
Architecture Design of Blockchain-Based
Applications
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Abstract—Integrating blockchain into software solutions is not
straightforward as it requires sophisticated architectural design
to connect and orchestrate centralized elements, such as backend
logic, with decentralized elements, such as blockchain ledgers and
smart contracts. We systematically explore this design space and
possible architectural solution approaches. More specifically, we
provide architectural blue prints for applications with different
degrees of decentralization, describe conceptional components as
well as possible relations between them.

Our research shows that an event-driven architecture incorpo-
rating a messaging framework, tethered to dedicated components
for handling blockchain state-changing and state-collecting oper-
ations, is a prevalent approach for choreographing blockchain-
dependent business logic in blockchain-based applications.

Index Terms—blockchain, software architecture, decentralized
application, DApp, smart contract, design pattern

I. INTRODUCTION

A blockchain is a distributed and decentralized ledger that
contains connected blocks of transactions [1] and can be
thought of as a cryptographically secure transactional singleton
machine with shared-state [2]. The technology allows the
implementation of new software architectures for decentral-
ized record-keeping and computation without relying on a
(traditional) central point of trust. This aspect is beneficial in
many cross-organizational processes [3] and efforts are being
made to integrate the technology into enterprise applications.
However, the acceptance and adoption of the technology in
practical applications is still at an early stage. Accordingly,
there is a lack of established design principles and design
approaches that drive the integration of the technology into
applications [4]. To address this gap, we follow up on previous
research [5] that presents a general overview of architectural
design decisions. In this context, we now turn to more detailed
decision options as well as typical component structures,
which we derive from existing architectural design solutions
using grounded theory (GT) techniques to extract and identify
common practices. If one considers the blockchain as a part
of a larger system, it can be assumed that certain practices
and architectures occur more frequently and thus prove to be
more advantageous than others. Furthermore, we investigate
existing, well-proven software design concepts and assess their
applicability to blockchain-based applications.

In order to concretize the research objectives, we ask the
following research questions: RQ1) Which existing architec-
tural software design principles and concepts are suitable for
blockchain-based applications and how can they be applied?
RQ2) Which conceptual components in terms of architec-
tural design exist and how are they related? For illustra-
tive purposes, this paper primarily refers to permissionless
blockchains, in particular Ethereum, today’s most popular
ecosystem. Please note that some concepts presented have a
different valence in the context of permissioned blockchains
(e.g., data confidentiality), but still remain applicable.

The paper is structured as follows: First, we discuss related
work in Section II and our research methodology in Section
III. Then, we elaborate the architectural design of blockchain-
based solutions as main contribution in Section IV. Finally, we
discuss findings in Section V and conclusions in Section VI.

II. RELATED WORK

Blockchain-Oriented Software Engineering (BOSE) is dedi-
cated to defining and applying software engineering principles
and practices for blockchain-based system design, develop-
ment, and deployment. Porru et al. [4] present one of the first
works to identify issues, challenges, and peculiarities in this
field. They advocate the need for new research directions and
novel specialized blockchain software engineering practices.
Wessling et al. [6] argue that a blockchain-oriented view is
required for the architectural design process and propose the
idea of blockchain tactics as a means to support the process
of integrating decentralized elements in software architecture.
In this work, however, the authors focus on the effects of
design patterns at the implementation level and do not provide
architectural guidance. Marchesi, Marchesi, and Tonelli [7] [8]
propose a holistic agile software development process for gath-
ering and analyzing requirements and designing, developing,
testing, and deploying blockchain applications. Nonetheless,
the approach is not specific enough to derive decisions on the
architectural level. Udokwu, Anyanka, and Norta [9] explore
and evaluate several high-level design approaches for devel-
oping blockchain-based applications, including the former two
works. They propose another model-driven design framework
with an automatic architecture model derivation, which lacks
a detailed description. Bodkhe et al. [10] present various
blockchain-based solutions and their applicability in various978-1-6654-3924-4/21/$31.00 ©2021 IEEE



Industry 4.0-based applications. In the aforesaid work, a
blockchain-based reference architecture is described, but rather
on a high level. Viswanathan, Dasgupta, and Govindaswamy
[11] present a Blockchain Solution Reference Architecture
(BSRA) that guides architects in creating end-to-end solutions
based on Hyperledger Fabric. Architectural components are
mentioned, but only described within a layered structure, so
that the interaction of the components is not apparent.

So far, works that provide systematic architectural guidance
in the field of BOSE are scarce. It is the goal of our work to
remedy this shortcoming.

III. RESEARCH STUDY DESIGN

In the search for (best) practices (hereinafter conceptually
equivalent to software design patterns and other similar best
practices), we apply a research methodology that is guided by
the pattern derivation approach of Riehle, Harutyunyan, and
Barcomb [12]. The approach describes the application of es-
tablished scientific research methods for the purpose of pattern
discovery and validation. In accordance with this approach
patterns are discovered (“mined”) and codified (“written”)
using Grounded Theory (GT) [13], [14] techniques. Driven
by our research questions and known practices from our own
experience, we defined initial search terms that were used to
query major search engines (e.g., Google, Bing) in order to
compile a number of well-fitting, technically detailed sources
from the so-called “gray” literature [15] (e.g., practitioner
reports, practitioner blogs, system documentation etc.). The
resulting sources pool [16] was then examined in a later
analysis with GT techniques. This included a thorough study
and the annotation of the materials with labels (“codes”
established with so-called “open coding”) along with optional
memos explaining important aspects of codes. Further, concep-
tual relations between codes (so-called “axial coding”) were
established to identify candidate categories for patterns. While
this may indicate a simple linear execution of the work, pattern
discovery and validation proceeded incrementally in several
iterative stages, in which new sources (inspired from previous
iterations) were exploited to constantly compare, revise, and
contrast patterns until a theoretical saturation was reached.
Theoretical saturation [13], [14] refers to a state in which
adding new sources no longer yields new findings, and is
commonly used as a stop criterion in GT-based studies.

IV. ARCHITECTURE DESIGN OF BLOCKCHAIN-BASED
APPLICATIONS

Today, the design and development of applications based
on blockchain technologies is a difficult undertaking and the
degree to which the technology is used is also significantly in-
fluenced by characteristics such as performance, usability, and
user experience. A well thought-out architectural design helps
to balance these criteria. To this end, this section discusses
design guidance for blockchain integration that we found and
coded in our study. Architectural design options including
practices/patterns, along with typical conceptual components
and their relationships, are discussed and finally summarized

in Table I Last, we discuss relevant topics in context such as
microservices and Blockchain as a Service (BaaS).

A. Event-driven Architecture

As a software component, the blockchain has an asyn-
chronous and event-driven character. This is due to the latency
in the execution and confirmation of transactions and the
fact that significant changes or operations that occur on the
blockchain are usually propagated as events. Examples are
events resulting from the execution of a smart contract or
the creation of a new block. Given these characteristics,
blockchains are not suited for real-time based systems and
likewise scenarios where end-users expect an immediate im-
pact of an operation. As with other systems that do not
rely on synchronous communication (i.e., no strict arrival
times of messages or signals), message coordination can be
achieved by using event-driven architecture (EDA). Event-
driven architecture is an architectural style in which there is no
centralized controller to manage a workflow. Instead, different
components interact with each other much more dynamically
when certain events that affect their respective domains occur.

1) Event Sourcing: Event sourcing is a persistence concept
used in event-driven architectures. It refers to storing appli-
cation state as a sequence of immutable events. With it, a
complete replay of the events that have happened since the
beginning of the event recording can be achieved. This con-
trasts the traditional create, read, update, and delete (CRUD)
approach, where only the current state of an object is stored
and iteratively mutated. Event sourcing has several benefits.
It allows for the creation of any number of user-defined
data stores as materialized views of persisted events and
knowledge about the state of domain objects at any given
time by examining retroactive events. Blockchain and event
sourcing share characteristics which suggest a natural affinity.
Both share the concept of an “immutable append only log”
which is considered as the single source of truth containing all
events that have happened. Therefore, it seems natural to map,
combine, and extend blockchains by event sourcing within
application scenarios. In this sense, during our research we
encountered use cases where blockchain was used as a trustless
event store (e.g., [17]), and vice versa, where blockchain
transactions were stored in a traditional event store (e.g., [18]).

2) Command-Query Responsibility Segregation: The
Command-Query Responsibility Segregation (CQRS)
pattern [19] is quite often mentioned alongside with event
sourcing, because when using event sourcing some form of
CQRS emerges almost naturally. CQRS is a design solution
that segregates operations that read data from operations
that write data by using separate interfaces and persistence
models. This approach promotes separation of concerns, as
the distinction between write and read aspects can result
in persistence models that are more aligned, maintainable,
and flexible. Most of the complex business logic can go
into the write model, while the read model can be kept
relatively simple. Further, problems such as scaling read
and write operations, using optimized data schemata, and



securing authorized writes are easier to solve. The pattern
can be utilized for blockchain integration (see [17], [20]), for
example to account for the general discrepancy of write and
read operations. The write model is represented by executing
transactions and storing information on the blockchain ledger.
The read model, on the other hand, is a locally synchronized
replica or materialized view of the blockchain to achieve fast
read performance and rich querying capabilities.

B. General Application Architectures

Blockchain can be used as a standalone platform to im-
plement the entire application logic (based on smart con-
tracts), or as an auxiliary tool in larger enterprise solutions.
Figure 1 illustrates this aspect and contrasts a traditional 3-
tier application design with the main decentralization styles,
namely a fully decentralized and a hybrid blockchain-driven
architecture, discussed below.

1) Fully Decentralized Applications: A decentralized ap-
plication (DApp) is a software solution that builds on a
distributed computing platform. A DApp typically consists
of a Web frontend that issues direct calls to a decentralized
backend infrastructure (i.e., the blockchain executing smart
contracts incorporating the entire application logic). This
structure resembles a two-tier client-server architecture, with
no intermediate support required for operation. The front-
end code, which can be written in any language, can be
hosted on a central server or on a decentralized storage (e.g.,
IPFS). Through the latter a complete decentralization of the
application is achieved.

2) Hybrid (Semi-Decentralized) Applications: Building
fully decentralized applications based solely on distributed
components can be a difficult undertaking due to current
technical limitations and usability challenges. Therefore, the
current approach to building such applications is more nu-
anced. Rather than relying solely on decentralized compo-
nents, a hybrid architecture is often implemented in which
centralized components are beneficially added. In this context,
a traditional backend is still relevant and several reasons speak
for its use, although it lowers the trust compared to purely
decentralized applications.

Application
Server

Decentralized
Storage

Blockchain
Platform

Hybrid
Application

Traditional Web
Application

Decentralized
Application

Client

Frontend

Backend

Database

Client

Frontend

Smart Contracts

Ledger

Fig. 1. A traditional, hybrid, and decentralized application architecture.

C. Relevance of the Backend

Blockchain is a closed ecosystem, thus smart contracts
cannot directly interact with off-chain services to fetch infor-
mation or trigger actions. On the contrary, they depend on the
outside world to push information into the network or trigger
actions by monitoring the network. This means a backend
server is needed whenever a reliance on third-party services
exists, such as ingesting external data, or performing mundane
operations like sending emails. Another use for a backend is
to act as cache or indexing engine for the blockchain, which
also helps to provide a more responsive user interface and
smoother perceived user experience. While the ultimate source
of truth is the blockchain, clients can rely on the backend
for search functions and validate the returned data on-chain.
Next, large data storage is impractical on the blockchain due
to the high costs associated with on-chain storage. Therefore,
an application may need to rely on a backend to store large
amounts of data, while only a hash is stored on the blockchain
for validation. In the same way, complex calculations that
would exceed the block gas limit of the blockchain can be
moved to a backend. Another case where a backend can
be useful is batching multiple transactions. The user can be
relieved of repetitive transactions that take a lot of time by
collecting user signed transactions in the backend and issuing
them all at once. As long as these transactions are not time
sensitive, batching them is a valid use case. A backend is also
handy for automation, when a smart contract is designed to
be called at a future time. Since smart contracts are passive
entities, i.e. they do nothing until a participant explicitly
interacts with them, there is no built-in ability to schedule
events in smart contracts. Thus, a backend system can be used
to reliably initiate periodic calls for smart contracts.

D. Conceptual Components

The anatomy of blockchain-based applications in terms of
essential components is to some degree similar across differ-
ent use cases. In the following, we list several components
that every blockchain-like solution may wish to consider in
its architectural design. Commonly found layout patterns of
components are outlined using the example of a typical DApp
incorporating a backend in Figure 2 and an enterprise-oriented
application containing several loosely coupled services (e.g.,
microservices) in Figure 3. While there are many degrees of
freedom in such architecture designs, such rough blueprint
patterns can help in initial designs and for architecture clas-
sification. In the following, we discuss the typical conceptual
components in those broader architecture patterns.

1) Wallet: Instead of a password-protected centralized ac-
count, blockchain users have a decentralized identity that is
based on asymmetric encryption. The mechanism relies on
pairs of keys: public keys, which may be distributed openly,
and private keys, known only to the owner. A key pair is
the identity on the blockchain. The public key (in a shorter
representation) serves as account identification (address) and
is derived from the private key that grants ownership of that
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Fig. 2. Typical component structure pattern of a DApp.
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Fig. 3. Typical component structure pattern of an enterprise grade blockchain integration.

account. Therefore the private key is the most crucial informa-
tion for identification and its safekeeping is essential. A wallet
is either a device, physical medium, program or service that
stores a user’s private keys. In addition to this basic purpose,
wallets often provide the functionality of encrypting, signing,
and forwarding information (transactions) to the blockchain.

2) Edge Service: Edge services are components that are
exposed to the public Internet and provide the capabilities
required to deliver functionality and content to users over
the Internet. They can refer to a multitude of components
such as content delivery networks (CDNs), firewalls, load
balancers, API gateways, reverse proxies, etc. They typically
allow a shielded data flow from the Internet into the provider’s
infrastructure and into the enterprise. Edge services can also
support backend applications by performing common tasks
such as authentication, authorization, logging or monitoring.

3) Identity and Access Management: The identity and
access management component stores user information to sup-
port user authentication and authorization as well as the pro-
vision of user data. Edge services can use this to control user-
specific access to resources, services, and applications. For
blockchain-based applications, it is necessary to align identity
and access management holistically also with the blockchain
inherent identity concept. It needs to be clarified to what extent
users need sovereignty over their own blockchain identity and
how this maps into an application-wide identity management
perspective. For example, it is possible to leave the blockchain
identity handling to the user or to the application as a custodian
responsibility; in addition, an application-tailored blockchain
identity concept without user binding is also conceivable. All
of this must also be reconciled with transaction handling and
secret key custody. In this context, it is possible to handle key
management and transaction submission either entirely by the
user or in the backend, or as a middle ground have meta-
transactions where user-signed transaction requests are sent
via a backend that pays for their execution.

4) Backend Application Logic: An application implements
the logic required to achieve business objectives either by
building a monolithic application, or a suite of small services
organized by business capabilities that can be independently
deployed. One of the most important considerations when

integrating blockchain is what data and computations to put
on-chain respectively off-chain. This decision is largely influ-
enced by the business case and the intended benefit of using a
blockchain (trust building, traceability, etc.) as well as current
technological limitations. Generally, one should follow the
basic design philosophy of using blockchains sparingly as they
are slow and expensive. In terms of the communication flow
between the application logic and the blockchain, this aspect is
typically split into two separate components, one performing
read (section IV-D8) and the other write (section IV-D9) oper-
ations. These components then serve as an interface to interact
with the blockchain. When following a service-based design,
it is also possible to further encapsulate both components
through a dedicated “blockchain service” to have a central hub
for blockchain interaction (e.g., Hyperledger Fabric Gateway).

5) Message Bus: In a service-oriented application, the
services not only process requests from users, but interact
with each other to handle these requests. Therefore, they
must engage in an appropriate communication protocol. In
such a situation, asynchronous communication by exchanging
messages via a message framework has many advantages.
The messaging framework takes the role of a message broker
allowing to validate, store (buffer), transform, and route (one-
to-one/many, content/topic-based) messages between services.

This approach offers the advantage of loose runtime cou-
pling, because it decouples the message sender from the
consumer. It also improves availability, given that the message
framework buffers messages when a consumer is temporarily
unavailable. However, this aspect also reveals a disadvantage,
namely that the message framework must be highly available.
Looking at our gray literature sources, the choice for a messag-
ing framework basically comes down to message processing
or stream processing. In message processing, messages are
written to a queue and a broker takes care of delivering the
published messages addressed to specific endpoints. Once the
processing of a message is confirmed, the message is removed.
This form of message delivery is suitable for environments
with complex pre-definable and stable routing logic or where
there is a need for guaranteed one-to-one delivery of messages.
Common platforms for message processing are ActiveMQ or
RabbitMQ. In stream processing, messages are written to a



log that is persistent (limited to a retention period/size) and
any endpoint may listen to these events and react accord-
ingly. Messages are not removed once they are consumed,
instead they can be replayed or consumed multiple times. This
implies that the endpoints keep track of which messages to
read (next). Popular stream processing platforms are Kafka
or Pulsar. When using a streaming platform one can filter,
aggregate, analyze or transform any blockchain events (e.g.,
mined transactions or blocks, emitted event logs) and also
combine this information with non-blockchain events. Hence,
one could build a streaming analytics process that performs
state checks by monitoring contextually relevant events over
time (e.g., [21]). To sum up, message processing is all about
smart pipes, dumb endpoints; while data stream processing
is the opposite: dumb pipes, smart endpoints. In principle,
both messaging framework types can be used for blockchain
integration, but this decision also depends on the surrounding
application components and the integration effort regarding the
software stack used. Overall, regardless of the taken approach,
the logic implemented in endpoints should be idempotent, so
that receiving the same event twice has no side effects.

6) Off-Chain Storage: Any data store outside the
blockchain that holds data related to the blockchain can be
considered as off-chain storage. Off-chain storage serves two
main purposes. On the one hand, it should enable faster access
to on-chain data through local replication, and on the other
hand, it should decouple business data from the blockchain,
be it for reasons of confidentiality or data size. The former is a
read-only store and since it reflects the on-chain state, it should
only be updated according to received blockchain events and
not by business logic. Its purpose is to support caching
and indexing to enable search, filter, sort, and pagination
capabilities for on-chain data. There are several ways to realize
this type of storage. For example, it is conceivable to use the
messaging framework (e.g., Kafka) as event store and utilize
its sink connectors (with Kafka Connect) to provide data to
databases, key-value stores, and search indexes (e.g., [18]).
For data provisioning from the blockchain, source connectors
exist that allow to ingest blockchain data tapped via web3 into
Kafka (e.g., [22]). Another approach is to create a separate data
store and synchronization service that subscribes to various
blockchain events on the message bus and pushes data to a
storage, which later on is consumed by application services
for queries. As a side note, there is also a decentralized
solution for querying in which a frontend database is used.
For this purpose a browser database (e.g., PouchDB, GunDB)
syncs all relevant events, but this approach is not suitable
for applications with a high data respectively event load.
Now for the second purpose, namely a separate off-chain
storage to detach business data from the blockchain. This
type of storage can be used by business logic for a more
controlled management of confidential data and may also
serve as an exchange channel, if a shared storage is used.
Its realization can take many forms depending on the type
of data, such as a database (e.g., SQL, NoSQL) for metadata
or a decentralized Content-Addressable-Storage (CAS) (e.g.,

IPFS, Swarm) for Binary Large Objects (BLOBs), whereby
the integrity of the data is guaranteed by storing hashes on-
chain. All things considered, it is advisable to treat both
storage concepts separately, although it is technically possible
to unify them. For completeness, if data is to be held only on-
chain, techniques such as ordinary encryption, homomorphic
encryption (HE), or zero-knowledge proofs (ZKPs) can be
used to ensure data confidentiality.

7) Key Vault: A key vault is a component used to maintain
control of encryption keys and other secrets. It is important
for providing the private key in scenarios where transactions
need to be signed in the backend. There are several complex
strategies and different software solutions that allow storing
private keys quite securely on the backend (e.g., HashiCorp
Vault). Some solutions build on geographically distributed
databases, while others built on specially designed hardware.

8) Event Listener: The event listener (e.g., Eventeum) is
a service component in the backend infrastructure and listens
for and reacts to events emanating from a blockchain system.
It contributes to a clear separation of concerns by avoiding
the need for services to subscribe directly to a blockchain
endpoint for events. It handles (dynamically) registered event
subscriptions, and broadcasts these events in a consumable
manner (over a message bus) to downstream services run-
ning on the backend. Blockchain is a closed system, so for
event retrieval, inevitably repeated polling against blockchain
endpoints is required. Notably, there are two possibilities:
Either make explicit endpoint protocol requests for certain
events, e.g., to check whether a transaction has been mined
based on a transaction hash, or follow a “crawler” based
approach, where a bulk invocation retrieves all transactions
at once given a (new) block number for examination. In both
cases, in order to avoid undetected events, the event listener
has to gracefully handle various errors that invariably occur
in production systems: nodes out of sync, crashing nodes,
congested nodes, network disconnects, stale data returned in
requests, etc. This suggests that it is advantageous to use
multiple (own) blockchain endpoints for redundancy. In this
constellation an aggregator pattern can combine (and de-
duplicate) multiple endpoint events to propagate the data in
a reliable, at-least-once manner. In the same way, the event
listener may consider the immutability of the event stream
(depending on the consensus mechanism). For a consensus
algorithm that allows multiple chain heads, there may be
multiple competing event streams at any one time. It is either
possible to wait for guaranteed event finality (sufficient suc-
cinct block confirmations), or propagate events as soon as they
arrive and assume that downstream services handle ramifica-
tions of prematurely published events. The latter approach has
been mentioned in a few gray literature sources and adopts an
eventual consistency guided way of thinking for transactions,
whereby the application assumes that any blockchain transac-
tion being waited on, will eventually confirm and continues
on as usual. This approach leaves the application in a state
which is ahead of the blockchain, allowing for example an
improved user experience. However, having two instances of



state (i.e. blockchain and application) can be problematic if
state management is not handled carefully including rollback
scenarios; namely, when a transaction fails.

9) Transaction Manager: The transaction manager is a
service within the blockchain application that receives mes-
sages and issues state-changing transactions (invoking smart
contracts). It is an abstraction that controls how transactions
are signed and broadcast to the blockchain network, via a con-
nected blockchain endpoint. The component performs various
tasks associated with the publication of transactions. First, it
takes care of estimating adequate transaction costs, to ensure
transactions are equipped with enough funds for a timely
execution. Second, it takes care of nonce management. A
nonce is an arbitrary (mostly sequential), unique number that
is used to prevent replay attacks. Third, it deals with signing
the entire transaction. This step usually integrates a key vault
as a private key assembly solution. Some blockchain libraries
(e.g., web3, ethers) embed the mentioned tasks behind the
scenes, nevertheless it is important to know the background.
In addition, the transaction manager has to handle various
errors that may occur: nonce errors, network congestion,
dropping peers, dropping transactions due to a sudden price
increase, etc. In order to ensure reliable and stable transaction
processing, the transaction manager can join forces with the
event listener to verify that transactions are mined within a
specified time. If this is not the case, a certain transaction
can be republished with different parameters (e.g., corrected
nonce, a higher tx fee) and monitoring starts again. It should
be noted that there are API gateway service providers (e.g.,
EthVigil) that offer transaction lifecycle management and also
enable blockchain monitoring via webhooks or websockets.

10) Blockchain Endpoint: A blockchain endpoint is a de-
vice or node running a piece of software that implements the
blockchain protocol. A node verifies all transactions in each
block, keeping the network secure and the data accurate. Typi-
cally, different node types and polyglot node implementations
exist (e.g., Geth, Parity). A full node has the entire blockchain
downloaded and available. Hence, it can verify transactions
and execute smart contracts independently. A blockchain net-
work is maintained and operated by full nodes. A light node
only holds block headers and can validate transactions with
the support of a full node. In addition, there are also service
providers that operate node clusters (e.g., Infura, QuikNode)
which allow users to interact with the blockchain without
having to set up their own node. All in all, operating an own
node requires no trust in the network since the data can be
verified in the node itself. If the blockchain is to be used in a
truly private, self-sufficient and trustless manner, the operation
of an own node is required.

11) Smart Contract: A smart contract implements the
business logic on the blockchain and can be seen as a self
executing autonomous entity. As a design principle, contracts
should be focused on a single responsibility or capability
(preferring many simpler smart contracts to a few larger
ones) and constructed to minimize the number/size of on-
chain transactions/write operations (to reduce costs) and the

dependencies required for testing. For common concerns (e.g.,
access control) audited and production-tested library contracts
(e.g., OpenZeppelin) and standardized contract implementa-
tions (e.g., ERC-20) should be used. Further, it is advisable
to conduct peer reviews that focus on reducing excessive
complexity and to consult specialized smart contract auditors.
Due to the inherent characteristics/limitations of blockchain-
based program execution, smart contracts require a rather
unconventional programming paradigm. To handle those chal-
lenges, various design patterns emerged. A detailed discussion
is beyond the scope of this paper, thus we refer to [23] [24].
In terms of data processing, smart contracts have their own
state, but mostly they operate in relation to a common data
model within the domain of a system, thus modeling and
handling state transfer is a main concern. Complex aggregate
or inferred state computations are typically kept off-chain
and pushed on-chain with trusted oracles as needed. Another
topic worth mentioning is the structural design and layout
of smart contracts. In this context, there are different design
options: A single smart contract acts as an interface (facade)
that orchestrates interaction with other downstream smart
contracts, or multiple smart contracts act independently with
equal priority, and their functionality is being combined within
a client/backend. In certain scenarios it is also common to use
a template (factory) contract on-chain to instantiate contracts
with the same structure and flow, but for a different context.

TABLE I
DESIGN DECISIONS, OPTIONS, AND CONCEPTUAL COMPONENTS.

Design Decision Design Option Conceptual Component
Decentralization
Level

Full N/A
Partial N/A

Identity
Provisioning

Blockchain Wallet
Custodial ID & Access MngmtIn-House

Transaction
Handling

User-Tx Wallet
Meta-Tx Transaction ManagerBackend-Tx

Key
Management

User Wallet
Backend Key Vault

Transaction
State Sync

Strict Event Listener /
Backend App. LogicEventual

Blockchain
Connection

Own Node Blockchain Endpoint3rd Party
Frontend
Provisioning

Decentr. Storage N/A
Backend Edge Service

Application
Logic

On-Chain Smart Contract
Off-Chain Backend App. Logic

Component
Orchestration

Point-to-Point (Queue) Message BusPub/Sub (Topic)
Rich
Querying

Frontend DB N/A
Backend DB Off-Chain Storage

Confidential
Storage

On-Chain (Encr., HE, ZKPs) Smart Contract
Off-Chain (CAS & Hash Ref.) Off-Chain Storage

E. Blockchain Smart Contracts and Microservices

Microservices are an application architectural style in which
a complex application is composed of many smaller, discrete,
decoupled, and network-connected services that communicate
with each other using standardized interfaces. Although smart
contracts and microservices are fundamentally different in
terms of the native environments they serve (decentralized



vs centralized platforms) and the challenges they seek to
address, they are both a response to the rise of distributed
architecture. While smart contracts are more about enabling
transactions in low-trust environments, microservices are about
enabling modularity and scale. However, smart contracts and
microservices also have commonalities from a service-oriented
architecture perspective (see [25] [26] [27]). Both are de-
signed for focused functionality, autonomy, composability, and
communication via standardized and well-defined interfaces.
Hence, smart contracts can to some extent be interpreted as
services of a blockchain-based computing paradigm. In this
light, it makes sense to combine both concepts and design
blockchain-based applications with microservices architecture
principles. Following this approach brings not only the benefits
associated with microservices (e.g., loose coupling, scalability,
polyglot development, etc.) but also facilitates blockchain
integration. When blockchain is treated as a service component
in a microservices paradigm, it becomes easier to deal with
its asynchronous and event-based nature. Proven concepts
in microservices architecture, such as EDA, event sourcing,
and CQRS, provide useful tools in this context. With EDA
blockchain transactions can emanate as events and the flow of
information within a system can be organized asynchronously
in coordination with these events. Event sourcing and CQRS
complement this approach, as blockchain state changes can
be stored as a continuum of immutable events within an event
store, from which any view or structural model can be derived.

F. Blockchain as a Service (BaaS)

Looking at current trends in software development, one can
speak of a new cloud-native application era where IT systems
and applications are increasingly being outsourced to cloud
service providers, for reasons of cost savings and improved
management and maintenance. This trend has also caught
up with the blockchain sector under the term Blockchain
as a Service (BaaS). BaaS enables businesses to rely on
a service provider to provision and manage aspects of a
blockchain infrastructure in order to facilitate the development,
testing, deployment, and ongoing management of blockchain
applications. This approach allows development resources to
be better focused on a specific goal by utilizing a wide range
of readily available components while avoiding infrastructure
and platform configuration overhead. A cloud environment can
also be attractive in order to keep access and cooperation
hurdles low for other participants (e.g., in a consortium).
However, there are also disadvantages. Relying on a single
service provider to run a decentralized blockchain network can
be contradictory as it introduces a form of (re)centralization
(trusting those who manage infrastructure). There is also the
risk of a vendor lock-in, as it is difficult or very expensive
to switch to a different service provider (due to lack of
standardization especially for BaaS); the same also applies to
the selection of a blockchain platform.

Many well-known IT companies such as Microsoft, Ama-
zon, IBM, SAP, or Oracle now offer BaaS solutions (for a
comparison see [28] [29] [30]) and enable the operation of

blockchain nodes on their respective platforms, some even
allow the use of third-party infrastructure. Various blockchain
ecosystems and consensus mechanisms are offered, mostly
geared towards permissioned blockchains (e.g., Hyperledger
Fabric, ConsenSys Quorum) that focus on performance and
speed with strict privacy and access controls, which are
preferred for business collaboration. In addition, many plat-
forms offer a variety of different applications for opera-
tions, node, and smart contract management. Some even
offer ready-to-use templates to provide predefined blockchain
network configurations or generic applications (e.g., supply
chain, financial services). Pricing models vary (e.g., number
of nodes/transactions, storage space required, CPU utiliza-
tion), also among providers, and often tenants can choose
among several different options. As for the degree of built-
in blockchain integration features, these vary between ser-
vice providers. Some providers allow a deep integration with
other built-in platform services out-of-the-box (e.g. through
adapters, connectors, triggers, purpose fitted SDKs, etc.) using
different integration approaches (e.g., serverless functions,
workflow orchestration), while others focus on infrastructure
provision and basic interaction. With service providers in
the first group, a Function-as-a-Service (FaaS) approach is
feasible, allowing the use of serverless computation options
based on event-driven models where a piece of code (aka
“function”) calling a smart contract is invoked by an event-
based trigger such as a HTTP request (or any other event).
This enables, for example, the implementation of a uniform
interface for smart contract interaction in a REST-API manner.

V. DISCUSSION

While it may seem straightforward to use blockchain for
specific business scenarios, using the technology often comes
at the expense of scalability, privacy, and usability. As a
result, the architectural design of blockchain-based applica-
tions is currently influenced by the need to compensate for
theses drawbacks. This is being achieved with a variety of
approaches, all aimed at shifting responsibility to centralized
components in areas where blockchain is currently lacking.
This leads to hybrid architectures combining centralized and
decentralized components, in which the engineering challenge
is comprised of ensuring a smooth and timely communication
between the two. In such environments, it can be advantageous
to treat events as first-class citizens of an application and use
a messaging framework to coordinate communication between
different components in an event-driven manner. As far as
communication with the blockchain is concerned, the inter-
action can be narrowed down to two aspects. First, listening
to blockchain events and reading the blockchain network state.
Second, publishing transactions to invoke state-changing oper-
ations. This is basically a two-way communication where the
transaction manager is the write channel and the event listener
is the read channel. By applying a service-oriented paradigm
to these components and using asynchronous communication,
blockchain integration boils down to choreograph blockchain-
dependent business logic with these gateway services.



Setting up application and blockchain infrastructure com-
ponents can be a time-consuming and laborious task. Instead
of developing an in-house solution with self-managed soft-
ware, it can be efficient to outsource the infrastructure chal-
lenges to API gateway services or to cloud service providers.
While gateway services abstract and encapsulate blockchain
interaction behind HTTP API calls, cloud service providers
offer a comprehensive implementation platform with a set of
architectural artifacts that can be leveraged to accelerate the
development. Various compute, orchestration, storage, mes-
saging, logging, and monitoring services can be combined.
Service providers with built-in integration options also have
the advantage of being able to abstract direct interactions with
the blockchain, facilitating the flow of communication and
eliminating concerns about the reliability of transaction han-
dling and event notification. In addition, available integration
options can offer a scaffolding, that allows to wrap blockchain
interaction into easier consumable and integratable blockchain
services (e.g., as FaaS).

Overall, BaaS solutions can ease blockchain and application
infrastructure management and speed up development, but are
not on par with self-managed solutions in terms of provided
trust. Nevertheless, the degree of trust can be indirectly
influenced by how much is managed by a service provider,
respectively whether BaaS is consumed as SaaS, PaaS, or IaaS.

VI. CONCLUSION

Blockchain is a disruptive technology for enabling mu-
tual trust in collaborative environments and has the potential
to replace existing business models with new technological
solutions. However, to leverage the technology, new types
of architectures and designs are needed. To this end, we
have described architectural design solutions for creating
blockchain-based applications with different degrees of decen-
tralization. In this context, we studied existing solutions from
which we inferred typical architectural layouts and conceptual
components. Based on our findings, we identified high-level
architectural blueprints or patterns in which we described key
components along with their purpose and interaction.

While identifying suitable business cases is key to the
success of using blockchains, it is equally important to build
solutions on a robust architecture. For the integration of
blockchain with its asynchronous and event-driven character,
it is natural to adopt architectural styles and programming
paradigms that are focused on these very characteristics. In
this regard, an event-driven architecture consisting of reactive
components such as microservices or, in the cloud context,
serverless functions, and dedicated blockchain read/write gate-
way services provides a good fit.

Although blockchain has not yet broken through as a
mainstream application foundation today, the technology holds
the potential to reshape business relationships once operational
improvements and increased efficiencies come to fruition.
Along the way, future research could investigate (architectural)
standards for commonly occurring application scenarios to
foster a quick adoption of blockchain technology.
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grey literature in software engineering research, 2019.

[16] Arch. Design of BC-Based Applications - Knowledge Sources, [On-
line]. Available: https://github.com/maxwoe/bc architecture design.

[17] Transmute Framework, [Online]. Available: https : / / github . com /
transmute-industries/transmute.

[18] Ocean Bounty: Smart Contract Event Monitoring Tool, [Online].
Available: https://explorer.bounties.network/bounty/2146.

[19] C. Richardson. (2017). Microservices Patterns, [Online]. Available:
https://microservices.io/patterns/index.html.

[20] Hyperledger Fabric CQRS-ES, [Online]. Available: https : / / data .
hkoscon.org/event/make-hyperledger-fabric-reactive-and-cqrs-es.

[21] Blockchain Streaming Analytics, [Online]. Available: https : / / www.
youtube.com/watch?v=rY1fEaCvwXk.

[22] Kafka-web3-connector, [Online]. Available: https : / / github . com /
satran004/kafka-web3-connector.

[23] X. Xu, C. Pautasso, L. Zhu, et al., “A pattern collection for blockchain-
based applications,” in ACM Int. Conf. Proceeding Ser., 2018.
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