
1

Modeling and Empirical Validation of Reliability
and Performance Trade-Offs of Dynamic Routing

in Service- and Cloud-Based Architectures
Amirali Amiri, Uwe Zdun and André van Hoorn

Abstract—Context: Various patterns of dynamic routing architectures are used in service- and cloud-based environments, including
sidecar-based routing, routing through a central entity such as an event store, or architectures with multiple dynamic routers.
Objective: Choosing the wrong architecture may severely impact the reliability or performance of a software system. This article’s
objective is to provide models and empirical evidence to precisely estimate the reliability and performance impacts.
Method: We propose an analytical model of request loss for reliability modeling. We studied the accuracy of this model’s predictions
empirically and calculated the error rate in 200 experiment runs, during which we measured the round-trip time performance and
created a performance model based on multiple regression analysis. Finally, we systematically analyzed the reliability and performance
impacts and trade-offs.
Results and Conclusions: The comparison of the empirical data to the reliability model’s predictions shows a low enough and
converging error rate for using the model during system architecting. The predictions of the performance model show that distributed
approaches for dynamic data routing have a better performance compared to centralized solutions. Our results provide important new
insights on dynamic routing architecture decisions to precisely estimate the trade-off between system reliability and performance.

Index Terms—Cloud-Based Computing, Service-Based Applications, Dynamic Routing Architectures, System Reliability, Performance

F

1 INTRODUCTION

MANY distributed system architecture patterns [8], [18],
[33] have been suggested for dynamic routing [16],

i.e., routing or blocking the incoming requests to different
services based on a set of rules. Some dynamic routing
architectures require a single request routing decision, e.g.,
when using load balancing. More complex request routing
decisions, such as routing to the right branch of a company
or checking for compliance to privacy regulations, often
require multiple runtime checks during one sequence of
requests. Consider the following example. A request might
first be checked for the company branch in which it needs
to be processed, then at the next cloud service, whether it
contains privacy-sensitive data. Next, possible data centers
in which private data can be stored are considered, then
the request is routed to the appropriate services, and finally
it is load balanced on the responsible cloud services. Such
request flow paths are typically not pre-configured and rules
for request routing can change dynamically.

Another scenario where the dynamic routing is of impor-
tance is the following. Assume a company offers services to
customers based on their subscription type. Some customers
may have access rights to a selected group of services; dy-
namic routers can route or block requests based on customer
permissions. For another example in a different context,
assume in a company with sensitive data of customers,
a sudden system reliability degradation is monitored. The
architect must, based on their experience, statically redesign

• Amirali Amiri and Uwe Zdun are with the University of Vienna, Austria
E-mail: firstname.lastname@univie.ac.at

• André van Hoorn is with the University of Stuttgart, Germany
E-mail: van.hoorn@informatik.uni-stuttgart.de

and redeploy multiple dynamic routers to meet the quality
criteria required for the application. Our work provides a
systematic evaluation of different scenarios, in architectural
level of abstraction, so that the decision can be made in-
formedly based on reliability and performance trade-offs.

In our prior work [2], [3], we have studied representative
service- and cloud-based system architecture patterns for
dynamic request routing. A typical cloud-native architecture
pattern is the Sidecar pattern [18], [24] in which the sidecar
of each service handles incoming and outgoing traffic [11].
Thus, it can perform the request flow routing for that service
in relation to its directly linked services. In contrast, other
architectural patterns use some kind of Central Entity for
processing the request routing decisions. For instance, an
API Gateway [33], an event store or an event streaming
platform [33], or any kind of central service bus [8], can
be used to realize a central entity. In addition to these two
extremes, multiple Dynamic Routers can be used in specific
places of the request flow, e.g., consider an API Gateway,
two event streaming platforms, and a number of sidecars,
making routing decisions in one cloud-based architecture.

At present, the impacts of such architecture patterns
and their different configurations on system reliability and
performance have only been studied preliminarily in our
own prior works [2], [3] – on which this study is based
(we detail the new contributions of this study compared
to our prior works at the end of this section). This makes
it hard to consider reliability and performance as trade-
offs in the architectural design decision for more or less
centralized dynamic request routing. Both reliability and
performance are core considerations in service and cloud
architectures [26]. A reasonably accurate failure prediction

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



2

for the feasible architecture design options in a certain
design situation, as well as on the impacts of any such deci-
sion option on performance, would help architects to better
design system architectures considering those quality trade-
offs. Note that so far there is no study that considers the
possible interdependencies of reliability and performance in
our particular research context. For instance, the best design
option with regard to performance might be significantly
different in a routing architecture where requests might fail
(e.g., because of node crashes) compared to a system where
no substantial reliability issues have to be considered. We
set out to answer the research questions:

RQ1: What is the impact of choosing a dynamic routing archi-
tecture, in particular central entity, sidecar-based, or dynamic
routers, on system reliability?

RQ2: What is the performance impact of these representative
architectures for dynamic data routing considering potential re-
liability issues?

RQ3: How can we predict the impact of system reliability and per-
formance when making architectural design decisions on dynamic
routing architectures?

RQ4: Can we find an optimal or semi-optimal trade-off between
architectures in terms of performance and reliability for a given
system configuration and load?

To address these research questions, we first modeled re-
quest loss during router and service crashes in an analytical
model based on Bernoulli processes. Request loss is used as
the externally visible metric indicating the severity of the
crashes’ impacts. The model abstracts central entities, dy-
namic routers, and sidecars in a common router abstraction.
This makes it possible to predict request loss during router
and service crashes for any configuration of a request flow
sequence in service- and cloud-based system architectures.

To validate our analytical model of system reliability, we
designed an experiment in which we studied 36 representa-
tive experimental cases (i.e., different experiment configura-
tions). These cases covered three kinds of architectures with
different numbers of cloud services, routers, and request call
frequencies. We then computed the prediction error of our
reliability model compared to our empirical results. Our re-
sults show that the error is constantly reduced with a higher
number of experiment runs, converging at a prediction error
of 7.8%. Overall, we performed 200 experiment runs, which
ran a total of 1200 hours (excluding setup time). Given the
target prediction accuracy of up to 30% commonly used in
the cloud performance field [23], also considering hard to
control effects like network latency, and bearing in mind that
the goal of our study is architecting with a rough prediction
of the impact on system reliability, these results are more
than reasonable. With the same crash probability for all com-
ponents, the same frequency of incoming requests, and the
same number of cloud components, our model predicts and
our experiment confirms that more decentralized routing
results in losing a higher number of requests in comparison
to more centralized approaches.

To analyze the performance in a potentially unreliable
system, we measured round-trip time performance during
our experiment runs. We then statistically analyzed this
data using multiple regression analysis [34], to predict the

performance of the representative dynamic routing architec-
tures in terms of the time it takes for a request to be fully
processed. Next, we compared the results of our prediction
models with another run of our experiment to calculate
the prediction accuracy of our performance models, which
goes as low as 9.0% in case of the sidecar and the dynamic
routers architecture patterns. The results show that dis-
tributed approaches for dynamic data routing have gener-
ally a better performance compared to centralized solutions
in most cases, especially for a high number of services. In
small corridors of (i.e., a low number of) services and high
load combinations, it is necessary to inspect in detail which
architecture performs better (analyzed in Section 8).

The contributions of our study are as follows. As men-
tioned above, this research is based on two prior studies. In
one we studied performance in a small-scale experimental
setting [2] where we instantiated our infrastructure and
stressed the services under different load profiles. Here,
we extended this work by completely repeating the above
process in a much larger-scale experimental setting going
from one experiment run each case taking 5 seconds to 200
runs each case taking 10 minutes. We provided a completely
new set of statistical prediction models for performance,
presented extensive performance results and analyzed the
prediction error, which, to the best of our knowledge, has
not been done before specifically concerning dynamic rout-
ing architectures in service- and cloud-based environments.

In [3], we extended our small-scale experimental config-
uration to also study reliability in a larger setting. Here, we
present an extension of this work with substantially more
detailed analyses on the reliability properties. We introduce
a metamodel specifically designed to consider reliability and
performance trade-offs in service- and cloud-based dynamic
routing, which has not been presented before to the best of
our knowledge. Finally, in this article, we present a new
detailed analysis of reliability and performance trade-offs of
the three architecture patterns based on our models.

The article first compares our study to the related work
in Section 2. In Section 3, we explain the three considered
service- and cloud-based architecture patterns. Section 4
presents a metamodel and our analytical model of system
reliability. Next, in Section 5, we describe the empirical
validation of our study. Section 6 presents our statistical
model of performance. We then study the trade-off in terms
of system reliability and performance in Section 7, discuss
the threats to validity in Section 8, and conclude in Section 9.

2 RELATED WORK

Architecture-based Reliability Prediction To predict the
reliability of a system and to identify reliability-critical el-
ements of its system architecture, various approaches such
as fault tree analysis or methods based on a continuous-time
Markov chain have been proposed [40]. Architecture-based
approaches, like ours, are often based on the observation
that the reliability of a system does not only depend on the
reliability of each component but also on the probabilistic
distribution of the utilization of its components, e.g., formu-
lated as a Markov model [9], [21]. Other approaches allow
software engineers to systematically improve the reliability
of the software architecture, e.g., Brosch et al. [7] suggest an

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



3

extension of the Palladio Component Model along with au-
tomated transformations into a discrete-time Markov chain.
Pitakrat et al. [29] use architectural knowledge to predict
how a failure can propagate to other components. They use
Bayesian networks to represent conditional dependencies
and infer probabilities of failures and their propagation. Our
approach differs from these approaches in that it focuses
specifically on cloud- and service-based dynamic routing
architecture patterns. By focusing on these specific patterns,
we can define a more precise model and reach a high level
of prediction accuracy at the expense of generality that is
higher in those other architecture-based approaches.

Empirical Reliability or Resilience Assessment
Experiment-based resilience assessment approaches aim to
assess a software system’s ability to cope with failures, e.g.,
by injecting faults and observing their effects. Today many
software organizations use large-scale experimentation in
production systems to assess the reliability of their systems,
which is called chaos or resilience engineering [5]. A crucial
aspect in resilience assessment of software systems is effi-
ciency [25]. To reduce the number of experiments needed,
knowledge about the relationship of resilience patterns,
anti-patterns, suitable fault injections, and the system’s ar-
chitecture can be exploited to generate experiments [41].
Our approach differs from these techniques in that our
analytical model can be employed to predict the reliability
of a software system, whereas key design decisions, i.e.,
routers in service- and cloud-based systems, are not only
modeled analytically but also assessed empirically.

Service-Specific Reliability Studies Our approach, in
contrast to many existing architecture-based reliability pre-
diction methods, is focused on a specific category of archi-
tectures, namely services-based architectures for dynamic
routing. From a practical point of view, reliability in those
kinds of architectures has been studied in service and cloud
architectures leading to observations of patterns and best
practices [26]. Some works introduce service-specific reli-
ability models. For instance, Wang et al. [43] propose a
discrete-time Markov chain model for analyzing system reli-
ability based on constituent services. Grassi and Patella [12]
propose an approach for reliability prediction that considers
the decentralized and autonomous nature of services. Zheng
and Lyu [44] propose an approach that employs past failure
data to predict a service’s reliability. However, none of
these approaches studies and compares major architecture
patterns in service and cloud architectures; they are rather
based on a very generic model with regard to the notion of
service. So far none of the approaches considers reliability
and performance trade-offs together.

Architecture-Based Performance Analysis and Predic-
tion A number of approaches perform architecture model-
based performance analysis or prediction. Spitznagel and
Garlan [38] present a general architecture-based model for
performance analysis based on queueing network theory.
Sharma and Trivedi [35] present an architecture-based uni-
fied hierarchical model for software reliability, performance,
security and cache behavior prediction. This is one of the
few studies that consider both performance and reliability
aspects together. Petriu et al. [28] present an architecture-
based performance analysis approach that builds Layered
Queueing Network performance models from a UML de-

scription of the high-level architecture of a system. The Pal-
ladio component model [6], [32] allows precise component
modeling with relevant factors for performance properties
and contains a simulation framework for performance pre-
diction. Like our work, those works focus on supporting
architectural design or decision making. In contrast to our
work, they do not focus on specific kinds of architectures or
architecture patterns; those models offer more generality at
the expense of the high accuracy with which we characterize
the three architecture patterns analyzed in our work.

Performance Analysis: Internet of Things Vandikas et
al. [42] conducted a performance analysis of their Internet
of Things (IoT) framework to evaluate its behavior under
heavy load produced by different amounts of producers
and consumers. The main purpose of the framework is to
allow producers, such as sensors, to publish data streams
to which multiple interested consumers, e.g., external appli-
cations, can subscribe. This publish-subscribe functionality
is realized by a central message broker implemented with
RabbitMQ. In contrast to our work, dynamic data routing
is not considered in this article; moreover, the performance
evaluation of the framework focuses only on a single ma-
chine deployment, which may have led to results that are
not easily generalizable to cloud-based deployments.

Performance Analysis: Enterprise Service Buses There
are a number of existing works comparing the performance
of Enterprise Service Buses (ESB). This is related to our work
in the sense that ESBs provide a means for content-based
routing of messages. In our experiment no ESB was used
to implement the rule-based dynamic data routing, but the
central entity approach is similar from a structural point
of view. Sanjay et al. [1] evaluate the performance of the
three open-source ESBs Mule, WSO2 ESB, and Service Mix.
The performance is measured based on mean response time
and throughput for proxying, content-based routing, and
mediation of data. However, the test scenarios only consider
communications between clients and a single web service.
In contrast, our work also considers communication paths
which involve the composition of multiple services and
routing decisions. Shezi et al. [36] provide a performance
evaluation of different ESBs in a more complex scenario in
which multiple services are composed to achieve a certain
business objective. As a test case, a service orchestration sce-
nario is simulated, in which a consumer consults a number
of banking services to find the best loan quote. In contrast
to our work, other routing architectures are not considered.

Performance Analysis: Microservice- and Container-
Based Systems Different studies evaluate the network per-
formance of container-based applications. This is related
to our work, as we analyzed the performance of con-
tainerized services. For example, Kratzke [20] evaluates the
performance impact of Docker containers, software-defined
networks, and encryption to network performance in dis-
tributed cloud-based systems using HTTP-based commu-
nication. The performance is measured by means of data
transfer rate of m byte-long messages. A similar work is
presented by Bankston et. al [4] to explore the network per-
formance and system impact of different container networks
on public clouds from Amazon Web Services, Microsoft
Azure, and Google Cloud Platform.

Another kind of related studies in a wider sense com-

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



4

«client»
«host»

«client» «client» «client»
«host»

«API gateway»
«host»

«host»

«host»«host»

«host»

«service»«service»

«service»

«service»

«service»

«central entity»

(a) Central Entity Architecture

«host» «host»
«client»«client»«client»«client»

«host»
«API gateway»

«host»

«host»«host»

«service» «service»«service»

«service» «service»

«sidecar»«sidecar»«sidecar»

«sidecar»«sidecar»

(b) Sidecar Architecture

«client»
«host»

«client» «client» «client»
«host»

«API gateway»
«host»

«dynamic router»
«dynamic router» «host»

«host»

«host»
«host»

«dynamic router»

«service»«service»

«service»

«service»

«service»

(c) Dynamic Router Architecture

Fig. 1: Dynamic Routing Architecture Patterns

pares different service architectures. For instance, Lloyd et
al. [22] compare different states of serverless infrastructure
and their influence on microservice performance. Khazaei
et al. [19] study the efficiency of provisioning microservices.
All these studies are related to our research as they also
improve the state of (micro)service performance engineer-
ing. Our study contributes new data on three common
architectures for evaluating dynamic routing rules, which
has not been examined before. The literature has produced
general microservice performance engineering challenges
and directions (e.g., [14]). Studies like ours and the ones
mentioned above address some of the microservice perfor-
mance engineering challenges identified in the literature. As
outlined above, our experimental setup is influenced by the
named related works, broader studies on related experimen-
tal setups (e.g., [10], [15], [39]), and our own experiences in
building microservice and cloud systems (see [2], [3]).

3 BACKGROUND: DYNAMIC ROUTING ARCHITEC-
TURE PATTERNS

There are many different service- and cloud-based archi-
tectures which use or enable dynamic request routing. We
study three of the widely used architecture patterns.

Central Entity (CE) Architecture In a CE architecture, as
shown in Figure 1a, the central entity manages all request
flow decisions. One benefit of this architecture is that it is
easy to manage, understand, and change as all control logic
regarding request flows is implemented in one component;
however, this introduces the drawback that the design of
the internals of the central entity component is a complex
task. Another advantage is that in an application, which
consists of stateful request flow sequences, the state does not
need to be passed between various distributed components.
Nonetheless, as shown in Figure 1a, services need to call
back to the central entity component to fetch the saved state
of prior stages in order to proceed with the next step in the
request flow sequence. CE can be implemented utilizing an
API Gateway [33], an event store or an event streaming plat-
form [33], or any kind of central service bus [8]. Figure 1a

shows an example configuration of CE. Note that it is not
required that CE is always deployed on an exclusive host.

Sidecar-based Architecture (SA) SA is presented in Fig-
ure 1b. In contrast to the central entity architecture, the con-
trol logic is distributed and placed in so-called sidecars [11],
[18], which are attached to the services. Sidecars offer a
separation of concerns since the control logic regarding re-
quest flow is implemented in a different component than the
service; however, they are tightly coupled with their directly
linked services. Sidecars offer benefits whenever decisions
need to be made structurally close to the service logic.
One advantage of this architecture is that, in comparison
to the central entity service, it is usually easier to implement
sidecars since they require less complex logic to control the
request flow of their connected services. However, it is not
always possible to add sidecars, e.g., when services are off-
the-shelf products. Sidecars are always implemented on the
same host as their directly linked services.

Dynamic Routers (DR) Architecture Figure 1c shows a
specific dynamic router [16] configuration. DR can be seen
as a hybrid of the two aforementioned extremes, i.e., in
between the centralized CE and the fully distributed SA.
One benefit of using DR is that dynamic routers can use
local information regarding request routing amongst their
connected services. For instance, if a set of services are
dependent on one another as steps of processing a request,
DR can be used to facilitate dynamic routing. Nonetheless,
dynamic routers introduce an implementation overhead
regarding data structures, control logic, management, de-
ployment, and so on since they are usually distributed on
multiple hosts. We use the common term router for all
request flow control logic components, i.e., the central entity
in CE, sidecars in SA, and dynamic routers in DR.

4 MODEL OF REQUEST LOSS DURING ROUTER
AND SERVICE CRASHES

In this section we first explain central concepts of our work
with a metamodel, then propose a Bernoulli process model
of request loss during router and service crashes. Table 1
presents the mathematical notations used in this article.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



5

TABLE 1: The Mathematical Notations Used in this Article

Notation Description
T Observed system time

nserv Number of services
ncrash Number of crash tests
CI Crash interval
cf Incoming call frequency
A Allocation of routers
C Set of all components
R Set of all routers
S Set of all services

rcrashed A router r when crashed
scrashed A service s when crashed
IR Internal request
IRT Total number of internal requests per a call sequence
ILT Total internal loss
ILR Sum of the internal loss per crash of each router
ILS Sum of the internal loss per crash of each service
ILc Internal loss for a component c
ILr Internal loss for a router r
ILs Internal loss for a service s
ER External request
ELT Total external loss
ELR Sum of the external loss per crash of each router
ELS Sum of the external loss per crash of each service
ELc External loss for a component c
ELr External loss for a router r
ELs External loss for a service s
CT Total number of crashes
CR Sum of the expected number of crashes of each router
CS Sum of the expected number of crashes of each service
nexecc Number of executed internal requests for the crash of a component c
nexecr Number of executed internal requests for the crash of a router r
nexecs Number of executed internal requests for the crash of a service s
dc Expected average downtime after a component c crashes
dr Expected average downtime after a router r crashes
ds Expected average downtime after a service s crashes
Pc Crash probability of a component c every CI
Pr Crash probability of a router r every CI
Ps Crash probability of a service s every CI

E[Cc] Expected number of crashes of a component c during T
E[Cr] Expected number of crashes of a router r during T
E[Cs] Expected number of crashes of a service s during T

4.1 Metamodel
As depicted in Figure 3a, we consider various kinds of
Components in service-based architectures: Services, Clients,
API Gateways, and Routers. Host is an abstraction of any
execution environments for these components, either phys-
ical or virtual. Request models the request flow, linking a
source and a destination component. External Request is an
abstraction of a request flow between a Client and an API
Gateway. Internal Request models a request flow amongst API
Gateway, Router, and Service components. Figure 3b extends
the metamodel with specific concepts for modeling request
loss. The Profile and Crash classes contain member variables
which are explained below in our model.

4.2 Definition of Internal and External Loss
To illustrate our model, let us use the basic concepts of our
metamodel to instantiate an example model. Figure 2 shows
a configuration of a DR architecture with three routers and
five services. The instantiated components send internal
requests, labeled from IR1 to IR11, amongst one another to
complete the processing of the one external request, labeled
ER. The partially ordered set representing the call trace ER,
IR1, . . . , IR11 is called the call sequence. When a router or
a service crashes before it has processed a pending request,
external requests will not be processed fully, which results in

the application not being responsive to the client. We define
external loss as the number of external requests that are not
processed during a crash of a component, and internal loss
as the number of lost internal requests.

Internal Loss In case of a crash, per each external loss,
the internal loss is the total number of internal requests
per a call sequence, i.e., IRT , minus the ones that have
been successfully executed. Let ILc, ELc and nexecc be the
internal loss, the external loss and the number of executed
internal requests for the crash of a component c:

ILc = ELc · (IRT − nexecc ) (1)

Example Crash Scenario for a Router Crash To illustrate
the internal loss metric, let us consider the crash of R3 (c =
R3) in Figure 2. In this case, IR1 to IR8 are executed, i.e.,
nexecc = 8, but we lose three internal requests, namely IR9,
IR10 and IR11. We can see that there are a total of eleven
internal requests, i.e., IRT = 11, then:

ILc = ELc · (11− 8) = ELc · 3 (2)

which means per each external loss, we lose three internal
requests. Note that IRT and nexecc need to be parameterized
based on the application. An example of this parameteriza-
tion is given in Section 5.1 “Specific Model Formulae”.

Example Crash Scenario for a Service Crash Let us
consider the crash of S5 (c = S5) in Figure 2. In this case,
IR1 to IR9 are executed, i.e., nexecc = 9, and we lose two
internal requests, i.e., IR10 and IR11, then:

ILc = ELc · (11− 9) = ELc · 2 (3)

«host»
VM3

«service»
S5

«dynamic router»
R3

«host»
VM1

«service»
S1

«service»
S2

«dynamic router»
R1

«host»
VM5

«client»
CL

«host»
VM4

«API gateway»
GW

«host»
VM2

«dynamic router»
R2

«service»
S4

«service»
S3

IR9IR5

IR11
IR1

IR10IR8IR4IR3IR2 IR7IR6

ER

Fig. 2: Example Model Instance

External Loss Let dc be the expected average downtime
after a component c crashes and cf the incoming call fre-
quency, i.e., the frequency at which external requests are
received. The external loss per crash of each component c is:

ELc = dc · cf (4)

4.3 Bernoulli Process to Model Request Loss During
Router and Service Crashes

In this section we model request loss based on Bernoulli
processes, which is a set of independent Bernoulli trials [40].
A Bernoulli trial is a random experiment with two out-
comes, i.e., “success” and “failure”. This fits perfectly to
our modeling of the crash of a component based on a
random variable. At certain intervals, we generate a random
variable for each component. If this number is above the

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



6

Model

Request

Internal Request External RequestComponent

Client API Gateway Service Router

Central Entity Sidecar Dynamic Router

Host

1

*

source

*

1

destination

*

1

1

*

1

*

(a) Basic Concepts

Model

ServiceRouter Host

Component Crash

ILc internal loss

ELc external loss

nc
exec

number of executed requests

Service Crash

scrashed service s when crashed

Router Crash

rcrashed router r when crashed

Profile

Component Profile

Pc crash probability every CI

E[Cc] expected number of crashes during T

dc expected average downtime

System Profile

IRT total internal requests

nserv number of services

A allocation of routers
C set of all routers and services
T observed system time
CI crash interval
cf call frequency
ncrash number of crash tests

1

1

1

1

1

1

1

1

uses

*

1

1

*

1

*

(b) Specific Concepts for Modeling Request Loss

Fig. 3: Metamodel

crash probability of the component, we manually crash the
component by stopping its Docker container.

We only model the crash of the Router and Service sub-
concepts of the Component in our metamodel. This is because
we assume an API Gateway is stable and reliable. Moreover,
a crash of a Client results in Requests not being generated;
as a result, Requests are not lost. Hence, throughout the rest
of the paper, we use the common term components for all
instantiated routers and services.

Number of Crash Tests During T , i.e., the observed
system time, all components can crash with certain failure
distributions. It is realistic to assume that these distributions
are known with a certain error, as they can be estimated
from the past system runs, e.g., recorded in system logs.
Note that many cloud systems run without being stopped:
here, T should be interpreted as the time interval in which
these failure distributions are observed (e.g., failure distri-
butions of a day or a week). A crash of each component can
happen at any point of time in T . We model this behavior
by checking for a crash of any of the system’s components
every crash interval CI . That is, our model “knows” about
crashes in discrete time intervals only, as it would be the
case, e.g., if the Heartbeat pattern [17] or the Health Check
API pattern [31] is used for checking system health. Our
model allows any possible values for T or CI and different
crash probabilities for each component, e.g., based on empir-
ical observations in a system under consideration. Let ncrash
be the number of times we check for a crash of components,
i.e., the number of crash tests:

ncrash = b T
CI
c (5)

Expected Number of Crashes Each crash test is a
Bernoulli trial in which success is defined as “component
crashed” and failure as “component did not crash”. Assum-
ing CI > dc, all ncrash crash tests of a component c are
independent from each other. This assumption is justifiable
since in reality, when a component crashes and is down, it

cannot crash again; another crash of the same component
can happen only after the component is up and running,
i.e., the component’s downtime has passed. Therefore, for
each component, we can create a Bernoulli process of its
crash tests. Then the binomial distribution of each Bernoulli
process gives us the number of successes, i.e., the number
of times a component crashes during T . For each compo-
nent, the expected value of the binomial distribution is the
expected number of crashes of the component. Let Pc be the
crash probability of a component c every time we check for a
crash which is derived, dependent on the application, from
the failure distributions. Note that Pc is different for each
component which is specified by the Crash Profile concept in
our metamodel (see Figure 3b). Let E[Cc] be the expected
number of crashes of a component c during T :

E[Cc] = ncrash · Pc (6)

Total Internal and External Loss The total internal loss,
i.e., ILT , is the sum of internal loss per crash of each
component. Let C be the set of all components that can
crash, i.e., routers and services.

ILT =
∑
c∈C

E[Cc] · ILc (7)

which can be rewritten using Equations (1) and (4) to (6) as:

ILT = b T
CI
c · cf ·

∑
c∈C

Pc · dc · (IRT − nexecc ) (8)

The total external loss, i.e., ELT , is the sum of external
loss per crash of each component.

ELT =
∑
c∈C

E[Cc] · ELc (9)

which can be rewritten using Equations (4) to (6) as:

ELT = b T
CI
c · cf ·

∑
c∈C

Pc · dc (10)

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



7

Total Number of Crashes CT is the sum of the expected
number of crashes of each component.

CT =
∑
c∈C

E[Cc] (11)

which we can rewrite based on Equations (5) and (6) as:

CT = b T
CI
c ·
∑
c∈C

Pc (12)

5 EMPIRICAL VALIDATION OF THE REQUEST LOSS
MODEL

In this section we describe an experiment which we de-
signed to empirically validate the accuracy of our re-
quest loss model model. Moreover, we provide application-
specific model formulae regarding our experimental setup.
Finally, we present our results.

5.1 Experimental Planning
Goals We aim to empirically validate our model’s accuracy
with regard to the number of crashes as well as the total in-
ternal and external loss represented by Equations (7) to (10).
Based on our experiences from studies of microservice-
based architectures and the related literature in our prior
work (see [2], [3]), we decided on a number of experimental
cases which are explained below. Then we realized these
architectures using a prototypical implementation, instanti-
ated and ran them in a cloud infrastructure, measured the
empirical results, and compared the results with our model.
The experimental setup is based on our prior work [2], [3].

Technical Details We used a private cloud with three
physical nodes, each having two identical CPUs. Two cloud
nodes hosted the Intel® Xeon® E5-2680 v4 @ 2.40 GHz1 and
the other one hosted the same processor family but version
v3 @ 2.50 GHz. The v4 and v3 versions had 14 and 12 cores
respectively and two physical threads per core (56 and 48
threads in total). On top of the cloud nodes, we installed
Virtual Machines (VMs), each of which used the VMware2

ESXi version 6.7.0 u2 hypervisor, had eight CPU cores, 60
GB system memory, and ran Ubuntu Server 18.04.01 LTS3.
Docker4 containerization was used to run the services which
were implemented in Node.js5. We utilized five desktop
computers to generate load, each hosting an Intel®Core™i3-
2120T CPU @ 2.60 GHz with two cores and two physical
threads per core. All desktop computers had 8 GB of system
memory and ran Ubuntu 18.10. They generated load using
Apache JMeter6 which sent Hypertext Transfer Protocol
(HTTP) version 1.17 requests to the cloud nodes.

Architecture Configurations Any application that has
a request flow can be modeled using our proposed meta-
model. We used a few sample architecture configurations to
calculate the accuracy of our model discussed later. These
configurations followed the convention for the request flow

1https://www.intel.com/content/www/us/en/homepage.html
2https://docs.vmware.com
3https://www.ubuntu.com
4https://www.docker.com
5https://nodejs.org/en/
6https://jmeter.apache.org
7https://tools.ietf.org/html/rfc7230

shown by the example model in Figure 2. That is, all clients
send external requests (ERs), to the API gateway, then per
each ER, internal requests (IRs) were sent one-by-one from
routers to services and vice versa. Also for the sake of sim-
plicity, we labeled the services and the routers incrementally
from 1, and made the IRs go through all of them linearly.

As in the example model, we utilized one virtual ma-
chine exclusively, with only one Docker container inside
of it, to run the API gateway. Then we distributed the
services, each on a separate container, among three VMs.
The distribution of the services was so that all virtual ma-
chines had the same number of services (with a maximum
difference of one service). However, the placement of routers
on hosts were different from that of the example model.
For CE, we placed the central entity service in a Docker
container exclusively on one VM. For DR, we used three
dynamic routers which followed the same convention as
CE, i.e., three separate exclusive VMs each with only one
container running the routers. Finally, for SA, we placed
each sidecar in a separate container on the same VM, on
which its directly linked service resides.

Experimental Cases According to Equation (8), the total
internal loss (ILT ) is influenced by a number of factors: the
incoming call frequency (cf ), number of services (nserv),
downtime of components (dc), system run time (T ), crash
interval (CI) and crash probability of components (Pc).

We chose different levels for cf and nserv to study their
effects on ILT . We selected cf based on a study of related
works as 10, 25, 50, and 100 Hr/s. In many related studies
(see, e.g., [10], [39]), 100 Hr/s (or even lower numbers) are
chosen; as a result, we chose this number as our highest
bound and selected different portions of it to study its
effects. As for ns, based on our experience and a survey on
existing cloud applications in the literature and industry [2],
[3], the number of services which are directly dependent on
each other in a call sequence is usually rather low; we chose
3, 5, and 10 as values for the number of services (nserv).

We simulated a node crash by separately generating a
random number for each cloud component, i.e., routers and
services. If the generated random number for a component
was below its crash probability, we stopped the compo-
nent’s Docker container and started it again after a time
interval d = 3 seconds. We chose T = 10 minutes, during
which we checked for a crash for all components simulta-
neously every CI = 15 seconds resulting in ncrash = 40
based on Equation (5). Each component had a uniform
crash probability of 0.5% each time we checked for a crash
as mathematically expressed by Equation (13). This crash
probability is much higher than what is observed for real-
life cloud applications: akin to the related works we chose
a relatively high crash probability in order to have a high
enough likelihood to observe a few crashes during T .

Pc = 0.5% ∀ c ∈ C (13)

Note that it is a common assumption to have a uniform
crash probability in experiments like ours (see, e.g., [29],
[30]) to increase the control over the experiment’s dependent
variables. However, in real-world applications, different
components may have different failure rates which need to
be considered. Our model in the general form considers any
failure profile for components (see Equation (8)).

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



8

Specific Model Formulae As explained before, in Equa-
tion (1), IRT and nexecc need to be parameterized based on
the application. Since in our example configurations each
service receives an IR, processes it and sends it back either
to a router or the API gateway, we can calculate IRT based
on the number of services as:

IRT = 2nserv + 1 (14)

We use two different concepts for the crash of a router
and a service in the metamodel (see Figure 3b) because the
number of executed requests (nexecc ) is different in each case.
With a service crash, all internal requests (IRs) up until the
last router will be executed. Let scrashed be the label number
of the crashed service, for our architecture configurations:

nexecs = 2scrashed − 1 (15)

Using Equation (8), the internal loss for all services (ILS) is:

ILS = 0.6 · cf · nserv(nserv + 1) (16)

In case of a router crash, to calculate the number of
executed requests, we need to know the allocation of routers
(A) which is a set indicating the number of directly linked
services of each router, e.g., the allocation of routers in the
example model presented in Figure 2 is:

A = {2, 2, 1} and A0 = 0 (17)

which means there are two services allocated to router R1
and R2 and one service allocated to router R3. Let rcrashed
be the label number of the crashed router, then for our
architecture configurations we have:

nexecr = 2
rcrashed∑

r=1

Ar−1 (18)

which means, to find the number of executed requests be-
fore the crash of router r, we sum over the allocated services
of all routers up until the crashed router and multiply it by
two since there are an incoming and an outgoing request
from a service to a router (see Figure 2).

In case of CE in our experiment, all nserv services are
connected to the one router, i.e., the central entity service:

A = {nserv} and A0 = 0 (19)

Then we can rewrite Equation (8) for all routers (ILR) as:

ILR = 0.6 · cf · (2nserv + 1) (20)

We can calculate ILT for CE using Equations (16) and (20):

ILT = ILR + ILS (21)

ILT = 0.6 · cf · [(nserv)2 + 3nserv + 1] (22)

In case of DR in our experiment, all nserv services are
equally distributed (with a maximum difference of one
service) on the three dynamic routers:

A = {nserv
3

,
nserv
3

,
nserv
3
± 1} and A0 = 0 (23)

Then for DR using Equations (16) and (21) we have:

ILR = 0.6 · cf · (4nserv + 3) (24)

ILT = 0.6 · cf · [(nserv)2 + 5nserv + 3] (25)

In case of SA in our experiment, each service is con-
nected to one router, i.e., a sidecar. Therefore:

A = {1, 1, ..., 1} and A0 = 0 (26)

in which A has the length of nserv . Then for SA we have:

ILR = 0.6 · cf · ((nserv)2 + 2nserv) (27)

ILT = 0.6 · cf · [2(nserv)2 + 3nserv] (28)

Data Set Preparation For each experimental case we
instantiated the architectures and ran the experiment ex-
actly ten minutes (excluding setup time), during which we
checked for crashes and logged the output so we could later
process the logs and calculate the number of external loss
precisely. As outlined above we studied three architectures,
three levels of nserv and four levels of cf resulting in a
total of 36 experimental cases; therefore, a single run of
our experiment took exactly six hours (36×10 minutes) of
runtime. Since our model revolves around expected values
in a Bernoulli process, we repeated this process 200 times
(1200 hours), and report the arithmetic mean of the results.

Methodological Principles of Reproducibility We fol-
lowed the eight principles of reproducibility introduced
in [27]. Repeated experiments: see this section. Workload and
configuration coverage: we covered 36 experimental cases, and
analytically modeled the probabilistic behavior of compo-
nent crash in Section 4. Experimental setup description: see
Section 5.1. Open access artifact: the data of this study is pub-
lished as an open access data set for supporting replicabil-
ity8. Probabilistic result description of measured performance: see
Section 5.2. Statistical evaluation: see Section 6. Measurement
units: we reported all units. Cost: we did not use a public
cloud setting; see Section 5.1 for container configurations.

5.2 Experimental Results
Description Based on Equation (8), ILT is a model element
that incorporates crashes of all components. Moreover, it
includes all model views, e.g., architecture configurations,
expected average downtime, etc; therefore, we conduct our
analysis mainly based on ILT . Table 2 presents our exper-
imental results; σ(ILT ) is the standard deviation of ILT

in 200 runs. We can see that when we keep nserv constant,
increasing cf results in a rise of ELT (Equation (10)) in all
cases, which leads to a higher value of ILT (Equation (8)).

Since in our experiment, we instantiated the DR architec-
ture with three dynamic routers, it is interesting to consider
the experimental case of nserv = 3. Here, SA and DR have
the same number of components, i.e., routers and services.
Note that SA uses a sidecar per each service; as a result, with
nserv = 3, we will also have three sidecars. The difference
between the two architectures in this experimental case
is that in DR dynamic routers are placed on a different
VM than their directly linked services, but in SA sidecars
are placed on the same VM on which their corresponding
services reside. For this reason, it can be observed that the
reported values for SA and DR closely resemble each other
when we different values of cf but keep the number of
services (nserv) constant at three. Considering the cases with

8https://ieee-dataport.org/documents/amiri-tsc-2021
doi:10.21227/mahp-mw44

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://ieee-dataport.org/documents/amiri-tsc-2021


9

TABLE 2: Results of the Model and the Experiment

Arch. nserv cf CT ELT ILT CT ELT ILT σ(ILT )
Model Experiment

CE

3

10 0.800 24.000 114.000 0.760 23.395 98.960 118.552
25 0.800 60.000 285.000 0.620 47.435 228.975 292.389
50 0.800 120.000 570.000 0.705 106.370 480.235 608.635
100 0.800 240.000 1140.000 0.725 218.130 1045.000 1216.765

5

10 1.200 36.000 246.000 1.165 36.405 236.575 236.536
25 1.200 90.000 615.000 1.110 85.400 608.040 574.267
50 1.200 180.000 1230.000 1.115 172.085 1155.550 1173.295
100 1.200 360.000 2460.000 1.040 317.585 2223.655 2101.272

10

10 2.200 66.000 786.000 1.920 62.000 720.190 616.778
25 2.200 165.000 1965.000 2.125 171.290 2063.305 1711.931
50 2.200 330.000 3930.000 2.160 344.765 4223.665 3458.119
100 2.200 660.000 7860.000 1.960 590.665 6853.500 6567.047

DR

3

10 1.200 36.000 162.000 1.075 32.505 153.045 175.952
25 1.200 90.000 405.000 1.225 92.745 452.160 466.814
50 1.200 180.000 810.000 1.225 182.595 882.695 916.540
100 1.200 360.000 1620.000 1.130 328.925 1477.405 1470.332

5

10 1.600 48.000 318.000 1.670 51.995 319.210 301.989
25 1.600 120.000 795.000 1.760 135.105 816.895 686.709
50 1.600 240.000 1590.000 1.790 270.540 1597.535 1324.199
100 1.600 480.000 3180.000 1.635 490.990 2909.115 2353.168

10

10 2.600 78.000 918.000 2.525 82.255 921.610 495.543
25 2.600 195.000 2295.000 2.355 187.715 2181.590 1275.035
50 2.600 390.000 4590.000 2.205 345.350 4043.070 2508.002
100 2.600 780.000 9180.000 2.375 741.870 8544.700 5022.780

SA

3

10 1.200 36.000 162.000 1.140 34.910 170.265 186.911
25 1.200 90.000 405.000 1.230 93.265 435.685 452.190
50 1.200 180.000 810.000 1.215 181.305 883.510 911.088
100 1.200 360.000 1620.000 1.185 345.950 1634.850 1844.829

5

10 2.000 60.000 390.000 1.795 55.745 350.055 244.898
25 2.000 150.000 975.000 1.795 138.910 891.525 647.402
50 2.000 300.000 1950.000 1.715 261.740 1716.095 1284.733
100 2.000 600.000 3900.000 1.790 528.420 3385.240 2633.592

10

10 4.000 120.000 1380.000 3.900 127.715 1443.040 773.632
25 4.000 300.000 3450.000 3.745 306.745 3477.305 1979.270
50 4.000 600.000 6900.000 3.860 617.375 7140.655 4262.114
100 4.000 1200.000 13800.000 3.870 1232.770 14072.910 8287.361

five or ten services, we almost always observe higher ILT

when we change the architecture from a CE to a DR or
from a DR to an SA but keep the same configurations, that
is, if we keep nserv and cf constant. It is because in our
experiment, CE has only one router (the central entity), DR
has three (dynamic routers), and SA has nserv (sidecars).
Consequently, the number of crashes corresponding to con-
trol logic components goes up from CE to DR and then to
SA. This increases the total number of crashes CT (predicted
by Equation (12)), which results in losing more requests.

Evaluation of the Prediction Error of Reliability We
use the predicted results of our model, presented in Table 2,
to measure the accuracy of our analytical model compared
to the empirical data from our experiment. The prediction
error is measured by calculating the Mean Absolute Per-
centage Error (MAPE) [40]. Let modeli and empiricali be
the result of the model, and the measured empirical data for
experimental case i, respectively:

MAPE =
100%

ncase
·
ncase∑
i=1

∣∣∣∣modeli − empiricaliempiricali

∣∣∣∣ (29)

in which ncase is the number of cases considered, which
is 36 in this experiment. By definition the expected value is
the mean of a large number of repetitions [13]. As previously
mentioned, a single run of our experiment takes six hours of
runtime (plus more than three hours of experimental setup
and post-processing of the results); in total we were able to

run the experiment 200 times (1200 hours of run-time).
Table 3 reports prediction error measurements of our

model for different numbers of runs. A low number of
repeats is expected to increase the error since the effects of
outliers on the arithmetic mean of the data is considerable.
As the table shows, with a higher number of experimental
runs the prediction error is reduced, which indicates a
converging error rate. After 200 runs the prediction error
of 7.8% regarding ILT is already low enough to use our
model for predictions during architecture decision making.

TABLE 3: Prediction Error of the Reliability Model for
Different Number of Runs of the Experiment

Num. of
Runs

CT

(%)
ELT

(%)
ILT

(%)
50 12.919 12.307 14.072

100 9.416 8.492 9.508
150 8.326 7.426 8.695
200 8.081 7.097 7.776

6 STATISTICAL MODEL OF PERFORMANCE

Here we describe performance models from the data of our
experiment. In the next section, the reliability and perfor-
mance models are used to perform a trade-off analysis.

The Round-Trip Time In order to compare and mea-
sure the performance of the architectures, we recorded the
Round-Trip Time (RTT) of requests in our experiment. The

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



10

RTT is defined as the difference in time from the moment
a request is received by the API gateway until it is routed
through all cloud services involved in the processing of the
request. JMeter generates an identification (ID) number for
each HTTP request. Whenever the API gateway receives a
request, it starts a timer with an attached ID. The request is
routed through cloud services and returns to the gateway
when processing is finished. Next, the gateway reads the
request ID and stops the corresponding timer. The RTT is
the time calculated by the timer.

Statistical Methods Multiple regression analysis is a
technique used to create prediction models that estimate the
value of a dependent variable based on values of two or
more independent variables [34]. The following hypotheses
were formulated for this experiment:

H0 : There is no significant prediction accuracy of the
RoundTrip Time (RTT ) of requests by the number of ser-
vices (nserv) and call frequencies (cf ).

HA : There is a significant prediction accuracy of the
RoundTrip Time (RTT ) of requests by the number of ser-
vices (nserv) and call frequencies (cf ).
We created two prediction models, i.e., linear and nonlinear
models, per each architecture configuration to estimate the
RTT, i.e., the dependent variable, based on call frequency
and number of services, i.e., the independent variables.

Prediction Models Table 4 presents our prediction mod-
els for each architecture which we created based on our
multiple regression analysis. All of our models result in a
very low p-value (high statistical significance of the predicted
results) which allows us to reject the null hypothesis and
accept the alternative hypothesis indicating that the number
of services and the call frequency affect the RTT.

LinearReg. = SC · nserv + FC · cf + Int (30)
NonlinearReg. = SC · nserv + FC · cf +

IC · nserv · cf + Int (31)

The interaction term in Equation (31), i.e., IC ·nserv ·cf , tells
us that the effect of the number of services on the predicted
RTT is not constant; it changes with different values of call
frequency (and vice versa). Note that regression models are
calculated from all 200 runs of our experiment.

TABLE 4: Prediction Models of Performance

Arch.
Service

Coefficient
(SC)

Frequency
Coefficient

(FC)

Interaction
Coefficient

(IC)
Intercept

(Int)

F-statistic:
p-value

CE 3.384e+00 -3.042e-01 5.528e-02 1.608e+01 <2.2e-16
7.343e+00 0.0265e+00 - -7.599e+00 <2.2e-16

DR 4.881e+00 -1.254e-01 -1.509e-05 1.287e+01 <2.2e-16
4.870e+00 -0.125e+00 - 12.872e+00 <2.2e-16

SA 3.360e+00 -0.034e+00 -0.011e+00 5.708e+00 <2.2e-16
2.552e+00 -0.102e+00 - 10.540e+00 <2.2e-16

TABLE 5: Prediction Error of the Performance Models

Regression Empirical
Data

CE
(%)

DR
(%)

SA
(%)

Linear Mean 21.527 8.966 10.343
Median 25.483 9.902 11.119

Nonlinear Mean 13.654 8.959 10.158
Median 19.270 9.915 8.958

Evaluation of the Prediction Error of Performance We
compare the results of our prediction models to another run
of our experiment (not used in the training set). Table 5
presents the prediction error of the regression models. The
nonlinear regression compared to the arithmetic mean of the
empirical data results in a lower prediction error.

Table 6 compares the empirical data with the predicted
results. We report the first quartile (Q1), the median, the
third quartile (Q3), 95th percentile, the mean and the stan-
dard deviation of the recorded round-trip times (σ(RTT )).
We can observe that the predictions in case of DR and
SA lie within the interquartile range of the empirical data
in most cases; exceptions are the following cases with call
frequency of 10 Hr/s: DR with five and ten services, and SA
with nserv = 10. In these cases, the nonlinear prediction is
slightly below the first quartile of the empirical data. More-
over, the predicted RTT in case of DR with nserv = 10 and
cf = 50 Hr/s is above Q3. With CE the nonlinear predicted
results are closer to the arithmetic mean of the data than
to the median, as also confirmed in Table 5 with the lower
prediction error of 13.7% compared to 19.3%. Note the 30%
target prediction accuracy in the cloud performance [23].

7 TRADE-OFF ANALYSIS

So far we described two models for the qualities reliability
and performance which we created for each architecture. In
this section we analyze the trade-offs of the architectures
with regard to the two qualities in different combinations of
configurations, i.e., 1 ≤ nserv ≤ 10 and 1 ≤ cf ≤ 100.

Reliability Comparison We use the reliability models
provided in Section 5 “Specific Model Formulae.” Let Rarch

be the analytical reliability model for each architecture, then:

RCE = 0.6 · cf · [(nserv)2 + 3nserv + 1] (32)

RDR = 0.6 · cf · [(nserv)2 + 5nserv + 3] (33)

RSA = 0.6 · cf · [2(nserv)2 + 3nserv] (34)

which is plotted in Figure 4. CE results in an equal or
higher reliability than SA and DR but there are some cases
specially in the lower ranges of nserv where SA gives a
higher reliability than DR. We compare the architectures.

Number of Services

2

4

6

8

10

Inc
om

ing
 Call 

Fre
qu

en
cy 

(Hr/s
)

0

20

40

60

80

100

To
ta

l I
nt

er
na

l L
os

s

2000

4000

6000

8000

10000

12000

CE
DR
SA

Fig. 4: Reliability Models

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



11

TABLE 6: Comparison of the Prediction Results of the Performance Models and the Empirical Data

Arch. nserv cf
(Hr/s)

Q1

(ms)

Median
RTT
(ms)

Q3

(ms)

95th
Percentile

(ms)

Mean
RTT
(ms)

σ(RTT )
Linear

Regression
(ms)

Nonlinear
Regression

(ms)

CE

3

10 22.173 24.277 27.504 36.627 26.0169 11.899 14.695 24.848
25 19.228 21.327 26.773 39.951 24.423 9.466 15.093 22.773
50 16.618 18.339 23.367 35.350 21.333 9.863 15.756 19.314
100 13.101 14.597 17.983 27.975 16.938 9.843 17.083 12.396

5

10 36.490 40.021 44.845 55.381 42.138 15.835 29.381 32.722
25 27.564 29.862 33.428 44.942 31.987 12.791 29.780 32.305
50 24.185 26.618 30.752 42.250 28.948 11.276 30.442 31.610
100 18.078 19.794 24.810 35.657 23.966 24.713 31.769 30.220

10

10 64.488 69.357 74.901 88.528 72.344 30.946 66.096 52.406
25 47.363 51.796 58.966 72.632 55.832 33.015 66.494 56.135
50 39.035 43.826 50.811 63.718 48.306 37.599 67.158 62.350
100 48.634 58.066 70.423 95.812 74.398 139.257 68.484 74.780

DR

3

10 23.371 26.374 30.955 40.017 28.322 11.521 26.257 26.259
25 20.845 23.152 27.744 38.264 25.477 9.504 24.374 24.377
50 18.053 19.601 22.588 35.026 21.901 9.295 21.237 21.241
100 13.536 14.817 18.005 28.168 17.192 10.349 14.962 14.968

5

10 37.844 42.893 49.4277 62.270 45.422 18.780 36.016 36.020
25 30.442 34.011 39.034 51.303 36.345 14.731 34.133 34.138
50 23.863 26.637 31.799 43.272 29.350 15.122 30.996 31.001
100 18.242 20.235 25.503 36.201 23.584 16.343 24.721 24.727

10

10 70.034 76.020 83.473 97.357 79.636 36.074 60.414 60.424
25 50.677 55.427 60.877 75.861 58.545 29.661 58.532 58.541
50 41.436 46.638 52.788 65.423 51.010 47.884 55.394 55.402
100 40.997 47.254 55.167 70.112 54.562 75.960 49.119 49.125

SA

3

10 13.500 15.938 20.042 26.399 17.427 6.483 17.176 15.106
25 11.747 13.381 16.782 22.975 14.881 5.155 15.648 14.083
50 10.449 11.875 16.258 25.607 14.188 6.349 13.102 12.377
100 6.923 7.898 9.975 18.061 9.456 5.196 8.010 8.965

5

10 21.554 25.185 29.860 37.137 26.561 10.007 22.279 21.601
25 17.330 20.227 24.383 33.295 21.881 7.671 20.751 20.239
50 13.573 15.174 18.158 27.103 16.831 6.913 18.205 17.968
100 11.456 13.896 17.857 27.665 15.726 7.908 13.113 13.427

10

10 44.875 48.860 53.678 63.075 50.705 18.464 35.037 37.838
25 32.633 36.5545 41.214 53.287 38.577 16.120 33.509 35.628
50 26.433 29.718 34.265 45.468 32.117 18.422 30.963 31.946
100 19.509 22.221 26.482 37.321 25.646 27.174 25.871 24.582

Reliability Trade-Off Between CE and DR Trying to
find the intersecting line where RCE = RDR, we find
that there is no combination of cf and nserv , where the
two curves collide; therefore, CE always results in a higher
reliability than DR in our focused context.

Reliability Trade-Off Between CE and SA We find the
intersecting line where PCE = PSA in our focused context
is nserv = 1. That is when we have only one service, since
we use the same implementation for all architectures, SA
and CE become the same application. Therefore, they result
in the same value of reliability. In any other case, CE results
in a higher reliability than SA.

Reliability Trade-Off Between DR and SA We find the
intersecting line where PDR = PSA in our focused context
is nserv = 3. That is when there are three services, DR
and SA are the same application in our implementation
since they both have the same number of routers; therefore,
they result in the same value of reliability. Note that in
our experiment we instantiated DR with three and SA with
nserv routers. When nserv < 3, SA has fewer routers than
DR; consequently, SA results in a lower number of request
loss, i.e., higher reliability, than DR. When nserv > 3, DR
has fewer routers and results in a higher reliability than SA.

Summary of the Reliability Trade-Offs When nserv ≤ 3
we have RCE ≤ RSA ≤ RDR and when nserv > 3 we have
RCE < RDR < RSA for all studied call frequencies.

Performance Comparison For the performance models
we used the nonlinear regression, i.e., Equation (31), in
which the coefficients are taken from Table 4. Let Parch be
the performance prediction model for each architecture:

PCE = 3.384 · nserv − 0.3042 · cf + 16.08+

0.05528 · nserv · cf (35)
PDR = 4.881 · nserv − 0.1254 · cf + 12.87−

0.00001509 · nserv · cf (36)
PSA = 3.360 · nserv − 0.0340 · cf + 5.708−

0.011 · nserv · cf (37)

which are plotted in Figure 6. In most cases, SA results in a
lower RTT than the other architectures. However, there are
some cases that CE outperforms DR and SA. We compare
the architectures to find the exact range of nserv and cf , in
which each architecture performs the highest.

Performance Trade-Off Between CE and DR To char-
acterize the trade-off more precisely, we have to study the
intersecting line where PCE = PDR, i.e., the line where the
curves of the architectures collide:

cf =
1.497 · nserv − 3.21

0.0552951 · nserv − 0.1788
(38)

which is plotted in Figure 5a. Note that the blue dashed
line, i.e., nserv = 3, and the red dashed line, i.e., nserv = 4,

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



12

2 4 6 8 10

−
10

0
−

50
0

50

Number of Services

C
al

l F
re

qu
en

cy
 (

H
r/

s)

●

●

●

●

●

●
● ● ● ●

(a) CE vs. DR

2 4 6 8 10

0
50

0
10

00
15

00
20

00

Number of Services

C
al

l F
re

qu
en

cy
 (

H
r/

s)

●
●

●

●

●

●
● ● ● ●

(b) CE vs. SA

2 4 6 8 10

−
20

00
0

20
00

40
00

Number of Services

C
al

l F
re

qu
en

cy
 (

H
r/

s)

● ● ● ●
●

●

●

●

●

●

(c) DR vs. SA

Fig. 5: Plot of All Intersecting Lines

Number of Services

2

4

6

8

10

Inc
om

ing
 Call 

Fre
qu

en
cy 

(Hr/s
)

0

20

40

60

80

100

Ro
un

d-
Tr

ip
 T

im
e 

(m
s)

0

10

20

30

40

50

60

70

CE
DR
SA

Fig. 6: Performance Models

indicate the extrema of the intersecting line; therefore, CE
outperforms DR in the area above the intersecting line when
nserv ≤ 3, and below the intersecting line when nserv > 4.

Table 7 summarizes the regions of cf and nserv , in which
CE outperforms DR. It can be confirmed by the results of
our model for the experimental cases reported in Table 6,
in which under nonlinear regression, we can observe that
in case of nserv = 3, CE outperforms DR for all values of
cf . However, when we have five or ten services, only in the
lower range of incoming call frequency, i.e., 10 and 25, CE
results in a lower performance value.

Performance Trade-Off Between CE and SA We find the
intersecting line where PCE = PSA in our focused context:

cf =
−0.024 · nserv − 10.372

0.06628 · nserv − 0.2702
(39)

plotted in Figure 5b. In our focused context, CE outperforms

SA only with the following conditions:

nserv = 1 and cf ≥ 50.98 (40)
nserv = 2 and cf ≥ 75.71 (41)

Performance Trade-Off Between DR and SA The inter-
secting line where PDR = PSA is plotted in Figure 5c:

cf =
−1.521 · nserv − 7.162

0.010985 · nserv − 0.091
(42)

Summary of the Performance Trade-Offs In Table 8,
lower Parch means lower RTT , i.e., better performance.

TABLE 8: Comparison of the Performance of the Architectures

nserv cf (Hr/s) Performance

1
until 13.87 PSA ≤ PDR ≤ PCE

between 13.87 and 50.98 PSA ≤ PCE ≤ PDR

from 50.98 PCE ≤ PSA ≤ PDR

2
until 3.17 PSA ≤ PDR ≤ PCE

between 3.17 and 75.71 PSA ≤ PCE ≤ PDR

from 75.71 PCE ≤ PSA ≤ PDR

3 all PSA ≤ PCE ≤ PDR

4 until 65.55 PSA ≤ PCE ≤ PDR

from 65.55 PSA ≤ PDR ≤ PCE

5 until 43.77 PSA ≤ PCE ≤ PDR

from 43.77 PSA ≤ PDR ≤ PCE

6 until 37.73 PSA ≤ PCE ≤ PDR

from 37.73 PSA ≤ PDR ≤ PCE

7 until 34.90 PSA ≤ PCE ≤ PDR

from 34.90 PSA ≤ PDR ≤ PCE

8 until 33.26 PSA ≤ PCE ≤ PDR

from 33.26 PSA ≤ PDR ≤ PCE

9 until 32.19 PSA ≤ PCE ≤ PDR

from 32.19 PSA ≤ PDR ≤ PCE

10 until 31.43 PSA ≤ PCE ≤ PDR

from 31.43 PSA ≤ PDR ≤ PCE

TABLE 7: The Region Where CE outperforms DR

nserv 1 2 3 4 5 6 7 8 9 10
cf (Hr/s) ≥ 13.87 ≥ 3.17 ≥ 1.00 ≤ 65.55 ≤ 43.77 ≤ 37.73 ≤ 34.90 ≤ 33.26 ≤ 32.19 ≤ 31.43

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



13

8 THREATS TO VALIDITY

Construct Validity In our study, we injected crashes to sim-
ulate real world crash behavior at a given probability. While
this is a commonly taken approach (see Section 2), a threat
remains that measuring internal and external loss based
on these crashes might not measure reliability well. For
example, system reliability is also influenced by cascading
effects of crashes beyond a single call sequence [26] which
are not covered in our experiment. More research, probably
with real-world systems, is needed to exclude this threat.

Internal Validity We collected an extensive amount of
data to validate our model. However, we did so in limited
experiment time and with injected crashes, simulated by
stopping Docker containers. We avoided factors such as
other load on the machines where the experiment ran and
much of the related literature takes a similar approach (see
Section 2), but research observing real-world cloud-based
systems with real crashes would be needed to confirm that
there are no other factors influencing the measurements.

External Validity The results might not be generalizable
beyond the given experimental cases of 10-100 requests
per second and call sequences of length 3-10. However,
this covers a wide variety of loads and call sequences in
cloud-based applications. Moreover, in our experiments we
considered a uniform crash probability for all components.
This is a common assumption made in such experiments
(see, e.g., [29], [30]) to increase the control over the exper-
iment’s dependent variables and thus the internal validity
of the experiment. At the same time, this might decrease
the external validity, if the crash profiles observed in a real-
world application are substantially different (see [37] for
the trade-off between the internal and external validity in
empirical software engineering). To mitigate this threat, our
model, in the general form, does not assume a uniform crash
probability for all components.

Conclusion Validity As the statistical method to com-
pare our model’s predictions to the empirical data, we
used the MAPE metric as it is widely used and offers
good interpretability in our research context. To mitigate
the threat that this statistical method might have issues,
we double-checked three other error measures, which led
to similar converging results. We reported MAPE; the other
measurements are included in the online appendix.

9 CONCLUSIONS AND FUTURE WORK

In this article, we investigated three representative service
and cloud architecture patterns for dynamic routing re-
garding their impact and trade-offs on reliability and per-
formance. Regarding RQ1, our study concludes that more
decentralized routing results in losing a higher number of
requests, i.e., lower reliability, in comparison to more cen-
tralized approaches; however, regarding RQ2, our results
show that distributed settings indicate better performance,
specially under high load, because of using more routers.

Regarding RQ3, we derived an analytical model for
predicting request loss in the studied architectures and
empirically validated this model using 36 representative
experimental cases. Our results indicate that, with a higher
number of experimental runs, the prediction error is con-
stantly reduced, converging at a prediction error of 7.8%.

Furthermore, we have created prediction models providing
an estimation on the performance impact of the investigated
architectures. The found models show high statistical signif-
icance; in addition, we cross-validated the estimated RTTs
with measurements from an additional experiment run.

Regarding RQ4, we precisely calculated the range of the
incoming call frequency and the number of services, where
each architecture gives better results. With regard to system
reliability, CE always results in a lower request loss; how-
ever, SA results in a better performance specially in higher
number of services. DR can be seen as a middle ground
specially in a higher number of services; this introduces an
interesting future work focus in which we abstract all three
architectures under DR with reconfigurable routers. Then
we set out to find the optimal configuration under certain
constraints, e.g., the cost of cloud deployment.

The major impact of our work is on architectural de-
sign decisions for dynamic routing in service- and cloud-
based architectures. Prior to our work, for system reliability
and performance trade-offs, architects had to rely on their
experiences as no empirical evidence was available. To the
best of our knowledge, our work is the first to provide such
evidence. Our work’s main contributions are models and an
empirical study of widely used architectures, about which
little was known before our study. Such empirical works
enable building new algorithms and architectures which are
based on a solid and well-founded understanding of the
existing architectures. For instance, this enables exploring
more sophisticated prediction models, such as machine
learning-based approaches and evaluation theories of reli-
ability, which are possible studies based on our research. To
be successful, such works require careful empirical studies
laying the foundation for understanding the existing state
of the art and its limitations, providing ground truths, and
offering data sets for further studies (such as the open access
data set provided in our article8). For our future work, we
plan to use the empirical data and model from this study
to design a novel adaptive routing software architecture,
which chooses among the architectural options dynamically.

ACKNOWLEDGMENT

This work was supported by FWF (Austrian Science
Fund), project ADDCompliance: I 2885-N33; FFG (Austrian
Research Promotion Agency), project DECO no. 864707;
Baden-Württemberg Stiftung, project ORCAS.

REFERENCES

[1] S. P. Ahuja and A. Patel. Enterprise service bus: A performance
evaluation. Communications and Network, 3(03):133, 2011.

[2] A. Amiri, C. Krieger, U. Zdun, and F. Leymann. Dynamic data
routing decisions for compliant data handling in service- and
cloud-based architectures: A performance analysis. In IEEE In-
ternational Conference on Services Computing (SCC), 2019.

[3] A. Amiri, U. Zdun, G. Simhandl, and A. van Hoorn. Impact of
service- and cloud-based dynamic routing architectures on system
reliability. In International Conference on Service Oriented Computing
(ICSOC), 2020.

[4] R. Bankston and J. Guo. Performance of container network
technologies in cloud environments. In 2018 IEEE International
Conference on Electro/Information Technology (EIT). IEEE, 2018.

[5] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal. Chaos engineering. IEEE Software,
33(3):35–41, 2016.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



14

[6] S. Becker, H. Koziolek, and R. Reussner. Model-based performance
prediction with the palladio component model. In Proceedings of
the 6th International Workshop on Software and Performance, WOSP
’07, page 54–65, New York, NY, USA, 2007. ACM.

[7] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecture-
based reliability prediction with the palladio component model.
IEEE Transactions on Software Engineering, 38(6):1319–1339, 2011.

[8] D. A. Chappell. Enterprise service bus. O’Reilly, 2004.
[9] R. C. Cheung. A user-oriented software reliability model. IEEE

transactions on Software Engineering, pages 118–125, 1980.
[10] D. J. Dean, H. Nguyen, P. Wang, and X. Gu. Perfcompass: Toward

runtime performance anomaly fault localization for infrastructure-
as-a-service clouds. In 6th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 14), 2014.

[11] Envoy. Service mesh. https://www.learnenvoy.io/articles/service-
mesh.html, 2019.

[12] V. Grassi and S. Patella. Reliability prediction for service-oriented
computing environments. IEEE Internet Computing, 10(3), 2006.

[13] G. Grimmett and D. Welsh. Probability: An Introduction. Cambridge
University Press, 1986.

[14] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare,
C. Pahl, S. Schulte, and J. Wettinger. Performance engineering for
microservices: research challenges and directions. In Proceedings
of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion, pages 223–226. ACM, 2017.

[15] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda. Bungee: An
elasticity benchmark for self-adaptive iaas cloud environments.
In Proceedings of the 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS ’15, pages
46–56, Piscataway, NJ, USA, 2015. IEEE Press.

[16] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-
Wesley, 2003.

[17] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson.
Cloud Design Patterns. Microsoft Press, 2014.

[18] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov.
Microservices: The journey so far and challenges ahead. IEEE
Software, 35(3):24–35, 2018.

[19] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu. Effi-
ciency analysis of provisioning microservices. In Cloud Computing
Technology and Science (CloudCom), 2016 IEEE International Confer-
ence on, pages 261–268. IEEE, 2016.

[20] N. Kratzke. About microservices, containers and their un-
derestimated impact on network performance. arXiv preprint
arXiv:1710.04049, 2017.

[21] G. Kumar, M. Kaushik, and R. Purohit. Reliability analysis of
software with three types of errors and imperfect debugging using
markov model. International Journal of Computer Applications in
Technology (IJCAT), 2018.

[22] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara.
Serverless computing: An investigation of factors influencing mi-
croservice performance. In Cloud Engineering (IC2E), 2018 IEEE
International Conference on, pages 159–169. IEEE, 2018.

[23] D. A. Menascé and V. A. Almeida. Capacity Planning for Web
Services: Metrics, Models, and Methods. Prentice Hall PTR, 2001.

[24] Microsoft. Sidecar pattern. https://docs.microsoft.com/en-us/
azure/architecture/patterns/sidecar, 2010.

[25] R. Natella, D. Cotroneo, and H. S. Madeira. Assessing depend-
ability with software fault injection: A survey. ACM Computing
Surveys (CSUR), 48(3):44, 2016.

[26] M. Nygard. Release It!: Design and Deploy Production-Ready Software.
Pragmatic Bookshelf, 2007.

[27] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von
Kistowski, A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tuma, and
A. Iosup. Methodological principles for reproducible performance
evaluation in cloud computing. In IEEE Transactions on Software
Engineering. IEEE, 2019.

[28] D. Petriu, C. Shousha, and A. Jalnapurkar. Architecture-based
performance analysis applied to a telecommunication system.
IEEE Transactions on Software Engineering, 26(11):1049–1065, 2000.

[29] T. Pitakrat, D. Okanović, A. van Hoorn, and L. Grunske. Hora:
Architecture-aware online failure prediction. Journal of Systems
and Software, 137, 2017.

[30] T. Pitakrat, D. Okanović, A. van Hoorn, and L. Grunske. An
architecture-aware approach to hierarchical online failure predic-
tion. In 12th International ACM SIGSOFT Conference on Quality of
Software Architectures (QoSA), 2016.

[31] P. Raj, A. Raman, and H. Subramanian. Architectural Patterns:
Uncover essential patterns in the most indispensable realm. Packt
Publishing, December 2017.

[32] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek,
H. Koziolek, M. Kramer, and K. Krogmann. Modeling and Simu-
lating Software Architectures: The Palladio Approach. The MIT Press,
2016.

[33] C. Richardson. Microservice architecture patterns and best prac-
tices. http://microservices.io/index.html, 2019.

[34] D. L. Rubinfeld. Reference guide on multiple regression. Federal
Judicial Center, 2nd edition, 2000.

[35] V. S. Sharma and K. S. Trivedi. Architecture based analysis of
performance, reliability and security of software systems. In
Proceedings of the 5th International Workshop on Software and Per-
formance, WOSP ’05, page 217–227, New York, NY, USA, 2005.
Association for Computing Machinery.

[36] T. Shezi, E. Jembere, and M. Adigun. Performance evaluation of
enterprise service buses towards support of service orchestration.
In Proc. of International Conference on Computer Engineering and
Network Security (ICCENS’2012), 2012.

[37] J. Siegmund, N. Siegmund, and S. Apel. Views on internal
and external validity in empirical software engineering. In 37th
International Conference on Software Engineering (ICSE), 2015.

[38] B. Spitznagel and D. Garlan. Architecture-based performance
analysis. In Proc. the 1998 Conference on Software Engineering and
Knowledge Engineering. Carnegie Mellon University, June 1998.

[39] O. Sukwong, A. Sangpetch, and H. S. Kim. Sageshift: managing
slas for highly consolidated cloud. In 2012 Proceedings IEEE
INFOCOM, pages 208–216, 2012.

[40] K. S. Trivedi and A. Bobbio. Reliability and availability engineering:
modeling, analysis, and applications. Oxford University Press, 2017.

[41] A. Van Hoorn, A. Aleti, T. F. Düllmann, and T. Pitakrat. Orcas:
Efficient resilience benchmarking of microservice architectures. In
2018 IEEE International Symposium on Software Reliability Engineer-
ing Workshops, pages 146–147. IEEE, 2018.

[42] K. Vandikas and V. Tsiatsis. Performance evaluation of an iot
platform. In Next Generation Mobile Apps, Services and Technologies,
8th International Conference on, pages 141–146. IEEE, 2014.

[43] L. Wang, X. Bai, L. Zhou, and Y. Chen. A hierarchical reliability
model of service-based software system. In 2009 33rd Annual
IEEE International Computer Software and Applications Conference,
volume 1, pages 199–208, July 2009.

[44] Z. Zheng and M. R. Lyu. Collaborative reliability prediction of
service-oriented systems. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, volume 1, pages 35–44, 2010.

Amirali Amiri Amirali Amiri M.Sc. is a doctoral
candidate at the Software Architecture Group
of Faculty of Computer Science, University of
Vienna. Amirali received his Master’s degree in
Informatics from Technical University of Munich,
Germany and his Bachelor’s degree in Computer
Engineering from Ferdowsi University of Mash-
had, Iran. His research focuses on software de-
sign and architecture, also fault injection, detec-
tion and prediction in service-based systems.

Uwe Zdun Prof. Dr. Uwe Zdun is a full profes-
sor for software architecture at the Faculty of
Computer Science, University of Vienna. His re-
search focuses on software design and architec-
ture, distributed systems engineering (service-
based, cloud, mobile, IoT, and microservices
systems), DevOps and continuous delivery, and
empirical software engineering. Uwe has pub-
lished more than 240 peer-reviewed articles, and
is co-author of 3 professional books.

André van Hoorn André van Hoorn is a senior
researcher with the Institute of Software Tech-
nology at the University of Stuttgart, Germany.
He received his Ph.D. degree (with distinction)
from Kiel University, Germany and his Mas-
ter’s degree from the University of Oldenburg,
Germany. His research focuses on designing,
operating, and evolving trustworthy distributed
software systems, focusing on quality attributes
such as performance, reliability, and resilience.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

	Introduction
	Related Work
	Background: Dynamic Routing Architecture Patterns
	Model of Request Loss During Router and Service Crashes
	Metamodel
	Definition of Internal and External Loss
	Bernoulli Process to Model Request Loss During Router and Service Crashes

	Empirical Validation of the Request Loss Model
	Experimental Planning
	Experimental Results

	Statistical Model of Performance
	Trade-Off Analysis
	Threats to Validity
	Conclusions and Future Work
	References
	Biographies
	Amirali Amiri
	Uwe Zdun
	André van Hoorn


