2004.11666v1 [cs.DS] 24 Apr 2020

arXiv

Faster Parallel Multiterminal Cuts

Monika Henzinger
University of Vienna, Faculty of Computer Science, Vienna, Austria
monika.henzinger@univie.ac.at

Alexander Noe
University of Vienna, Faculty of Computer Science, Vienna, Austria
alexander.noe@univie.ac.at

Christian Schulz
University of Vienna, Faculty of Computer Science, Vienna, Austria
christian.schulzQunivie.ac.at

—— Abstract

We give an improved branch-and-bound solver for the multiterminal cut problem, based on the recent

work of Henzinger et al. [22]. We contribute new, highly effective data reduction rules to transform
the graph into a smaller equivalent instance. In addition, we present a local search algorithm that
can significantly improve a given solution to the multiterminal cut problem. Our exact algorithm is
able to give exact solutions to more and harder problems compared to the state-of-the-art algorithm
by Henzinger et al. [22]; and give better solutions for more than two third of the problems that
are too large to be solved to optimality. Additionally, we give an inexact heuristic algorithm that
computes high-quality solutions for very hard instances in reasonable time.

Funding The research leading to these results has received funding from the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) /ERC
grant agreement No. 340506. Partially supported by DFG grant SCHU 2567/1-2. We further thank
the Vienna Scientific Cluster (VSC) for providing high performance computing resources.

1 Introduction

The multiterminal cut problem is a fundamental combinatorial optimization problem which
was first formulated by Dahlhaus et al. [I4] and Cunningham [I3]. Given an undirected
edge-weighted graph G = (V, E,w) with edge weights w : E +— Ny and a set T, |T| = k,
of terminals, the multiterminal cut problem is to divide its set of nodes into k blocks such
that each block contains exactly one terminal and the weight sum of the edges running
between the blocks is minimized. There are many applications of the problem: for example
multiprocessor scheduling [40], clustering [37] and bioinformatics [26], [33], [44].

The problem is known to be NP-hard for & > 3 [I4]. For k = 2 the problem reduces
to the well known minimum s-t-cut problem, which is in P. The minimum s-t-cut problem
aims to find the minimum cut in which the vertices s and t are in different blocks. Most
algorithms for the minimum multiterminal cut problem use minimum s-t-cuts as a subroutine.
Dahlhaus et al. [14] give a 2(1 — 1/k) approximation algorithm with polynomial running
time based on the notion of minimum isolating cuts, i.e. the minimum cut separating a
terminal from all other terminals. The currently best known approximation algorithm due
to Buchbinder et al. [9] uses a linear program relaxation to achieve an approximation ratio
of 1.323. Recently, Henzinger et al. [22] introduced a branch-and-reduce framework for the
problem that is multiple orders of magnitudes that classic ILP formulations for the problem
which has been the de facto standard used by practitioners. This allows researchers to solve
instances to optimality that are significantly larger than was previously possible and hence
enables the use of multiterminal cut algorithms in practical applications.

Contribution. We give an improved solver for the multiterminal cut problem, based on
the recent work of Henzinger et al. [22]. We contribute new, highly effective reductions to

https://orcid.org/0000-0002-5008-6530
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0002-4711-3323
mailto:alexander.noe@univie.ac.at
https://orcid.org/0000-0002-2823-3506
mailto:christian.schulz@univie.ac.at

Faster Parallel Multiterminal Cuts

transform the graph into a smaller equivalent instance. In addition, we present a local search
algorithm that can significantly improve a given solution to the multiterminal cut problem.
Additionally, we combine the branch-and-reduce solver with an integer linear program solver
to more efficiently solve subproblems emerging over the course of the algorithm. With our
newly introduced reducitons, the state-of-the-art algorithm by Henzinger et al. [22] is able
to solve significantly harder instances to optimality and give better solutions to instances
that are too large to solve to optimality. Additionally, we give an inexact algorithm that
gives high-quality solutions to hard problems in reasonable time.

2 Preliminaries

2.1 Basic Concepts

Let G = (V, E,w) be a weighted undirected graph with vertex set V', edge set E C V x V and
non-negative edge weights w : E — N. We extend w to a set of edges E/ C E by summing the
weights of the edges; that is, w(E’) := }_._, ,)ep w(u, v) and sets of nodes where w(V1, V2)
is the sum of edge weights connecting sets V7 and V5. Let n = |V be the number of vertices
and m = |E| be the number of edges in G. The neighborhood N (v) of a vertex v is the set of
vertices adjacent to v. The weighted degree of a vertex is the sum of the weights of its incident
edges. For a set of vertices A C V', we denote by E[A] := {(u,v) € E |u € A,v € V\ A}; that
is, the set of edges in F that start in A and end in its complement. A k-cut, or multicut, is a
partitioning of V into k disjoint non-empty blocks, i.e. ViU---UV} = V. The weight of a k-cut
is defined as the weight sum of all edges crossing block boundaries, i.e. w(E N Ui<j Vi x Vj).

2.2 Multiterminal Cuts

A multiterminal cut for k terminals T = {t1, .., tx} is a multicut with ¢t; € V4, ...t € Vj.
Thus, a multiterminal cut pairwisely separates all terminals from each other. The edge
set of the multiterminal cut with minimum weight of G is called C(G) and the associated
optimal partitioning of vertices is denoted as ¥V = {Vy,...,V,}. For a vertex v € V, V(v)
denotes the block affiliation of v in the optimal partitioning V. C can be seen as the set
of all edges that cross block boundaries in V, i.e. C(G) = U{e = (u,v) | Vi # Vu}. The
weight of the minimum multiterminal cut is denoted as W(G) = w(C(G)). At any point
in time, the best currently known upper bound for W(G) is denoted as W(G) and the
best currently known multiterminal cut is denoted as C(G). If graph G is clear from the
context, we omit it in the notation. There may be multiple minimum multiterminal cuts,
however, we aim to find one multiterminal cut with minimum weight.

In this paper we use minimum s-T-cuts. For a vertex s (source) and a non-empty vertex
set T (sinks), the minimum s-T-cut is the smallest cut in which s is one side of the cut
and all vertices in T are on the other side. This is a generalization of minimum s-t-cuts
that allows multiple vertices in T" and can be easily replaced by a minimum s-t-cut by
connecting every vertex in T with a new super-sink by infinite-capacity edges. We denote
the capacity of a minimum-s-T-cut, i.e. the sum of weights in the smallest cut separating
s from T, by M(G,s,T). This cut is also called the minimum isolating cut [I4] for vertex
s and vertex set T and the minimum isolating cut where the source side is the largest
is called the largest minimum isolating cut for s and T.

In our algorithm we use graph contraction and edge deletions. Given an edge e = (u,v) € E,
we define G/e to be the graph after contracting e. In the contracted graph, we delete vertex v
and all incident edges. For each edge (v, x) € E, we add an edge (u, z) with w(u,z) = w(v,)

M. Henzinger, A. Noe and C. Schulz

to G or, if the edge already exists, we give it the edge weight w(u,x) + w(v,z). For the
edge deletion of an edge e, we define G — e as the graph G in which e has been removed.
Other vertices and edges remain the same. An articulation point is a vertex whose removal
disconnects the graph G into multiple disconnected components. For a given multiterminal
cut S, the graph G\S splits G into k connected components, called blocks, as defined by
the cut edges in S, each containing exactly one terminal.

In the last two decades significant advances in FPT algorithms have been made: an NP-
hard graph problem is fixed-parameter tractable (FPT) if large inputs can be solved efficiently
and provably optimally, as long as some problem parameter is small. This has resulted in an
algorithmic toolbox that are by now well-established. While the multiterminal cut problem
is NP-hard, it is fized-parameter tractable (FPT), parameterized by the multiterminal cut
weight W(G). A problem is fixed-parameter tractable if there is a parameter o so that
there is an algorithm with runtime f(o) - n@Y. Marx [32] proved that the multiterminal
cut problem is FPT and Chen et al. [12] gave the first FPT algorithm with a running
time of 4"(©) . nAV) Nater improved by Xiao [45] to 2"V(@) . n@1) and by Cao et al. [I0] to
1.84W(G) . n A1) - Generally, few of the new FPT techniques are implemented and tested on
real datasets, and their practical potential is far from understood. However, recently the
engineering part in area has gained some momentum. There are several experimental studies
in the area that take up ideas from FPT or kernelization theory, e.g. for independent sets (or
equivalently vertex cover) [2, [I1], [15], [30} 24, [25], for cut tree construction[3], for treewidth
computations [5, 41, [29], for the feedback vertex set problem [27] [20], for the dominating
set problem [I], for the minimum cut [2I} 23], for the node ordering problem [36], for the
maximum cut problem [I9] and for the cluster editing problem [7]. Recently, this type of
data reduction techniques is also applied for problem in P such as matching [28],

2.3 VieCut-MTC

We present an improved solver for the multiterminal cut problem. Our work is based on a
recent result by Henzinger et al. [22], in the following named VieCut-MTC. In this section we
give a short summary of their results, for further details we refer the reader to their original
work [22]. The VieCut-MTC multiterminal cut solver is a shared-memory parallel solver for the
multiterminal cut problem. VieCut-MTC is a branch-and-reduce algorithm that performs a set
of local contraction routines to transform the graph G into an instance of smaller size H, where
the minimum multiterminal cut W(G) = W(H), i.e. the minimum multiterminal cut C(G)
can still be found on the smaller instance H. For this purpose, they use the following lemmas:

» Lemma 1. [10/[22] If an edge e = (u,v) € G is guaranteed not to be in at least one
multiterminal cut C(G) (i.e. V(u) =V (v)), we can contract e and W(G/e) = W(G). (Proof

» Lemma 2. [10/[22] If an edge e = (u,v) € E is guaranteed to be in a minimum multiter-
minal cut, i.e. there is a minimum multiterminal cut C(G) in which V(u) # V(v), we can
delete e from G and C(G — e) is still a valid minimum multiterminal cut. (Proof in [22])

Lemma [1] allows the contraction of edges that are guaranteed not to be in at least on
multiterminal cut and Lemma [2] allows the deletion of edges that are guaranteed to be in a
multiterminal cut. An example for such an edge is an edge that connects two terminal vertices.

Faster Parallel Multiterminal Cuts

Largest Minimum Isolating Cut

Dahlhaus et al. [14] show that there exists a minimum multiterminal cut C(G) for a graph
G such that for every terminal ¢t € T all vertices on the source side of the largest min-
imum isolating cut are in block ¢. Thus, according to Lemma [1} the source sides can
be contracted into their respective terminals. The cut value of this problem is equal to
the sum of all isolating cuts minus the heaviest, as any set of ¢t — 1 isolating cuts pair-
wisely separates all terminals form each other. A lower bound for the optimal solution
is the sum of all isolating cuts divided by two [14, [22].

Reductions

A variety of reductions in the work of Henzinger et al. [22] use Lemma to contract edges and
effectively reduce the size of the input graph. For every low degree vertex v with N(v) > 2,
one can contract the heaviest edge incident to v as there is at least one multiterminal cut
that does not contain it. Every heavy edge e = (v,u) with w(e) - 2 > w(E[v]) can also be
contracted. This condition can be relaxed to heavy triangles, where an edge e = (v1,v2)
that is part of a triangle (v1,vq,v3) can be contracted if w(e) + w(vy,vs) - 2 > w(E[vy]) and
w(e) + w(va,v3) - 2 > w(E[ve]). A more global reduction uses the CAPFOREST algorithm
of Nagamochi et al. [34], [35] to find a connectivity lower bound of every edge in G in almost
linear time. If an edge e = (u,v) has high connectivity, i.e. there is no small cut that
separates u and v, and no multiterminal cut that separates its incident vertices can be better
than W(G), the edge can be contracted according to Lemma |1} For full descriptions and
proofs of these reductions we refer the reader to Section 4 of [22].

Branching

When it is not possible to find any more edges to contract or delete, VieCut-MTC se-
lects an edge e incident to a terminal and creates two subproblems: G/e represents the
problem in which e is not part of the multiterminal cut C(G) and G — e represents the
problem in which it is. Both subproblems are added to a shared-memory parallel problem
queue Q and solved independently from each other.

3 Improved Reductions and Branching

We now introduce a set of new reductions to further decrease the problem size. Additionally,
we give an alternative branching rule that allows for faster branching.

3.1 New Reductions

VieCut-MTC contracts edges incident to low degree vertices, edges with high weight
and edges whose incident vertices have a high connectivity. Additionally, VieCut-MTC
contracts the largest minimum isolating cut for each terminal to the remainder of
the terminal set. We now introduce additional reductions that are able to further
shrink the graph and thus speed up the algorithm.

3.1.1 Articulation Points

Let ¢ € V be an articulation point in G whose removal disconnects the graph into multiple
connected components. For any of these components that does not contain any terminals,
we show that all vertices in the component can be contracted into ¢.

M. Henzinger, A. Noe and C. Schulz

» Lemma 3. For an articulation point ¢ whose removal disconnects the graph G into multiple
connected components (Gi,...,G,) and a component G; with i € {1,...,p} that does not
contain any terminals, no edge in G; or connecting G; with ¢ can be part of C(G).

Proof. Let e be an edge that connects two vertices in {V; U ¢}. Assume e € C(G), i.e. e is
part of the minimum multiterminal cut of G. This means that vertices in {V; U ¢} are not
all in the same block. By changing the block affiliation of all vertices in {V; U ¢} to V(¢)
we can remove all edges connecting vertices in {V; U ¢} from the multiterminal cut, thus
decrease the weight of the multiterminal cut by at least w(e). As ¢ is an articulation point,
G, is only connected to the rest of G through ¢ and thus no new edges are introduced to the
multiterminal cut. This is a contradiction to the minimality of C(G), thus no edge e that
connects two vertices in {V; U ¢} is in the minimum multiterinal cut C(G). <

Using Lemmas [I| and [3| we can contract all components that contain no terminals into
the articulation point ¢. All articulation points of a graph can be found in linear time
using an algorithm by Tarjan and Vishkin [42] based on depth-first search. The algorithm
performs a depth-first search and checks in the backtracking step whether for a vertex
v there exists an alternative path from the parent of v to every of descendant of v. If
there is no alternative path, v is an articulation point in G.

3.1.2 Equal Neighborhoods

In many cases, the resulting graph of the reductions contains groups of vertices that are
connected to the same neighbors. If the neighborhood and respective edge weights of two
vertices are equal, we can use Lemmas [T] and [4] to contract them into a single vertex.

» Lemma 4. For two vertices v1 and vy with {N(v1)\v2} = {N(v2)\vi} where for all
v € N(v1)\v2, w(v1,v) = w(ve,v), there is at least one minimum multiterminal cut where

V(Ul) = V(?)Q).

Proof. Let C' be a partitioning of the vertices in G with C(v1) # C(va), let ¢ be the
corresponding cut, where e = (u,v) € (, if C(u) # C(v) and let cw(v) be the total weight of
edges in ¢ incident to a vertex v € V. W.l.o.g. let vy be the vertex with cw(vs) > cw(vy). We
analyze this in two steps: We assume that when moving vs to C(v1) that all edges incident
to vy in its old location are removed from ¢, which drops the weight of ¢ by cw(vs) and then
all edges incident to vs in its new location are added to ¢, which is exactly cw(vy) by the
conditions of the lemma. Thus the weight of ¢ changes by cw(vi) — cw(v2) < 0. If the edge
e12 = (v1,v2) exists, both cw(vy) and cw(ve) are furthermore decreased by w(ej2), as the
edge connecting them is not a cut edge anymore. As we only moved the block affiliation of
vg, the only edges newly introduced to (are edges incident to vy. Thus, the total weight
of the multiterminal cut was not increased by moving v; and vy into the same block and
we showed that for each cut ¢, in which C'(v1) # C(v2) there exists a cut of equal or better
value in which vy and vy are in the same block. Thus, there exists at least one multiterminal
cut where V(v1) = V(vs). <

We detect equal neighborhoods for all vertices with neighborhood size smaller or equal
to a constant cy using two linear time routines. To detect neighboring vertices v; and
ve with equal neighborhood, we sort the neighborhood vertex IDs including edge weights
by vertex IDs (excluding the respective other vertex) for both v; and vy and check for
equality. To detect non-neighboring vertices v; and vo with equal neighborhood, we create
a hash of the neighborhood sorted by vertex ID for each vertex with neighborhood size

Faster Parallel Multiterminal Cuts

Figure 1 Tllustration of vertex sets in Lemma

smaller or equal to cy. If hashes are equal, we check whether the condition for contraction
is actually fulfilled. As the neighborhoods to sort only have constant size, they can be
sorted in constant time and thus the procedures can be performed in linear time. We
perform both tests, as the neighborhoods of neighboring vertices contain each other and
therefore do not result in the same hash value; and non-neighboring vertices are not in
each others neighborhood and therefore finding them requires checking the neighborhood
of every neighbor, which results in a large search space. We set ¢y = 5, as most equal
neighborhoods we encountered are in vertices with neighborhood size < 5.

3.1.3 Maximum Flow from Non-terminal Vertices

Let v be an arbitrary vertex in V\T, i.e. a non-terminal vertex of G. Let (V,,V\V,) be
the largest minimum isolating cut of v and the set of terminal vertices T. Lemma [5| shows
that there is at least one minimum multiterminal cut C(G) so that Vz € V, : V() = V(v)
and thus V,, can be contracted into a single vertex.

» Lemma 5. Let v be a vertex in V\T. Let (V,,V\V,) be the largest minimum isolating
cut of v and the set of terminal vertices T and let N\(G,v,T) be the weight of the minimum

isolating cut (Vy,, VAV,,). There exists at least one minimum multiterminal cut C(G) in which
Ve eV, :V(z) =V(v).

Proof. As (V,,V\V,) is a minimum isolating cut with the terminal set as sinks, we know
that no terminal vertex is in V,. Assume that C(G) cuts V,,, i.e. there is a non empty vertex
set Vo € V, so that Vo € Vi : V(z) € V(v). We will show that the existance of such a
vertex set contradicts the minimality of C(G). Figure [I] gives an illustration of the vertex
sets defined here.

Due to the minimality of the minimum isolating cut, we know that w(Ve, V,\Ve) >
w(Ve, V\V,) (i.e. the connection of Vi to the rest of V, is at least as strong as the connection
of Ve to (V\V,)), as otherwise we could remove Vi from V, and find an isolating cut of
smaller size.

We now show that by changing the block affiliation of all vertices in Vo to V(v), i.e.
removing all vertices from the set Vo, we can construct a multiterminal cut of equal or better
cut value. By changing the block affiliation of all vertices in Vi to V(v), we remove all edges
connecting Ve to (V,\Ve) from C(G) and potentially more, if there were edges in C(G) that
connect two vertices both in V. At most, the edges connecting Ve and (V\V,) are newly
added to C(G). As w(Ve, Vu\Ve) > w(Ve, V\V,), the cut value of C(G) will be equal or
better than previously. Thus, there is at least one multiterminal cut in which V¢ is empty
and therefore Vo € V,, : V() = V(v). <

M. Henzinger, A. Noe and C. Schulz

We can therefore run a maximum s-7T-flow from a non-terminal vertex to the set of all
terminals T" and contract the source side of the largest minimum isolating cut into a single
vertex. These flow problems can be solved embarassingly parallel, in which every processor
solves an independent maximum s-7T-flow problem for a different non-terminal vertex v.

While it is possible to run a flow problem from every vertex in V', this is obviously not
feasible as it would entail excessive running time overheads. Promising vertices to use for
maximum flow computations are either high degree vertices or vertices with a high distance
from every terminal. High degree vertices are promising, as due to their high degree it is
more likely that we can find a minimum isolating cut of size less than their degree. Vertices
that have a high distance to all terminals are on ’the edge of the graph’, potentially in a
subgraph only weakly connected to the rest of the graph. Running a maximum flow then
allows us to contract this subgraph. In every iteration, we run 5 flow problems starting from
high-distance vertices and 5 flow problems starting from high-degree vertices.

3.2 Vertex Branching

When the VieCut-MTC-algorithm is initialized, it only has a single problem containing the
whole graph GG. While independent minimum isolating cuts are computed in parallel, most
of the shared-memory parallelism in VieCut-MTC comes from the embarassingly parallel
solving of different problems on separate threads. When branching, VieCut-MTC selects
the highest degree vertex that is adjacent to a terminal and branches on the heaviest
edge connecting it to one of the terminals. The algorithm thus creates only up to two
subproblems and is still not able to use the whole machine.

We propose a new branching rule that overcomes these limitations by selecting the highest
degree vertex incident to at least one terminal and use it to create multiple subproblems
to allow for faster startup. Let x be the vertex used for branching, {¢1,...,t;} for some
1 > 1 be the adjacent terminals of z and wj; be the weight of the heaviest edge connecting
z to a terminal. We now create up to i + 1 subproblems as follows:

For each terminal ¢; with j € {1,...,4} with w(z,t;) + w(z,V\T) > wys create a new
problem P; where edge (z,t;) is contracted and all other edges connecting x to terminals are
deleted. Thus in problem P;, vertex x belongs to block V(t;). If w(z,t;) +w(z, V\T) < war,
i.e. the weight sum of the edges connecting x with ¢; and all non-terminal vertices is not
heavier than wj, the assignment to block V(t;) cannot be optimal and thus we do not
need to create the problem P;, also called pruning of the problem:

» Lemma 6. Let G = (V, E) be a graph, T CV be the set of terminal vertices in G, and
x €V be a vertex that is adjacent to at least one terminal and for an i € {1,...,|T|} be the
index of the terminal for which e; = (x,t;) is the heaviest edge connecting x with any terminal.
Let wys be the weight of e;. If there exists a terminal t; adjacent to x with j € {1,...,|T|}
with w(z,t;) +w(z, V\T) > wn, there is at least one minimum multiterminal cut C(G) so
that V(z) # j, i.e. x is not in block j.

Proof. If V(x) = 4, i.e. = is in the block of the terminal it has the heaviest edge to, the
sum of cut edge weights incident to x is < E(x) — wyy, as edge e; of weight wj is not a
cut edge in that case. If V(z) = j, i.e. x is in the block of terminal j, the sum of cut edge
weights incident to z is > E(x) — (w(z, V\T) +w(x, t;)), as all edges connecting x with other
terminals than t; are guaranteed to be cut edges. As w(z,t;) +w(z, V\T) > was, even if all
non-terminal neighbors of x are in block j, the weight sum of incident cut edges is not lower
than when x is placed in block i. As the block affiliation of x can only affect its incident

Faster Parallel Multiterminal Cuts

edges, the cut value of every solution that sets V(z) = j would be improved or remain the
same by setting V(z) = i. <

If w(z,V\T) > wp and ¢ < |T|, we also create problem P;y;, in which all edges
connecting = to a terminal are deleted. This problem represents the assignment of = to a
terminal that is not adjacent to it. We add each subproblem whose lower bound is lower
than the currently best found solution W to the problem queue Q. As we create up to
|T| subproblems, this allows for significantly faster startup of the algorithm and allows
us to use the whole parallel machine after less time than before.

3.3 Integer Linear Programming

Integer Linear Programming can be used as an alternative to branch-and-reduce [22] and
for some problems this is faster than branch-and-reduce. We integrate the ILP formula-
tion from the work of [22] and include it directly into VieCut-MTC as an alternative to
branching. We give the ILP solver a time limit and if it is unable to find an optimal
solution within the time limit, we instead perform a branch operation. In Section [5.2]
we study which subproblems to solve with an ILP first.

3.4 Improving Bounds with Greedy Optimization

The VieCut-MTC algorithm prunes problems which can’t result in a solution which is better
than the best solution found so far. Therefore, even though it is a deterministic algorithm
that will output the optimal result when it terminates, performing greedy optimization
on intermediate solutions allows for more aggressive pruning of problems that cannot be
optimal. Additionally, VieCut-MTC has reductions that depend on the value of W(G) and
can thus contract more vertices if the cut value W\(G) is lower.

For a subproblem H = (Vy, Ey) with solution p, the original graph G = (Vg, Eg) and a
mapping 7 : Vg — Vy that maps each vertex in Vg to the vertex in Vi that encompasses it,
we can transfer the solution p to a solution v of G by setting the block affiliaton of every
vertex v € Vi to v(v) := w(p(v)). The cut value of the solution w(7y) is defined as the sum of
weights of the edges crossing block boundaries, i.e. the sum of edge weights where the incident
vertices are in differnet blocks. Let &; (V) be the set of all vertices v € Vg where y(v) = .

We introduce the following greedy optimization operators that can transform + into
a better multiterminal cut solution ypp with w(yivp) < w(7).

3.4.1 Kernighan-Lin Local Search

Kernighan and Lin [3I] give a heuristic for the traveling-salesman problem that has been
adapted to many hard optimization problems [38] [43] 46| [I8], where each vertex v € Vg
is assigned a gain g(v) = maXe(;,.. |7}z (v) 2 W, &(Va)) — w(v, &) (Va)), ie. the
improvement in cut value to be gained by moving v to another block, the best connected
other block. We perform runs where we compute the gain of every vertex that has at
least another neighbor in a different block and move all vertices with non-negative gain.
Additionally, if a vertex v has a negative gain, we store its gain and associated best connected
other block. For any neighbor u of v that also has the same best connected other block,
we check whether g(w) + g(v) + 2 - w(v,u) > 0, i.e. moving both w and v at the same
time is a positive gain move. If it is, we perform the move.

M. Henzinger, A. Noe and C. Schulz

3.4.2 Pairwise Maximum Flow

For any pair of blocks 1 < i < j < |T| where w(§(Ve),€(Vg)) > 0, ie. there
is at least one edge from block ¢ to block j, we can create a maximum s-t flow
problem between them: we create a graph Fj; that contains all vertices in &(Vg)
and &;(Vi) and all edges that connect these vertices.

Let H be the current problem graph created by performing reductions and branching
on the original graph G. All vertices that are encompassed in the same vertex in problem
graph H as the terminals ¢ and j are hereby contracted into the corresponding terminal
vertex. We perform a maximum s-t-flow between the two terminal vertices and re-assign
vertex assignments in v according to the minimum s-t-cut between them. As we only model
blocks &;(Ve) and &;(Ve), this does not affect other blocks in . In the first run we perform
a pairwise maximum flow between every pair of blocks i and j where w(&;(Ve),&;(Ve)) > 0
in random order. We continue on all pairs of blocks where w(&;(Ve),€;(Ve)) was changed
since the end of the previous maximum flow iteration between them.

We first perform Kernigham-Lin local search until there is no more improvement, then pair-
wise maximum flow until there is no more improvement, followed by another run of Kernigham-
Lin local search. As pairwise maximum flow has significantly higher running time, we spawn
a new thread to perform the optimization if there is a CPU core that is not currently utilized.

4 Fast Inexact Solving

VieCut-MTC in an exact algorithm, i.e. when it terminates the output is guaranteed to be
optimal. As the multiterminal cut problem is NP-complete [I4], it is not feasible to expect
termination in difficult instances of the problem. Henzinger et al. [22] report that their
algorithm often does not terminate with an optimal result but runs out of time or memory and
returns the best result found up to that point. Thus, it makes sense to relax the optimality
constraint and aim to find a high-quality (but not guaranteed to be optimal) solution faster.

A key observation herefor is that in many problems, most, if not all vertices that are
not already contracted into a terminal at the time of the first branch, will be assigned
to a few terminals whose weighted degree at that point is highest. See Figure [2] for an
example with 4 terminals (selected with high distance to each other) on graph uk from
the Walshaw Graph Partitioning Archive [39]. As we can see, at the time of the first
branch (right figure), most vertices that are not assigned to the pink terminal in the optimal
solution are already contracted into their respective terminals. The remainder is mostly

Figure 2 Minimum multiterminal cut for graph uk [39] and four terminals - on complete graph
(left) and remaining graph at time of first branch operation (right), visualized using Gephi-0.9.2 [6]

10

Faster Parallel Multiterminal Cuts

assigned to a single terminal. As we can observe similar behavior in many problems,
we propose the following heuristic speedup operations:

Let § € (0,1) be a contraction factor and Ty be the set of all terminals that are
not yet isolated in graph H. In each branching operation on an intermediate graph H,
we delete all edges around the [d - |Ty|] terminals with lowest degree. Additionally, we
contract all vertices adjacent to the highest degree terminal that are not adjacent to any
other terminal into the highest degree terminal. This still allows us to find all solutions
in which no more vertices were added to the lowest degree terminals and the adjacent
vertices are in the same block as the highest degree terminals.

Additionally, in a branch operation on vertex v, we set a maximum branching factor
B and only create problems where v is contracted into the 8 adjacent terminals it has the
heaviest edges to and one problem in which it is not contracted into either adjacent terminal.
This is based on the fact that all other edges connecting v to other terminals will be part of
the multiterminal cut and the greedy assumption that it is likely that the optimal solution
does not contain at least one of these heavy edges. By default, we set 6 = 0.1 and g = 5.

5 Experiments and Results

We now perform an experimental evaluation of the proposed work. This is done in the
following order: first we analzye the impact of different reductions introduced in the work of
Henzinger et al. [22] and in this work. We then analyze which subproblems to solve using
integer linear programming and then compare the results of VieCut-MTC with our exact and
inexact algorithms on a variety of graphs from different sources. Here, VieCut-MTC denotes
the algorithm of Henzinger et al. [22], Exact-MTC denotes the exact version of our algorithm
and Inexact-MTC denotes the heuristic algorithm proposed in Section [

We implemented the algorithms using C++-17 and compiled all code using g++ version
7.3.0 with full optimization (-03). Our experiments are conducted on two machine types. Ma-
chine A is a machine with two Intel Xeon E5-2643v4 with 3.4 GHz with 6 CPU cores each and
1.5 TB RAM in total. Machine B is a machine in the Vienna Scientific Cluster with two Intel
Xeon E5-2650v2 with 2.6GHz with 8 CPU cores each and 64 GB RAM in total. We limit the
maximum amount of memory used for each problem to 32 GB. ILP problems are solved using
Gurobi 8.1.0. When we report a mean result we give the geometric mean as problems differ sig-
nificantly in cut size and time. Our code is freely available under the permissive MIT licenseﬂ

To evaluate the performance of different multiterminal cut algorithms, we use a wide
variety of graphs from different sources. We re-use a large subset of the map, social and
web graphs graphs used by Henzinger et al. [22]. Additionally, we add numerical graphs
from the Walshaw Graph Partitioning Benchmark [39] and a set of graphs from the 10"
DIMACS implementation challenge [4] and the SuiteSparse Matrix Collection (formerly
UFSparse Matrix Collection) [I6]. Table [2| gives an overview over the graphs used in this
work. A table with properties of the instances be found in Appendix [A]

As the instances generally do not have any terminals, we find random vertices that have
a high distance from each other in the following way: we start with a random vertex r,
run a breadth-first search starting at r and select the vertex v encountered last as first
terminal. While the number of terminals is smaller than desired, we add another terminal by
running a breadth-first search from all current terminals and adding the vertex encountered
last to the list of terminals. We then run a bounded-size breadth-first search around each

! https://github.com/alexnoe/VieCut

https://github.com/alexnoe/VieCut

M. Henzinger, A. Noe and C. Schulz

D 1.04 .
_g —— lsolatingCuts
© +LowDegree
§0'8< —— +HighDegree
< —— +Triangles
$ 0.6 e
O onnectivity
%‘ —— +ArticulationPoints
o 0.4 +EqualNeighborhoods
o —— +NonTerminalFlows
0 0.2
QO
£
= 0.0

0 200 400 600 800

Instance

Figure 3 Number of vertices in graph after reductions are finished, normalization by (# vertices
remaining with all reductions / # vertices remaining in variant) and sorted by normalized value.

terminal to create instances where the minimum multiterminal cut does not have k —1 blocks
consisting of just a single vertex each. This results in problems in which well separated
clusters of vertices are partitioned and the task consists of finding a partitioning of the
remaining vertices in the boundary regions between already partitioned blocks. This relates
to clustering tasks, in which well separated clusters are labelled and the task consists of
labelling the remaining vertices inbetween. Additionally, we use a subset of the generated
instances of Henzinger et al. [22] to compare our work to VieCut-MTC.

In order to compare different algorithms, we use performance profiles [17]. These plots
relate the cut size of all algorithms to the corresponding cut size produced by each al-
gorithm. More precisely, the y-axis shows #{objective < 7 x best}/#instances, where
objective corresponds to the result of an algorithm on an instance and best refers to the
best result of any algorithm shown within the plot. The parameter 7 > 1 in this equa-
tion is plotted on the z-axis. For each algorithm, this yields a non-decreasing, piecewise
constant function. Thus, if we are interested in the number of instances where an al-
gorithm is the best, we only need to look at 7 = 1.

5.1 Reductions

We first analyze the impact of the different reductions on the size of the graph at the time of
first branch. For this, we run experiments on all graphs in Appendix [A| with k& = {4, 8,10}
terminals and 10% of all vertices added to the terminals on machine B. On these instances,
we run subsets of all contractions exhaustively and check which factor of vertices remain in
the graph. A value of 1 thus indicates that the reductions were unable to find any edges to
contract, a value close to 0 shows that almost no vertices remain and the resulting problem is
far smaller than the original problem. Figure [3] gives result with 8 different variants, starting
with a version that only runs isolating cuts and adding one reduction family per version. For
this, we sorted the reductions by their impact on the total running time. In Figure 3] we can
see that using all reductions allows us to reduce the number of vertices by more than half in
about half of all instances and can find a sizable number of reductions on almost any instance.

We can see that running the local reductions in VieCut-MTC are very effective on almost
all instances. In average, IsolatingCuts reduce the number of vertices by 33%, LowDegree
reduces the number of vertices in the remaining graph by 17%, HighDegree by 7% and
Triangles by 8%. In contrast, Connectivity only has a negligible effect, which can be

11

12

Faster Parallel Multiterminal Cuts

60 1 R # terminals
: S
50‘ . 4
. - . s
'_'40‘]
(7]
1) . ° 6
£301i . 7
= : .
201 i 8
TRt e
0 a.v"g';'j;?'.x" -
0 50000 100000 150000 200000

Edges

Figure 4 Running time of ILP subproblems in relation to |E]|.

explained by the fact that it contracts edges whose connectivity is larger than a value related to
the difference of upper bound to total weight of deleted edges. As there are almost no deleted
edges in the beginning, this value is very high and almost no edge has high enough connectivity.

Out of the new reductions that are not part of VieCut-MTC, all find a significant amount of
contractible edges on the graphs already contracted by the reductions included therein. In aver-
age, ArticulationPoints reduces the number of vertices on the already contracted graphs by
1.9%, EqualNeighborhoods reduces the number of vertices by 7.8% and NonTerminalFlows
reduces the number of vertices by 2.0%. However, there are some instances in which the
newly introduced reductions reduce the number of vertices remaining by more than 99%.

5.2 Integer Linear Programming

In order to get all a wide variety of ILP problems, we run the Inexact-MTC algorithm
on all instances in Appendix [A] with k¥ = 10 terminals and 10% of vertices added to
the terminals on machine B. As Inexact-MTC removes low-degree terminals and contracts
edges, we have subproblems with very different sizes and numbers of terminals. In this
experiment, whenever Inexact-MTC chooses between branching and ILP on graph G, we
select a random integer r € (1,200000). We use this random integer, as we want to have
problems of all different sizes and using a hard limit would result in many instances just
barely below that size limit. We select 200000 edges as the maximum, as we did not
encounter any larger instances in which the ILP was solved to optimality in the allotted
time. If |E| < r, the problem is solved with ILP, otherwise the algorithm branches on a
vertex incident to a terminal. The timeout is set to 60 seconds.

Figure [4] shows the time needed to solve the ILP problems in relation to the number
of edges in the graph. We can see that there is a strong correlation between problem
size and total running time, but there are still a large number of outliers that cannot be
solved in the allotted time even though the instances are rather small. In the following,
we set the limit to 50000 edges and solve all instances with fewer than 50000 edges with
an integer linear program. If the instance has at least 50000 edges, we branch on a vertex
incident to a terminal and create more subproblems.

M. Henzinger, A. Noe and C. Schulz

5.3 Comparison to VieCut-MTC

We use the experiment of Section 8.7 in the work of Henzinger et al. [22] to compare
Exact-MTC to VieCut-MTC on the instances used in their work. The experiment uses a set of
large social and web graphs with pre-defined clusters and k = {3,4, 5,8} terminals, where
10 — 25% of vertices are marked as terminal vertices initially, a total of 160 instances. We
run the experiments on machine A using all 12 cores and set the time limit to 600 seconds.

Out of 160 instances, VieCut-MTC terminates with an optimal result in 32 instances,
while Exact-MTC terminates with an optimal result in 46 instances. Out of the 115 instances
that were not solved to optimality by both algorithms, Exact-MTC gives a better result on 75
instances and the same result on the other 38 instances. The geometric mean of results given
by Exact-MTC and Inexact-MTC are both about 1.5% lower than VieCut-MTC. Note that in
the experiments performed in [22], which uses a larger machine (32 cores) and has a timeout
of 3600 seconds, VieCut-MTC has a geometric mean of about 0.1% better than VieCut-MTC
in this work. The largest part of the improvement of Exact-MTC and Inexact-MTC over
VieCut-MIC is gained by the greedy optimization detailed in Section [3:4]

Figure shows the performance profile of this experiment. We can see that
both Exact-MTC and Inexact-MTC are almost always optimal or very close to it. In
contrast, VieCut-MTC gives noticably worse results on about 20% of instances and
more than 5% worse results on 10% of all instances.

5.4 Large Multiterminal Cut Problems

We compare VieCut-MTC, Exact-MTC and Inexact-MTC on all graphs with k£ = {4,5,8,10}
terminals and 10% and 20% of vertices added to the terminal. For each combination of graph,
number of terminals and factor of vertices in terminal, we create three problems with random
seeds s = {0, 1,2}. Thus, we have a total of 816 problems. We set the time limit per algorithm

and problem to 600 seconds. We run the experiment on machine A using all 12 CPU cores.

If the algorithm does not terminate in the allotted time or memory limit, we report the best
intermediate result. Note that is a soft limit, in which the algorithm finishes the current

Table 1 Result overview for large multiterminal cut problems on graphs from Appendix

Terminals VieCut-MTC Exact-MTC Inexact-MTC
4 Best Solution 109 183 175
Mean Solution 161 799 159402 159 499
Better Exact 6 94 —
5 Best Solution 81 173 158
Mean Solution 216191 210928 211090
Better Exact 6 121 —
8 Best Solution 42 139 175
Mean Solution 346 509 331112 330856
Better Exact 2 162 —
10 Best Solution 37 129 173
Mean Solution 412138 392561 391 822

Better Exact 1 165 —

13

14 Faster Parallel Multiterminal Cuts

Performance Profile

= —

e

[N

o o
[oe] ©

rel. # instances obj < T best algo

0.7

0.6

05

04 VieCut-MTC —— |

’ Exact-MTC ——
I‘nexact-MT‘C —_—

037 1.05 1.1 1.15 1.2 1.25

(a) Instances of Section

Performance Profile

[

———
8 —
© 0.9
7]
g, 7
s //
\"
T 0.7 /
o
806
(8]
s/
% 05
£ .
304 / VieCut-MTC ——— |
< Exact-MTC ——
= 03 I‘nexact—MT‘C —_—
~1 1.05 1.1 1.15 1.2 1.25

(b) Instances of Section

Figure 5 Performance profiles for multiterminal cut algorithms

operation and aims to terminate gracefully if the time or memory limit is reached. As many
of these are very large instances, most instances in this section are not solved to optimality.

Table [I] gives an overview of the results. For each algorithm, we give the number of times,
where it gives the best (or shared best) solution over all algorithms; the geometric mean of
the cut value; and for VieCut-MTC and Exact-MTC the number of instances in which they
have a better result than the respective other. In all instances, in which VieCut-MTC and
Exact-MTC terminate with the optimal result, Inexact-MTC also gives the optimal result.
We can see that in the problems with 4 and 5 terminals, Exact-MTC slightly outperforms
Inexact-MTC both in number of best results and mean solution value. In the problems with
8 and 10 terminals, Inexact-MTC has slightly better results in average. Thus, disregarding
the optimality constraint can allow the algorithm to give better solutions faster especially
in hard problems with a large amount of terminals.

However, both new algorithms outperform VieCut-MTC on almost all instances where not
all algorithms give the same result. Here, Exact-MTC gives a better result than VieCut-MTC

M. Henzinger, A. Noe and C. Schulz

in 66% of all instances, while VieCut-MTC gives the better result in only 2% of all instances.
As most problems do not terminate with an optimal result, we are unable to say how
far the solutions are from the globally optimal solution. Note that Inexact-MTC gives
an optimal result in all instances in which all algorithms terminate. Figure [6] shows the
progress of the best solution for the algorithms in a set of problems. For both Exact-MTC
and Inexact-MTC we can see large improvements to the cut value when the local search
algorithm is finished on the first subproblem. In contrast, VieCut-MTC has more small
step-by-step improvements and generally gives worse results.

Figure [bb| shows the performance profile for the instances in this section. Here we can see
that VieCut-MTC has significantly worse results on a large subset of the instances, with more
than 10% of instances where the result is worse by more than 10%. Also, on a few instances, the
results given by Exact-MTC and Inexact-MTC differ significantly. In general, both of them out-
perform VieCut-MTCon most instances that are not solved to optimality by every algorithm.

6 Conclusion

In this paper, we give a fast parallel solver that gives high-quality solutions for large
multiterminal cut problems. We give a set of highly-effective reduction rules that transform
an instance into a smaller equivalent one. Additionally, we directly integrate an ILP
solver into the algorithm to solve subproblems well suited to be solved using an ILP; and
develop a flow-based local search algorithm to improve a given optimal solution. These
optimizations significantly increase the number of instances that can be solved to optimality
and improve the cut value of multiterminal cuts in instances that can not be solved to
optimality. Our algorithm gives better solutions in more than two thirds of these instances,
often improving the result by more than 5% on hard instances. Additionally, we give an
inexact algorithm for the multiterminal cut problem that aggressively shrinks the graph
instances and is able to even outperform the exact algorithm on many of the hardest
instances that are too large to be solved to optimality while still giving the exact solution
for most easier instances. Important future work consists of improving the scalability of
the algorithm by giving a distributed memory version.

—— References

1 Faisal N. Abu-Khzam, Shaowei Cai, Judith Egan, Peter Shaw, and Kai Wang. Turbo-charging
dominating set with an fpt subroutine: Further improvements and experimental analysis. In
Theory and Applications of Models of Computation, pages 59-70, Cham, 2017. Springer Intl.
Publishing.

2 Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT algorithms in
practice: A case study of vertex cover. Theor. Comput. Sci., 609, Part 1:211-225,
2016. URL: http://www.sciencedirect.com/science/article/pii/S030439751500852X,
doi:http://dx.doi.org/10.1016/j.tcs.2015.09.023.

3 Takuya Akiba, Yoichi Iwata, Yosuke Sameshima, Naoto Mizuno, and Yosuke Yano. Cut tree
construction from massive graphs. In 16th Intl. Conf. on Data Mining, ICDM 2016, pages

775-780, 2016. URL: https://doi.org/10.1109/ICDM.2016.0089, doi:10.1109/ICDM.2016,

0089,

4 David A Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea Kappes, and
Dorothea Wagner. Benchmarking for graph clustering and partitioning. Encyclopedia of Social
Network Analysis and Mining, pages 73-82, 2014.

15

http://www.sciencedirect.com/science/article/pii/S030439751500852X
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1109/ICDM.2016.0089
http://dx.doi.org/10.1109/ICDM.2016.0089
http://dx.doi.org/10.1109/ICDM.2016.0089

16

Faster Parallel Multiterminal Cuts

10

11

12

13

14

15

16

17

18

19

20

21

22

Max Bannach and Sebastian Berndt. Practical Access to Dynamic Programming on Tree
Decompositions, 2018. URL: http://drops.dagstuhl.de/opus/volltexte/2018/9469, doi:
10.4230/LIPIcs.ESA.2018.6.

Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: an open source software
for exploring and manipulating networks. In Third international AAAI conference on weblogs
and social media, 2009.

Sebastian Bocker, Sebastian Briesemeister, and Gunnar W. Klau. Exact algorithms for
cluster editing: Evaluation and experiments. Algorithmica, 60(2):316-334, Jun 2011. URL:
https://doi.org/10.1007/s00453-009-9339-7, doi:10.1007/s00453-009-9339-7.

Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In
Proceedings of the Thirteenth International World Wide Web Conference (WWW 2004), pages
595-601, Manhattan, USA, 2004. ACM Press.

Niv Buchbinder, Joseph Seffi Naor, and Roy Schwartz. Simplex partitioning via exponential
clocks and the multiway cut problem. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 535-544. ACM, 2013.

Yixin Cao, Jianer Chen, and J-H Fan. An ox(1.84 k) parameterized algorithm for the
multiterminal cut problem. Information Processing Letters, 114(4):167-173, 2014.

Lijun Chang, Wei Li, and Wenjie Zhang. Computing A near-maximum independent set in linear
time by reducing-peeling. In 2017 ACM Intl. Conf. on Management of Data, SIGMOD’17,
pages 1181-1196. ACM, 2017. URL: http://doi.acm.org/10.1145/3035918.3035939, |doi :
10.1145/3035918.3035939.

Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
minimum node multiway cut problem. Algorithmica, 55(1):1-13, 20009.

William H Cunningham. The optimal multiterminal cut problem. In Reliability of computer
and communication networks, pages 105-120, 1989.

Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. STAM Journal on Computing, 23(4):864—
894, 1994.

Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F.
Werneck. Accelerating local search for the maximum independent set problem. In Intl. Symp.
on Ezxperimental Algorithms, pages 118-133. Springer, 2016.

Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201-213, 2002.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE
computational intelligence magazine, 1(4):28-39, 2006.

Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian Schulz, and
Darren Strash. Engineering kernelization for maximum cut. In Proc. of the Twenty-Second
Workshop on Algorithm Engineering and Exzperiments, ALENEX 2020, 2020. URL: http:
//arxiv.org/abs/1905.10902, arXiv:1905.10902.

Rudolf Fleischer, Xi Wu, and Liwei Yuan. Experimental study of FPT algorithms for the
directed feedback vertex set problem. In 17th European Symposium on Algorithms, volume
5757 of Lecture Notes in Computer Science, pages 611-622, 2009.

Monika Henzinger, Alexander Noe, and Christian Schulz. Shared-memory Exact Minimum Cuts.
Proceedings of the 33rd IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2019.

Monika Henzinger, Alexander Noe, and Christian Schulz. Shared-memory branch-and-reduce
for multiterminal cuts. In 2020 Proceedings of the Twenty-Second Workshop on Algorithm
Engineering and Ezperiments (ALENEX), pages 42-55. SIAM, 2020.

http://drops.dagstuhl.de/opus/volltexte/2018/9469
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.6
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.6
https://doi.org/10.1007/s00453-009-9339-7
http://dx.doi.org/10.1007/s00453-009-9339-7
http://doi.acm.org/10.1145/3035918.3035939
http://dx.doi.org/10.1145/3035918.3035939
http://dx.doi.org/10.1145/3035918.3035939
http://arxiv.org/abs/1905.10902
http://arxiv.org/abs/1905.10902
http://arxiv.org/abs/1905.10902

M

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

. Henzinger, A. Noe and C. Schulz

Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Practical minimum
cut algorithms. In 2018 Proceedings of the Twentieth Workshop on Algorithm Engineering
and Ezperiments (ALENEX), pages 48-61. SIAM, 2018.

Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. We Got You Covered:
The Winning Solver from the PACE 2019 Implementation Challenge, Vertex Cover Track. In
SIAM Workshop on Combinatorial Scientific Computing 2020, volume abs/1908.06795. SIAM,
2020. larXiv:1908.06795.

Demian Hespe, Christian Schulz, and Darren Strash. Scalable kernelization for maximum
independent sets. In 20th Workshop on Algorithm Engineering and Experiments, pages 223237,
2018.

Ulas Karaoz, TM Murali, Stan Letovsky, Yu Zheng, Chunming Ding, Charles R Cantor, and
Simon Kasif. Whole-genome annotation by using evidence integration in functional-linkage
networks. Proceedings of the National Academy of Sciences, 101(9):2888-2893, 2004.
Krzysztof Kiljan and Marcin Pilipczuk. Experimental evaluation of parameterized algorithms
for feedback vertex set. In 17th Intl. Symp. on Experimental Algorithms, SEA 2018, volume
103 of LIPIcs, pages 12:1-12:12, 2018. doi:10.4230/LIPIcs.SEA.2018.12,

Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche. Data
reduction for maximum matching on real-world graphs: Theory and experiments. In 26th
European Symp. on Algorithms, ESA’18, volume 112 of LIPIcs, pages 53:1-53:13, 2018.

Arie MCA Koster, Hans L. Bodlaender, and Stan PM Van Hoesel. Treewidth: computational
experiments. 2001.

Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo Zhang.

Exactly solving the maximum weight independent set problem on large real-world graphs. In
21st Algorithm Engineering and Experiments, pages 144—-158, 2019.

Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498-516, 1973.

Daéniel Marx. Parameterized graph separation problems. Theoretical Computer Science,
351(3):394-406, 2006.

Elena Nabieva, Kam Jim, Amit Agarwal, Bernard Chazelle, and Mona Singh. Whole-proteome
prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics,
21(suppl_1):1302-i310, 2005.

Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54-66, 1992.

Hiroshi Nagamochi, Tadashi Ono, and Toshihide Ibaraki. Implementing an efficient minimum
capacity cut algorithm. Mathematical Programming, 67(1):325-341, 1994.

Wolfgang Ost, Christian Schulz, and Darren Strash. Engineering data reduction for nested
dissection, 2020. arXiv:2004.11315.

Ulrich Pferschy, Ridiger Rudolf, and Gerhard J. Woeginger. Some geometric clustering
problems. Nord. J. Comput., 1(2):246-263, 1994.

Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced graph
partitioning. In Proceedings of the 12th International Symposium on Ezperimental Algorithms
(SEA 2018), volume 7933 of LNCS, pages 164-175. Springer, 2013.

Alan J Soper, Chris Walshaw, and Mark Cross. A combined evolutionary search and multilevel
optimisation approach to graph-partitioning. Journal of Global Optimization, 29(2):225-241,
2004.

Harold S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE
Trans. Software Eng., 3(1):85-93, 1977.

Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. In 25th European
Symp. on Algorithms, ESA’17, volume 87 of LIPIcs, pages 68:1-68:13, 2017.

Robert E Tarjan and Uzi Vishkin. An efficient parallel biconnectivity algorithm. SIAM Journal
on Computing, 14(4):862-874, 1985.

17

http://arxiv.org/abs/1908.06795
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.12
http://arxiv.org/abs/2004.11315

18

Faster Parallel Multiterminal Cuts

43

44

45

46

Jesper Larsson Traff. Direct graph k-partitioning with a kernighan—lin like heuristic. Operations
Research Letters, 34(6):621-629, 2006.

Alexei Vazquez, Alessandro Flammini, Amos Maritan, and Alessandro Vespignani. Global
protein function prediction from protein-protein interaction networks. Nature biotechnology,
21(6):697, 2003.

Mingyu Xiao. Simple and improved parameterized algorithms for multiterminal cuts. Theory
of Computing Systems, 46(4):723-736, 2010.

Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transactions on neural
networks, 16(3):645-678, 2005.

M. Henzinger, A. Noe and C. Schulz

A Instances

Table 2 Large Real-world Benchmark Instances

Graph Source n m
Map Graphs
ak2010 [4 45292 109K
ca2010 [4] 710K 1.74M
ct2010 [4] 67578 168K
de2010 [4 24115 58028
hi2010 [4] 25016 62063
luxembourg.osm [16] 115K 120K
me2010 [4 69518 168K
netherlands.osm [I6] 2.22M 2.44M
1nh2010 M 48837 117K
nv2010 [4 84538 208K
ny2010 M 350K 855K
ri2010 [4 25181 62875
sd2010 [4] 88360 205K
vt2010 [4] 32580 77799
Social, Web and Numerical Graphs
598a [39] 111K T42K
astro-ph [I6] 16706 121K
besstk30 [39] 28924 1.01M
ca-CondMat [I6] 23133 93439
caidaRouterLevel [16] 192K 609K
citationCiteseer [I6] 268K 1.16K
cit-HepPh [I6] 34546 422K
cnr-2000 [16] 326K 2.74M
coAuthorsCiteseer [16] 227K 814K
cond-mat-2005 [16] 40421 176K
coPapersCiteseer [16] 434K 16.0M
cs4 [39] 22499 43858
eu-2005 8] 862K 16.1M
fe body [39] 45087 164K
higgs-twitter [16] 457K 14.9M
in-2004 8] 1.38M 13.6M
NACAO0015 [16] 1.04M 3.11M
uk-2002 8] 185M 261M
venturiLevel3 [16] 4.03M 8.05M
vibrobox [39] 12328 165K

20

Faster Parallel Multiterminal Cuts

B Additional Figures

cit-HepPh.graph perc=10% k=4

° —— VieCut-MCT
= —— Exact 46000
g —— Inexact
=
3 44000
£
3
£ 42000
£
10° 10t 10?2 40000
Time [s]
598a.graph perc=20% k=5
o — vViecut-mcT [11000
2 —— Exact
© —
> Inexact 10500
5
© ‘ﬂ—\—_
g 10000
€
s
s 9500
100 10 10?2
Time [s]
coAuthorsCiteseer.graph perc=20% k=10
° —— Viecut-mcT [120000
= —— Exact
3 - Inexact 1410000
5
O
g 100000
£
= — 90000
10° 10! 10?2
Time [s]

Figure 6 Progression of best result over time.

coAuthorsCiteseer.graph perc=10% k=4

° —— VieCut-MCT
3 — Bxact 62500
g —— Inexact
5 60000
O
g 57500
£
£ L\—h; 55000
10° 10t 10?2
Time [s]
ca2010.graph perc=20% k=5 le8 1.20
° —— Viecut-MCT |~
3 —— Exact
§ —— Inexact 1.15
o
6 —
1.10
: j_L
g
€ 1.05
= -_—
1.00
10! 102 10
Time [s]
ri2010.graph perc=20% k=5 le7
° —— VieCut-MCT
3 —— Exact 1.35
o —— Inexact
z 1.30
= L
(o]
€ 1.25
3
€
c 1.20
= L. =
1.15
107! 10° 10! 102 103
Time [s]

Dot at end marks termination of algorithm.

	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Multiterminal Cuts
	2.3 VieCut-MTC

	3 Improved Reductions and Branching
	3.1 New Reductions
	3.1.1 Articulation Points
	3.1.2 Equal Neighborhoods
	3.1.3 Maximum Flow from Non-terminal Vertices

	3.2 Vertex Branching
	3.3 Integer Linear Programming
	3.4 Improving Bounds with Greedy Optimization
	3.4.1 Kernighan-Lin Local Search
	3.4.2 Pairwise Maximum Flow

	4 Fast Inexact Solving
	5 Experiments and Results
	5.1 Reductions
	5.2 Integer Linear Programming
	5.3 Comparison to VieCut-MTC
	5.4 Large Multiterminal Cut Problems

	6 Conclusion
	A Instances
	B Additional Figures

