# Modeling and Empirical Validation of Reliability and Performance Trade-Offs of Dynamic Routing in Service- and Cloud-Based Architectures

# Amirali Amiri, Uwe Zdun and André van Hoorn

Abstract—*Context:* Various patterns of dynamic routing architectures are used in service- and cloud-based environments, including sidecar-based routing, routing through a central entity such as an event store, or architectures with multiple dynamic routers. *Objective:* Choosing the wrong architecture may severely impact the reliability or performance of a software system. This article's objective is to provide models and empirical evidence to precisely estimate the reliability and performance impacts. *Method:* We propose an analytical model of request loss for reliability modeling. We studied the accuracy of this model's predictions empirically and calculated the error rate in 200 experiment runs, during which we measured the round-trip time performance and created a performance model based on multiple regression analysis. Finally, we systematically analyzed the reliability and performance impacts and trade-offs.

*Results and Conclusions:* The comparison of the empirical data to the reliability model's predictions shows a low enough and converging error rate for using the model during system architecting. The predictions of the performance model show that distributed approaches for dynamic data routing have a better performance compared to centralized solutions. Our results provide important new insights on dynamic routing architecture decisions to precisely estimate the trade-off between system reliability and performance.

Index Terms—Cloud-Based Computing, Service-Based Applications, Dynamic Routing Architectures, System Reliability, Performance

# **1** INTRODUCTION

ANY distributed system architecture patterns [8], [18], [33] have been suggested for dynamic routing [16], i.e., routing or blocking the incoming requests to different services based on a set of rules. Some dynamic routing architectures require a single request routing decision, e.g., when using load balancing. More complex request routing decisions, such as routing to the right branch of a company or checking for compliance to privacy regulations, often require multiple runtime checks during one sequence of requests. Consider the following example. A request might first be checked for the company branch in which it needs to be processed, then at the next cloud service, whether it contains privacy-sensitive data. Next, possible data centers in which private data can be stored are considered, then the request is routed to the appropriate services, and finally it is load balanced on the responsible cloud services. Such request flow paths are typically not pre-configured and rules for request routing can change dynamically.

Another scenario where the dynamic routing is of importance is the following. Assume a company offers services to customers based on their subscription type. Some customers may have access rights to a selected group of services; dynamic routers can route or block requests based on customer permissions. For another example in a different context, assume in a company with sensitive data of customers, a sudden system reliability degradation is monitored. The architect must, based on their experience, statically redesign and redeploy multiple dynamic routers to meet the quality criteria required for the application. Our work provides a systematic evaluation of different scenarios, in architectural level of abstraction, so that the decision can be made informedly based on reliability and performance trade-offs.

1

In our prior work [2], [3], we have studied representative service- and cloud-based system architecture patterns for dynamic request routing. A typical cloud-native architecture pattern is the Sidecar pattern [18], [24] in which the sidecar of each service handles incoming and outgoing traffic [11]. Thus, it can perform the request flow routing for that service in relation to its directly linked services. In contrast, other architectural patterns use some kind of Central Entity for processing the request routing decisions. For instance, an API Gateway [33], an event store or an event streaming platform [33], or any kind of central service bus [8], can be used to realize a central entity. In addition to these two extremes, multiple Dynamic Routers can be used in specific places of the request flow, e.g., consider an API Gateway, two event streaming platforms, and a number of sidecars, making routing decisions in one cloud-based architecture.

At present, the impacts of such architecture patterns and their different configurations on system reliability and performance have only been studied preliminarily in our own prior works [2], [3] – on which this study is based (we detail the new contributions of this study compared to our prior works at the end of this section). This makes it hard to consider reliability and performance as tradeoffs in the architectural design decision for more or less centralized dynamic request routing. Both reliability and performance are core considerations in service and cloud architectures [26]. A reasonably accurate failure prediction

Amirali Amiri and Uwe Zdun are with the University of Vienna, Austria E-mail: firstname.lastname@univie.ac.at

André van Hoorn is with the University of Stuttgart, Germany E-mail: van.hoorn@informatik.uni-stuttgart.de

for the feasible architecture design options in a certain design situation, as well as on the impacts of any such decision option on performance, would help architects to better design system architectures considering those quality tradeoffs. Note that so far there is no study that considers the possible interdependencies of reliability and performance in our particular research context. For instance, the best design option with regard to performance might be significantly different in a routing architecture where requests might fail (e.g., because of node crashes) compared to a system where no substantial reliability issues have to be considered. We set out to answer the research questions:

**RQ1:** What is the impact of choosing a dynamic routing architecture, in particular central entity, sidecar-based, or dynamic routers, on system reliability?

**RQ2:** What is the performance impact of these representative architectures for dynamic data routing considering potential reliability issues?

**RQ3:** How can we predict the impact of system reliability and performance when making architectural design decisions on dynamic routing architectures?

**RQ4:** Can we find an optimal or semi-optimal trade-off between architectures in terms of performance and reliability for a given system configuration and load?

To address these research questions, we first modeled request loss during router and service crashes in an analytical model based on Bernoulli processes. Request loss is used as the externally visible metric indicating the severity of the crashes' impacts. The model abstracts central entities, dynamic routers, and sidecars in a common router abstraction. This makes it possible to predict request loss during router and service crashes for any configuration of a request flow sequence in service- and cloud-based system architectures.

To validate our analytical model of system reliability, we designed an experiment in which we studied 36 representative experimental cases (i.e., different experiment configurations). These cases covered three kinds of architectures with different numbers of cloud services, routers, and request call frequencies. We then computed the prediction error of our reliability model compared to our empirical results. Our results show that the error is constantly reduced with a higher number of experiment runs, converging at a prediction error of 7.8%. Overall, we performed 200 experiment runs, which ran a total of 1200 hours (excluding setup time). Given the target prediction accuracy of up to 30% commonly used in the cloud performance field [23], also considering hard to control effects like network latency, and bearing in mind that the goal of our study is architecting with a rough prediction of the impact on system reliability, these results are more than reasonable. With the same crash probability for all components, the same frequency of incoming requests, and the same number of cloud components, our model predicts and our experiment confirms that more decentralized routing results in losing a higher number of requests in comparison to more centralized approaches.

To analyze the performance in a potentially unreliable system, we measured round-trip time performance during our experiment runs. We then statistically analyzed this data using multiple regression analysis [34], to predict the performance of the representative dynamic routing architectures in terms of the time it takes for a request to be fully processed. Next, we compared the results of our prediction models with another run of our experiment to calculate the prediction accuracy of our performance models, which goes as low as 9.0% in case of the sidecar and the dynamic routers architecture patterns. The results show that distributed approaches for dynamic data routing have generally a better performance compared to centralized solutions in most cases, especially for a high number of services. In small corridors of (i.e., a low number of) services and high load combinations, it is necessary to inspect in detail which architecture performs better (analyzed in Section 8).

The contributions of our study are as follows. As mentioned above, this research is based on two prior studies. In one we studied performance in a small-scale experimental setting [2] where we instantiated our infrastructure and stressed the services under different load profiles. Here, we extended this work by completely repeating the above process in a much larger-scale experimental setting going from one experiment run each case taking 5 seconds to 200 runs each case taking 10 minutes. We provided a completely new set of statistical prediction models for performance, presented extensive performance results and analyzed the prediction error, which, to the best of our knowledge, has not been done before specifically concerning dynamic routing architectures in service- and cloud-based environments.

In [3], we extended our small-scale experimental configuration to also study reliability in a larger setting. Here, we present an extension of this work with substantially more detailed analyses on the reliability properties. We introduce a metamodel specifically designed to consider reliability and performance trade-offs in service- and cloud-based dynamic routing, which has not been presented before to the best of our knowledge. Finally, in this article, we present a new detailed analysis of reliability and performance trade-offs of the three architecture patterns based on our models.

The article first compares our study to the related work in Section 2. In Section 3, we explain the three considered service- and cloud-based architecture patterns. Section 4 presents a metamodel and our analytical model of system reliability. Next, in Section 5, we describe the empirical validation of our study. Section 6 presents our statistical model of performance. We then study the trade-off in terms of system reliability and performance in Section 7, discuss the threats to validity in Section 8, and conclude in Section 9.

# 2 RELATED WORK

Architecture-based Reliability Prediction To predict the reliability of a system and to identify reliability-critical elements of its system architecture, various approaches such as fault tree analysis or methods based on a continuous-time Markov chain have been proposed [40]. Architecture-based approaches, like ours, are often based on the observation that the reliability of a system does not only depend on the reliability of each component but also on the probabilistic distribution of the utilization of its components, e.g., formulated as a Markov model [9], [21]. Other approaches allow software engineers to systematically improve the reliability of the software architecture, e.g., Brosch et al. [7] suggest an

extension of the Palladio Component Model along with automated transformations into a discrete-time Markov chain. Pitakrat et al. [29] use architectural knowledge to predict how a failure can propagate to other components. They use Bayesian networks to represent conditional dependencies and infer probabilities of failures and their propagation. Our approach differs from these approaches in that it focuses specifically on cloud- and service-based dynamic routing architecture patterns. By focusing on these specific patterns, we can define a more precise model and reach a high level of prediction accuracy at the expense of generality that is higher in those other architecture-based approaches.

Empirical Reliability or Resilience Assessment Experiment-based resilience assessment approaches aim to assess a software system's ability to cope with failures, e.g., by injecting faults and observing their effects. Today many software organizations use large-scale experimentation in production systems to assess the reliability of their systems, which is called chaos or resilience engineering [5]. A crucial aspect in resilience assessment of software systems is efficiency [25]. To reduce the number of experiments needed, knowledge about the relationship of resilience patterns, anti-patterns, suitable fault injections, and the system's architecture can be exploited to generate experiments [41]. Our approach differs from these techniques in that our analytical model can be employed to predict the reliability of a software system, whereas key design decisions, i.e., routers in service- and cloud-based systems, are not only modeled analytically but also assessed empirically.

Service-Specific Reliability Studies Our approach, in contrast to many existing architecture-based reliability prediction methods, is focused on a specific category of architectures, namely services-based architectures for dynamic routing. From a practical point of view, reliability in those kinds of architectures has been studied in service and cloud architectures leading to observations of patterns and best practices [26]. Some works introduce service-specific reliability models. For instance, Wang et al. [43] propose a discrete-time Markov chain model for analyzing system reliability based on constituent services. Grassi and Patella [12] propose an approach for reliability prediction that considers the decentralized and autonomous nature of services. Zheng and Lyu [44] propose an approach that employs past failure data to predict a service's reliability. However, none of these approaches studies and compares major architecture patterns in service and cloud architectures; they are rather based on a very generic model with regard to the notion of service. So far none of the approaches considers reliability and performance trade-offs together.

Architecture-Based Performance Analysis and Prediction A number of approaches perform architecture modelbased performance analysis or prediction. Spitznagel and Garlan [38] present a general architecture-based model for performance analysis based on queueing network theory. Sharma and Trivedi [35] present an architecture-based unified hierarchical model for software reliability, performance, security and cache behavior prediction. This is one of the few studies that consider both performance and reliability aspects together. Petriu et al. [28] present an architecturebased performance analysis approach that builds Layered Queueing Network performance models from a UML description of the high-level architecture of a system. The Palladio component model [6], [32] allows precise component modeling with relevant factors for performance properties and contains a simulation framework for performance prediction. Like our work, those works focus on supporting architectural design or decision making. In contrast to our work, they do not focus on specific kinds of architectures or architecture patterns; those models offer more generality at the expense of the high accuracy with which we characterize the three architecture patterns analyzed in our work.

**Performance Analysis: Internet of Things** Vandikas et al. [42] conducted a performance analysis of their Internet of Things (IoT) framework to evaluate its behavior under heavy load produced by different amounts of producers and consumers. The main purpose of the framework is to allow producers, such as sensors, to publish data streams to which multiple interested consumers, e.g., external applications, can subscribe. This publish-subscribe functionality is realized by a central message broker implemented with RabbitMQ. In contrast to our work, dynamic data routing is not considered in this article; moreover, the performance evaluation of the framework focuses only on a single machine deployment, which may have led to results that are not easily generalizable to cloud-based deployments.

Performance Analysis: Enterprise Service Buses There are a number of existing works comparing the performance of Enterprise Service Buses (ESB). This is related to our work in the sense that ESBs provide a means for content-based routing of messages. In our experiment no ESB was used to implement the rule-based dynamic data routing, but the central entity approach is similar from a structural point of view. Sanjay et al. [1] evaluate the performance of the three open-source ESBs Mule, WSO2 ESB, and Service Mix. The performance is measured based on mean response time and throughput for proxying, content-based routing, and mediation of data. However, the test scenarios only consider communications between clients and a single web service. In contrast, our work also considers communication paths which involve the composition of multiple services and routing decisions. Shezi et al. [36] provide a performance evaluation of different ESBs in a more complex scenario in which multiple services are composed to achieve a certain business objective. As a test case, a service orchestration scenario is simulated, in which a consumer consults a number of banking services to find the best loan quote. In contrast to our work, other routing architectures are not considered.

Performance Analysis: Microservice- and Container-Based Systems Different studies evaluate the network performance of container-based applications. This is related to our work, as we analyzed the performance of containerized services. For example, Kratzke [20] evaluates the performance impact of Docker containers, software-defined networks, and encryption to network performance in distributed cloud-based systems using HTTP-based communication. The performance is measured by means of data transfer rate of m byte-long messages. A similar work is presented by Bankston et. al [4] to explore the network performance and system impact of different container networks on public clouds from Amazon Web Services, Microsoft Azure, and Google Cloud Platform.

Another kind of related studies in a wider sense com-

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178



Fig. 1: Dynamic Routing Architecture Patterns

pares different service architectures. For instance, Lloyd et al. [22] compare different states of serverless infrastructure and their influence on microservice performance. Khazaei et al. [19] study the efficiency of provisioning microservices. All these studies are related to our research as they also improve the state of (micro)service performance engineering. Our study contributes new data on three common architectures for evaluating dynamic routing rules, which has not been examined before. The literature has produced general microservice performance engineering challenges and directions (e.g., [14]). Studies like ours and the ones mentioned above address some of the microservice performance engineering challenges identified in the literature. As outlined above, our experimental setup is influenced by the named related works, broader studies on related experimental setups (e.g., [10], [15], [39]), and our own experiences in building microservice and cloud systems (see [2], [3]).

# **3** BACKGROUND: DYNAMIC ROUTING ARCHITEC-TURE PATTERNS

There are many different service- and cloud-based architectures which use or enable dynamic request routing. We study three of the widely used architecture patterns.

Central Entity (CE) Architecture In a CE architecture, as shown in Figure 1a, the central entity manages all request flow decisions. One benefit of this architecture is that it is easy to manage, understand, and change as all control logic regarding request flows is implemented in one component; however, this introduces the drawback that the design of the internals of the central entity component is a complex task. Another advantage is that in an application, which consists of stateful request flow sequences, the state does not need to be passed between various distributed components. Nonetheless, as shown in Figure 1a, services need to call back to the central entity component to fetch the saved state of prior stages in order to proceed with the next step in the request flow sequence. CE can be implemented utilizing an API Gateway [33], an event store or an event streaming platform [33], or any kind of central service bus [8]. Figure 1a

shows an example configuration of CE. Note that it is not required that CE is always deployed on an exclusive host.

Sidecar-based Architecture (SA) SA is presented in Figure 1b. In contrast to the central entity architecture, the control logic is distributed and placed in so-called sidecars [11], [18], which are attached to the services. Sidecars offer a separation of concerns since the control logic regarding request flow is implemented in a different component than the service; however, they are tightly coupled with their directly linked services. Sidecars offer benefits whenever decisions need to be made structurally close to the service logic. One advantage of this architecture is that, in comparison to the central entity service, it is usually easier to implement sidecars since they require less complex logic to control the request flow of their connected services. However, it is not always possible to add sidecars, e.g., when services are offthe-shelf products. Sidecars are always implemented on the same host as their directly linked services.

**Dynamic Routers (DR) Architecture** Figure 1c shows a specific dynamic router [16] configuration. DR can be seen as a hybrid of the two aforementioned extremes, i.e., in between the centralized CE and the fully distributed SA. One benefit of using DR is that dynamic routers can use local information regarding request routing amongst their connected services. For instance, if a set of services are dependent on one another as steps of processing a request, DR can be used to facilitate dynamic routing. Nonetheless, dynamic routers introduce an implementation overhead regarding data structures, control logic, management, deployment, and so on since they are usually distributed on multiple hosts. We use the common term router for all request flow control logic components, i.e., the central entity in CE, sidecars in SA, and dynamic routers in DR.

# 4 MODEL OF REQUEST LOSS DURING ROUTER AND SERVICE CRASHES

In this section we first explain central concepts of our work with a metamodel, then propose a Bernoulli process model of request loss during router and service crashes. Table 1 presents the mathematical notations used in this article.

| Notation                       | Description                                                                |
|--------------------------------|----------------------------------------------------------------------------|
| Т                              | Observed system time                                                       |
| n <sub>serv</sub>              | Number of services                                                         |
| n <sub>crash</sub>             | Number of crash tests                                                      |
| CI                             | Crash interval                                                             |
| cf                             | Incoming call frequency                                                    |
| A                              | Allocation of routers                                                      |
| C                              | Set of all components                                                      |
| R                              | Set of all routers                                                         |
| S                              | Set of all services                                                        |
| $r_{crashed}$                  | A router <i>r</i> when crashed                                             |
| $s_{crashed}$                  | A service <i>s</i> when crashed                                            |
| IR                             | Internal request                                                           |
| $IR_T$                         | Total number of internal requests per a call sequence                      |
| $IL_T$                         | Total internal loss                                                        |
| $IL_R$                         | Sum of the internal loss per crash of each router                          |
| $IL_S$                         | Sum of the internal loss per crash of each service                         |
| $IL_c$                         | Internal loss for a component c                                            |
| $IL_r$                         | Internal loss for a router r                                               |
| $IL_s$                         | Internal loss for a service <i>s</i>                                       |
| ER                             | External request                                                           |
| $EL_T$                         | Total external loss                                                        |
| $EL_R$                         | Sum of the external loss per crash of each router                          |
| $EL_S$                         | Sum of the external loss per crash of each service                         |
| $EL_c$                         | External loss for a component c                                            |
| $EL_r$                         | External loss for a router $r$                                             |
| $EL_s$                         | External loss for a service <i>s</i>                                       |
| $C_T$                          | Total number of crashes                                                    |
| $C_R$                          | Sum of the expected number of crashes of each router                       |
| $C_S$                          | Sum of the expected number of crashes of each service                      |
| $n_c^{exec}$                   | Number of executed internal requests for the crash of a component <i>c</i> |
| n_r^{exec}                     | Number of executed internal requests for the crash of a router $r$         |
| n <sub>s</sub> <sup>exec</sup> | Number of executed internal requests for the crash of a service s          |
| $d_c$                          | Expected average downtime after a component <i>c</i> crashes               |
| $d_r$                          | Expected average downtime after a router $r$ crashes                       |
| $d_s$                          | Expected average downtime after a service <i>s</i> crashes                 |
| $P_c$                          | Crash probability of a component $c$ every $CI$                            |
| $P_r$                          | Crash probability of a router $r$ every $CI$                               |
| $P_s$                          | Crash probability of a service <i>s</i> every <i>CI</i>                    |
| $E[C_c]$                       | Expected number of crashes of a component $c$ during $T$                   |
| $E[C_r]$                       | Expected number of crashes of a router $r$ during $T$                      |
| $E[C_{*}]$                     | Expected number of crashes of a service <i>s</i> during <i>T</i>           |
| $\square$                      |                                                                            |

# 4.1 Metamodel

As depicted in Figure 3a, we consider various kinds of *Components* in service-based architectures: *Services, Clients, API Gateways,* and *Routers. Host* is an abstraction of any execution environments for these components, either physical or virtual. *Request* models the request flow, linking a source and a destination component. *External Request* is an abstraction of a request flow between a *Client* and an *API Gateway, Router,* and *Service* components. Figure 3b extends the metamodel with specific concepts for modeling request loss. The *Profile* and *Crash* classes contain member variables which are explained below in our model.

# 4.2 Definition of Internal and External Loss

To illustrate our model, let us use the basic concepts of our metamodel to instantiate an example model. Figure 2 shows a configuration of a DR architecture with three routers and five services. The instantiated components send internal requests, labeled from  $IR_1$  to  $IR_{11}$ , amongst one another to complete the processing of the one external request, labeled ER. The partially ordered set representing the call trace ER,  $IR_1, \ldots, IR_{11}$  is called the call sequence. When a router or a service crashes before it has processed a pending request, external requests will not be processed fully, which results in

the application not being responsive to the client. We define external loss as the number of external requests that are not processed during a crash of a component, and internal loss as the number of lost internal requests.

**Internal Loss** In case of a crash, per each external loss, the internal loss is the total number of internal requests per a call sequence, i.e.,  $IR_T$ , minus the ones that have been successfully executed. Let  $IL_c$ ,  $EL_c$  and  $n_c^{exec}$  be the internal loss, the external loss and the number of executed internal requests for the crash of a component c:

$$IL_c = EL_c \cdot (IR_T - n_c^{exec}) \tag{1}$$

**Example Crash Scenario for a Router Crash** To illustrate the internal loss metric, let us consider the crash of  $R_3$  ( $c = R_3$ ) in Figure 2. In this case,  $IR_1$  to  $IR_8$  are executed, i.e.,  $n_c^{exec} = 8$ , but we lose three internal requests, namely  $IR_9$ ,  $IR_{10}$  and  $IR_{11}$ . We can see that there are a total of eleven internal requests, i.e.,  $IR_T = 11$ , then:

$$IL_c = EL_c \cdot (11 - 8) = EL_c \cdot 3 \tag{2}$$

which means per each external loss, we lose three internal requests. Note that  $IR_T$  and  $n_c^{exec}$  need to be parameterized based on the application. An example of this parameterization is given in Section 5.1 "Specific Model Formulae".

**Example Crash Scenario for a Service Crash** Let us consider the crash of  $S_5$  ( $c = S_5$ ) in Figure 2. In this case,  $IR_1$  to  $IR_9$  are executed, i.e.,  $n_c^{exec} = 9$ , and we lose two internal requests, i.e.,  $IR_{10}$  and  $IR_{11}$ , then:

$$IL_c = EL_c \cdot (11 - 9) = EL_c \cdot 2 \tag{3}$$



Fig. 2: Example Model Instance

**External Loss** Let  $d_c$  be the expected average downtime after a component c crashes and cf the incoming call frequency, i.e., the frequency at which external requests are received. The external loss per crash of each component c is:

$$EL_c = d_c \cdot cf \tag{4}$$

# 4.3 Bernoulli Process to Model Request Loss During Router and Service Crashes

In this section we model request loss based on Bernoulli processes, which is a set of independent Bernoulli trials [40]. A Bernoulli trial is a random experiment with two outcomes, i.e., "success" and "failure". This fits perfectly to our modeling of the crash of a component based on a random variable. At certain intervals, we generate a random variable for each component. If this number is above the



Fig. 3: Metamodel

crash probability of the component, we manually crash the component by stopping its Docker container.

We only model the crash of the *Router* and *Service* subconcepts of the *Component* in our metamodel. This is because we assume an *API Gateway* is stable and reliable. Moreover, a crash of a *Client* results in *Requests* not being generated; as a result, *Requests* are not lost. Hence, throughout the rest of the paper, we use the common term components for all instantiated routers and services.

Number of Crash Tests During T, i.e., the observed system time, all components can crash with certain failure distributions. It is realistic to assume that these distributions are known with a certain error, as they can be estimated from the past system runs, e.g., recorded in system logs. Note that many cloud systems run without being stopped: here, T should be interpreted as the time interval in which these failure distributions are observed (e.g., failure distributions of a day or a week). A crash of each component can happen at any point of time in T. We model this behavior by checking for a crash of any of the system's components every crash interval CI. That is, our model "knows" about crashes in discrete time intervals only, as it would be the case, e.g., if the Heartbeat pattern [17] or the Health Check API pattern [31] is used for checking system health. Our model allows any possible values for T or CI and different crash probabilities for each component, e.g., based on empirical observations in a system under consideration. Let  $n_{crash}$ be the number of times we check for a crash of components, i.e., the number of crash tests:

$$n_{crash} = \lfloor \frac{T}{CI} \rfloor \tag{5}$$

**Expected Number of Crashes** Each crash test is a Bernoulli trial in which success is defined as "component crashed" and failure as "component did not crash". Assuming  $CI > d_c$ , all  $n_{crash}$  crash tests of a component c are independent from each other. This assumption is justifiable since in reality, when a component crashes and is down, it

cannot crash again; another crash of the same component can happen only after the component is up and running, i.e., the component's downtime has passed. Therefore, for each component, we can create a Bernoulli process of its crash tests. Then the binomial distribution of each Bernoulli process gives us the number of successes, i.e., the number of times a component crashes during T. For each component, the expected value of the binomial distribution is the expected number of crashes of the component. Let  $P_c$  be the crash probability of a component c every time we check for a crash which is derived, dependent on the application, from the failure distributions. Note that  $P_c$  is different for each component which is specified by the *Crash Profile* concept in our metamodel (see Figure 3b). Let  $E[C_c]$  be the expected number of crashes of a component c during T:

$$E[C_c] = n_{crash} \cdot P_c \tag{6}$$

**Total Internal and External Loss** The total internal loss, i.e.,  $IL_T$ , is the sum of internal loss per crash of each component. Let *C* be the set of all components that can crash, i.e., routers and services.

$$IL_T = \sum_{c \in C} E[C_c] \cdot IL_c \tag{7}$$

which can be rewritten using Equations (1) and (4) to (6) as:

$$IL_T = \lfloor \frac{T}{CI} \rfloor \cdot cf \cdot \sum_{c \in C} P_c \cdot d_c \cdot (IR_T - n_c^{exec})$$
(8)

The total external loss, i.e.,  $EL_T$ , is the sum of external loss per crash of each component.

$$EL_T = \sum_{c \in C} E[C_c] \cdot EL_c \tag{9}$$

which can be rewritten using Equations (4) to (6) as:

$$EL_T = \lfloor \frac{T}{CI} \rfloor \cdot cf \cdot \sum_{c \in C} P_c \cdot d_c \tag{10}$$

**Total Number of Crashes**  $C_T$  is the sum of the expected number of crashes of each component.

$$C_T = \sum_{c \in C} E[C_c] \tag{11}$$

which we can rewrite based on Equations (5) and (6) as:

$$C_T = \lfloor \frac{T}{CI} \rfloor \cdot \sum_{c \in C} P_c \tag{12}$$

# 5 EMPIRICAL VALIDATION OF THE REQUEST LOSS MODEL

In this section we describe an experiment which we designed to empirically validate the accuracy of our request loss model model. Moreover, we provide applicationspecific model formulae regarding our experimental setup. Finally, we present our results.

#### 5.1 Experimental Planning

**Goals** We aim to empirically validate our model's accuracy with regard to the number of crashes as well as the total internal and external loss represented by Equations (7) to (10). Based on our experiences from studies of microservice-based architectures and the related literature in our prior work (see [2], [3]), we decided on a number of experimental cases which are explained below. Then we realized these architectures using a prototypical implementation, instantiated and ran them in a cloud infrastructure, measured the empirical results, and compared the results with our model. The experimental setup is based on our prior work [2], [3].

Technical Details We used a private cloud with three physical nodes, each having two identical CPUs. Two cloud nodes hosted the Intel® Xeon® E5-2680 v4 @ 2.40 GHz<sup>1</sup> and the other one hosted the same processor family but version v3 @ 2.50 GHz. The v4 and v3 versions had 14 and 12 cores respectively and two physical threads per core (56 and 48 threads in total). On top of the cloud nodes, we installed Virtual Machines (VMs), each of which used the VMware<sup>2</sup> ESXi version 6.7.0 u2 hypervisor, had eight CPU cores, 60 GB system memory, and ran Ubuntu Server 18.04.01 LTS<sup>3</sup>. Docker<sup>4</sup> containerization was used to run the services which were implemented in Node.js<sup>5</sup>. We utilized five desktop computers to generate load, each hosting an Intel®Core™i3-2120T CPU @ 2.60 GHz with two cores and two physical threads per core. All desktop computers had 8 GB of system memory and ran Ubuntu 18.10. They generated load using Apache JMeter<sup>6</sup> which sent Hypertext Transfer Protocol (HTTP) version  $1.1^7$  requests to the cloud nodes.

Architecture Configurations Any application that has a request flow can be modeled using our proposed metamodel. We used a few sample architecture configurations to calculate the accuracy of our model discussed later. These configurations followed the convention for the request flow shown by the example model in Figure 2. That is, all clients send external requests (ERs), to the API gateway, then per each ER, internal requests (IRs) were sent one-by-one from routers to services and vice versa. Also for the sake of simplicity, we labeled the services and the routers incrementally from 1, and made the IRs go through all of them linearly.

As in the example model, we utilized one virtual machine exclusively, with only one Docker container inside of it, to run the API gateway. Then we distributed the services, each on a separate container, among three VMs. The distribution of the services was so that all virtual machines had the same number of services (with a maximum difference of one service). However, the placement of routers on hosts were different from that of the example model. For CE, we placed the central entity service in a Docker container exclusively on one VM. For DR, we used three dynamic routers which followed the same convention as CE, i.e., three separate exclusive VMs each with only one container running the routers. Finally, for SA, we placed each sidecar in a separate container on the same VM, on which its directly linked service resides.

**Experimental Cases** According to Equation (8), the total internal loss  $(IL_T)$  is influenced by a number of factors: the incoming call frequency (cf), number of services  $(n_{serv})$ , downtime of components  $(d_c)$ , system run time (T), crash interval (CI) and crash probability of components  $(P_c)$ .

We chose different levels for cf and  $n_{serv}$  to study their effects on  $IL_T$ . We selected cf based on a study of related works as 10, 25, 50, and 100 Hr/s. In many related studies (see, e.g., [10], [39]), 100 Hr/s (or even lower numbers) are chosen; as a result, we chose this number as our highest bound and selected different portions of it to study its effects. As for  $n_s$ , based on our experience and a survey on existing cloud applications in the literature and industry [2], [3], the number of services which are directly dependent on each other in a call sequence is usually rather low; we chose 3, 5, and 10 as values for the number of services ( $n_{serv}$ ).

We simulated a node crash by separately generating a random number for each cloud component, i.e., routers and services. If the generated random number for a component was below its crash probability, we stopped the component's Docker container and started it again after a time interval d = 3 seconds. We chose T = 10 minutes, during which we checked for a crash for all components simultaneously every CI = 15 seconds resulting in  $n_{crash} = 40$  based on Equation (5). Each component had a uniform crash probability of 0.5% each time we checked for a crash probability is much higher than what is observed for real-life cloud applications: akin to the related works we chose a relatively high crash probability in order to have a high enough likelihood to observe a few crashes during T.

$$P_c = 0.5\% \quad \forall \ c \in C \tag{13}$$

Note that it is a common assumption to have a uniform crash probability in experiments like ours (see, e.g., [29], [30]) to increase the control over the experiment's dependent variables. However, in real-world applications, different components may have different failure rates which need to be considered. Our model in the general form considers any failure profile for components (see Equation (8)).

<sup>&</sup>lt;sup>1</sup>https://www.intel.com/content/www/us/en/homepage.html

<sup>&</sup>lt;sup>2</sup>https://docs.vmware.com

<sup>&</sup>lt;sup>3</sup>https://www.ubuntu.com

<sup>&</sup>lt;sup>4</sup>https://www.docker.com

<sup>&</sup>lt;sup>5</sup>https://nodejs.org/en/

<sup>&</sup>lt;sup>6</sup>https://jmeter.apache.org

<sup>&</sup>lt;sup>7</sup>https://tools.ietf.org/html/rfc7230

1

8

**Specific Model Formulae** As explained before, in Equation (1),  $IR_T$  and  $n_c^{exec}$  need to be parameterized based on the application. Since in our example configurations each service receives an IR, processes it and sends it back either to a router or the API gateway, we can calculate  $IR_T$  based on the number of services as:

$$IR_T = 2n_{serv} + 1 \tag{14}$$

We use two different concepts for the crash of a router and a service in the metamodel (see Figure 3b) because the number of executed requests ( $n_c^{exec}$ ) is different in each case. With a service crash, all internal requests (IRs) up until the last router will be executed. Let  $s_{crashed}$  be the label number of the crashed service, for our architecture configurations:

$$n_s^{exec} = 2s_{crashed} - 1 \tag{15}$$

Using Equation (8), the internal loss for all services  $(IL_S)$  is:

$$IL_S = 0.6 \cdot cf \cdot n_{serv}(n_{serv} + 1) \tag{16}$$

In case of a router crash, to calculate the number of executed requests, we need to know the allocation of routers (A) which is a set indicating the number of directly linked services of each router, e.g., the allocation of routers in the example model presented in Figure 2 is:

$$A = \{2, 2, 1\} \quad and \quad A_0 = 0 \tag{17}$$

which means there are two services allocated to router R1 and R2 and one service allocated to router R3. Let  $r_{crashed}$  be the label number of the crashed router, then for our architecture configurations we have:

$$n_r^{exec} = 2 \sum_{r=1}^{r_{crashed}} A_{r-1}$$
 (18)

which means, to find the number of executed requests before the crash of router r, we sum over the allocated services of all routers up until the crashed router and multiply it by two since there are an incoming and an outgoing request from a service to a router (see Figure 2).

In case of CE in our experiment, all  $n_{serv}$  services are connected to the one router, i.e., the central entity service:

$$A = \{n_{serv}\} \quad and \quad A_0 = 0 \tag{19}$$

Then we can rewrite Equation (8) for all routers  $(IL_R)$  as:

$$IL_R = 0.6 \cdot cf \cdot (2n_{serv} + 1) \tag{20}$$

We can calculate  $IL_T$  for CE using Equations (16) and (20):

$$IL_T = IL_R + IL_S \tag{21}$$

$$IL_T = 0.6 \cdot cf \cdot [(n_{serv})^2 + 3n_{serv} + 1]$$
 (22)

In case of DR in our experiment, all  $n_{serv}$  services are equally distributed (with a maximum difference of one service) on the three dynamic routers:

$$A = \{\frac{n_{serv}}{3}, \frac{n_{serv}}{3}, \frac{n_{serv}}{3} \pm 1\} \text{ and } A_0 = 0$$
 (23)

Then for DR using Equations (16) and (21) we have:

$$IL_R = 0.6 \cdot cf \cdot (4n_{serv} + 3) \tag{24}$$

$$IL_T = 0.6 \cdot cf \cdot [(n_{serv})^2 + 5n_{serv} + 3]$$
(25)

In case of SA in our experiment, each service is connected to one router, i.e., a sidecar. Therefore:

$$A = \{1, 1, ..., 1\} \quad and \quad A_0 = 0 \tag{26}$$

in which A has the length of  $n_{serv}$ . Then for SA we have:

$$TL_R = 0.6 \cdot cf \cdot ((n_{serv})^2 + 2n_{serv}) \tag{27}$$

$$IL_T = 0.6 \cdot cf \cdot [2(n_{serv})^2 + 3n_{serv}] \tag{28}$$

**Data Set Preparation** For each experimental case we instantiated the architectures and ran the experiment exactly ten minutes (excluding setup time), during which we checked for crashes and logged the output so we could later process the logs and calculate the number of external loss precisely. As outlined above we studied three architectures, three levels of  $n_{serv}$  and four levels of cf resulting in a total of 36 experimental cases; therefore, a single run of our experiment took exactly six hours ( $36 \times 10$  minutes) of runtime. Since our model revolves around expected values in a Bernoulli process, we repeated this process 200 times (1200 hours), and report the arithmetic mean of the results.

**Methodological Principles of Reproducibility** We followed the eight principles of reproducibility introduced in [27]. *Repeated experiments:* see this section. *Workload and configuration coverage:* we covered 36 experimental cases, and analytically modeled the probabilistic behavior of component crash in Section 4. *Experimental setup description:* see Section 5.1. *Open access artifact:* the data of this study is published as an open access data set for supporting replicability<sup>8</sup>. *Probabilistic result description of measured performance:* see Section 5.2. *Statistical evaluation:* see Section 6. *Measurement units:* we reported all units. *Cost:* we did not use a public cloud setting; see Section 5.1 for container configurations.

#### 5.2 Experimental Results

**Description** Based on Equation (8),  $IL_T$  is a model element that incorporates crashes of all components. Moreover, it includes all model views, e.g., architecture configurations, expected average downtime, etc; therefore, we conduct our analysis mainly based on  $IL_T$ . Table 2 presents our experimental results;  $\sigma(IL_T)$  is the standard deviation of  $IL_T$  in 200 runs. We can see that when we keep  $n_{serv}$  constant, increasing cf results in a rise of  $EL_T$  (Equation (10)) in all cases, which leads to a higher value of  $IL_T$  (Equation (8)).

Since in our experiment, we instantiated the DR architecture with three dynamic routers, it is interesting to consider the experimental case of  $n_{serv} = 3$ . Here, SA and DR have the same number of components, i.e., routers and services. Note that SA uses a sidecar per each service; as a result, with  $n_{serv} = 3$ , we will also have three sidecars. The difference between the two architectures in this experimental case is that in DR dynamic routers are placed on a different VM than their directly linked services, but in SA sidecars are placed on the same VM on which their corresponding services reside. For this reason, it can be observed that the reported values for SA and DR closely resemble each other when we different values of cf but keep the number of services ( $n_{serv}$ ) constant at three. Considering the cases with

<sup>8</sup>https://ieee-dataport.org/documents/amiri-tsc-2021 doi:10.21227/mahp-mw44 This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3098178

| Arch. | $n_{serv}$                            | cf  | $C_{T}$ | $EL_T$        | $IL_T$    |   | $C_T$ | $EL_T$   | $IL_T$    |   | $\sigma(IL_T)$ |
|-------|---------------------------------------|-----|---------|---------------|-----------|---|-------|----------|-----------|---|----------------|
|       |                                       |     |         | Model Experim |           |   |       |          |           |   |                |
|       |                                       | 10  | 0.80    | 0 24.000      | 114.000   | ] | 0.760 | 23.395   | 98.960    |   | 118.552        |
|       | 2                                     | 25  | 0.80    | 0 60.000      | 285.000   | 1 | 0.620 | 47.435   | 228.975   | 1 | 292.389        |
|       | 3   CE 5   10   3   DR 5   10   3   3 | 50  | 0.80    | 0 120.000     | 570.000   | 1 | 0.705 | 106.370  | 480.235   | 1 | 608.635        |
|       |                                       | 100 | 0.80    | 0 240.000     | 1140.000  | 1 | 0.725 | 218.130  | 1045.000  | 1 | 1216.765       |
|       |                                       | 10  | 1.20    | 0 36.000      | 246.000   | 1 | 1.165 | 36.405   | 236.575   | 1 | 236.536        |
| CE    | -                                     | 25  | 1.20    | 0 90.000      | 615.000   | 1 | 1.110 | 85.400   | 608.040   | 1 | 574.267        |
| CE    | 5                                     | 50  | 1.20    | 0 180.000     | 1230.000  | 1 | 1.115 | 172.085  | 1155.550  | 1 | 1173.295       |
|       |                                       | 100 | 1.20    | 0 360.000     | 2460.000  | 1 | 1.040 | 317.585  | 2223.655  | İ | 2101.272       |
|       |                                       | 10  | 2.20    | 0 66.000      | 786.000   | 1 | 1.920 | 62.000   | 720.190   | 1 | 616.778        |
|       | 10                                    | 25  | 2.20    | 0 165.000     | 1965.000  | 1 | 2.125 | 171.290  | 2063.305  | 1 | 1711.931       |
|       | 10                                    | 50  | 2.20    | 0 330.000     | 3930.000  | 1 | 2.160 | 344.765  | 4223.665  | 1 | 3458.119       |
|       |                                       | 100 | 2.20    | 0 660.000     | 7860.000  | 1 | 1.960 | 590.665  | 6853.500  | 1 | 6567.047       |
|       |                                       | 10  | 1.20    | 0 36.000      | 162.000   | 1 | 1.075 | 32.505   | 153.045   | 1 | 175.952        |
|       |                                       | 25  | 1.20    | 0 90.000      | 405.000   | 1 | 1.225 | 92.745   | 452.160   |   | 466.814        |
|       | 3                                     | 50  | 1.20    | 0 180.000     | 810.000   | 1 | 1.225 | 182.595  | 882.695   |   | 916.540        |
|       |                                       | 100 | 1.20    | 0 360.000     | 1620.000  | 1 | 1.130 | 328.925  | 1477.405  |   | 1470.332       |
|       |                                       | 10  | 1.60    | 0 48.000      | 318.000   | 1 | 1.670 | 51.995   | 319.210   |   | 301.989        |
| DD    | 5                                     | 25  | 1.60    | 0 120.000     | 795.000   | 1 | 1.760 | 135.105  | 816.895   |   | 686.709        |
| DK    |                                       | 50  | 1.60    | 0 240.000     | 1590.000  | 1 | 1.790 | 270.540  | 1597.535  | 1 | 1324.199       |
|       |                                       | 100 | 1.60    | 0 480.000     | 3180.000  | 1 | 1.635 | 490.990  | 2909.115  | 1 | 2353.168       |
|       |                                       | 10  | 2.60    | 0 78.000      | 918.000   | 1 | 2.525 | 82.255   | 921.610   | 1 | 495.543        |
|       | 10                                    | 25  | 2.60    | 0 195.000     | 2295.000  | 1 | 2.355 | 187.715  | 2181.590  | 1 | 1275.035       |
|       | 10                                    | 50  | 2.60    | 0 390.000     | 4590.000  | 1 | 2.205 | 345.350  | 4043.070  | 1 | 2508.002       |
|       |                                       | 100 | 2.60    | 0 780.000     | 9180.000  | 1 | 2.375 | 741.870  | 8544.700  | 1 | 5022.780       |
|       |                                       | 10  | 1.20    | 0 36.000      | 162.000   | 1 | 1.140 | 34.910   | 170.265   | İ | 186.911        |
|       | 2                                     | 25  | 1.20    | 0 90.000      | 405.000   | 1 | 1.230 | 93.265   | 435.685   | İ | 452.190        |
|       | 3                                     | 50  | 1.20    | 0 180.000     | 810.000   | 1 | 1.215 | 181.305  | 883.510   | İ | 911.088        |
|       |                                       | 100 | 1.20    | 0 360.000     | 1620.000  | 1 | 1.185 | 345.950  | 1634.850  | İ | 1844.829       |
|       |                                       | 10  | 2.00    | 0 60.000      | 390.000   | 1 | 1.795 | 55.745   | 350.055   | İ | 244.898        |
| C A   | -                                     | 25  | 2.00    | 0 150.000     | 975.000   | 1 | 1.795 | 138.910  | 891.525   | İ | 647.402        |
| ЪA    | 5                                     | 50  | 2.00    | 0 300.000     | 1950.000  | 1 | 1.715 | 261.740  | 1716.095  | İ | 1284.733       |
|       |                                       | 100 | 2.00    | 0 600.000     | 3900.000  | 1 | 1.790 | 528.420  | 3385.240  | 1 | 2633.592       |
|       |                                       | 10  | 4.00    | 0 120.000     | 1380.000  | 1 | 3.900 | 127.715  | 1443.040  | 1 | 773.632        |
|       | 10                                    | 25  | 4.00    | 0 300.000     | 3450.000  | 1 | 3.745 | 306.745  | 3477.305  | 1 | 1979.270       |
|       | 10                                    | 50  | 4.00    | 0 600.000     | 6900.000  | 1 | 3.860 | 617.375  | 7140.655  | 1 | 4262.114       |
|       |                                       | 100 | 4.00    | 0 1200.000    | 13800.000 | 1 | 3.870 | 1232.770 | 14072.910 | 1 | 8287.361       |

TABLE 2: Results of the Model and the Experiment

five or ten services, we almost always observe higher  $IL_T$ when we change the architecture from a CE to a DR or from a DR to an SA but keep the same configurations, that is, if we keep  $n_{serv}$  and cf constant. It is because in our experiment, CE has only one router (the central entity), DR has three (dynamic routers), and SA has  $n_{serv}$  (sidecars). Consequently, the number of crashes corresponding to control logic components goes up from CE to DR and then to SA. This increases the total number of crashes  $C_T$  (predicted by Equation (12)), which results in losing more requests.

**Evaluation of the Prediction Error of Reliability** We use the predicted results of our model, presented in Table 2, to measure the accuracy of our analytical model compared to the empirical data from our experiment. The prediction error is measured by calculating the Mean Absolute Percentage Error (MAPE) [40]. Let  $model_i$  and  $empirical_i$  be the result of the model, and the measured empirical data for experimental case i, respectively:

$$MAPE = \frac{100\%}{n_{case}} \cdot \sum_{i=1}^{n_{case}} \left| \frac{model_i - empirical_i}{empirical_i} \right|$$
(29)

in which  $n_{case}$  is the number of cases considered, which is 36 in this experiment. By definition the expected value is the mean of a large number of repetitions [13]. As previously mentioned, a single run of our experiment takes six hours of runtime (plus more than three hours of experimental setup and post-processing of the results); in total we were able to run the experiment 200 times (1200 hours of run-time).

Table 3 reports prediction error measurements of our model for different numbers of runs. A low number of repeats is expected to increase the error since the effects of outliers on the arithmetic mean of the data is considerable. As the table shows, with a higher number of experimental runs the prediction error is reduced, which indicates a converging error rate. After 200 runs the prediction error of 7.8% regarding  $IL_T$  is already low enough to use our model for predictions during architecture decision making.

TABLE 3: Prediction Error of the Reliability Model for Different Number of Runs of the Experiment

| Num. of | $C_T$  | $EL_T$ | $IL_T$ |
|---------|--------|--------|--------|
| Kull5   | (70)   | (70)   | (70)   |
| 50      | 12.919 | 12.307 | 14.072 |
| 100     | 9.416  | 8.492  | 9.508  |
| 150     | 8.326  | 7.426  | 8.695  |
| 200     | 8.081  | 7.097  | 7.776  |

### 6 STATISTICAL MODEL OF PERFORMANCE

Here we describe performance models from the data of our experiment. In the next section, the reliability and performance models are used to perform a trade-off analysis.

**The Round-Trip Time** In order to compare and measure the performance of the architectures, we recorded the Round-Trip Time (RTT) of requests in our experiment. The

RTT is defined as the difference in time from the moment a request is received by the API gateway until it is routed through all cloud services involved in the processing of the request. JMeter generates an identification (ID) number for each HTTP request. Whenever the API gateway receives a request, it starts a timer with an attached ID. The request is routed through cloud services and returns to the gateway when processing is finished. Next, the gateway reads the request ID and stops the corresponding timer. The RTT is the time calculated by the timer.

**Statistical Methods** Multiple regression analysis is a technique used to create prediction models that estimate the value of a dependent variable based on values of two or more independent variables [34]. The following hypotheses were formulated for this experiment:

 $H_0$ : There is no significant prediction accuracy of the RoundTrip Time (*RTT*) of requests by the number of services ( $n_{serv}$ ) and call frequencies (cf).

 $H_A$ : There is a significant prediction accuracy of the RoundTrip Time (*RTT*) of requests by the number of services ( $n_{serv}$ ) and call frequencies (cf).

We created two prediction models, i.e., linear and nonlinear models, per each architecture configuration to estimate the RTT, i.e., the dependent variable, based on call frequency and number of services, i.e., the independent variables.

**Prediction Models** Table 4 presents our prediction models for each architecture which we created based on our multiple regression analysis. All of our models result in a very low *p*-value (high statistical significance of the predicted results) which allows us to reject the null hypothesis and accept the alternative hypothesis indicating that the number of services and the call frequency affect the RTT.

$$LinearReg. = SC \cdot n_{serv} + FC \cdot cf + Int \quad (30)$$
$$NonlinearReg. = SC \cdot n_{serv} + FC \cdot cf + IC \cdot n_{serv} \cdot cf + Int \quad (31)$$

The interaction term in Equation (31), i.e.,  $IC \cdot n_{serv} \cdot cf$ , tells us that the effect of the number of services on the predicted RTT is not constant; it changes with different values of call frequency (and vice versa). Note that regression models are calculated from all 200 runs of our experiment.

TABLE 4: Prediction Models of Performance

| Arch. | Service<br>Coefficient<br>(SC) | Frequency<br>Coefficient<br>(FC) | Interaction<br>Coefficient<br>(IC) | Intercept<br>(Int) | F-statistic:<br>p-value |
|-------|--------------------------------|----------------------------------|------------------------------------|--------------------|-------------------------|
| CE    | 3.384e+00                      | -3.042e-01                       | 5.528e-02                          | 1.608e+01          | <2.2e-16                |
| CE    | 7.343e+00                      | 0.0265e+00                       | -                                  | -7.599e+00         | <2.2e-16                |
| קת    | 4.881e+00                      | -1.254e-01                       | -1.509e-05                         | 1.287e+01          | <2.2e-16                |
| DK    | 4.870e+00                      | -0.125e+00                       | -                                  | 12.872e+00         | <2.2e-16                |
| S۸    | 3.360e+00                      | -0.034e+00                       | -0.011e+00                         | 5.708e+00          | <2.2e-16                |
| БА    | 2.552e+00                      | -0.102e+00                       | -                                  | 10.540e+00         | <2.2e-16                |

TABLE 5: Prediction Error of the Performance Models

| Regression | Empirical | CE     | DR    | SA     |
|------------|-----------|--------|-------|--------|
|            | Data      | (%)    | (%)   | (%)    |
| Linear     | Mean      | 21.527 | 8.966 | 10.343 |
|            | Median    | 25.483 | 9.902 | 11.119 |
| Nonlinear  | Mean      | 13.654 | 8.959 | 10.158 |
|            | Median    | 19.270 | 9.915 | 8.958  |

**Evaluation of the Prediction Error of Performance** We compare the results of our prediction models to another run of our experiment (not used in the training set). Table 5 presents the prediction error of the regression models. The nonlinear regression compared to the arithmetic mean of the empirical data results in a lower prediction error.

Table 6 compares the empirical data with the predicted results. We report the first quartile  $(Q_1)$ , the median, the third quartile  $(Q_3)$ , 95th percentile, the mean and the standard deviation of the recorded round-trip times ( $\sigma(RTT)$ ). We can observe that the predictions in case of DR and SA lie within the interquartile range of the empirical data in most cases; exceptions are the following cases with call frequency of 10 Hr/s: DR with five and ten services, and SA with  $n_{serv} = 10$ . In these cases, the nonlinear prediction is slightly below the first quartile of the empirical data. Moreover, the predicted RTT in case of DR with  $n_{serv} = 10$  and cf = 50 Hr/s is above  $Q_3$ . With CE the nonlinear predicted results are closer to the arithmetic mean of the data than to the median, as also confirmed in Table 5 with the lower prediction error of 13.7% compared to 19.3%. Note the 30% target prediction accuracy in the cloud performance [23].

# 7 TRADE-OFF ANALYSIS

So far we described two models for the qualities reliability and performance which we created for each architecture. In this section we analyze the trade-offs of the architectures with regard to the two qualities in different combinations of configurations, i.e.,  $1 \le n_{serv} \le 10$  and  $1 \le cf \le 100$ .

**Reliability Comparison** We use the reliability models provided in Section 5 "Specific Model Formulae." Let  $R_{arch}$  be the analytical reliability model for each architecture, then:

$$R_{CE} = 0.6 \cdot cf \cdot [(n_{serv})^2 + 3n_{serv} + 1]$$
(32)

$$R_{DR} = 0.6 \cdot cf \cdot [(n_{serv})^2 + 5n_{serv} + 3]$$
(33)

$$R_{SA} = 0.6 \cdot cf \cdot [2(n_{serv})^2 + 3n_{serv}] \tag{34}$$

which is plotted in Figure 4. CE results in an equal or higher reliability than SA and DR but there are some cases specially in the lower ranges of  $n_{serv}$  where SA gives a higher reliability than DR. We compare the architectures.



Fig. 4: Reliability Models

|       |       |        |        | Median  |         | 95th       | Mean    |               | Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nonlinear  |
|-------|-------|--------|--------|---------|---------|------------|---------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Arch. | nsern | cf     | $Q_1$  | RTT     | $Q_3$   | Percentile | RTT     | $\sigma(RTT)$ | Regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Regression |
|       |       | (Hr/s) | (ms)   | (ms)    | (ms)    | (ms)       | (ms)    |               | (ms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ms)       |
|       |       | 10     | 22.173 | 24.277  | 27.504  | 36.627     | 26.0169 | 11.899        | 14.695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.848     |
|       | 2     | 25     | 19.228 | 21.327  | 26.773  | 39.951     | 24.423  | 9.466         | 15.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.773     |
|       | 3     | 50     | 16.618 | 18.339  | 23.367  | 35.350     | 21.333  | 9.863         | 15.756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.314     |
|       |       | 100    | 13.101 | 14.597  | 17.983  | 27.975     | 16.938  | 9.843         | 17.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.396     |
|       |       | 10     | 36.490 | 40.021  | 44.845  | 55.381     | 42.138  | 15.835        | 29.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.722     |
| CE    | 5     | 25     | 27.564 | 29.862  | 33.428  | 44.942     | 31.987  | 12.791        | 29.780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.305     |
| CL    | 5     | 50     | 24.185 | 26.618  | 30.752  | 42.250     | 28.948  | 11.276        | 30.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.610     |
|       |       | 100    | 18.078 | 19.794  | 24.810  | 35.657     | 23.966  | 24.713        | 31.769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.220     |
| CE    |       | 10     | 64.488 | 69.357  | 74.901  | 88.528     | 72.344  | 30.946        | 66.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.406     |
|       | 10    | 25     | 47.363 | 51.796  | 58.966  | 72.632     | 55.832  | 33.015        | 66.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56.135     |
|       | 10    | 50     | 39.035 | 43.826  | 50.811  | 63.718     | 48.306  | 37.599        | 67.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62.350     |
|       |       | 100    | 48.634 | 58.066  | 70.423  | 95.812     | 74.398  | 139.257       | 68.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.780     |
|       | 3     | 10     | 23.371 | 26.374  | 30.955  | 40.017     | 28.322  | 11.521        | 26.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.259     |
|       |       | 25     | 20.845 | 23.152  | 27.744  | 38.264     | 25.477  | 9.504         | 24.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.377     |
|       |       | 50     | 18.053 | 19.601  | 22.588  | 35.026     | 21.901  | 9.295         | 21.237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.241     |
| DR    |       | 100    | 13.536 | 14.817  | 18.005  | 28.168     | 17.192  | 10.349        | 14.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.968     |
|       | 5     | 10     | 37.844 | 42.893  | 49.4277 | 62.270     | 45.422  | 18.780        | 36.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.020     |
|       |       | 25     | 30.442 | 34.011  | 39.034  | 51.303     | 36.345  | 14.731        | 34.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.138     |
|       |       | 50     | 23.863 | 26.637  | 31.799  | 43.272     | 29.350  | 15.122        | 30.996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.001     |
|       |       | 100    | 18.242 | 20.235  | 25.503  | 36.201     | 23.584  | 16.343        | 24.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.727     |
|       |       | 10     | 70.034 | 76.020  | 83.473  | 97.357     | 79.636  | 36.074        | 60.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.424     |
|       | 10    | 25     | 50.677 | 55.427  | 60.877  | 75.861     | 58.545  | 29.661        | 58.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.541     |
|       | 10    | 50     | 41.436 | 46.638  | 52.788  | 65.423     | 51.010  | 47.884        | 55.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.402     |
|       |       | 100    | 40.997 | 47.254  | 55.167  | 70.112     | 54.562  | 75.960        | Regression<br>(ms)   Regression<br>(ms)     14.695   24.848     15.093   22.773     15.756   19.314     17.083   12.396     29.381   32.722     29.780   32.305     30.442   31.610     31.769   30.220     66.096   52.406     66.494   56.135     67.158   62.350     68.484   74.780     26.257   26.257     24.374   24.377     21.237   21.241     14.962   14.968     36.016   36.020     34.133   34.138     30.996   31.001     24.721   24.727     60.414   60.424     58.532   58.541     55.394   55.402     49.119   49.125     17.176   15.106     15.648   14.083     13.102   12.377     8.010   8.965     22.279   21.601     < | 49.125     |
|       |       | 10     | 13.500 | 15.938  | 20.042  | 26.399     | 17.427  | 6.483         | 17.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.106     |
|       | 3     | 25     | 11.747 | 13.381  | 16.782  | 22.975     | 14.881  | 5.155         | 15.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.083     |
|       | 0     | 50     | 10.449 | 11.875  | 16.258  | 25.607     | 14.188  | 6.349         | 13.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.377     |
|       |       | 100    | 6.923  | 7.898   | 9.975   | 18.061     | 9.456   | 5.196         | 8.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.965      |
|       |       | 10     | 21.554 | 25.185  | 29.860  | 37.137     | 26.561  | 10.007        | 22.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.601     |
| SA    | 5     | 25     | 17.330 | 20.227  | 24.383  | 33.295     | 21.881  | 7.671         | 20.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.239     |
| 0.1   |       | 50     | 13.573 | 15.174  | 18.158  | 27.103     | 16.831  | 6.913         | 18.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.968     |
|       |       | 100    | 11.456 | 13.896  | 17.857  | 27.665     | 15.726  | 7.908         | 13.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.427     |
|       |       | 10     | 44.875 | 48.860  | 53.678  | 63.075     | 50.705  | 18.464        | 35.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.838     |
|       | 10    | 25     | 32.633 | 36.5545 | 41.214  | 53.287     | 38.577  | 16.120        | 33.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.628     |
|       |       | 50     | 26.433 | 29.718  | 34.265  | 45.468     | 32.117  | 18.422        | 30.963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.946     |
|       |       | 100    | 19.509 | 22.221  | 26.482  | 37.321     | 25.646  | 27.174        | 25.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.582     |

TABLE 6: Comparison of the Prediction Results of the Performance Models and the Empirical Data

**Reliability Trade-Off Between CE and DR** Trying to find the intersecting line where  $R_{CE} = R_{DR}$ , we find that there is no combination of cf and  $n_{serv}$ , where the two curves collide; therefore, CE always results in a higher reliability than DR in our focused context.

**Reliability Trade-Off Between CE and SA** We find the intersecting line where  $P_{CE} = P_{SA}$  in our focused context is  $n_{serv} = 1$ . That is when we have only one service, since we use the same implementation for all architectures, SA and CE become the same application. Therefore, they result in the same value of reliability. In any other case, CE results in a higher reliability than SA.

**Reliability Trade-Off Between DR and SA** We find the intersecting line where  $P_{DR} = P_{SA}$  in our focused context is  $n_{serv} = 3$ . That is when there are three services, DR and SA are the same application in our implementation since they both have the same number of routers; therefore, they result in the same value of reliability. Note that in our experiment we instantiated DR with three and SA with  $n_{serv}$  routers. When  $n_{serv} < 3$ , SA has fewer routers than DR; consequently, SA results in a lower number of request loss, i.e., higher reliability, than DR. When  $n_{serv} > 3$ , DR has fewer routers and results in a higher reliability than SA.

Summary of the Reliability Trade-Offs When  $n_{serv} \leq 3$  we have  $R_{CE} \leq R_{SA} \leq R_{DR}$  and when  $n_{serv} > 3$  we have  $R_{CE} < R_{DR} < R_{SA}$  for all studied call frequencies.

**Performance Comparison** For the performance models we used the nonlinear regression, i.e., Equation (31), in which the coefficients are taken from Table 4. Let  $P_{arch}$  be the performance prediction model for each architecture:

$$\begin{split} P_{CE} &= 3.384 \cdot n_{serv} - 0.3042 \cdot cf + 16.08 + \\ &\quad 0.05528 \cdot n_{serv} \cdot cf \quad \text{(35)} \\ P_{DR} &= 4.881 \cdot n_{serv} - 0.1254 \cdot cf + 12.87 - \\ &\quad 0.00001509 \cdot n_{serv} \cdot cf \quad \text{(36)} \end{split}$$

$$P_{SA} = 3.360 \cdot n_{serv} - 0.0340 \cdot cf + 5.708 - 0.011 \cdot n_{corr} \cdot cf \quad (37)$$

which are plotted in Figure 6. In most cases, SA results in a lower RTT than the other architectures. However, there are some cases that CE outperforms DR and SA. We compare the architectures to find the exact range of  $n_{serv}$  and cf, in which each architecture performs the highest.

**Performance Trade-Off Between CE and DR** To characterize the trade-off more precisely, we have to study the intersecting line where  $P_{CE} = P_{DR}$ , i.e., the line where the curves of the architectures collide:

$$cf = \frac{1.497 \cdot n_{serv} - 3.21}{0.0552951 \cdot n_{serv} - 0.1788}$$
(38)

which is plotted in Figure 5a. Note that the blue dashed line, i.e.,  $n_{serv} = 3$ , and the red dashed line, i.e.,  $n_{serv} = 4$ ,



Fig. 5: Plot of All Intersecting Lines



Fig. 6: Performance Models

indicate the extrema of the intersecting line; therefore, CE outperforms DR in the area above the intersecting line when  $n_{serv} \leq 3$ , and below the intersecting line when  $n_{serv} > 4$ .

Table 7 summarizes the regions of cf and  $n_{serv}$ , in which CE outperforms DR. It can be confirmed by the results of our model for the experimental cases reported in Table 6, in which under nonlinear regression, we can observe that in case of  $n_{serv} = 3$ , CE outperforms DR for all values of cf. However, when we have five or ten services, only in the lower range of incoming call frequency, i.e., 10 and 25, CE results in a lower performance value.

**Performance Trade-Off Between CE and SA** We find the intersecting line where  $P_{CE} = P_{SA}$  in our focused context:

$$cf = \frac{-0.024 \cdot n_{serv} - 10.372}{0.06628 \cdot n_{serv} - 0.2702}$$
(39)

plotted in Figure 5b. In our focused context, CE outperforms

SA only with the following conditions:

$$n_{serv} = 1 \quad and \quad cf \ge 50.98 \tag{40}$$

$$n_{serv} = 2 \quad and \quad cf \ge 75.71 \tag{41}$$

**Performance Trade-Off Between DR and SA** The intersecting line where  $P_{DR} = P_{SA}$  is plotted in Figure 5c:

$$cf = \frac{-1.521 \cdot n_{serv} - 7.162}{0.010985 \cdot n_{serv} - 0.091}$$
(42)

Summary of the Performance Trade-Offs In Table 8, lower  $P_{arch}$  means lower RTT, i.e., better performance.

TABLE 8: Comparison of the Performance of the Architectures

| $n_{serv}$ | cf (Hr/s)               | Performance                    |
|------------|-------------------------|--------------------------------|
|            | until 13.87             | $P_{SA} \le P_{DR} \le P_{CE}$ |
| 1          | between 13.87 and 50.98 | $P_{SA} \le P_{CE} \le P_{DR}$ |
|            | from 50.98              | $P_{CE} \le P_{SA} \le P_{DR}$ |
|            | until 3.17              | $P_{SA} \le P_{DR} \le P_{CE}$ |
| 2          | between 3.17 and 75.71  | $P_{SA} \le P_{CE} \le P_{DR}$ |
|            | from 75.71              | $P_{CE} \le P_{SA} \le P_{DR}$ |
| 3          | all                     | $P_{SA} \le P_{CE} \le P_{DR}$ |
| 4          | until 65.55             | $P_{SA} \le P_{CE} \le P_{DR}$ |
| -          | from 65.55              | $P_{SA} \le P_{DR} \le P_{CE}$ |
| F          | until 43.77             | $P_{SA} \le P_{CE} \le P_{DR}$ |
| 5          | from 43.77              | $P_{SA} \le P_{DR} \le P_{CE}$ |
| 6          | until 37.73             | $P_{SA} \le P_{CE} \le P_{DR}$ |
|            | from 37.73              | $P_{SA} \le P_{DR} \le P_{CE}$ |
| 7          | until 34.90             | $P_{SA} \le P_{CE} \le P_{DR}$ |
|            | from 34.90              | $P_{SA} \le P_{DR} \le P_{CE}$ |
| 8          | until 33.26             | $P_{SA} \le P_{CE} \le P_{DR}$ |
| 0          | from 33.26              | $P_{SA} \le P_{DR} \le P_{CE}$ |
| 0          | until 32.19             | $P_{SA} \le P_{CE} \le P_{DR}$ |
| 9          | from 32.19              | $P_{SA} \le P_{DR} \le P_{CE}$ |
| 10         | until 31.43             | $P_{SA} \le P_{CE} \le P_{DR}$ |
| 10         | from 31.43              | $P_{SA} \le P_{DR} \le P_{CE}$ |

TABLE 7: The Region Where CE outperforms DR

| $n_{serv}$ | 1            | 2           | 3           | 4            | 5            | 6            | 7            | 8            | 9            | 10           |
|------------|--------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| cf (Hr/s)  | $\geq 13.87$ | $\geq 3.17$ | $\geq 1.00$ | $\leq 65.55$ | $\leq 43.77$ | $\leq 37.73$ | $\leq 34.90$ | $\leq 33.26$ | $\leq 32.19$ | $\leq 31.43$ |

# 8 THREATS TO VALIDITY

**Construct Validity** In our study, we injected crashes to simulate real world crash behavior at a given probability. While this is a commonly taken approach (see Section 2), a threat remains that measuring internal and external loss based on these crashes might not measure reliability well. For example, system reliability is also influenced by cascading effects of crashes beyond a single call sequence [26] which are not covered in our experiment. More research, probably with real-world systems, is needed to exclude this threat.

Internal Validity We collected an extensive amount of data to validate our model. However, we did so in limited experiment time and with injected crashes, simulated by stopping Docker containers. We avoided factors such as other load on the machines where the experiment ran and much of the related literature takes a similar approach (see Section 2), but research observing real-world cloud-based systems with real crashes would be needed to confirm that there are no other factors influencing the measurements.

**External Validity** The results might not be generalizable beyond the given experimental cases of 10-100 requests per second and call sequences of length 3-10. However, this covers a wide variety of loads and call sequences in cloud-based applications. Moreover, in our experiments we considered a uniform crash probability for all components. This is a common assumption made in such experiments (see, e.g., [29], [30]) to increase the control over the experiment's dependent variables and thus the internal validity of the experiment. At the same time, this might decrease the external validity, if the crash profiles observed in a realworld application are substantially different (see [37] for the trade-off between the internal and external validity in empirical software engineering). To mitigate this threat, our model, in the general form, does not assume a uniform crash probability for all components.

**Conclusion Validity** As the statistical method to compare our model's predictions to the empirical data, we used the MAPE metric as it is widely used and offers good interpretability in our research context. To mitigate the threat that this statistical method might have issues, we double-checked three other error measures, which led to similar converging results. We reported MAPE; the other measurements are included in the online appendix.

#### **9** CONCLUSIONS AND FUTURE WORK

In this article, we investigated three representative service and cloud architecture patterns for dynamic routing regarding their impact and trade-offs on reliability and performance. Regarding **RQ1**, our study concludes that more decentralized routing results in losing a higher number of requests, i.e., lower reliability, in comparison to more centralized approaches; however, regarding **RQ2**, our results show that distributed settings indicate better performance, specially under high load, because of using more routers.

Regarding **RQ3**, we derived an analytical model for predicting request loss in the studied architectures and empirically validated this model using 36 representative experimental cases. Our results indicate that, with a higher number of experimental runs, the prediction error is constantly reduced, converging at a prediction error of 7.8%. Furthermore, we have created prediction models providing an estimation on the performance impact of the investigated architectures. The found models show high statistical significance; in addition, we cross-validated the estimated RTTs with measurements from an additional experiment run.

Regarding **RQ4**, we precisely calculated the range of the incoming call frequency and the number of services, where each architecture gives better results. With regard to system reliability, CE always results in a lower request loss; however, SA results in a better performance specially in higher number of services. DR can be seen as a middle ground specially in a higher number of services; this introduces an interesting future work focus in which we abstract all three architectures under DR with reconfigurable routers. Then we set out to find the optimal configuration under certain constraints, e.g., the cost of cloud deployment.

The major impact of our work is on architectural design decisions for dynamic routing in service- and cloudbased architectures. Prior to our work, for system reliability and performance trade-offs, architects had to rely on their experiences as no empirical evidence was available. To the best of our knowledge, our work is the first to provide such evidence. Our work's main contributions are models and an empirical study of widely used architectures, about which little was known before our study. Such empirical works enable building new algorithms and architectures which are based on a solid and well-founded understanding of the existing architectures. For instance, this enables exploring more sophisticated prediction models, such as machine learning-based approaches and evaluation theories of reliability, which are possible studies based on our research. To be successful, such works require careful empirical studies laying the foundation for understanding the existing state of the art and its limitations, providing ground truths, and offering data sets for further studies (such as the open access data set provided in our article<sup>8</sup>). For our future work, we plan to use the empirical data and model from this study to design a novel adaptive routing software architecture, which chooses among the architectural options dynamically.

#### ACKNOWLEDGMENT

This work was supported by FWF (Austrian Science Fund), project ADDCompliance: I 2885-N33; FFG (Austrian Research Promotion Agency), project DECO no. 864707; Baden-Württemberg Stiftung, project ORCAS.

# REFERENCES

- S. P. Ahuja and A. Patel. Enterprise service bus: A performance evaluation. *Communications and Network*, 3(03):133, 2011.
- [2] A. Amiri, C. Krieger, U. Zdun, and F. Leymann. Dynamic data routing decisions for compliant data handling in service- and cloud-based architectures: A performance analysis. In *IEEE International Conference on Services Computing (SCC)*, 2019.
- [3] A. Amiri, U. Zdun, G. Simhandl, and A. van Hoorn. Impact of service- and cloud-based dynamic routing architectures on system reliability. In *International Conference on Service Oriented Computing* (ICSOC), 2020.
- [4] R. Bankston and J. Guo. Performance of container network technologies in cloud environments. In 2018 IEEE International Conference on Electro/Information Technology (EIT). IEEE, 2018.
- [5] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and C. Rosenthal. Chaos engineering. *IEEE Software*, 33(3):35–41, 2016.

- [6] S. Becker, H. Koziolek, and R. Reussner. Model-based performance prediction with the palladio component model. In *Proceedings of* the 6th International Workshop on Software and Performance, WOSP '07, page 54–65, New York, NY, USA, 2007. ACM.
- [7] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner. Architecturebased reliability prediction with the palladio component model. *IEEE Transactions on Software Engineering*, 38(6):1319–1339, 2011.
- [8] D. A. Chappell. Enterprise service bus. O'Reilly, 2004.
- [9] R. C. Cheung. A user-oriented software reliability model. *IEEE transactions on Software Engineering*, pages 118–125, 1980.
- [10] D. J. Dean, H. Nguyen, P. Wang, and X. Gu. Perfcompass: Toward runtime performance anomaly fault localization for infrastructureas-a-service clouds. In 6th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14), 2014.
- [11] Envoy. Service mesh. https://www.learnenvoy.io/articles/servicemesh.html, 2019.
- [12] V. Grassi and S. Patella. Reliability prediction for service-oriented computing environments. *IEEE Internet Computing*, 10(3), 2006.
- [13] G. Grimmett and D. Welsh. Probability: An Introduction. Cambridge University Press, 1986.
- [14] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, S. Schulte, and J. Wettinger. Performance engineering for microservices: research challenges and directions. In *Proceedings* of the 8th ACM/SPEC on International Conference on Performance Engineering Companion, pages 223–226. ACM, 2017.
- [15] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda. Bungee: An elasticity benchmark for self-adaptive iaas cloud environments. In Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS '15, pages 46–56, Piscataway, NJ, USA, 2015. IEEE Press.
- [16] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, 2003.
- [17] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson. *Cloud Design Patterns*. Microsoft Press, 2014.
- [18] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. Microservices: The journey so far and challenges ahead. *IEEE Software*, 35(3):24–35, 2018.
- [19] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu. Efficiency analysis of provisioning microservices. In *Cloud Computing Technology and Science (CloudCom)*, 2016 IEEE International Conference on, pages 261–268. IEEE, 2016.
- [20] N. Kratzke. About microservices, containers and their underestimated impact on network performance. arXiv preprint arXiv:1710.04049, 2017.
- [21] G. Kumar, M. Kaushik, and R. Purohit. Reliability analysis of software with three types of errors and imperfect debugging using markov model. *International Journal of Computer Applications in Technology (IJCAT)*, 2018.
- [22] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Serverless computing: An investigation of factors influencing microservice performance. In *Cloud Engineering (IC2E), 2018 IEEE International Conference on*, pages 159–169. IEEE, 2018.
- [23] D. A. Menascé and V. A. Almeida. Capacity Planning for Web Services: Metrics, Models, and Methods. Prentice Hall PTR, 2001.
- [24] Microsoft. Sidecar pattern. https://docs.microsoft.com/en-us/ azure/architecture/patterns/sidecar, 2010.
- [25] R. Natella, D. Cotroneo, and H. S. Madeira. Assessing dependability with software fault injection: A survey. ACM Computing Surveys (CSUR), 48(3):44, 2016.
- [26] M. Nygard. *Release It!: Design and Deploy Production-Ready Software*. Pragmatic Bookshelf, 2007.
- [27] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski, A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tuma, and A. Iosup. Methodological principles for reproducible performance evaluation in cloud computing. In *IEEE Transactions on Software Engineering*. IEEE, 2019.
- [28] D. Petriu, C. Shousha, and A. Jalnapurkar. Architecture-based performance analysis applied to a telecommunication system. *IEEE Transactions on Software Engineering*, 26(11):1049–1065, 2000.
- [29] T. Pitakrat, D. Okanović, A. van Hoorn, and L. Grunske. Hora: Architecture-aware online failure prediction. *Journal of Systems and Software*, 137, 2017.
- [30] T. Pitakrat, D. Okanović, A. van Hoorn, and L. Grunske. An architecture-aware approach to hierarchical online failure prediction. In 12th International ACM SIGSOFT Conference on Quality of Software Architectures (QoSA), 2016.

- [31] P. Raj, A. Raman, and H. Subramanian. Architectural Patterns: Uncover essential patterns in the most indispensable realm. Packt Publishing, December 2017.
- [32] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Koziolek, M. Kramer, and K. Krogmann. *Modeling and Simulating Software Architectures: The Palladio Approach*. The MIT Press, 2016.
- [33] C. Richardson. Microservice architecture patterns and best practices. http://microservices.io/index.html, 2019.
- [34] D. L. Rubinfeld. Reference guide on multiple regression. Federal Judicial Center, 2nd edition, 2000.
- [35] V. S. Sharma and K. S. Trivedi. Architecture based analysis of performance, reliability and security of software systems. In *Proceedings of the 5th International Workshop on Software and Performance*, WOSP '05, page 217–227, New York, NY, USA, 2005. Association for Computing Machinery.
- [36] T. Shezi, E. Jembere, and M. Adigun. Performance evaluation of enterprise service buses towards support of service orchestration. In Proc. of International Conference on Computer Engineering and Network Security (ICCENS'2012), 2012.
- [37] J. Siegmund, N. Siegmund, and S. Apel. Views on internal and external validity in empirical software engineering. In 37th International Conference on Software Engineering (ICSE), 2015.
- [38] B. Spitznagel and D. Garlan. Architecture-based performance analysis. In Proc. the 1998 Conference on Software Engineering and Knowledge Engineering. Carnegie Mellon University, June 1998.
- [39] O. Sukwong, A. Sangpetch, and H. S. Kim. Sageshift: managing slas for highly consolidated cloud. In 2012 Proceedings IEEE INFOCOM, pages 208–216, 2012.
- [40] K. S. Trivedi and A. Bobbio. *Reliability and availability engineering: modeling, analysis, and applications*. Oxford University Press, 2017.
- [41] A. Van Hoorn, A. Aleti, T. F. Düllmann, and T. Pitakrat. Orcas: Efficient resilience benchmarking of microservice architectures. In 2018 IEEE International Symposium on Software Reliability Engineering Workshops, pages 146–147. IEEE, 2018.
- [42] K. Vandikas and V. Tsiatsis. Performance evaluation of an iot platform. In Next Generation Mobile Apps, Services and Technologies, 8th International Conference on, pages 141–146. IEEE, 2014.
- [43] L. Wang, X. Bai, L. Zhou, and Y. Chen. A hierarchical reliability model of service-based software system. In 2009 33rd Annual IEEE International Computer Software and Applications Conference, volume 1, pages 199–208, July 2009.
- [44] Z. Zheng and M. R. Lyu. Collaborative reliability prediction of service-oriented systems. In 2010 ACM/IEEE 32nd International Conference on Software Engineering, volume 1, pages 35–44, 2010.





ture, distributed systems engineering (servicebased, cloud, mobile, IoT, and microservices systems), DevOps and continuous delivery, and empirical software engineering. Uwe has published more than 240 peer-reviewed articles, and is co-author of 3 professional books.

Amirali Amiri Amirali Amiri M.Sc. is a doctoral

candidate at the Software Architecture Group

of Faculty of Computer Science, University of

Vienna. Amirali received his Master's degree in

Informatics from Technical University of Munich,

Germany and his Bachelor's degree in Computer

André van Hoorn André van Hoorn is a senior researcher with the Institute of Software Technology at the University of Stuttgart, Germany. He received his Ph.D. degree (with distinction) from Kiel University, Germany and his Master's degree from the University of Oldenburg, Germany. His research focuses on designing, operating, and evolving trustworthy distributed software systems, focusing on quality attributes such as performance, reliability, and resilience.