
Evaluation of API Request Bundling and its Impact
on Performance of Microservice Architectures

Amine El Malki, Uwe Zdun
University of Vienna, Faculty of Computer Science, Research Group Software Architecture, Austria

Email: amine.elmalki,uwe.zdun@univie.ac.at

Abstract—The widespread adoption of Microservice architec-

tures has posed many challenges regarding API design for these

architectures. Several API best practices and patterns have been

proposed that could help API designers ensure API quality

attributes such as reliability, availability, and performance. API

Request Bundling, which is in focus of this paper, is one of

those patterns that aims at optimizing performance. The pattern

promises substantial performance gains, but can also lead to

significant drawbacks such as increased development effort and

application complexity. So far, there is little to no rigorously

acquired knowledge to judge whether applying Request Bundling

is worth the costs in a given Microservice architecture. To

improve this situation, we performed an empirical study based

on a Microservice-based open source business application us-

ing realistic workload scenarios. To estimate the performance

impact of Request Bundling, we derived a regression model

and performed a multivariate regression analysis. These selected

regression models can help distributed system engineers and

architects to estimate the gain in performance, in terms of round-

trip time, with or without Request Bundling. Our approach

followed in the paper, can be customized to other Microservice

architectures or to study other performance-related Microservice

patterns.

Index Terms—API Request Bundling; Modeling; Microser-

vices; Cloud; Performance.

I. INTRODUCTION

Numerous quality aspects of Microservices APIs have been
identified in the context of critical application design decisions
to be made by software architects [1]. The Request Bundle
pattern [2], described as part of the Microservice API (MAP)
patterns1, is a commonly used Microservice API pattern that
can be used to optimize Microservice API performance-related
qualities. In particular, it can be used to reduce communication
overhead such as throughput, latency, and bandwidth use
between API clients and backends. Instead of sending many
messages, API clients can bundle all these messages and
send them in fewer chunks, which can considerably reduce
network use and overall roundtrip times of messages. As a
downside, some complexity and latency maybe be introduced
on both client and server side due to the larger amount of data
to be processed at once. Usually, the number of messages
is decreased and size of messages is increased. Support for
request bundling requires design and implementation efforts
both on client and server sides. It also increases the complexity
of the messages and the message processing architecture.

1See: https://microservice-api-patterns.org/

In order to figure out the real impact of request bundling on
performance and whether the aforementioned complexity and
efforts are justifiable and worth the costs, we have conducted
an empirical study based on a Microservice-based open source
business application using realistic workload scenarios. Firstly,
we aim to establish a better understanding of the Request
Bundle pattern through its empirical evaluation. Secondly, we
try to quantify the possible performance gains using such a
pattern, and provide a model to estimate it in applications
and workloads similar to the tested open source application.
Thirdly, we provide a method of studying such optimization
techniques, which can be easily adapted to other patterns or to
study the Request Bundle pattern in the context of substantially
different applications. We aim to answer the following research
questions:

• RQ1 What is the performance impact of the Request
Bundle pattern in a realistic application and workload
setting?

• RQ2 a) How can we evaluate the Request Bundle pattern
empirically and how can we measure its performance
impacts? b) What method(s) can be used to study such
optimization techniques (or related patterns) for Microser-
vices API communication?

In our empirical study, we have gathered data from a
representative and modern Microservice-based setup. We have
deployed the Lakeside Mutual application2, an open source
system implemented based on experiences with real-life appli-
cations, on the Istio3 service mesh. The installation is hosted
on a private Cloud. We have studied different scenarios in
this application with and without request bundling, and with
different message bundle sizes. In total, we ran 30 tests on
a private Cloud with a total running time of more than 15
hours (including setup times) and a total number of 8160
messages per repeated experiment run (at least 5 times). Based
on the data from this empirical experiment, we created four
regression models that can be used to estimate the total round
trip time from the API client to the backend, to evaluate
response time or performance of an API request with or
without request bundling.

The paper is organized as follows. Section II compares
to related works. Then we present some background about
request bundling in Section III. In Section IV, we provide

2c.f. https://github.com/Microservice-API-Patterns/LakesideMutual
3https://istio.io/v1.4/



details about our proposed regression model. We evaluate this
model empirically in Section V. Section VI presents an anal-
ysis of the data collected and the regression models selected.
Finally, threats of validity are discussed in Section VII, and
we conclude in Section VIII.

II. RELATED WORK

There are two types of request bundling. The first one
consists of sending one single bundled request and receiving
one single bundled response. The second one sends one
single bundled request but receives instead multiple responses.
Further, a Request Bundle might consist of non-dependent or
dependent batch requests [3]. In our study, we focus on the first
type of request bundling using non-dependent batch requests.

Request bundling is a well-known technique already im-
plemented widely for optimization in Web browsers [4]–[6].
Also, it has been introduced as a way to optimize energy
consumption in mobile applications by detecting and bundling
multiple HTTP requests into one [7]. Some Cloud providers
(e.g. [8]) propose request bundling as a paid feature for
reaching better performance and lowering costs. However,
there are no indications or guidelines on how and when to
use this technique. In addition, although some studies have
praised the overall performance gains achievable with request
bundling [3], there is no concrete information about what
performance improvements to expect in a given situation.

Many API-related empirical studies have exhibited a set
of recommendations to improve APIs performance. Wittern
et al. [9] have studied GraphQL4 interfaces in practice, as a
query language that can improve API performance by using
fewer client-server roundtrips and reduced response message
sizes. An OpenAPI5-based framework has been proposed by
Bucaille et al. [10] to test non-functional properties of REST
APIs such as performance and availability. Park et al. [11]
presented a REST-MapReduce framework, specific to mobile
Cloud computing, to increase the performance of both REST
OpenAPI service and MapReduce. However, those studies are
technology-dependent and environment-specific. There is no
platform-agnostic model proposed, as it is the case in our study
by using the well-known and widely-used Request Bundle
pattern as the object of our study.

III. BACKGROUND: REQUEST BUNDLING

Request Bundle advises to define a bundle of messages
as a container that assembles multiple individual requests
in a single request message. The bundle message usually
contains metadata such as number and identifiers of individual
messages. Request Bundle can be found in many public and
private APIs (see e.g. the known uses in [2]). The basis of
this optimization is that in many cases, clients are able to
“foresee” that requests can be bundled automatically; that is,
in those cases, if supported by the Microservice API, the
optimization can be applied automatically by client-side tools,
without human intervention. For example, consider users on

4https://graphql.org
5https://swagger.io/specification/

client-side visiting linked pages of data, and for retrieving each
page a message is needed. The client application could profile
user behavior and prefetch the typical next pages visited by
the user with a Request Bundle.

To make the decision for or against using a Request Bundle,
regardless whether it is human or automated decision making,
it needs to be understood whether the effort is worth the costs,
and if in the specific design situation (for human decision
making) or runtime decision (if decision making is automated),
a substantial performance gain can be achieved. In particular,
the additional effort needed to implement a more complex API
endpoint and corresponding clients needs to be considered
as costs of the use of the pattern. The reduction of the
number of messages does not imply that less information is
exchanged. Thus, the remaining messages need to carry more
complex payloads. This paper deals with the problem that so
far empirical data and models that can help to make such
decisions based on a solid and empirical ground are missing.

IV. REGRESSION MODEL

A. Independent and dependent variables
We define the dependent variable total time as the total

round-trip time taken to process an API client request:

total time = network time+ backend time (1)

where network time is the round-trip time spent between
the API client and the API Gateway, and backend time is the
round-trip time spent from the API Gateway to the database
or backend service (in case no database call is made).

On the backend, we define a number of variables to char-
acterize the operations executed in the backend (see Table I).
Those variables should enable our model to estimate the time
spent during backend computations. Then, we have:

backend time = inmem time+ db time+ dist time

= inmem weight · inmem calls

+ db weight · db calls+ dist weight · dist calls
(2)

Here, inmem weight is the weight factor correspond-
ing to the number of in-memory operations inmem calls,
db weight is the weight factor corresponding to the number of
database operations db calls, and dist weight is the weight
factor corresponding to the number of distributed operations
dist calls. We introduce the weights to ease the application
of our model and enable adjusting our model to different
applications and environments. That is, the effort in applying
the model can be eased because by using the weights it is
possible to simply count the number of operations to generate
a new estimate using our model, if acceptable weight values
have been measured before.

In summary, to make an estimation with our model, a
user of the model needs to count the number of calls of
the different types in the operations that are candidates for
request bundling. In addition, to adjust our model, a number
of calls of each type should be measured to obtain mean



TABLE I: Definition of Parameters

Independent

variable
Description

inmem time
Time spent in milliseconds by in-memory operations
when executing a function.

inmem calls Number of in-memory operations when executing a function.

db time
Time spent in milliseconds by database operations
when executing a function.

db calls Number of database operations when executing a function.

dist time
Time spent in milliseconds by distributed calls
when executing a function.

dist calls Number of distributed calls when executing a function.

request bundle
Categorical variable indicating whether request bundling
is used or not.

method
Categorical variable indicating which function
is executed.

Dependent

variable
Description

total time
Total round trip time in milliseconds between the API client
and backend.

performance measurements to determine the weights. Both is
rather straightforward (e.g., with a simple counting script and
simple instrumentation of the source code).

Using equations (1) and (2), we get:

total time = network time+ inmem time+ db time

+ dist time

= network time+ inmem weight · inmem calls

+ db weight · db calls+ dist weight · dist calls
(3)

Finally, we introduce two additional categorical variables,
which describe if request bundling is used or not, and which
kind of RESTful operation type that is executed, respectively:
Get, Update, or Create (see Table I). Please note that Delete
could be added here, but is not included, as the Lakeside
Mutual application does not use it in our scenarios.

V. EMPIRICAL STUDY

In this section, we describe our empirical study. First, we
define the scope of the study. Second, we give an overview
of the open source application or prototype we have selected
for our study and that executes the tasks or functions that we
measure in our experiment. Then, we provide details about
the used hardware and software configuration of our Private
Cloud. After that, we describe the developments and deploy-
ments realized as well as the measurement tools. Finally,
we describe how to launch the experiment or the workload.
Finally, we discuss our experiment design and hypotheses. We
have followed the guidelines proposed in [12], [13].

The study’s data set and further analyses are provided as an
open data set for enabling reproducability of our results6.

A. Scope definition

The goal of the empirical study is to analyze API request
bundling usage for the purpose of predicting its impact on
the performance of a Microservice-based application, from
the perspective of API clients. It is a mutli-test within object

6https://doi.org/10.5281/zenodo.5107982

study quasi-experiment where one single object is evaluated
using a set of subjects. The context involves as subjects the
sizes of the requests, which were preselected, the methods
used, and a flag indicating whether request bundling is used
or not. Details are provided in Section V-F. The object is
a close to real-life microservices-based application, available
online, and developed with the goal to mimic professionals
microservice/API design (details provided in Section V-B).
We have deployed this application on a modern Private Cloud
(details are described in Sections V-C, V-D and V-E).

B. Lakeside Mutual application
Lakeside Mutual7 is a Java-based open source system im-

plemented based on experience with real-life applications. It
implements an insurance company services to customers and
employees. It is composed of four frontend microservices and
four backend microservices and the latter are in the focus of
our study. We are particularly interested in three functions that
are provided by these microservices:

• Get customers returns a list of customers using their
IDs. It can be used by both customers and employees.
However, a customer can only get information using
the customer-self-service-backend microservice. On the
other hand, an employee can get information about all
customers using the customer-management-backend mi-
croservice. Both call the customer-core microservice that
takes care of the fetch database operations. This function
can be invoked with or without using request bundling.

• Update customers’ addresses changes the addresses of a
list of customers. Again, it can be used by both customers
and employees under the same conditions listed for
the first function. This function did not support request
bundling in the original application. Request bundling
support for it has been implemented by us.

• Create insurance quota requests creates a list of insurance
quota requests for a given customer. It can be realized
by customers using the customer-self-service-backend mi-
croservice, which then forwards the request to the policy-
management-backend microservice. Request bundling for
this function had to be implemented by us.

C. Configuration details
We have executed the experiments on a Private Cloud that

consists of 3 Ubuntu8 18.04.5 LTS Virtual Machines (VMs) on
top of vSphere9 6.7 environment. Each of these VMs hosts a
Minikube instance version 1.14.2 with 8 dedicated CPU cores
Intel Xeon(R)TMCPU E5-2650 v4 @ 2.20GHz and 20 GB of
system dedicated memory. Each Minikube instance hosts a
Kubernetes engine version 1.14.2 and Istio version 1.4.3.

The central Minikube instance contains the central Con-
trol Plane, Kong Ingress Controller10 version 0.8.0 and the
customer-self-service-backend microservice built using Java

7https://github.com/Microservice-API-Patterns/LakesideMutual
8https://releases.ubuntu.com/18.04/
9https://www.vmware.com/products/vsphere.html
10https://github.com/Kong/kubernetes-ingress-controller



version 8. The 3 remaining microservices are also built using
the same version of Java and accessed using the aforemen-
tioned Ingress Controller through YAML-defined Kubernetes
Endpoints11 and Ingress Rules12. On client side, one Ubuntu
18.04.5 LTS virtual desktop is used to launch HTTP requests
into the Private Cloud. The virtual desktop has 2 CPU cores
Intel R� Xeon(R) CPU E5-2650 0 @ 2.00GHz with 8 GB of
system memory.

D. Development and deployment details
To test request bundling in the three functions described in

Section V-B, we have implemented two additional methods in
the microservices source code, which are the following:

• changeAddresses(), which takes as input a comma-
separated list of IDs and addresses, is added to both
customer-management-backend and customer-core mi-
croservices API specification. This method updates those
customers data with the new provided addresses.

• createInsuranceQuoteRequests(), which takes as input a
comma-separated list of IDs and other information about
the insurances, is added to the customer-selfservice-
backend microservice API specification. This method
creates insurance quota requests for the customers.

Also, the source code is instrumented to compute the inde-
pendent variables defined in our regression model described in
Section IV, which are db time, inmem time and dist time,
which required only trivial instrumentation.

Each of the microservices is running as a containerized
Docker13 image deployed on a multi-clustered Istio service
mesh with one single shared control plane14. With each of
these microservices running on a separate VM, the commu-
nication between them is established using Edge proxies or
Sidecars [14], over a private network. An API gateway [15] or
Front proxy is responsible of intercepting incoming or ingress
communication from API clients. For that purpose, the Kong
API Gateway is used by integrating it to Istio [16].

E. Launching the experiment
Each experiment consists of executing a Shell15 script on

the virtual desktop that executes cURL16 HTTP requests on
the Private Cloud API Gateway and does the following:

• Create a list of preauthorized customers;
• Get customers data with and without request bundle;
• Update customers’ addresses with and without request

bundle;
• Create insurance quota requests with and without request

bundle;
The dependent variable total time, defined in our regres-

sion model described in Section IV, is recorded in the output

11https://kubernetes.io/docs/concepts/services-networking/service/
12https://docs.konghq.com/kubernetes-ingress-controller/1.1.x/guides/

getting-started/
13https://hub.docker.com
14https://archive.istio.io/v1.4/docs/setup/install/multicluster/shared-vpn/
15https://www.shellscript.sh
16https://curl.haxx.se/docs/manpage.html

TABLE II: Data collected during the experiments

Request

bundle?
FunctionSize

Inmem

calls
Inmem time

Db

calls
Db time

Dist

calls
Dist time

Total

time

No

Get

50 2600 55,07355 50 46,597509 50 929,328941 1673
40 2080 45,576909 40 38,590982 40 1112,832109 1949
30 1560 40,305603 30 38,190849 30 772,503548 1432
20 1040 19,344074 20 15,071418 20 380,584508 819
10 520 11,842218 10 11,648897 10 301,508885 511

Update

50 1500 15,338561 100 97,869806 50 828,791633 1794
40 1200 13,156796 80 90,622794 40 722,22041 1710
30 900 9,710725 60 74,760225 30 581,52905 1330
20 600 5,964218 40 33,33821 20 343,697572 701
10 300 3,493898 20 22,846122 10 168,65998 332

Create

50 1600 491,892331 100 95,342467 50 1721,765202 3088
40 1280 437,888573 80 82,19147 40 1485,919957 2833
30 960 327,063494 60 60,522121 30 1143,414385 1999
20 640 252,230347 40 37,559331 20 856,210322 1422
10 320 118,169791 20 23,961 10 364,869209 678

Yes

Get

50 241 5,02067 50 17,598524 1 46,380806 97
40 201 8,473363 40 20,126167 1 43,40047 112
30 161 7,883633 30 17,62739 1 49,488977 92
20 121 2,044953 20 6,320683 1 37,634364 70
10 81 1,563875 10 7,096915 1 23,33921 55

Update

50 937 14,533892 100 75,450795 1 63,015313 302
40 757 16,697279 80 84,001458 1 28,301263 330
30 577 10,811141 60 64,232514 1 17,956345 187
20 397 5,966065 40 29,861325 1 18,17261 115
10 217 3,649556 20 15,518327 1 12,832117 70

Create

50 3488 46,408423 100 120,666903 50 1660,924674 1945
40 2798 41,364438 80 81,855359 40 1291,780203 1945
30 2108 36,585093 60 68,053868 30 1414,361039 1600
20 1418 25,210233 40 38,04053 20 1129,749237 1244
10 728 19,248005 20 25,998748 10 355,753247 440

file for each of the above operations. Also, backend time

is calculated using the HTTP headers X-Kong-Upstream-
Latency and X-Kong-Proxy-Latency provided by Kong API
Gateway17. On server side, the independent variables db time,
inmem time and dist time are collected and computed
using the output log file of each microservice.

F. Experiment design and hypotheses
In our study, we aim to measure the effect of using request

bundling on API performance or response time. The size of
the request bundle is chosen in a predefined interval setting.
We have limited the maximum request bundle size to 50 to
be realistic. Our experiment follows the one factor with two
treatments balanced design since in each trial, we either use
request bundling or not on all the functions described in V-B.

Hence, we define the following experiment hypotheses:
• The null hypothesis H0 states that request bundling has

negative or no effect on API performance.
• The alternative hypothesis H1 states the opposite.
Those hypotheses were checked for each combina-

tion of using request bundle (Yes/No), tested function
(Get/Update/Create) and request bundle size (5 intervals),
which totals 30 tests.

VI. DATA COLLECTION AND ANALYSIS

A. Multivariate regression analysis
As described in Section V-E, the variables total time,

inmem time, db time and dist time data are directly col-
lected from output log files on client and server sides. The
remaining variables inmem calls, db calls and dist calls

17https://docs.konghq.com/gateway-oss/0.10.x/proxy/



TABLE III: Models’ description

ModelIntercept
Inmem

time

inmem

calls

db

time

db

calls

dist

time

dist

calls

request

bundle(Y)

method

(Get)

method

(Update)

1 -54,585 1,506 X 4,074 X 1,192 X -312,011 331,758 312,936
2 -94,019 1,795 -0,081 X X 0,968 17,01 -76,891 226,742 330,915
3 165,215 1,695 -0,077 X X 0,576 25,034 -75,963 X X
4 602,925 X -0,194 X 7,85 X 35,105 -296,56 -386,275 -637,184

TABLE IV: Models’ summary

Adjusted

R-squared

F-Statistic:

p-value

Jarque-Bera:

p-value

Ljung-Box:

p-value

Model 1 0.9815 <2.2e-16 0.8407 0.1378
Model 2 0.9835 <2.2e-16 0.7316 0.09669
Model 3 0.9767 <2.2e-16 0.2867 0.03966
Model 4 0.9247 6.338e-13 0.8405 0.1169

are directly counted in the source code. Table II shows the
data collected for experiments using request sizes of 10, 20,
30, 40 and 50.

As a result of our analysis using R language18, we obtained
the four regression models described in Tables III. Notice that
the categorical variable method(Create) is not shown since it
was selected as the reference category and so its coefficient is
equal to zero [17]. The same applies to the categorical variable
request bundle(N), in case no request bundling is used.

As Table IV shows, all the models have very low (F-
Statistic) p-value and very high Adjusted R-squared values
which clearly hints that they have a very high statistical
significance. However, we cannot give a definite conclusion
without an analysis of the residuals.

In order to verify the applicability of the linear models
described in Table III, we first have to check that the residuals
follow a normal distribution. Figures 1 to 4 (provided in
our open data set6) show the Histograms of Residuals of
all those models. Except for Model 2 and 3, the rest of the
histograms display approximately a bell curve shape which
suggests that the residuals of Models 1 and 4 are probably
normally distributed. Model 2 and 3’s Normal Q-Q Plots in
addition show that most of the points lie straight on the line.
So, there is no reason to believe that the residuals are not
normally distributed.

Multi-Fit Studentized Residual diagrams are Studentized
Residual diagrams with multiple variables as independent vari-
ables. Studentized Residuals can detect potential outliers in the
models. They are reliable since they consider each observation
as a potential outlier, remove it, and refit the regression model.
This process is repeated until all the observations are tested. As
we can see in Figures 1 to 4, very few outliers are observable
with no obvious outliers in Models 2 and 3, and there is an
overall clear constant variance exhibited by all the models.

To validate these observations, we have run Jarque-Bera
tests on all models and the results are shown in Table IV.
The null hypothesis H0 for these tests tells us that the residuals
are normally distributed. With a level of significance ↵ = 0.05,
we fail to reject the null hypothesis for all the models, which
confirms that these models’ residuals are normally distributed.

18https://www.r-project.org

To check whether these residuals are independent, we
use the Ljung-Box tests as described in Table IV. The null
hypothesis H0 for these tests tells us that the residuals are not
autocorrelated. With a level of significance ↵ = 0.05, we fail
to reject the null hypothesis for all models except for Model
3, which is thus discarded from further analysis. Therefore,
Models 1, 2 and 4 residuals are independent and are selected
for total time prediction calculations.

B. Selected models
Based on the analysis from the previous section, we have se-

lected Models 1, 2 and 4 to produce our prediction data. Model
4 produces two negative values for the predicted total time,
and so it is discarded from further analysis. Figures 5 to 10
(provided in our open data set 6) compare the models’ values
of predicted total time and its actual measured values when
using the different methods with and without using request
bundle. A visual inspection confirms that the estimation for
most methods with or without request bundling provide rea-
sonably close values. Some notable specific observations are:
It is observable that all models work best in case we do not
use request bundling and for the Create method using request
bundle. In case of the Get method using request bundle, the
models are best when we have at least 30 requests bundled.
For the Update method using request bundle, Model 1 makes
the best predictions for total time.

To compare the two selected models, we have calculated
their prediction errors using the Mean Absolute Percentage
Error (MAPE) [18]. We found that models 1 and 2 have predic-
tion errors that are equal to 16% and 21% respectively, which
are below the target prediction error of up to 30% for Cloud-
based architectures [19], and thus explainable with network
infrastructure imperfections such as latency and unforeseen
errors.

VII. VALIDITY EVALUATION

As shown in Table IV, the models proposed display a
very high statistical significance, which provides some con-
firmation for the conclusions from our experiment. Also, in
Section VI-A, we have accurately verified our statistical test
assumptions concerning residuals’ normality, and the error
rate is very low since we have conducted the tests using a
significance level of 0.05. The instrumentation used in the tests
and described in Section V encourages a very high reliability
of the measures. However, there might be a threat of validity
regarding the reliability of treatment implementation since we
have made some changes to the application as explained in
Section V-D. While those were rather small and following the
same development methods used in the rest of Lakeside mutual
application, an impact of those changes on the results cannot
be fully excluded.

On client-side, the dependent variable total time was mea-
sured using Linux provided date utility for calculating elapsed
time between the start and end of an API call. Similarly
on the server-side, the independent variables inmem time,
db time and dist time are measured using JAVA provided



time utility integrated into the source code. There is no reason
to believe that these measurements lack accuracy. The rest of
independent variables inmem calls, db calls and dist calls

are manually counted, which was convenient considering the
limited number of calls in the application we used. However,
this is considered as a threat of validity for other large
applications. To alleviate this threat, we plan to develop a
script that can generate the counting results automatically.

We studied only the Lakeside Mutual open source appli-
cation. While it is a realistic business application, realized
with state-of-the-art technologies, it cannot be excluded that
no results can be generalized to other applications. Espe-
cially, generalization to non-business applications might be
problematic. In our study, we only considered three methods
(although the most common) which might be a threat of
validity, especially for other types of applications. Also, the
instrumentation employed is very specific and technology
dependent. In order to generalize our approach, we plan to
apply our models to other applications and technologies.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the impact of API request
bundling on the performance of Cloud-based benchmark based
on a realistic application.

To answer RQ1, we have evaluated the impact of request
bundling by empirically calculating the total round-trip time
using 30 different workload settings. As shown in Table II
and Figure 5 to 10, it is clear that total time decreases
considerably when using request bundle and independently
of the workload setting. As a result, we successfully reject
the null hypothesis H0 described in Section V-F and confirm
that request bundling has a positive impact on performance,
independently of the workload setting.

Concerning RQ2, we presented a regression model that can
be used to estimate performance impact of request bundling.
This can be easily elaborated by counting inmem calls,
db calls and dist calls, given appropriate mean weights
values measured before as described in Section IV. We have
empirically validated the model using a realistic application
and reported four regression models using the data collected.
After data analysis, we selected two models that best fit.
These models generate prediction errors that are substantially
below the target prediction error of up to 30% for Cloud-
based architectures. Further, it is important to note that a rough
estimation is usually good enough for making architectural
design decisions, as those are usually decided at an early
project stage. In addition to those models, we have defined
an approach that not only can be used for request bundling
evaluation using a specific workload setting and application,
but can also be applied to other optimization techniques and
patterns.

In future work, we plan to validate our model using other
workload settings, applications and technologies. For that
purpose, we aim at automating the instrumentation used for
counting inmem calls, db calls and dist calls, in order to
be able to use it in larger applications. We also plan to integrate

other parameters to our model, especially those related to
network latency and error management.
Acknowledgments. This work was supported by: FWF (Aus-
tria Science Fund) project API-ACE, no. I 4268.

REFERENCES

[1] U. Zdun, M. Stocker, O. Zimmermann, C. Pautasso, and D. Lübke,
“Guiding architectural decision making on quality aspects in microser-
vice apis,” in Service-Oriented Computing, C. Pahl, M. Vukovic, J. Yin,
and Q. Yu, Eds. Cham: Springer International Publishing, 2018, pp.
73–89.

[2] O. Zimmermann, M. Stocker, D. Lübke, U. Zdun, and
C. Pautasso, “Microservice api patterns: Request bundle,”
2021. [Online]. Available: https://microservice-api-patterns.org/patterns/
quality/dataTransferParsimony/RequestBundle.html

[3] A. Sinha, “Batch: An api to bundle multiple rest operations,”
Nov. 2018. [Online]. Available: https://medium.com/paypal-engineering/
batch-an-api-to-bundle-multiple-paypal-rest-operations-6af6006e002

[4] M. Schulz, “Bundling and minification: an introduction,”
January 2015. [Online]. Available: https://mariusschulz.com/blog/
bundling-and-minification-an-introduction

[5] S. Addie and D. Pine, “Bundle and minify static assets in asp.net core,”
Februar 2020. [Online]. Available: https://docs.microsoft.com/en-us/
aspnet/core/client-side/bundling-and-minification?view=aspnetcore-5.0

[6] K. Gysen, “Bundle / code splitting revised,” May
2019. [Online]. Available: https://medium.com/@kimgysen/
bundle-code-splitting-revised-d9719e9219c1

[7] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated energy opti-
mization of http requests for mobile applications,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), 2016,
pp. 249–260.

[8] brainCloud, “Making s2s api calls from postman,” 2021.
[Online]. Available: https://getbraincloud.com/apidocs/portal-usage/
using-postman-with-s2s/

[9] E. Wittern, A. Cha, J. C. Davis, G. Baudart, and L. Mandel, “An
empirical study of graphql schemas,” in Service-Oriented Computing,
S. Yangui, I. Bouassida Rodriguez, K. Drira, and Z. Tari, Eds. Cham:
Springer International Publishing, 2019, pp. 3–19.

[10] S. Bucaille, J. L. Cánovas Izquierdo, H. Ed-Douibi, and J. Cabot, “An
openapi-based testing framework to monitor non-functional properties
of rest apis,” in Web Engineering, M. Bielikova, T. Mikkonen, and
C. Pautasso, Eds. Cham: Springer International Publishing, 2020, pp.
533–537.

[11] J.-H. Park, H.-Y. Jeong, Y.-S. Jeong, and M. Choi, “Rest-mapreduce:
An integrated interface but differentiated service,” Journal of applied
mathematics, vol. 2014, pp. 1–10, 2014.

[12] R. Ré, R. M. Meloca, D. N. Roma, M. A. da Cruz Ismael, and
G. C. Silva, “An empirical study for evaluating the performance
of multi-cloud apis,” Future Generation Computer Systems, vol. 79,
pp. 726–738, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X17301802

[13] C. Wohlin, Experimentation in software engineering. Berlin Heidelberg:
Springer, 2012.

[14] A. El Malki and U. Zdun, “Guiding architectural decision making on
service mesh based microservice architectures,” in Software Architec-
ture, T. Bures, L. Duchien, and P. Inverardi, Eds. Cham: Springer
International Publishing, 2019, pp. 3–19.

[15] C. Richardson, “Pattern: Api gateway / backends for frontends,” 2021.
[Online]. Available: https://microservices.io/patterns/apigateway.html

[16] K. Kevin Chen, “Kong ingress controller and service
mesh: Setting up ingress to istio on kubernetes,” March
2020. [Online]. Available: https://kubernetes.io/blog/2020/03/18/
kong-ingress-controller-and-istio-service-mesh/

[17] J. Starkweather, “Reference category and interpreting regression
coefficients in r,” Nov. 2018. [Online]. Available: https://it.unt.edu/
interpreting-glm-coefficients

[18] K. S. Trivedi and A. Bobbio, Reliability and Availability Engineering:
Modeling, Analysis and Applications. Cambridge University Press,
2017.

[19] D. A. Menascé and V. A. F. Almeida, “Capacity planning for web
services; metrics, models, and methods,” Prentice Hall PTR, vol. 26,
no. 1, 2002.


