
Faster Algorithms for Bounded Liveness in Graphs1

and Game Graphs2

Krishnendu Chatterjee @3

IST Austria, Klosterneuburg, Austria4

Monika Henzinger @5

University of Vienna, Faculty of Computer Science, Vienna, Austria6

Sagar Sudhir Kale @7

University of Vienna, Faculty of Computer Science, Vienna, Austria8

Alexander Svozil @9

University of Vienna, Faculty of Computer Science, Vienna, Austria10

Abstract11

Graphs and games on graphs are fundamental models for the analysis of reactive systems, in12

particular, for model-checking and the synthesis of reactive systems. The class of ω-regular languages13

provides a robust specification formalism for the desired properties of reactive systems. In the14

classical infinitary formulation of the liveness part of an ω-regular specification, a “good” event must15

happen eventually without any bound between the good events. A stronger notion of liveness is16

bounded liveness, which requires that good events happen within d transitions. Given a graph or a17

game graph with n vertices, m edges, and a bounded liveness objective, the previous best-known18

algorithmic bounds are as follows: (i) O(dm) for graphs, which in the worst-case is O(n3); and19

(ii) O(n2d2) for games on graphs. Our main contributions improve these long-standing algorithmic20

bounds. For graphs we present: (i) a randomized algorithm with one-sided error with running time21

O(n2.5 log n) for the bounded liveness objectives; and (ii) a deterministic linear-time algorithm for22

the complement of bounded liveness objectives. For games on graphs, we present an O(n2d) time23

algorithm for the bounded liveness objectives.24

2012 ACM Subject Classification Theory of computation → Modal and temporal logics25

Keywords and phrases Graphs, Game Graphs, Büchi26

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.12427

Category Track B: Automata, Logic, Semantics, and Theory of Programming28

Funding Krishnendu Chatterjee: Supported by the ERC CoG 863818 (ForM-SMArt).29

Monika Henzinger : Supported by the Austrian Science Fund (FWF) and netIDEE SCIENCE project30

P 33775-N.31

Sagar Sudhir Kale: Partially supported by the Vienna Science and Technology Fund (WWTF)32

through project ICT15-003.33

Alexander Svozil: Fully supported by the Vienna Science and Technology Fund (WWTF) through34

project ICT15-003.35

1 Introduction36

Graphs and games on graphs. Graphs and two-player games played on graphs provide a37

general mathematical framework for a wide range of problems in computer science: in38

particular, for the analysis of reactive systems, where the vertices of the graph represent the39

states of a reactive system and the edges represent the transitions between the states. The40

classical synthesis problem (the problem of Church) asks for the construction of a winning41

strategy in a game played on the graph [13, 21, 20] and the fundamental model-checking42

problem is an algorithmic graph problem [14].43

© Krishnendu Chatterjee, Monika Henzinger, Sagar Kale, and Alexander Svozil;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 124; pp. 124:1–124:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:krish.chat@ist.ac.at
mailto:monika.henzinger@univie.ac.at
mailto:sagar.kale@univie.ac.at
mailto:alexander.svozil@univie.ac.at
https://doi.org/10.4230/LIPIcs.ICALP.2021.124
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

124:2 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

Omega-regular specifications: strength and weakness. In the analysis of reactive systems,44

the desired temporal properties that the system should satisfy constitute the specification.45

The class of ω-regular languages provides a robust specification formalism [18, 20]. Every46

ω-regular objective can be decomposed into a safety part and a liveness part [3]. The safety47

part ensures that the system will not do anything “bad” (such as violating an invariant)48

within any finite number of transitions. The liveness part ensures that the system will do49

something “good” (such as proceed or respond) in the long-run. Liveness can be violated only50

in the limit, by infinite sequences of transitions, as no bound is specified on when a “good”51

event must happen. This infinitary formulation has several strengths, such as robustness and52

simplicity [18, 23]. However, there is also a weakness of the classical definition of liveness: it53

can be satisfied by systems that are unsatisfactory because no bound can be put between54

the occurrence of desired events.55

Stronger notion of liveness. For the weakness of the infinitary formulation of liveness,56

alternative and stronger formulations of liveness have been proposed. The first formulation57

is bounded liveness which ensures, given a bound d, that eventually, good events happen58

within d transitions. The second formulation is finitary liveness which requires the existence59

of a bound such that eventually good events happen within the bound. Finitary liveness60

was proposed in [4] and has been widely studied; e.g., games on graphs with finitary ω-61

regular objectives [12], and logics such as PromptLTL based on finitary liveness [17]. The62

notion of bounded liveness has also been investigated in many contexts, such as MSO with63

bounding quantifiers [7], bounded model-checking [6], and “bounded until” in logics such as64

RTCTL [15].65

Algorithmic questions for bounded liveness. In this work, we consider graphs and games66

on graphs with bounded liveness objectives. Consider a graph with n vertices, m edges,67

and a bounded liveness objective with bound d. A basic algorithmic approach is to reduce68

the bounded liveness objective to a liveness objective on a larger graph (that we call the69

auxiliary graph) that explicitly keeps track of the number of transitions since the last good70

event. This basic approach yields the following bounds: (a) an O(dm)-time algorithm for71

graphs (applying the linear-time algorithm for liveness objectives on graphs), and (b) an72

O(n2d2)-time algorithm for games on graphs (applying the current best-known O(n2)-time73

algorithm for games on graphs with liveness objectives [11]). A fundamental algorithmic74

question is whether the above bounds can be improved.75

Our contributions. In this work, our main contributions are improved algorithmic bounds for76

bounded liveness on graphs and games on graphs.77

In graphs, there are two relevant semantics: (a) an existential semantic that asks whether78

there exists a path to satisfy the objective, and (b) a universal semantic that asks whether79

all paths satisfy the objective. The answer to the universal semantics with bounded80

liveness is “Yes” if and only if the answer is “No” for existential semantics with the81

complementary bounded coliveness objective. We consider graphs with the existential82

semantics and bounded liveness and bounded coliveness objectives. For bounded liveness83

objectives, all previous algorithmic approaches yield an O(n3) worst-case time-bound84

(where d = O(n)) and we present a randomized algorithm with one-sided error whose85

worst-case time-bound is O(n2.5 log n). For bounded coliveness objectives, we present a86

deterministic linear-time algorithm.87

For games on graphs with bounded liveness objectives, we present an O(n2d)-time88

algorithm that improves the previous O(n2d2)-time algorithm.89

Significance of the contributions. On the technical front, it is threefold.90

K. Chatterjee, M. Henzinger, S. Kale, and A. Svozil 124:3

1. To break the O(n3)-time barrier for graphs, we exploit randomization to estimate for all91

pairs of good events how far they are from each other. Using this information along with92

a suitably modified auxiliary graph results in the faster O(n2.5 log n)-time algorithm.93

To get the improved time bound of O(n2d) for game graphs:94

2. we construct an auxiliary game graph (similar to the graph case) and make a crucial95

observation that this game graph after each iteration has a lot of structure, a property96

we call induced symmetry;97

3. we strategically introduce as many “layover” vertices as there are good events; in combin-98

ation with induced symmetry, this enables us to prove that a significant chunk of the99

auxiliary game graph is deleted after each iteration.100

Furthermore, there are several important implications of our contributions. First, for101

graphs with bounded liveness objectives, the previous worst-case time-bound is O(n3). In102

recent years, many such algorithmic problems with O(n3) bound have been shown to be103

conditionally optimal with a reduction from classical problems such as BMM (boolean matrix104

multiplication) [1, 2, 8, 9, 10, 24]. Our new algorithm breaks the O(n3) barrier and shows105

that such conditional lower bound approaches do not apply for bounded liveness in graphs.106

Second, for graphs with bounded coliveness objectives our linear-time bound shows that there107

is a very efficient algorithm for the complement of the bounded liveness objectives. Finally,108

we show that the basic algorithmic approach for games on graphs can also be improved.109

Given our results improve the bounds for graphs and games on graphs with bounded liveness110

objectives, there are several interesting questions for future work. Whether the bounds can111

be further improved or a deterministic sub-cubic time algorithm can be obtained for graphs112

with bounded liveness objectives are the most interesting algorithmic open questions.113

2 Preliminaries114

Since the notation and definitions are standard, we base this section on the definitions section115

by Chatterjee and Henzinger [11].116

Game graphs and graphs. A game graph Γ = ((V, E), ⟨V1, V2⟩) is a directed graph, where117

V is a finite set of vertices, E is a finite set of edges, and ⟨V1, V2⟩ is a partition of V into118

player-1 vertices V1 and the adversarial player-2 vertices V2. Graphs are a special case of119

game graphs with V2 = ∅. Define Out(v) = {u ∈ V | (v, u) ∈ E} to be the set of vertices to120

which v has an outgoing edge and In(v) = {u ∈ V | (u, v) ∈ E} to be the set of vertices from121

which v has an incoming edge. As is standard, we assume that there are no self-loops and122

that every vertex has an outgoing edge. Let n = |V | be the number of vertices and m = |E|123

be the number of edges.124

Plays. A play ⟨v0, v1, v2, . . .⟩ is an infinite sequence of vertices in Γ such that each (vi−1, vi) ∈125

E for all i ⩾ 1. We denote by Ω the set of all plays. A finite play V ∗ is a prefix of a play.126

Strategies. A player-ρ strategy tells which edge to follow next given a finite play that ends in127

a player-ρ vertex. More formally, a player-1 strategy is a function σ : V ∗ · V1 7→ V such that128

for ω ∈ V ∗ · V1 and v being the last vertex, (v, σ(ω)) ∈ E. A player-2 strategy is defined129

in the same way. We denote by Σ the set of all player-1 strategies and by Π the set of all130

player-2 strategies.131

Outcome of strategies. Given a starting vertex v and the strategies σ ∈ Σ and π ∈ Π, there is132

a unique play ω(v, σ, π) = ⟨v0, v1, v2, . . .⟩, which is defined as follows: v0 = v; for all i > 0 if133

vi ∈ V1 then σ(⟨v0, . . . , vi⟩) = vi+1, and if vi ∈ V2, then π(⟨v0, . . . , vi⟩) = vi+1.134

Objectives. An objective Φ ⊆ Ω is a set of “winning” plays. The main objectives of this135

paper are the bounded Büchi objective for player 1 and the complementary bounded coBüchi136

ICALP 2021

124:4 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

objective for player 2. For a play ω, we define by Inf (ω) the set of vertices that occur137

infinitely often in ω. More formally, if ω = ⟨v0, v1, v2, . . .⟩ ∈ Ω, then Inf (ω) = {v ∈ V | ∀i ⩾138

0∃j > i : vj = v}. We also need the reachability, safety, Büchi and the coBüchi objectives for139

the analyses. In the following definitions, assume that we are given a game graph Γ.140

1. Reachability and Safety objectives. For T ⊆ V , the reachability objective states that at141

least one vertex in T be visited, and dually, the safety objective states that only vertices142

in C be visited. Formally, Reach(T, Γ) = {⟨v0, v1, v2, . . . ⟩ ∈ Ω | ∃k ⩾ 0 : vk ∈ T} and143

Safety(C, Γ) = {⟨v0, v1, v2, . . . ⟩ ∈ Ω | ∀k ⩾ 0 : vk ∈ C}. The two objectives are dual, i.e.,144

Reach(T, Γ) = Ω \ Safety(V \ T, Γ).145

2. Büchi and coBüchi objectives. Given a set of Büchi vertices, the Büchi objective states146

that some Büchi vertex be visited infinitely often, and dually, the coBüchi objective147

states that only vertices in a given set C be visited infinitely often. Formally, given148

B ⊆ V , define Büchi(B, Γ) = {ω ∈ Ω | Inf (ω) ∩ B ̸= ∅} and given C ⊆ V , define149

coBüchi(C, Γ) = {ω ∈ Ω | Inf (ω) ⊆ C}. The two objectives are dual, i.e., Büchi(B, Γ) =150

Ω \ coBüchi(V \B, Γ).151

3. Bounded Büchi and bounded coBüchi objectives. Given a set of Büchi vertices and an152

integer d ⩾ 0, the bounded Büchi objective states that from some point on, the distance153

between any two consecutive Büchi vertices is at most d. Dually, given C ⊆ V , the154

bounded coBüchi objective requires that there are at least d consecutive vertices in C155

infinitely often. Formally, the sets of winning plays are boundedBüchi(B, d, Γ) = {ω ∈156

Ω | ∃i ⩾ 0∀j ⩾ i : {vj , vj+1, . . . , vj+d−1} ∩ B ̸= ∅} and boundedcoBüchi(C, d, Γ) =157

{ω ∈ Ω | ∀i ⩾ 0 ∃j ⩾ i s.t. {vj , vj+1, . . . , vj+d−1} ⊆ C}. These are also dual, i.e.,158

boundedBüchi(B, d, Γ) = Ω \ boundedcoBüchi(V \B, d, Γ).159

When studying bounded Büchi (and bounded coBüchi) objectives, one can assume without160

loss of generality that d ⩽ n, because otherwise they are equivalent to Büchi objectives.161

We omit Γ from the definition of the objectives if it is obvious on which game graph the162

objectives are defined.163

For an objective Φ, a strategy σ ∈ Σ is a winning strategy for player 1 from vertex v if for164

all player-2 strategies π ∈ Π the resulting play ω(v, σ, π) ∈ Φ, and the set of winning vertices165

for player 1 is W1(Φ) = {v ∈ V | ∃σ ∈ Σ s.t. ∀π ∈ Π : ω(v, σ, π) ∈ Φ}. Player-2 winning166

strategies and winning vertices are defined in the same way.167

Remark about determinacy. The following theorem shows that every vertex in V either168

belongs to the winning set of bounded Büchi objectives of player 1 or to the winning set of169

bounded coBüchi objectives for player 2. The same holds for Büchi and coBüchi objectives.170

We say that a vertex is either winning for player 1 or winning for player 2.171

▶ Theorem 1 (Determinancy [19]). For all game graphs Γ, all (bounded) Büchi objectives Φ172

for player 1 and the complementary (bounded) coBüchi objectives Ψ = Ω \ Φ for player 2 we173

have W1(Φ) = V \W2(Ψ).174

Observe that for (bounded) Büchi objectives Φ for player 1 and the (bounded) coBüchi175

objectives Ψ = Ω \ Φ, by definition, we have V \ W2(Ψ) = {v ∈ V | ∀π ∈ Π ∃σ ∈176

Σ s.t. ω(v, σ, π) ∈ Φ}. Theorem 1 allows to change existential and universal quantifiers, i.e.,177

V \W2(Ψ) = {v ∈ V | ∃σ ∈ Σ s.t. ∀π ∈ Π ω(v, σ, π) ∈ Φ} = W1(Φ). If for every strategy π178

of player 2, there exists a strategy σ for player 1 that wins from vertex v, then there exists a179

(unique) strategy σ for player 1 that wins against every strategy π of player 2.180

The computational problem. Given a game graph with bounded Büchi objective Φ the goal181

is to compute the set W1(Φ). The focus of this paper is on bounded Büchi and bounded182

K. Chatterjee, M. Henzinger, S. Kale, and A. Svozil 124:5

coBüchi objectives, and when we mention winning vertices or winning strategies, we mean183

winning for bounded Büchi objectives, unless stated otherwise.184

Closed Sets. A set U ⊆ V of vertices is a closed set for player 1 if ∀u ∈ (U ∩V1) : Out(u) ⊆ U185

and ∀u ∈ (U ∩ V2) : Out(u) ∩ V2 ̸= ∅. We define player-2 closed sets analogously. Observe186

that every closed set U induces a subgame graph denoted G ↾ U .187

A connection between closed sets, winning for safety, reachability and coBüchi objectives188

in the following proposition.189

▶ Proposition 2 ([11] Proposition 2.2). Consider a game graph Γ, and a closed set U for190

player 1. Then, the following assertions hold:191

1. Player 2 has a winning strategy for the objective Safety(U) for all vertices in U , that is,192

player 2 can ensure that if the play starts in U , then the play never leaves the set U .193

2. If U ∩B = ∅ (i.e., there is no Büchi vertex in U), then every vertex in U is winning for194

player 2 for the coBüchi objective.195

Attractors. For a set of “target” vertices T ⊆ V , the set of vertices from which player ρ196

can reach T against all strategies of the other player, is called the player-ρ attractor of197

T ; formally [25, 23], attrρ(T, Γ) = Wρ(Reach(T, Γ)). An attractor A = attrρ(T, Γ) can be198

computed in O(m) time [5, 16].199

The following observation stipulates the connection between closed sets and attractors.200

▶ Observation 3 ([11]). For all game graphs Γ, all players ρ ∈ {1, 2}, and all sets U ⊆ V201

we have the following: The set V \ attrρ(U, Γ) is a closed set for player ρ, i.e., no player-ρ202

vertex in V \ attrρ(U, Γ) has an edge to attrρ(U, Γ) and every vertex of the other player in203

V \ attrρ(U, Γ) has an edge in V \ attrρ(U, Γ).204

3 Algorithms for Graphs205

Graphs are a special case of game graphs with V2 = ∅. Hereon, we will call this “the graph206

case” as opposed to “the game graph case” (where V1 ≠ ∅ and V2 ≠ ∅). The objectives we207

consider are prefix independent, i.e., if ω ∈ Ω, then any play obtained by adding or removing208

a finite prefix to or from ω is also in Ω. Hence, with respect to computing winning vertices,209

it is enough to focus on strongly connected graphs. The reasoning is as follows.210

In the input graph, we call a strongly connected component (SCC) S good if the graph211

restricted to S has a winning vertex. Due to prefix independence, all vertices in a good212

SCC and those from which you can reach a good SCC are winning. We will prove that such213

vertices are exactly the winning vertices, and that this set can be computed by the following214

procedure:215

Compute the SCCs of the input graph (can be done in linear time [22]).216

Determine for each SCC if it is good (this step depends on the objective).217

Consider the set of all vertices belonging to a good SCC. Perform reachability to this set.218

(This can also be done in linear time.)219

▶ Lemma 4. A vertex v is a winning vertex if and only if it there is path from v to some220

vertex in a good SCC.221

Proof. As mentioned before, due to prefix independence, if v has a path to some vertex in a222

good SCC, then it is winning. Next, we show the converse.223

If v is winning, then there is a winning play ω starting at v. Since SCCs themselves form224

a directed acyclic graph (DAG), ω must eventually enter an SCC S and stay there. Again,225

ICALP 2021

124:6 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

due to prefix independence, the vertices visited by ω in S are also winning, i.e., S is a good226

SCC. ◀227

By Lemma 4 and the procedure described above it, the problem of computing the winning228

vertices is reduced to determining, given a strongly-connected graph, whether there is a229

winning vertex or not. More formally, we get the following lemma.230

▶ Lemma 5. Let S1, S2, . . . be SCCs of the graph G = (V, E). When V2 = ∅, i.e., in the231

graph case, for a prefix independent objective, the set of winning vertices can be computed in232

time O(m +
∑

i t(Si)) time, where m = |E| and t(Si) is the time required to compute whether233

Si is a good SCC or not.234

In this paper, we consider bounded Büchi and bounded coBüchi objectives.235

3.1 The Bounded Büchi Objective236

We are given a graph G = (V, E), a set B of Büchi vertices, and a positive integer d. A237

cyclic-walk in G is a walk (v1, v2, . . . , vℓ) such that v1 = vℓ. We say that a cyclic-walk C is238

feasible if it has at least one Büchi vertex and the number of edges in C between any two239

consecutive Büchi vertices is at most d. We assume that G is strongly connected, and our240

goal is to determine if there is a winning vertex in G. Then, using Lemma 5, we generalize241

the result to a graph that might not be strongly connected. The following lemma reduces242

this problem to finding a feasible cyclic-walk in G.243

▶ Lemma 6. The strongly-connected input graph G has a winning vertex with respect to the244

bounded Büchi objective if and only if it has a feasible cyclic-walk.245

Proof. If G has a winning vertex, say v, then there is a winning play ω that starts at246

v. Let ω = ⟨v0 = v, v1, v2, . . .⟩; so by the definition of winning play, ∃i ⩾ 1 such that247

∀j ⩾ i : {vj , vj+1, . . . , vj+d−1} ∩ B ̸= ∅. Consider the set Inf (ω) of vertices that appear248

infinitely often in ω. Since ω is winning, Inf (ω) ∩B ̸= ∅. Thus, we can choose a j′ ⩾ i such249

that vj′ ∈ Inf (ω) ∩ B. Since vj′ appears infinitely often, for some j′′ > j′, we have that250

vj′′ = vj′ . Thus (vj′ , vj′+1, . . . , vj′′ = vj′) is a feasible cyclic-walk because j′ ⩾ i and, as251

mentioned earlier, ∀j ⩾ i : {vj , vj+1, . . . , vj+d−1} ∩B ̸= ∅.252

In the other direction, if G has a feasible cyclic-walk, then we can keep traversing it to253

construct a winning play, which means G has a winning vertex. ◀254

An O(dm)-time algorithm for bounded Büchi255

Next, we recall the basic O(dm)-time algorithm to determine if there is a feasible cyclic-walk.256

This algorithm tries to trace a feasible cycle by maintaining a counter with each possible non-257

Büchi vertex denoting how far away we are from the last visit to a Büchi vertex. We construct258

a (d+1)-layered auxiliary graph G∗ = (V ∗, E∗), where V ∗ = (B×{0})∪((V \B)×{1, . . . , d}).259

We define a more general graph here that we also use in Section 4. We illustrate an example260

in Figure 1. So, for (v, ℓ) ∈ V ∗, the integer ℓ corresponds to the aforementioned counter. We261

call the vertices in B × {0} Büchi vertices and the vertices in (V \B)× {1, . . . , d} non-Büchi262

vertices. The edge set E∗ is constructed by Algorithm 1. The last layer of the auxiliary263

graph is actually not needed for the graph case but is needed for the game graph case later.264

Observe that the auxiliary graph is also a game graph. (The ownership of the vertices will265

be defined later in a natural way.)266

K. Chatterjee, M. Henzinger, S. Kale, and A. Svozil 124:7

Algorithm 1 Construction of the auxiliary graph G∗ from G, B, and d. It is easy to see that the
running time of this algorithm is O(dm) and G∗ has at most dm edges.

procedure ConstructAuxiliaryGraph(G = (V, E), B ⊆ V , d)
V ∗ ← (B × {0}) ∪ ((V \B)× {1, . . . , d}) and E∗ ← ∅.
for (u, v) ∈ E such that v /∈ B (add counter-incrementing edges) do

if u /∈ B then
for i ∈ {1, . . . , d−1} do

Add ((u, i), (v, i+1)) to E∗.
Add ((u, d), (v, d)) to E∗ (edges in the last layer to V \B stay in the last layer).

else Add ((u, 0), (v, 1)) to E∗.
for (u, v) ∈ E such that v ∈ B (add counter-resetting edges) do

if u /∈ B then
for i ∈ {1, . . . , d} do

Add ((u, i), (v, 0)) to E∗.
else Add ((u, 0), (v, 0)) to E∗.

return G∗ = (V ∗, E∗)
procedure AuxiliaryGraph-d-Layers(G = (V, E), B ⊆ V , d)

G∗ ← ConstructAuxiliaryGraph(G = (V, E), B ⊆ V, d)
Return the graph resulted by removing layer-d from G∗, called G′ = (V ′, E′).

(b1, 0)

(b2, 0)

...

(bi, 0)

...

(bj , 0)

...

Layer 0
B-vertices

(v1, 1)

(v2, 1)

...

(vi, 1)

...

(vj , 1)

...
Layer 1
V \B vertices

· · · (vi, ℓ)

...

(vj , ℓ)

...
Layer ℓ

V \B vertices

(vj , ℓ+1)

· · ·

(v1, d)

(v2, d)

...

(vi, d)

...

(vj , d)

...
Layer d

V \B vertices

to (v
j , 2)

Figure 1 An illustration of how the auxiliary layered graph is constructed. If G contains the
edges (bj , bi), (bi, vj), (v2, bj), and (vi, vj), then the auxiliary layered graph G∗ will have shown
edges.

▶ Lemma 7. The running time of the procedures ConstructAuxiliaryGraph and Auxi-267

liaryGraph-d-Layers in Algorithm 1 is O(dm).268

Proof. In ConstructAuxiliaryGraph, each of the outer for loop runs for at most m269

iterations, and each of the inner for loops runs for at most d iterations. AuxiliaryGraph-270

ICALP 2021

124:8 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

d-Layers just calls ConstructAuxiliaryGraph and removes the last layer, which takes271

O(dm) time. ◀272

For the graph case, we are interested in G∗ induced on layers-{0, 1, . . . , d−1}. Let G′
273

denote this graph.274

▶ Lemma 8. The strongly-connected input graph G has a feasible cyclic-walk if and only if275

G′ has a cycle.276

Proof. Let C = (b1, v1,1, . . . , v1,ℓ1 , b2, v2,1, . . . , v2,ℓ2 , b3, . . . , b1), where each bi ∈ B, each277

vi,j ∈ V \B, and each ℓi ⩽ d− 1, be a feasible cyclic-walk in G. There is a corresponding278

cyclic-walk C ′ in G′:279

for each (bi, vi,1) ∈ C, the edge ((bi, 0), (vi,1, 1)) ∈ E′,280

for each (vi,j , vi,j+1) ∈ C, the edge ((vi,j , j), (vi,j+1, j+1)) ∈ E′,281

for each (vi,ℓj
, bi+1) ∈ C, the edge ((vi,ℓj

, ℓj), (bi+1, 0)) ∈ E′, and282

for the final edge (vi,ℓj , b1) ∈ C, the edge ((vi,ℓj , ℓj), (b1, 0)) ∈ E′.283

If C ′ consists of union of cycles can be short-cut to get a cycle in G′.284

In the other direction, consider a cycle in G′. A projection of this cycle on the first285

coordinate of the vertices, by construction, gives a feasible cyclic-walk in G, because the286

number of edges between consecutive Büchi vertices is at most d. ◀287

Thus, by Lemmas 6 and 8, we get Algorithm 2.288

Algorithm 2 This algorithm determines if the strongly-connected input graph has a winning
vertex with respect to the bounded Büchi objective.

procedure BoundedBüchi(G = (V, E), B ⊆ V , d)
G′ ← AuxiliaryGraph-d-Layers(G, B, d)
Run depth-first search on G′ to determine if it has a cycle.
if G′ has a cycle then

return “G has a winning vertex.”
else

return “G does not have a winning vertex.”

▶ Lemma 9. Algorithm 2 determines if the strongly-connected input graph G has a winning289

vertex with respect to the bounded Büchi objective in O(dm) time.290

Proof. By Lemmas 6 and 8, G has a winning vertex if and only if G′ has a cycle. Since a291

depth-first search finds if there is a cycle in G′, the correctness of the algorithm is established.292

By Lemma 7, AuxiliaryGraph-d-Layers takes O(dm) time, and a depth-first search on293

G′ takes time O(dm), because the number of edges in G′ is O(dm). ◀294

Thus, by Lemma 5, we get the following theorem.295

▶ Theorem 10. The set of winning vertices for the bounded Büchi objective in the graph296

case can be computed in time O(dm).297

Proof. Let S1, S2, . . . be SCCs of the input graph G = (V, E). Let m1, m2, . . . be the number298

of edges in the SCCs S1, S2, Then, by Lemma 9, for i = 1, 2, . . ., we can determine in299

time O(dmi) whether Si is good. Since m ⩾
∑

i mi, the proof is complete by Lemma 5. ◀300

K. Chatterjee, M. Henzinger, S. Kale, and A. Svozil 124:9

An O(|B|m)-time algorithm for bounded Büchi301

Now, we briefly discuss an O(|B|m)-time algorithm for bounded Büchi. Given G = (V, E)302

and B, consider the graph G′ = (B, E′) such that (b, b′) ∈ E′ if the distance from b to b′ in303

G is at most d. We allow self loops in G′. It is easy to see that G has a feasible-cyclic walk304

if and only if G′ has a cycle. To construct G′, we perform |B| breadth-first searches, one305

starting from each vertex in B. This takes time O(|B|m). Then, by a similar argument as in306

the proof of Theorem 10, we get the following theorem.307

▶ Theorem 11. The set of winning vertices for the bounded Büchi objective in the graph308

case can be computed in time O(|B|m).309

▶ Remark 12. Note that both algorithms that we have seen so far can take Θ(n3) time if310

m = Θ(n2) and B and d are Θ(n). The next algorithm we see is combinatorial and has311

running time O(n2.5 log n) for the worst setting of the parameters and breaks the cubic312

barrier. This also rules out any conditional lower bound approaches to get an Ω(n3) lower313

bound for combinatorial algorithms.314

An O((m + |B|2)
√

n log n)-time algorithm for bounded Büchi315

In this section, we present an O((m+ |B|2)
√

n log n)-time algorithm for bounded Büchi in the316

graph case. This is one of our main contributions. Here, we give a procedure that computes317

distances between all pairs of Büchi vertices if the distance is at least
√

N , where N ⩾ |V | is318

a parameter that we will fix later. This information can be used to reduce the number of319

layers in the auxiliary graph to
√

N . By dist, we denote the distance function with respect320

to G. For any u, v ∈ V , if u ̸= v, then dist(u, v) denotes the length of a shortest path from u321

to v, and for any u ∈ V , dist(u, u) denotes the length of a shortest cycle through u.322

Algorithm 3 This algorithm determines if the strongly-connected input graph has a winning
vertex with respect to the bounded Büchi objective.

procedure RandBoundedBüchi(G = (V, E), B ⊆ V , d, N)
if d <

√
N then

return BoundedBüchi(G = (V, E), B ⊆ V , d)
Sample 4

√
N ln N vertices uniformly at random, independently, and with replacement.

S ← the set of sampled vertices.
for s ∈ S do

Perform incoming and outgoing breadth-first search (BFS) to and from s.
Compute distances dist(b, s) and dist(s, b) for each b ∈ B during the BFSs.

G′ ← AuxiliaryGraph-d-Layers(G, B,
√

N − 1)
for b ∈ B do

for b′ ∈ B do
distS(b, b′)←∞
for s ∈ S do

distS(b, b′)← min{distS(b, b′), dist(b, s) + dist(s, b′)}
if distS(b, b′) ⩽ d then

Add ((b, 0), (b′, 0)) to E′ (this would be a self-loop if b = b′).
Run depth-first search on G′ to determine if it has a cycle.
if G′ has a cycle then

return “G has a winning vertex.”
else

return “G does not have a winning vertex.”

ICALP 2021

124:10 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

▶ Lemma 13. Let N ⩾ |V |. Algorithm 3 determines with probability at least 1 − 1/N2
323

if the strongly-connected input graph G has a winning vertex with respect to the bounded324

Büchi objective in O((m + |B|2)
√

N log N) time. It never returns a false positive, i.e., if it325

outputs that G has a winning vertex, then it is correct with probability 1. Its running time is326

O((m + |B|2)
√

N log N).327

Proof. If d <
√

N , then we are done by Lemma 9. Thus, we assume for the rest of the proof328

that d ⩾
√

N .329

For any b, b′ ∈ B, by T (b, b′), we denote a fixed shortest cycle through b if b = b′ or a330

fixed shortest path from b to b′ otherwise. Let the event that a vertex v(b, b′) ∈ T (b, b′) is331

sampled into S be denoted by E(b, b′). Since v(b, b′) ∈ T (b, b′), we have that dist(b, b′) =332

dist(b, v(b, b′)) + dist(v(b, b′), b′). This implies that if E(b, b′) occurs, then dist(b, v(b, b′)) and333

dist(v(b, b′), b′) are computed by the algorithm using the incoming and outgoing BFS at334

v(b, b′), and hence distS(b, b′) = dist(b, b′). Let Ec(b, b′) be the complement of E(b, b′). Now,335

Pr[Ec(b, b′)] = (1− dist(b, b′)/|V |)4
√

N ln N , because 1− dist(b, b′)/|V | is the probability that336

a fixed sample does not contain a vertex of T (b, b′) and we draw 4
√

N ln N independent337

samples.338

For any b, b′ ∈ B, where dist(b, b′) ⩾
√

N , we denote the event that distS(b, b′) = dist(b, b′)339

by E ′(b, b′). As noted earlier, distS(b, b′) = dist(b, b′) if E(b, b′) occurs, hence:340

Pr[E ′(b, b′)] ⩾ Pr[E(b, b′)] = 1− Pr[Ec(b, b′)] E(b, b′) is a subevent of E ′(b, b′),341

= 1−
(

1− dist(b, b′)
|V |

)4
√

N ln N

by the argument earlier,342

⩾ 1−
(

1− 1√
N

)4
√

N ln N

because dist(b, b′)/|V | ⩾ 1/
√

N ,343

⩾ 1− 1
N4 by well-known fact (1− 1/x)x ⩽ 1/e.344

345

Since N ⩾ |B|, by the union bound and because the E ′(b, b′) are independent, we have346

Pr[∀(b, b′) ∈ B × B : E ′(b, b′)] ⩾ 1 − 1/N2. Let us condition on the event that for all347

(b, b′) ∈ B ×B : E ′(b, b′), and let G′ be the auxiliary graph constructed by the algorithm.348

Suppose G has a winning vertex. By Lemma 6, there is a feasible cyclic-walk C in G.349

Then for any consecutive Büchi vertices b and b′ in C, either dist(b, b′) ⩾
√

N , in which350

case there is an edge ((b, 0), (b′, 0)) or dist(b, b′) <
√

N , in which case there exists a cycle351

((b, 0), (u1, 1), (u2, 2), . . . , (uℓ, ℓ), (b′, 0)) in G′, where ℓ <
√

N − 1. Thus, C induces a cycle352

in G′.353

On the other hand, if there is a cycle C ′ in G′, then a projection of C ′ on the first354

coordinate of the vertices, by construction of G′, gives a feasible cyclic-walk in G after355

replacing all edges in C ′ of the form ((b, 0), (b′, 0)) by corresponding paths of length at most356

d that certify distS(b, b′). By Lemma 6, G has a winning vertex.357

Also, if the algorithm does return that G has a winning vertex, then G′ has a cycle, and358

existence of a feasible cyclic-walk in G can be shown in the same way as above. This shows359

that the algorithm never returns a false positive.360

Running time361

Incoming and outgoing BFSs from the vertices in S take time O(m
√

N log N). Auxiliary-362

Graph-d-Layers takes O(m
√

N) time. Computing distS takes time O(|B|2
√

N log N).363

DFS on G′ takes time O(|B|2 + m
√

N). In total, Algorithm 3 has running time O((m +364

|B|2)
√

N log N). ◀365

K. Chatterjee, M. Henzinger, S. Kale, and A. Svozil 124:11

Finally, we use Lemma 5 to generalize the above to a graph that may not be strongly366

connected. Fix N to be n in Algorithm 3 when running it for each SCC. Then, by a similar367

argument as in the proof of Theorem 10, we get the following theorem.368

▶ Theorem 14. The set of winning vertices for the bounded Büchi objective can be computed369

with probability at least 1−1/n in time O((m+|B|2)
√

n log n) which is O(n2.5 log n). Moreover,370

the algorithm never returns a false positive, i.e., each vertex in the set it outputs is a winning371

vertex with probability 1.372

Proof. Let S1, S2, . . . be SCCs of the input graph G = (V, E). Let m1, m2, . . . be the number373

of edges and by β1, β2, . . . , be the number of Büchi vertices in the SCCs S1, S2, . . ., respectively.374

Then, by Lemma 13, for i = 1, 2, . . ., the algorithm outputs in time O((mi + β2
i)
√

n log n)375

whether Si is good. Since m ⩾
∑

i mi and |B|2 = (
∑

i βi)2 ⩾
∑

i β2
i , the running time bound376

is proved.377

The probability bound is obtained by a union bound over at most n SCCs. Moreover,378

the algorithm never returns a false positive by Lemma 13. ◀379

3.2 The Bounded coBüchi Objective380

Given a graph G = (V, E), a set C of vertices, and a positive integer d, a walk W is called381

a feasible walk if W ⊆ C and the number of vertices in W is at least d. Let G[C] be the382

graph induced by C. The bounded coBüchi problem reduces to finding a feasible walk, which383

further reduces to finding whether there is a cycle in G[C] (can be done in linear time), and384

if not G[C] is a directed acyclic graph (DAG), so it reduces to determining whether the385

length of a longest path in the DAG G[C] is at least d (also can be done in linear time).386

This gives us the following theorem.387

▶ Theorem 15. The set of winning vertices for the bounded coBüchi objective in the graph388

case can be computed in time O(m).389

4 Algorithms for Game Graphs390

In this section, we present algorithms for the bounded Büchi objective in game graphs.391

We first introduce the auxiliary game graph similar to the auxiliary graph defined earlier.392

We then show that we can compute in O(n2d2) time the winning set of a given bounded393

Büchi objective on game graphs by computing the winning set of a coBüchi objective on394

the auxiliary game graph. Finally, we show how to improve the running time to O(n2d) by395

using structural properties of the auxiliary game graph and adapting a known technique for396

solving Büchi Games [11].397

The Auxiliary Game Graph. Given a game graph Γ = (V, E, ⟨V1, V2⟩) with n vertices, m398

edges and a bounded Büchi objective boundedBüchi(B, d), we first construct the auxiliary399

graph by calling ConstructAuxiliaryGraph((V, E), B, d) in Algorithm 1 and additionally400

partition the vertices of the auxiliary graph V ∗ into player-1 vertices V ∗
1 and player-2 vertices401

V ∗
2 , i.e., for each (v, ℓ) ∈ V ∗ we get (v, ℓ) ∈ V ∗

1 if v ∈ V1 and (v, ℓ) ∈ V ∗
2 if v ∈ V2. The402

auxiliary game graph has O(nd) = O(n2) vertices and O(md) = O(mn) edges. We say that403

a vertex (v, ℓ) ∈ V ∗ is a layer-ℓ vertex and v is its first component.404

For any play λ, we denote by λk the kth vertex of the play. If a play has a superscript,405

it denotes the starting vertex of the play, e.g λv means that the play λ starts at v. By406

λv
k we refer to the kth vertex of the play λv which starts at v. Given a finite feasible play407

λ(w,ℓ) in Γ∗ starting at (w, ℓ), we define Proj(λ(w,ℓ)) to be the projection of λ(w,ℓ) on the408

ICALP 2021

124:12 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

first component of the vertices in it; by definition, this finite play starts at w and is feasible409

in Γ. Analogously, given a finite feasible play λw in Γ, we define Lift(λw, ℓ) to be the unique410

finite feasible play in Γ∗ starting at (w, ℓ) such that the first component of Lift(λw, ℓ)k is the411

same as λw
k . For (u, v) in E such that (u, j) ∈ V ∗ define (the appropriate next layer number412

if you followed the copy of (u, v) starting in layer j)413

NxtLyr(u, v, j) =

j + 1 if j < d and v /∈ B

d if j = d and v /∈ B

0 if v ∈ B .

414

Now, define Lift(λw, ℓ)1 = (w, ℓ), and for k > 1, given Lift(λw, ℓ)k−1 = (λw
k−1, j) define415

Lift(λw, ℓ)k = (λw
k , NxtLyr(λw

k−1, λw
k , j)). Similarly, given the finite feasible play λ(w,ℓ) in Γ∗,416

we define Shift(λ(w,ℓ), ℓ′) to be the finite play that starts at (w, ℓ′) in Γ∗ such that, for any417

k, the first components of λ
(w,ℓ)
k and Shift(λ(w,ℓ), ℓ′)k are the same. By construction of Γ∗

418

the finite play Shift(λ(w,ℓ), ℓ′) is well-defined because (1) edges going from layer-i vertices419

to layer-(i + 1) vertices (1 ⩽ i ⩽ d − 1) exist in all layers with the same respective first420

components except in layer-d where these edges go again to layer-d, (2) edges going to layer-0421

vertices exist in all layers (1 ⩽ i ⩽ d) and (3) because edges originating from layer-0 vertices422

implies that both plays are currently visiting the same layer-0 vertex.423

In comparison, the goal of the two operations Proj(·) and Lift(·) is to map finite plays424

between Γ∗ and Γ such that the finite play in Γ∗ has, for all vertices, the same first component425

as the corresponding finite play in Γ and vice versa. In contrast, Shift(λ(w,ℓ), ℓ′) maps a426

finite play in Γ∗ to a finite play also in Γ∗ which has the same first component but a “shifted”427

starting vertex.428

4.1 An O(n2d2)-time Algorithm for Bounded Büchi in Games429

In this section, we show that we can compute the winning set of a given bounded Büchi430

objective on game graphs by computing the winning set of a coBüchi objective on the auxiliary431

game graph. Then we apply the best-known algorithm for computing the winning set of a432

Büchi objective on the auxiliary game graph to get the desired result.433

In the following lemma, we prove that computing W1(boundedBüchi(B, d, Γ)) is the434

same as computing W1(coBüchi(C∗, Γ∗)) where C∗ are the vertices in layers-{0, 1, . . . , d−1}.435

Intuitively, when a play ϕ in coBüchi(C∗, Γ∗) stays in layers-{0, 1, . . . , d−1}, it reaches a436

vertex in layer 0 every at most d steps by construction of Γ∗. The layer-0 vertices correspond437

to the vertices in B which means that a play ϕ′ in Γ defined as the projection on the first438

component of the vertices in ϕ visits a vertex in B every at most d steps which implies that439

ϕ′ ∈ boundedBüchi(B, d, Γ). On the other hand, when player 1 has a strategy in Γ to visit a440

vertex in B every at most d steps, a similar strategy which visits the same vertices in the441

first component in Γ∗ allows player 1 to stay in the first d layers of the auxiliary graph.442

▶ Lemma 16. Let Γ = (V, E, ⟨V1, V2⟩) be a game graph with bounded Büchi objective443

boundedBüchi(B, d), let Γ∗ = (V ∗, E∗, ⟨V ∗
1 , V ∗

2 ⟩) be the corresponding auxiliary game graph,444

and let C∗ be the vertices in the first d layers of the auxiliary graph, i.e., C∗ = {(v, i) ∈445

V ∗ | 0 ⩽ i ⩽ d − 1}. Then {w | (w, i) ∈ W1(coBüchi(C∗, Γ∗)), for some 0 ⩽ i ⩽ d} =446

W1(boundedBüchi(B, d, Γ)).447

Proof. We first prove that {w | (w, i) ∈ W1(coBüchi(C∗, Γ∗)), for some 0 ⩽ i ⩽ d} ⊆448

W1(boundedBüchi(B, d, Γ)). Let (w, i) ∈W1(coBüchi(C∗, Γ∗)). Then player 1 has a winning449

K. Chatterjee, M. Henzinger, S. Kale, and A. Svozil 124:13

strategy σ∗ in Γ∗ such that for all player-2 strategies π∗, we have that ω((w, i), σ∗, π∗) ∈450

coBüchi(C∗, Γ∗).451

Whenever player 1 makes a move in Γ∗, we define the corresponding move in Γ as follows:452

For any finite play λw in Γ that ends in a player-1 vertex, define σ(λw) to be the first453

component of σ∗(Lift(λw, i)). (It does not matter how we define σ for plays that do not start454

at w.)455

Next, we argue why σ is a winning player-1 strategy for boundedBüchi(B, d, Γ) starting456

at w. Let π be an arbitrary player-2 strategy in Γ. We define a corresponding player-2457

strategy π∗ in Γ∗: for λ(w,i) that ends in a player-2 vertex (u, j), let v = π(Proj(λ(w,i))) and458

define π∗(λ(w,i)) = (v, NxtLyr(u, v, j)).459

Now, it is straightforward to show that the first component of ω((w, i), σ∗, π∗)k is equal460

to ω(w, σ, π)k by induction on k.461

Since the play ω((w, i), σ∗, π∗) ∈ coBüchi(C∗, Γ∗), it stays in C∗ after a finite number of462

steps. Note that to stay in C∗ means to visit a layer-0 vertex after every at most d steps463

because there are only d layers in C∗ and each step that does not go to a layer-0 vertex464

increases the layer counter. Since the first component of each layer-0 vertex is in B, the play465

ω(w, σ, π) visits a vertex in B every at most d steps after a finite number of steps and is in466

boundedBüchi(B, d, Γ).467

The other direction, W1(boundedBüchi(B, d, Γ)) ⊆ {w | (w, i) ∈ W1(coBüchi(C∗, Γ∗)),468

for some 0 ⩽ i ⩽ d} can be shown with a similar argument. ◀469

To compute W1(coBüchi(C∗)) in Γ∗, we observe that, by Theorem 1, W1(coBüchi(C∗)) =470

V ∗ \W2(Büchi(V ∗ \ C∗)) = V ∗ \W2(Büchi({(v, d) ∈ V ∗})). Since, traditionally, we always471

compute the player-1 winning set of a given objective, we swap player-1 and player-2 vertices472

in Γ∗. Then we compute W = W1(Büchi({(v, d) ∈ V ∗})) using the algorithm of Chatterjee473

and Henzinger [11], which is the fastest algorithm for Büchi games known, and project V ∗\W474

on the first coordinate. We illustrate the details in Algorithm 4.475

Algorithm 4 Determine W1(boundedBüchi(B, d)), given a game graph Γ

1: procedure BoundedBüchiGames(Γ = (V, E, ⟨V1, V2⟩), B, d)
2: (V ∗, E∗)← ConstructAuxiliaryGraph((V, E))
3: V ∗

1 ← {(v, i) ∈ V ∗ | v ∈ V1}, V ∗
2 ← {(v, i) ∈ V ∗ | v ∈ V2}

4: Γ∗ ← (V ∗, E∗, V ∗
1 , V ∗

2); B∗ ← {(v, d) ∈ V ∗ | v ∈ V \B}
5: W ← BüchiGamesFast(Γ∗ = (V ∗, E∗, ⟨V ∗

2 , V ∗
1 ⟩), B∗) ([11], Algorithm 5)

6: return {x | (x, i) ∈ V ∗ \W for some 0 ⩽ i ⩽ d}

The correctness of Algorithm 4 is due to the correctness of the fast Büchi games al-476

gorithm [11, Theorem 2.14], the argument above, and Lemma 16. The argument for the477

running time of Algorithm 4 is as follows. We first construct Γ∗ in O(md) time and then com-478

pute the winning set of coBüchi(C∗) in time O(|V ∗|2) [11, Theorem 2.14]. As |V ∗| = O(nd)479

and d = O(n), we get the following theorem.480

▶ Theorem 17. The set of winning vertices for the bounded Büchi objectives in games can481

be computed in time O(n2d2) = O(n4).482

4.2 An O(n2d)-time Algorithm for Bounded Büchi in Games483

In this section, we give a refined running time analysis of Algorithm 4 giving us an O(n2d)-484

time algorithm for bounded Büchi games. We first describe the fastest algorithm for Büchi485

Games [11] for completeness. Then, we identify key ideas of the refined running time analysis486

when the input is an auxiliary game graph and prove the improved running time formally.487

ICALP 2021

124:14 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

4.2.1 The Büchi Games Algorithm of [11]488

Given a game graph Γ = (V, E, ⟨V1, V2⟩) and a set B of Büchi vertices1, we fix an order on489

the edges. In this fixed order, the edges (u, v) where u is a non-Büchi player-2 vertex, i.e.,490

u ∈ (V2 \B), come before all other edges. We call them priority-1 edges. All the other edges491

are priority-0 edges.492

▶ Definition 18. Given a game graph Γ = (V, E, ⟨V1, V2⟩), let Γi = (V, Ei, ⟨V1, V2⟩) for493

1 ⩽ i ⩽ log n be a subgraph of Γ which we define as follows: For all u ∈ V , the set Ei494

contains the following edges:495

1. If the outdegree of u in E is at most 2i, Ei contains all edges of the form (u, v), i.e., if496

|Out(u)| ⩽ 2i then the set {(u, v) | v ∈ Out(u)} ⊆ Ei.497

2. If the edge (v, u) belongs to the first 2i inedges of vertex u in E, we have (v, u) ∈ Ei498

(“first” means with respect to the fixed order we specified above).499

Note that Ei−1 ⊆ Ei since the order of the edges is fixed. We form a partition of V in Γi by500

giving each vertex a color:501

Blue: A player-1 vertex v in Γi is blue if the outdegree of v is greater than 2i.502

Red: A player-2 vertex u in Γi is red if it has no outedge in Ei.2503

All other vertices are white.504

Thus, if a player-1 vertex is white then all its outedges are in Ei, and if a player-2 vertex is505

white then it has at least one outgoing edge in Ei.506

Algorithm description. The input of Algorithm 5 is a game graph Γ and a set of Büchi507

vertices B. Recall that every vertex in a player-1 closed set S without Büchi vertices cannot508

be in the player-1 winning set of the given Büchi objective W1(Büchi(B)) (Proposition 2 (2)).509

We repeatedly find such a set S by removing from V the player-1 attractor of the set B510

(Proposition 3) and forming S from all the remaining vertices. Then we remove the player-2511

attractor of S. In the algorithm, we identify such a set Sj at Line 11 and remove the512

attractor at Line 15. Note that a naive algorithm would take O(nm) time, as the attractor513

of S could always be of size 1 and computing the attractor is in O(m) time. To obtain a514

quadratic-time (in the number of vertices) algorithm, the improved algorithm of Chatterjee515

and Henzinger constructs, for i = 1, . . . , log n, the graph Γi which has at most 2i edges.516

Due to the properties of Γi, it can be shown that the set Sj has size of at least 2i−1. In517

this way, the attractor computation take time proportional to the removed vertices. Since518

player-1 vertices with missing outgoing edges or player-2 vertices with no outgoing edge in519

Γi, i.e., non-white vertices might still be able to reach a vertex in B, we compute the player-1520

attractor of the non-white vertices combined with the vertices in B. We illustrate the details521

in Algorithm 5.522

The definition of a separating cut further refines the definition of the winning regions for523

player 2 in this regard.524

Separating cut. A set S of vertices induces a separating cut in a game graph Γi or Γj
i in525

Algorithm 5 if526

1. the only edges from S to V \ S come from player-2 vertices in S527

2. every player-2 vertex in S has an edge to another vertex in S528

1 not to be confused with the input for the bounded Büchi problem in the previous and later sections
2 In the algorithm of Chatterjee and Henzinger [11] red vertices are player-2 vertices where an edge of

E is missing. We change this definition slightly, i.e., without changing their algorithm or correctness
argument, by saying that player-2 vertices are red if they do not have any outedges in Ei.

K. Chatterjee, M. Henzinger, S. Kale, and A. Svozil 124:15

Algorithm 5 Determine W1(Büchi(B)), given a game graph Γ [11]

1: procedure BüchiGamesFast(Γ = (V, E, ⟨V1, V2⟩), B)
2: Let j ← 0; U ← ∅; Y0 ← attr1(B, Γ); S0 ← V \ Y0; D0 ← attr2(S0, Γ); Γj ← Γ;
3: j ← j + 1;
4: while Dj−1 ̸= ∅ do
5: Remove the vertices in Dj−1 from Γj−1 to obtain Γj ; and U ← U ∪Dj−1;
6: i← 1;
7: repeat
8: Construct Γj

i from Γj as described in Definition 18.
9: Let Zj

i be the vertices of V j that are either red or blue;
10: Y j

i ← attr1(Bj ∪ Zj
i , Γj

i);
11: Sj ← V j \ Y j

i ;
12: i← i + 1
13: until Sj is nonempty or i ⩾ 1 + log n

14: if Sj ̸= ∅ then
15: Dj ← attr2(Sj , Γj)
16: else
17: return V \ U

18: j ← j + 1

3. every player-1 vertex in S is white and529

4. B ∩ S = ∅.530

Thus, a separating cut S is a player-1 closed set where (i) player-1 vertices are white and531

which (ii) does not contain a vertex in B.532

The following lemmas are needed to establish the improved running time guarantees in533

the next section. Detailed proofs can be found in the paper by Chatterjee and Henzinger [11].534

Lemma 19 below says that the set Sj is indeed a separating cut in Γj (not only in Γj
i)535

and that due to the careful construction of Γj
i from the game graph Γj in iteration j, Sj does536

not include a vertex of the player-1 attractor of the Büchi vertices in Γj .537

▶ Lemma 19 ([11], Lemma 2.9). Let Sj be the non-empty set computed by Algorithm 5 in538

iteration j. Then, (1) Sj is a separating cut in Γj; and (2) Sj ∩ attr1(Bj , Γj) = ∅.539

Lemma 20 establishes that the separating cut found in Γj
i is indeed the maximum540

separating cut in Γj
i . Also, if Γj

i contains a separating cut, Algorithm 5 finds it.541

▶ Lemma 20 ([11], Lemma 2.11). Let Γj
i be the game graph in iteration j of the outer loop542

and iteration i of the inner loop. If S induces a separating cut in Γj
i , then S ⊆ Sj.543

Lemma 21 says that the set Sj is a separating cut in Γj
i . This does not follow from544

Lemma 19(1) because Γj
i might have less edges than Γj and separating cuts are not preserved545

if we only consider a subset of edges in Γj (property 2 might be violated).546

▶ Lemma 21 ([11], Lemma 2.12). Consider an iteration j of the outer loop of Algorithm 5547

such that the algorithm stops the inner loop at value i and identifies a non-empty set Sj.548

Then, Sj is a separating cut in Γj
i .549

4.2.2 Faster Algorithm for Bounded Büchi Games550

In this section, we give the refined running time analysis of Algorithm 4. We note that Γ∗
551

gets redefined to be (V ∗, E∗, ⟨V ∗
2 , V ∗

1 ⟩) in Algorithm 4 on Line 4. Therefore, from hereon,552

ICALP 2021

124:16 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

when we say player 1 (respectively player 2), we mean the player controlling the vertices in553

V ∗
2 (respectively, those in V ∗

1).554

Distinct vertices. We call a set of vertices S in Γ∗ distinct if, for each pair of vertices555

(v, ℓ), (v′, ℓ′) ∈ S, we have v ̸= v′.556

Copies of a vertex. Let Copies(v) denote the set of “copies” of a vertex v ∈ V ∗, i.e., for557

a layer-0 vertex (v, 0) we have that Copies((v, 0)) = {(v, 0)} and for a vertex (v, ℓ), where558

ℓ > 0, we have Copies((v, ℓ)) = {(v, 1), . . . , (v, d)}.559

The improved running time guarantee is due to two key ideas.560

Key idea 1. When there is a vertex (v, ℓ) in Dj then Copies((v, ℓ)) ⊆ Dj , i.e., all its copies561

are in Dj .562

On a very high level, the argument is that if there is a player-2 strategy to go from a563

vertex to Sj , then there exists a player-2 strategy from all copies of that vertex to Sj . While564

the idea is simple to state, a complicated machinery is needed to prove it formally. We prove565

the key idea in Claim 27 building on Definition 25 and Claim 26.566

Now, if we follow the original running-time argument [11], then we can only claim that567

we remove 2i−1 vertices in total if the inner loop at Line 7 stops at iteration i, but the second568

key idea states something stronger.569

Key idea 2. If the inner loop at Line 7 stops at iteration i∗, we remove 2i∗−1 distinct vertices.570

Combining the key ideas, we remove from the game graph in iteration j all copies of571

those distinct vertices. The ith iteration of the loop at Lines 7–13 takes time O(2ind) for572

constructing the auxiliary version of (Γ∗)i and performing the attractor computations. The573

iterations of the loop in Lines 7–13 before i′ < i amount to a total running time of O(2ind).574

Thus, we charge the 2i−1 removed distinct vertices the cost of the iteration and the iterations575

before, i.e., each such removed orginal vertex is charged O(nd). As we can remove only n576

distinct vertices since they correspond to the vertices in the game graph Γ, we have a total577

cost of O(n2d).578

For the second key idea to work, we must modify the original bounded Büchi instance579

(Γ, B, d) carefully. For every vertex in v ∈ B we add a player-2 vertex v′ which is not in580

B and an edge (v′, v). Then we redirect all edges which go to v in the original instance581

and make them go to v′ instead, i.e., for all v ∈ B we have V2 ← V2 ∪ {v′} and E ←582

(E∪{(v′, v)}∪{(u, v′) | (u, v) ∈ E})\{(u, v) ∈ E}. Also, we increase d by one, as we increase583

the distance to all vertices in B by one. Note that this simple modification allows us to584

assume, without loss of generality, that all vertices in B have incoming edges from player-2585

vertices only. Since we swap the player-1 vertices with player-2 vertices in Algorithm 4 we586

can assume that all incoming edges to a layer-0 vertex are from player-1 vertices. This adds587

at most n vertices and edges to Γ.588

▶ Observation 22. We can assume, without loss of generality, that all layer-0 vertices v ∈ V ∗
589

of the auxiliary game graph Γ∗ created at Line 4 in Algorithm 4 have no incoming edges from590

player-2 vertices, i.e., if (v, 0) ∈ V ∗ then In((v, 0)) ∩ V ∗
2 = ∅.591

With the above observation, we can prove the following proposition which is the crux of592

this section.593

▶ Proposition 23. Algorithm 4 runs in time O(n2d) = O(n3).594

Proof. In this proof we denote by (Γ∗, B∗) the input of Algorithm 5 at Line 4 of Algorithm 4.595

The input to Algorithm 4 is (Γ, B, d). If we can show that the running time of the call to596

Algorithm 5 at Line 4 is in O(n2d) = O(n3) we are done, as the rest of the operations of597

K. Chatterjee, M. Henzinger, S. Kale, and A. Svozil 124:17

Algorithm 4 are in O(md). This entails constructing (Γ∗, B∗) and going through W . We598

therefore prove the following lemma.599

▶ Lemma 24. The total time Algorithm 4 spends in Algorithm 5 is O(n2d) = O(n3).600

Every vertex v in Γ∗ has only O(n) out-edges by the definition of the auxiliary game graph.601

Thus, when we consider the graphs (Γ∗)i of Definition 18 for 1 ⩽ i ⩽ log n, we have602

(Γ∗)log n = Γ∗. The construction of (Γ∗)i (1 ⩽ i ⩽ log n) takes time O(nd · 2i).603

We split the running time argument into two parts. In the first part, we bound the604

running time of all except the last iteration of the while loop at Line 4. In the second part of605

the analysis, we bound the running time of the last iteration of the same loop.606

Running time bound for all iterations of the while loop except the last. Consider iteration j,607

and assume that Algorithm 5 stops the repeat-until loop at Line 13 with value i∗ and it is608

not the last iteration of the while loop at Line 4. Thus, Sj is not empty. By Lemma 21, the609

set Sj is a separating cut in (Γ∗)j
i∗ . We make a detour to set up some claims.610

We need the following definition because it helps us translate plays and strategies from a611

vertex to its copies.612

▶ Definition 25. If Γ∗
s is an induced subgraph of Γ∗ such that for all (u, ℓs) in Γ∗

s we have613

that Copies((u, ℓs)) are also in Γ∗
s, then we say that Γ∗

s has the induced-symmetry property614

or that it is symmetrically induced.615

The following claim is about the translation of a strategy from a vertex to its copy.616

▷ Claim 26. Suppose Γ∗
s is symmetrically induced. Then, in Γ∗

s, if a player has a strategy617

to reach a copy of w from a copy of u, then from all copies of u, she has a strategy to reach618

some copy of w. More formally, in Γ∗
s, if player ρ has a strategy π to reach (w, ℓd) from619

(u, ℓs), then for all copies (u, ℓ′
s), she also has a strategy π′ to reach (w, ℓ′

d) for some ℓ′
d.620

Proof. We define π′. Consider a finite feasible play λ(u,ℓ′
s) that ends in a player-ρ vertex621

(v, j). Let π(Shift(λ(u,ℓ′
s), ℓs)) = (y, p). Define π′(λ(v,ℓ′

s)) = (y, NxtLyr(v, y, j)). Now, the622

play Shift(λ(u,ℓ′
s), ℓs) is feasible and the strategy π′ is well defined because Γ∗

s is symmetrically623

induced.624

We argue why player ρ can reach a copy of w using π′. Let σ′ be an arbitrary strategy for625

the other player, i.e., player (3− ρ). For any finite feasible play λ(u,ℓs) that ends in a player-626

(3− ρ) vertex (v, j), let σ′(Shift(λ(u,ℓs), ℓ′
s)) = (y, p). Define σ(λ(u,ℓs)) = (y, NxtLyr(v, y, j)).627

Again, Shift(λ(u,ℓs), ℓ′
s) is feasible and σ is well defined because Γ∗

s is symmetrically induced.628

Now, it is straightforward to show by induction on k that the first components of629

ω((u, ℓs), σ, π)k and ω((u, ℓ′
s), σ′, π′)k are the same. This means that if ω((u, ℓs), σ, π)k630

reaches (w, ℓd), then ω((u, ℓ′
s), σ′, π′)k reaches (w, ℓ′

d) for some ℓ′
d. ◀631

The following claim is a formal version of the first key idea.632

▷ Claim 27. If a vertex (v, ℓ) is in Dj , then Copies((v, ℓ)) ⊆ Dj ; and, (Γ∗)j has induced633

symmetry.634

Proof. We prove the claim by induction on j.635

Base case, j = 0. If (v, ℓ) ∈ D0, then there is a player-2 strategy π1 to reach (w, p) ∈ S0.636

The set S0 = V \ attr1(B∗, Γ∗) is a player-1 closed set by Observation 3: This means that637

there is a player-2 strategy π2 to stay inside S0. By construction of Γ∗, any edge from a638

non-layer-d vertex goes to the next layer or to layer-0. Then, since S0 ∩ B∗ = ∅, that is,639

since S0 does not contain any layer-d vertices, any (infinite) play that stays inside S0 must640

ICALP 2021

124:18 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

eventually return to layer-0. Thus, player 2 can first use π1 to reach (w, p) ∈ S0 from (v, ℓ),641

then use π2 to reach (x, 0) ∈ S0 from (w, p); effectively, this gives a player-2 strategy to go642

to (x, 0) ∈ S0 from (v, ℓ). Then, by Claim 26, player 2 has a strategy to reach a copy of643

(x, 0) from (v, ℓ′) for any ℓ′ because Γ∗ itself has induced symmetry. Now, (x, 0) does not644

have any other copy, this means player 2 has a strategy to reach (x, 0) ∈ S0 from (v, ℓ′). By645

induced symmetry of Γ∗ again, we have that all copies of (v, ℓ), i.e., Copies((v, ℓ)) are in646

Γ∗; moreover, by the above argument, for each of these copies, there is a player-2 strategy647

to reach S0, which implies that Copies((v, ℓ)) ⊆ D0. Noting that (Γ∗)0 = Γ∗ has induced648

symmetry finishes the base case.649

Induction step, j ⩾ 1. By induction hypothesis, (Γ∗)j−1 has induced symmetry, and if a650

vertex (v, ℓ) is in Dj−1, then Copies((v, ℓ)) ⊆ Dj−1. This implies that deleting Dj−1 from651

(Γ∗)j−1 to get (Γ∗)j means deleting all copies of a vertex being deleted. Therefore, since652

(Γ∗)j−1 has induced symmetry, (Γ∗)j also has induced symmetry.653

Since Sj is a separating cut (by Lemma 19), it is a player-1 closed set. Thus, by the same654

argument as in the base case that uses the induced symmetry of (Γ∗)j , if (v, ℓ) is in Dj , then655

Copies((v, ℓ)) ⊆ Dj . This completes the induction step and the proof. ◀656

The following claim is the formal proof of the second key idea.657

▷ Claim 28. The set Sj contains at least 2i∗−1 distinct vertices.658

Proof. The proof is similar to the proof of [11, Lemma 2.13] except that we must now argue659

that all of the 2i∗−1 vertices are distinct. Consider the set Sj in the game graph of the660

iteration before, i.e., we argue about Sj in (Γ∗)j
i∗−1. Note that we have the following two661

cases.662

In the first case, Sj contains a player-1 vertex (x, ℓ) for 1 ⩽ ℓ ⩽ d that is blue in (Γ∗)j
i∗−1.663

Thus, (x, ℓ) has outdegree at least 2i∗−1 in (Γ∗)j
i∗ and none of these edges go to vertices664

in V j \ Sj in (Γ∗)j
i∗ . Thus, Sj contains at least 2i∗−1 vertices. Note that vertex (x, ℓ) can665

only have edges to vertices which are distinct to (x, ℓ), i.e., for all ((x, ℓ), (y, ℓ′)) ∈ E∗ we666

have x ̸= y because the game graph Γ does not have self loops.667

In the second case, all player-1 vertices in Sj are white in (Γ∗)j
i∗−1. Thus, their outedges668

in (Γ∗)j
i∗ and (Γ∗)j

i∗−1 are identical. We now argue, why a player-2 vertex in Sj exists:669

Assume for contradiction that no player-2 vertex in Sj exists. Hence, Sj is a separating670

cut only consisting of player-1 vertices. As Sj is a separating cut in (Γ∗)j
i∗ we have671

Sj ∩B = ∅. Thus, Sj is also a separating cut in (Γ∗)j
i∗−1. But then, by Lemma 20, the672

algorithm would have terminated in iteration i∗ − 1 which is a contradiction because it673

terminated in iteration i∗.674

Note that repeat-until loop at Lines 7–13 would have stopped in iteration i∗ − 1 in675

(Γ∗)j
i∗−1 as all player-1 vertices in Sj are white.676

Consider a player-2 vertex u in Sj . Note that u must have an edge (u, v) ∈ (E∗)j
i with677

v ∈ Sj because Sj is a separating cut in (Γ∗)j
i∗ (Lemma 21). Again, there are two678

possibilities:679

For all player-2 vertices u ∈ Sj there exists a vertex v ∈ Sj with (u, v) ∈ (E∗)j
i∗−1.680

But then Sj would be a separating cut in (Γ∗)j
i∗−1 as the outedges of player 1 are681

identical in (Γ∗)j
i∗ and (Γ∗)j

i∗−1. By Lemma 20, the separating cut would have been682

found in iteration i∗ − 1 of the repeat-until loop at Line 7, which is a contradiction.683

Therefore, there exists a player-2 vertex u ∈ Sj that has an edge (u, v) ∈ (E∗)j
i∗ to a684

vertex v ∈ Sj but this edge is not contained in (E∗)j
i∗−1. This can only happen if v has685

at least 2i∗−1 other inedges in (E∗)j
i∗−1. Note that u is a player-2 vertex not in (B∗)j

686

K. Chatterjee, M. Henzinger, S. Kale, and A. Svozil 124:19

(because all vertices of (B∗)j belong to Y j), and hence the edge (u, v) has priority 1687

and recall that by the fixed inorder of edges priority-1 edges come before all priority-0688

edges. Thus, it follows that since the edge (u, v) is not in (Γ∗)j
i∗−1, all inedges of v689

that are in (Γ∗)j
i∗−1 must have priority 1 by the fixed order of inedges, that is, all the690

inedges of v in (Γ∗)j
i∗−1 are from non-Büchi player-2 vertices. Note that v ∈ Sj and691

since Sj is a separating cut and, thus, a closed set, all player-2 vertices which are not692

in B∗ with an edge to v are also in Sj . Since v has at least 2i∗−1 inedges from player-2693

vertices which are not in B∗, the set Sj must contain at least 2i∗−1 vertices.694

Furthermore, all incoming edges are from distinct vertices: Note that v cannot be a695

layer 0 vertex of Γ∗, because by Observation 22 all vertices in B of the given bounded696

Büchi objective have no incoming edges from a player-2 vertex. Also, layer-d vertices697

cannot be in Sj as they are in B∗ and would be in the player-1 attractor Y j
i∗ computed698

at Line 10. All other vertices in Γ∗ have incoming edges only from distinct vertices.699

Thus, all 2i∗−1 such vertices are distinct. ◀700

Due to Claim 28, Sj contains at least 2i∗−1 distinct vertices, and since Sj ⊆ Dj , the set701

Dj also contains all copies of all vertices in Sj due to Claim 27. All of Dj is deleted. We702

resume from the detour. The time spent in all graphs (Γ∗)j
1, . . . , (Γ∗)j

i∗ , i.e., the time spent703

in the repeat-until loop at Line 7 for the graph construction and the attractor computations,704

sums up to O(2i∗ · nd). We charge O(nd) work to each distinct vertex. This accounts for all705

the running time except for the last iteration of the outer loop. Since we always remove all706

copies of a vertex v ∈ Sj , the algorithm deletes at most n distinct vertices throughout a run707

of the algorithm. Thus, the total time spent over the whole algorithm other than the last708

iteration is O(n2d).709

The last iteration of the outer loop. In the last iteration j∗ of the outer loop, when no vertex710

is deleted, the algorithm works on all log n game graphs, spending time O(n · 2i) on game711

graph (Γ∗)j∗

i . Since each graph (Γ∗)j∗

i has at most nd · 2i+1 edges and there are log n graphs,712

the total number of edges worked in the last iteration is
∑log n

i=1 nd · 2i+1 = 4nd
∑log n

i=1 2i−1 =713

4nd(2log n − 1) = 4nd(n− 1) = O(n2d). ◀714

▶ Theorem 29. The set of winning vertices for the bounded Büchi objective and bounded715

coBüchi objectives in game graphs can be computed in time O(n2d) = O(n3).716

References717

1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower718

bounds for dynamic problems. In FOCS, pages 434–443. IEEE Computer Society, 2014. URL:719

https://doi.org/10.1109/FOCS.2014.53, doi:10.1109/FOCS.2014.53.720

2 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and721

basing hardness on an extremely popular conjecture. SIAM J. Comput., 47(3):1098–1122,722

2018. URL: https://doi.org/10.1137/15M1050987, doi:10.1137/15M1050987.723

3 Bowen Alpern and Fred B. Schneider. Defining Liveness. Information Processing Letters,724

21(4):181–185, 1985.725

4 Rajeev Alur and Thomas A. Henzinger. Finitary Fairness. ACM Transactions on Programming726

Languages and Systems, 20(6):1171–1194, 1998.727

5 C. Beeri. On the membership problem for functional and multivalued dependencies in relational728

databases. ACM Trans. Datab. Sys., 5(3):241–259, 1980.729

6 A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.730

Advances in Computers, 58:117–148, 2003.731

ICALP 2021

https://doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/15M1050987
http://dx.doi.org/10.1137/15M1050987

124:20 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

7 Mikolaj Bojanczyk and Thomas Colcombet. Bounds in ω-Regularity. In Proceedings of the732

21st Annual IEEE Symposium on Logic in Computer Science, LICS’06, pages 285–296. IEEE733

Computer Society, 2006.734

8 Krishnendu Chatterjee, Wolfgang Dvorák, Monika Henzinger, and Veronika Loitzenbauer.735

Conditionally optimal algorithms for generalized büchi games. In MFCS, volume 58 of736

LIPIcs, pages 25:1–25:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL:737

https://doi.org/10.4230/LIPIcs.MFCS.2016.25, doi:10.4230/LIPIcs.MFCS.2016.25.738

9 Krishnendu Chatterjee, Wolfgang Dvorák, Monika Henzinger, and Veronika Loitzenbauer.739

Model and objective separation with conditional lower bounds: Disjunction is harder than740

conjunction. In LICS, pages 197–206. ACM, 2016. doi:10.1145/2933575.2935304.741

10 Krishnendu Chatterjee, Wolfgang Dvorák, Monika Henzinger, and Alexander Svozil. Al-742

gorithms and conditional lower bounds for planning problems. In Mathijs de Weerdt,743

Sven Koenig, Gabriele Röger, and Matthijs T. J. Spaan, editors, Proceedings of the744

Twenty-Eighth International Conference on Automated Planning and Scheduling, ICAPS745

2018, Delft, The Netherlands, June 24-29, 2018, pages 56–64. AAAI Press, 2018. URL:746

https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17639.747

11 Krishnendu Chatterjee and Monika Henzinger. Efficient and dynamic algorithms for alternating748

büchi games and maximal end-component decomposition. J. ACM, 2014.749

12 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary Winning in750

ω-regular Games. ACM Transactions on Computational Logic, 11(1), 2009.751

13 Alonzo Church. Logic, arithmetic, and automata. In Proceedings of the International Congress752

of Mathematicians, pages 23–35, 1962.753

14 Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors.754

Handbook of Model Checking. Springer, 2018.755

15 E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning.756

Real-Time Systems, 4(4):331–352, 1992.757

16 N. Immerman. Number of quantifiers is better than number of tape cells. Journal of Computer758

and System Sciences, pages 384–406, 1981. doi:10.1016/0022-0000(81)90039-8.759

17 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Formal760

Methods Syst. Des., 34(2):83–103, 2009.761

18 Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems:762

Specification. Springer-Verlag, 1992.763

19 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.764

20 Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In Proceedings of765

the 16th Annual ACM Symposium on Principles of Programming Languages, POPL’89, pages766

179–190, 1989.767

21 Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem. Transactions of768

the American Mathematical Society, 141:1–35, 1969.769

22 Robert E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput., 1(2):146–770

160, 1972.771

23 Wolfgang Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salomaa,772

editors, Handbook of Formal Languages, volume 3, Beyond Words. Springer, 1997.773

24 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.774

In Proceedings of the ICM, volume 3, pages 3431–3472, 2018.775

25 W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite776

trees. Theoretical Computer Science, 200(1–2):135–183, 1998. doi:10.1016/S0304-3975(98)777

00009-7.778

https://doi.org/10.4230/LIPIcs.MFCS.2016.25
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.25
http://dx.doi.org/10.1145/2933575.2935304
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17639
http://dx.doi.org/10.1016/0022-0000(81)90039-8
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

	1 Introduction
	2 Preliminaries
	3 Algorithms for Graphs
	3.1 The Bounded Büchi Objective
	3.2 The Bounded coBüchi Objective

	4 Algorithms for Game Graphs
	4.1 An O(n2d2)-time Algorithm for Bounded Büchi in Games
	4.2 An O(n2d)-time Algorithm for Bounded Büchi in Games
	4.2.1 The Büchi Games Algorithm of CH14
	4.2.2 Faster Algorithm for Bounded Büchi Games

