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Abstract—When teaching parallel programming in C++, the
memory model is often treated as an afterthought. Even if it is
included in the lectures, it may only be covered as an isolated
topic near the end of the whole course. We have reorganized
the Parallel Computing course at the University of Vienna
to make the memory model an integral part of the course,
starting from the very first lecture. Being aware of the memory
model and understanding its basic principles helps the students
better comprehend parallel programming in C++, even when
the memory model is only discussed informally. In the paper,
we describe how we integrated the memory model into the
course. Based on test results, assignments, and feedback from
the students, we consider this approach to be successful.

I. INTRODUCTION

Parallel programming is hard [1], but so is teaching parallel
programming [2]. Efforts like the NSF/TCPP curriculum ini-
tiative [3] try to provide guidelines to educators, but there are
still many challenges ahead.

Despite decades of research and innovation, there are no
universally accepted, high-level programming models that
would be able to allow programmers to easily target the ever-
increasing range of parallel architectures. There were even
efforts to design such tools specifically for education [4]. Just
like MPI (a very low-level tool) remains the tool of choice
for parallel computing on supercomputers, low-level languages
like C++ or (plain) Java are often the go-to tools for parallel
computing, even though they were not necessarily intended
as such from the start. This is obvious from the absence of
memory model from early C++ standards and the fact that
the original Java memory model was flawed [5]. These issues
were later fixed [6], [7] and since C++11 [8], the memory
model has been an integral part of the standard, even though
some problems still remain [9], [10].

A common approach in parallel programming courses is to
cover the memory model near the end of the course, as an ad-
vanced topic. The aforementioned NSF/TCPP curriculum puts
memory models into “advanced”, but they do suggest covering
the topic in the parallel programming course, as we do. But
they only see the memory model in the context of sequential-
vs-relaxed models without going into sufficient detail to cover
the C++11 memory model. Sequential consistency and relaxed
consistency are listed as separate topics, without indicating
where and how they should be covered.

In our Parallel Computing undergraduate course at the
University of Vienna, we have made the memory model an
integral part of the course, building up to it from the very
first lecture. The course is taught in C++, so we also teach
the standardized C++ memory model. It is not possible to
fully explain the model, but our experience shows that a
basic understanding of the model can be taught even without
devoting much time to the topic and some of the students could
actually apply their understanding of the memory model in
practical assignments. The Parallel Computing course teaches
other models besides parallelism in standard C++, but they
don’t deal with the memory model and are therefore outside
the scope of this paper. For simplicity, we will refer to the C++
part as “the course”, even though there are in fact two more
equally important components (OpenMP and MPI), where the
memory model is only a marginal topic. There are five lectures
(90 minutes each) in the C++ part, including the memory
model.

In this paper, we:
• describe the organization of our Parallel Computing

course;
• explain how we integrated the memory model;
• evaluate the course based on results of students’ tests,

assignments, and a feedback survey.
Based on the students’ results and feedback, we consider

the restructuring of the course around the memory model to
be a success and a viable alternative to teaching the memory
model as a separate, stand-alone topic within the course. We
believe it provides the students with a deeper understanding
of parallelism in C++.

II. MEMORY MODELS IN PRACTICE

On the theoretical level, a memory model describes the
visibility of changes made by commands in the program. If
command A changes the value of shared variable X , will
command B in a different thread see the changed value, the
original value, or is the value undefined? When transformed
to actual software and hardware, the main role of the memory
model is to restrict operation reordering. The reason is that
most of today’s hardware architectures provide automatic
cache coherency and strong guarantees for the ordering of
memory operations. Preventing the compiler from reordering
operations and forcing it to read/write from memory (instead
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of registers) is therefore the most impactful consequence of
the memory model.

Based on our experience, this is not obvious to many
students. They expect the generated assembly code to closely
reflect the original C++ code. It is surprising for them that
a loop control variable is likely to be stored in a register
and not written to the main memory at all, despite passing
a programming language course earlier. This is a significant
obstacle, which prevents them from properly understanding
what happens when such a program is executed in parallel.

The second code example in our course looks like this:

void threadA()
{
++counter;
cout<<counter;

}
void threadB()
{
++counter;
cout<<counter;

}

It is easy to explain why there is a race condition if the
counter is not incremented atomically. The situation starts
getting surprisingly complicated when we also consider the
command that prints out the counter. Even if all the operations
happen atomically, it’s possible that the compiler will store the
incremented value of the counter in a register and reuse it when
the value is printed. Once again, this seems to be surprising
to some of the students.

When writing sequential codes, the students can build a
memory model that tells them that what they write in their
source code is what the processor will do. This view is rarely
challenged if no parallelism is involved. They may encounter
this in a system programming course, where they see that
handling signals can be tricky and they need to be more
careful. But in general, it is easy to adopt the WYSIWYG
approach to programming. We make a significant effort in our
course to break this view as soon as possible.

As discussed earlier, we put more emphasis on what the
compiler does to optimize the code. The impact that a CPU
has on execution is only covered in a more advanced course
on parallel architectures intended for Masters students. We
have considered including the topic already in the introductory
parallel programming course but then decided against it. The
compiler optimizations are sufficient to motivate the need to
have a memory model and if a program is written correctly
using C++11, it should run correctly irrespective of the CPU
architecture, so the students don’t need to be aware of the CPU
architecture to use standard C++11 to write correct parallel
programs.

III. COURSE OUTLINE

In this section, we will present the architecture of the C++
parallel programming course, which has the C++ memory
model at its core. The memory model plays a different role
in different parts of the course. The following outline shows
which parts have very little to do with the memory model,

where the model is provided as context, and where it plays an
essential role.

• motivation:
– race conditions
– visibility of changes

• POSIX threads in C++
• threads
• mutexes
• atomic operations
• memory order
• other C++11 parallel primitives:

– call once
– promises and futures
– tasks
– condition variables

As you can see, the C++ memory model is not equally
important everywhere. Most parts are either focused on the
memory model or the memory model is only briefly mentioned
for context. The only exception are mutexes, since they have an
important role in both assuring mutual exclusion and ensuring
that changes are visible.

A. Motivation

The second code example in the first lecture increments
a counter from two threads in parallel, as shown earlier. It
is also the first example of a race condition, since the very
first example is embarrassingly parallel. This example serves
to motivate the need for synchronization (in this case mutual
exclusion), but then we use a rewritten version of the program
to show what might happen if the variables are “cached” in
CPU registers.

The next example then demonstrates why something like
this might be a problem in a more realistic scenario of two
threads that need to exchange a value:

done = false;
void threadA()
{
data=10;
done=true;

}
void threadB()
{
while(!done) /* NOP */;
cout<<data;

}

It is natural to expect the value of data to be 10 in thread
B, but if we allow the compiler to reorder the assignments in
thread A, it doesn’t have to be. Such reordering can easily be
justified if we use something more complex to compute the
value to be stored in the data. In fact, the compiler could go
even further and read the value of done once at the beginning
of the thread B code and loop indefinitely if the value was
false.

B. Pre-C++11 model

To show a simple memory model that clearly works, we
show the students how POSIX threads worked together with
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the pre-C++11 standards to ensure correct parallel execution.
Consider this simple POSIX threads example:

done = false;
void threadA() {
pthread_mutex_lock(mutex);
data=10;
done=true;
pthread_mutex_unlock(mutex);

}
void threadB() {
int my_data;
for(;;) {

pthread_mutex_lock(mutex);
if (done) {

my_data = data;
pthread_mutex_unlock(mutex);
break;

}
pthread_mutex_unlock(mutex);

}
}

Since both pthread_mutex_lock and
pthread_mutex_unlock are library calls, C++ guarantees
that no operations are reordered around these calls, all changes
are written to memory before the calls, and all data is read
from memory after the call. Combined with the guarantees
provided by POSIX, we get a guarantee that data is 10. This
way, the students see that obtaining the proper visibility of
changes does not have to be difficult. Here, we get it for
free as a side-effect of proper synchronization. The same is
basically true for C++11 mutexes, but we will still re-visit
mutexes later to properly explain them.

C. Introduce atomic operations

Since the main strength of C++11 are the atomic operations,
we introduce them next. Naturally, the first example goes back
to the parallel increment of a counter, which the atomic oper-
ations solve beautifully. But this beauty comes at a price. The
potential extra cost of atomicity is obvious, but the students
might not immediately see the implications that the atomic
operations have on the memory model. This is easily shown
on the example from Section III-A. Even if the atomicity of
the two changes guaranteed, it does not solve the problem if
the operations can be reordered.

Up until now, the materials presented to the students serve
mainly as a motivation to give the students some idea what
the main issues of parallel programming in C++ are. We put
significant emphasis on the fact that atomicity and mutual
exclusion are not the only problems. Since nearly all of the
students are already somewhat familiar with those, we actually
put more emphasis on the change visibility problem.

D. C++11 threads

To allow the students to write some parallel C++ programs,
we need to start with basic threads. But even this topic is
relevant to the memory model. If thread A creates thread B,
the memory model guarantees that all changes made by A
before B was created are visible in B. Similarly, if thread B
is joined into thread C, thread C sees all changes made by

thread B. Nearly all students implicitly assume that this is the
case, but we have seen a few cases (in a test) where someone
expected that the changes made by a thread are not visible
after it is joined.

This is a very important thing to keep in mind while using
our memory-model-centered course structure. It is easy to
put the students into a state of mind where they assume
that nothing is guaranteed unless they explicitly use atomic
operations with proper memory order to enforce it. Even if the
actual behavior of thread join is explained in the lecture, it can
be very easy for the students to miss. Most of them will go
along with their (correct) implicit assumption, but it is good
to keep this in mind to avoid unintentionally creating trick
test questions. We have not seen this in any of the practical
assignments, but some students tend to overthink test questions
and then this is an easy trap to fall into.

E. Mutexes

We cover C++11 mutexes, not focusing on the memory
model. Their behavior with regard to the memory model is
fairly intuitive, similar to POSIX mutexes. However, there are
some differences, which we try to explain on this example:

m.lock()
++counter;
m.unlock()

A POSIX mutex always provides a two-sided fence. It
guarantees that all changes done before using the mutex
are written to memory and that all read operations done
after using the mutex are read from memory. But the C++
mutex lock and unlock operations are actually only one-sided.
Lock does acquire and unlock does release. By chaining
two operations on the counter and only considering the two
relevant unlock/lock operations, we get:

++counter;
m.unlock()
m.lock()
++counter;

This is a basic chain of write-release-acquire-read opera-
tions, which demonstrates how the memory model actually
works. We first introduce the release and acquire terms in
this example. It is as simple as possible and we think that
using mutexes instead of atomic variables to introduce the
concept is beneficial, since the primary purpose of mutexes is
synchronization and they don’t carry the extra responsibility
of modifying the data, as atomic operations do.

We spend considerable time explaining how to use mutexes
and provide more sophisticated examples. But as none of these
examples is too interesting from the point of view of the
memory model, we do not discuss it further in this part.

However, there is one interesting example and some of
the test answers seem to indicate it would be beneficial to
discuss memory model implications there as well. When the
vector container is used in the code, there are two kinds of
operations with very different behavior as far as the memory
model is concerned: whole-vector operations and individual
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throw throw return

nop

nop

Fig. 1. An example of synchronization among related call_once calls.
The helper function is invoked five times by different threads in order to run
function f exactly once. Initially, f fails twice (red boxes), then succeeds
(green box). The final two calls (blue boxes) do not attempt to call f , but
they still provide synchronization and visibility of changes. The arrows show
both synchronization (origin of the arrow must run before the destination) and
data visibility (all changes made by the origin are visible at the destination).

item operations. If two threads add items to a vector (a whole-
vector operation), they need to be properly synchronized and
they need to ensure that all changes are visible to everyone
who might need to see them. A mutex used as a critical section
for the operation would serve this purpose well. But if two
threads access (or even modify) two different items in the
vector, they can be completely independent and not create a
race condition. We have not explained this in the lecture and
test answers clearly indicate that some of the students cannot
see the difference on their own.

This is a difficult topic, since it requires a deeper under-
standing of the vector container. It is necessary to understand
when and why references and iterators are invalidated and
what implications does this have for parallel access to the
container and the elements it contains. Furthermore, the whole-
vector operations need to be protected by a mutex or some-
thing similar, but the operation on individual items might be
performed using atomic operations or not synchronized at all.
Such combinations can be very tricky in C++. Therefore, we
plan not to deal with the topic at this stage of the course,
but instead include a stand-alone section near the end to
specifically deal with this issue.

F. Call once

The call_once helper function, which is also part of the
C++11 standard library, is interesting for the memory model,
since the synchronization performed by the function is very
straightforward, but special care has been taken when dealing
with the memory model. The purpose of call_once is to
run a function f exactly once, even when invoked multiple
times in parallel. But f is allowed to throw an exception, in
which case another call to f is permitted. All such re-tries can
see the result of previous invocations, but after a successful
call, the subsequent calls (that don’t actually invoke f ) only
synchronize with the successful one, not among themselves,
as shown in Figure 1.

It’s possible to use this example to show the students that
even if this sounds unnecessarily complex, it is actually the
most appropriate, natural behavior. The function f is probably
doing some initialization. To retry it, it’s obviously good to
know why it failed before (therefore the linear chain of red
boxes) but once it succeeds, everyone only needs to see the

successfully initialized values (the independent blue boxes
connected to the green one).

G. Atomic operations
We first explain the atomic operations without involving

the memory model. There are more complex operations like
compare-exchange, so we first focus on the atomicity and
behavior of the operations, ignoring the memory model. But
this part is relatively short. We revisit an earlier example of
a counter that needs to be incremented atomically and show
what it would actually look like in C++11. We also revisit
the example with the vector, but also avoid mixing the whole-
vector and per-item operations, only doing the independent
per-item operation in parallel.

H. Memory order
At this point, we introduce the memory_order enumer-

ation, which lists the possible memory orders of an atomic
operation. The students have already seen release and acquire
in the mutex example (Section III-E). The other memory
models are only briefly explained and we quickly move
to examples that use only release and acquire in different
situations.

We show how the example from Section III-B can be
handled with atomic variables, but also include more complex
ones. We demonstrate how a value can be passed among more
than two threads using one or more atomic variables. In all
these examples, the main focus is on the memory model and
visibility of changes, since the synchronization part is trivial.

One important point that we believe should be mentioned
multiple times is that to establish a proper release-acquire
chain, the atomic operation needs to be the same (this is also
true for mutexes). We have an example with a release on one
atomic variable and acquire on a different one, but maybe the
topic should be discussed even more, as there were examples
of students not doing this correctly in their assignments or
tests.

I. Happens-before
The happens-before relation is at the core of the C++

memory model. It defines which operations are guaranteed
to happen in a certain order. Inside a thread, the relation is
based on the sequential execution. But the relation is also
defined among operations in different threads, which can be
synchronized using the primitives provided by C++. In the
lecture, we only explain the relation informally. In fact, there
is only one slide in the presentation directly dedicated to
happens-before. On the other hand, we spend considerable
time explaining this slide and discussing it with the students.

We believe that this is enough to provide the students with
a working understanding of the topic, allowing them to write
correct C++ programs that use release and acquire semantics
of atomic operations. The work that the students do in the
assignments suggests that at least for a significant fraction of
the students, this is true. See Section IV for more details.

We first demonstrate the happens-before and synchroniza-
tion using atomic operations by showing the students how to
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memory order use number of students
correct use of acquire-release 13
sequential consistency (too strong) 1
relaxed consistency (correct use) 2
relaxed consistency (possibly incorrect) 2
total number of submissions 35

TABLE I
THE USE OF MEMORY ORDER IN AN ASSIGNMENT.

correctly implement a spin mutex using atomic operations.
One might naturally expect that the operation that locks
the mutex should have acquire semantics and the operation
that unlocks the mutex should have release semantics. This
is actually the case, but it is good to spend the time and
explain to the students why it is this way. It also provides
some connection between mutexes and atomic operations,
demonstrating that the fundamentals (w.r.t. the memory model)
are actually the same.

J. Other topics

There are other parts of C++11 that facilitate parallel
programming and we cover them in the rest of the lecture.
These include examples of using compare-exchange for lock-
free data structures, futures (and related C++11 constructs),
and condition variables. Even though they also have memory
model implications, we only briefly mention them without
going into greater details. The fact that the behavior of
atomic operations is very simple (especially when compared to
something like condition variables) makes them the ideal topic
to teach the memory model. Once the students are aware of
the problem and have a basic understanding of happens-before
and visibility of changes, it should be much easier for them
to apply this to other areas as well.

K. Example problem

At the end of the course, we show the students different
ways of implementing one task in multiple ways. The task is to
have one thread perform 1000 iterations of some computation
and let another thread know what is the index of the last
completed iteration. The second thread uses this information
to print out progress at fixed intervals. This can be done with
mutexes or atomic variables.

Using atomic variables is interesting in this case, since it
is possible to use relaxed memory order. This is actually the
first case where we show this to the students. Then, we put
this into contrast with a more complex case, where we need
to not only send the iteration index, but also some other
data (in our case, it is a single string). This requires the
memory order to be changed from relaxed to release-acquire,
to facilitate the transfer of the other data. We also show the
default (sequentially consistent) order to cover all the options,
with the exception of consumer memory order, which is being
revised and its use is discouraged [11], [12].

IV. EVALUATION

We have not performed a formal study to investigate the
effects of making the memory model a central topic of the

Fig. 2. The memory model test question. The students need to drag the two
boxes at the bottom to the correct position. This option was chosen to make
the question depend on the students’ understanding of the memory order,
instead of forcing them to remember the exact C++11 interface.

course. There were other changes to the course, making
direct comparison impossible. However, we can still make
some conclusions with the data that we have. As their home
assignment, the students were asked to modify existing source
code to correctly use atomic operations for synchronization.
The key part was a slot allocator – an object with a fixed
number of slots that can be acquired and released by worker
threads. This is similar to an array of mutexes, but the object
automatically finds a free mutex if one is available.

The default memory order for C++ atomic operations is
sequential consistency, which implies acquire (for load op-
erations) and release (for store operations). This is sufficient
for the assignment. The students were not asked to explicitly
provide memory order. Therefore, all instances that specify it
are based on their own active decision. Table I provides the
number of student assignments based on their use of explicit
memory order.

As you can see, in 18 of the 35 submissions the students
have decided to provide memory order. This shows that at least
half of the students were thinking about the memory model
when working on the assignment. One student used sequential
consistency, which is too strong. Four students used relaxed
consistency. In general, this is not the right decision for the
kind of synchronization object that they were asked to design.

However, in two of the four cases, it is obvious (from the
comments in the code) that the students were actually well
aware of the implications of the relaxed memory order and
based their decision on the fact that the code that uses the
object does not rely on the acquire-release semantics and will
provide correct results even with relaxed memory order. In two
cases, no such comments were provided. It is still possible
that these students still made the decision based on correct
assumptions, but it is also possible that they did not.

Overall, we consider the results to be very good, with
most students selecting the right memory order. However, one
needs to consider the fact that the code is similar to the spin
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mutex that the students have seen in the lecture. It is therefore
possible that they based their decision on that similarity.
Unfortunately, our data do not allow us to distinguish between
these two cases.

In the final test, one question required students to fill in the
correct memory order in an example derived from the spin
mutex. The question is shown in Figure 2. It was answered
correctly by 32 of 39 students. One multiple choice question
required a basic understanding of the happens-before relation.
It was answered correctly by 31 students. Interestingly, provid-
ing a correct answer in the two questions seems to be mostly
independent and only two students answered both incorrectly.

The students were also asked to fill a standard survey to
provide feedback for the course. Only 9 of the students par-
ticipated, but the results are encouraging, with most students
being satisfied with the course overall, but also with the speed
at which the topics were presented. Note that the answers in
the survey pertain to the whole semester and C++ parallelism
is in fact only one third of the whole course. But individual
(informal) feedback from the students indicated that they were
indeed satisfied with the C++ lectures.

V. CONCLUSION

We consider the course restructuring to be a success. The
students were able to demonstrate a basic level of understand-
ing of the C++ memory model in a test. More importantly,
many of the students have shown to be aware of the memory
model when working on their assignments, providing correct
memory order even though they were not explicitly asked to
do that.

In the future, we plan to further refine the course. The
biggest consideration is dealing with the whole-vector and per-
item operation and the interaction of atomic operations, non-
atomic operations, and mutexes in general. The integration of
atomic and non-atomic operations is challenging even for the
C++ memory model itself [9], [10], so we need to find a good
compromise between accuracy and practical usability.

We are also looking into ways of making the assignments
more involved with regards to the memory model. One way
would be to have a larger number of smaller assignments,
each covering a different kind of memory order. However, the
current format based on Moodle is not well suited for this and
it would be necessary to make significant changes, possibly
even towards interactive educational software and gamification
[13], [14], [15].

It would also be beneficial to see how the knowledge of the
C++ memory model translates to other models and languages,
like OpenMP or Java.
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