of the patterns has been assessed. Overall, the most limited support is provided
for Req.3 on modeling real-time processes and Req.6 on limited complexity.

7 Conclusion

Process and control engineering constitutes a major industry including mining,
gas and water supply, but the continuous processes in this field have not been
considered from a business process management perspective yet. This work ex-
plains and distinguishes the characteristics of discrete and continuous processes.
BPMN is analyzed for representing continuous processes based on set of require-
ments derived from real-world scenarios. The challenge is to express continuity
with break conditions, real-time processing, parallelism, and exception handling
in balance with taming the complexity of the resulting models. BPMN exten-
sions in terms of symbols are proposed. The executability in CPEE allows the
use of the models also as non-proprietary digital twins.

References

1. Business Process Model and Notation (BPMN), Version 2.0 p. 538

2. Bamberg, A., Urbas, L., Brocker, S., Kockmann, N., Bortz, M.: What makes the
digital twin an ingenious companion? Chemie Ing. Technik 92(3), 192-198 (2020)

3. Chindris, G., Muresan, M.: Deploying simulink models into system-on-chip struc-
tures. In: Electronics Technology. pp. 313-317. IEEE (2006)

4. Hertwig, K., Martens, L.: Chemische Verfahrenstechnik: Berechnung, Auslegung
und Betrieb chemischer Reaktoren. Oldenbourg (2007)

5. Khare, Y.B., Singh, Y.: Pid control of heat exchanger system. International Journal
of Computer Applications 8(6), 0975-8887 (2010)

6. Lanz, A., Reichert, M., Weber, B.: Process time patterns: A formal foundation.
Inf. Syst. 57, 3868 (2016)

7. Luyben, W.L.: Distillation design and control using Aspen simulation. John Wiley
& Sons (2013)

8. Mangler, J., Pauker, F., Rinderle-Ma, S., Ehrendorfer, M.: centurio.work - industry
4.0 integration assessment and evolution. In: BPM Ind. Forum. pp. 106-117 (2019)

9. Pfeiffer, B.M., Oppelt, M., Leingang, C.: Evolution of a digital twin for a steam
cracker. In: Emerging Technologies and Factory Automation. pp. 467474 (2019)

10. Russell, N., Hofstede, ter, A., Aalst, van der, W., Mulyar, N.: Workflow control-flow
patterns : a revised view. BPM reports, BPMcenter. org (2006)

11. Schmid, D., Kaufmann, H., Pflug, A., Strobel, P., Baur, J.: Automatisierungstech-
nik - Grundlagen, Komponenten, Systeme. Europa Lehrmittel, Nourney, Vollmer
GmbH & Co. KG (2015)

12. Troster, F.: Steuerungs- und Regelungstechnik fiir Ingenieure. Oldenbourg
Lehrbiicher fiir Ingenieure, Oldenbourg

13. Yang, C.h., Vyatkin, V.: Transformation of simulink models to iec 61499 function
blocks for verification of distributed control systems. Control Engineering Practice
20(12), 1259-1269 (2012)

	BPMN Extensions for Modeling Continuous Processes

