
EMMA – A Formal Basis for Querying
Enhanced Multimedia Meta Objects

Sonja Zillner and Werner Winiwarter

Faculty of Computer Science,
University of Vienna,

Liebiggasse 4, A-1010 Vienna,
sonja.zillner@univie.ac.at

Abstract. Today’s multimedia content formats primarily encode the
presentation of content but not the information the content conveys.
However, this presentation-oriented modeling only permits the inflexi-
ble, hard-wired presentation of multimedia content. For the realization
of advanced operations like the retrieval and reuse of content, automatic
composition, or adaptation to a user’s needs, the multimedia content
has to be enriched by additional semantic information, e.g. the seman-
tic interrelationships between single multimedia content items. Enhanced
Multimedia Meta Objects (EMMOs) are a novel approach to multimedia
content modeling, which combines media, semantic relationships between
those media, as well as functionality on the media (such as rendering) into
tradeable and versionable knowledge-enriched units of multimedia con-
tent. For the processing of EMMOs and the knowledge they incorporate,
suitable querying facilities are required. Based on the formal definition
of the EMMO model, in this paper, we propose and formally define the
EMMO Algebra EMMA, a query algebra that is adequate and complete
with regard to the EMMO model. EMMA offers a rich set of orthogonal
query operators, which are sufficiently expressive to provide access to all
aspects of EMMOs and enable efficient query rewriting and optimiza-
tion. In addition, they allow for the seamless integration of ontological
knowledge within queries, such as supertype/subtype relationships, tran-
sitive and inverse associations, etc. Thus, EMMA represents a sound and
adequate foundation for the realization of powerful EMMO querying fa-
cilities. We have finished the implementation of an EMMO container
environment and an EMMA query execution engine, and are currently
in the process of evaluating the query algebra in several case studies.

1 Introduction

For the presentation and rendering of multimedia content, there exist several
multimedia content formats, such as HTML [1], SMIL [2], or SVG [3]. Those
approaches have all in common that they merely focus on the encoding of the
content, but neglect the information the content conveys. As those multime-
dia content formats are limited to the modeling of presentation-related issues
of multimedia content, only the generation of inflexible hard-wired multimedia

presentations can be realized. As a prerequisite for advanced operations, such as
retrieval and reuse of content, automatic composition, and adaptation of content
to a user’s needs, additional information about the content’s semantics has to be
provided. Triggered by the research in the context of the Semantic Web initiative
[4], several attempts have been undertaken to integrate semantics into the mod-
eling of multimedia content. For recent publications on multimedia semantics
see [5], [6], [7], [8], [9], [10], an up-to-date overview is given in [11].

To facilitate the semantic modeling of multimedia content in content sharing
and collaborative applications, we have developed Enhanced Multimedia Meta
Objects (EMMOs) [12] in the context of the EU-funded CULTOS project1. An
EMMO establishes a self-contained unit of multimedia content indivisibly unify-
ing three aspects of multimedia content: The media aspect aggregates the basic
media objects of an EMMO, the semantic aspect enables the specification of
semantic associations between an EMMO’s media objects, and finally the func-
tional aspect permits EMMOs to define arbitrary, domain-specific operations
that can be invoked by applications. Moreover, by providing versioning support,
EMMOs can be modified concurrently within a distributed environment. As all
three aspects of multimedia content and the versioning information can be bun-
dled into one unit and serialized into an exchangeable format, EMMOs establish
tradeable, semantically enriched units of multimedia content.

In contrast to common approaches for the representation of multimedia con-
tent, as well as existing standards for modeling the content’s semantics, EMMOs
establish a unique way for the semantic modeling of multimedia content. Popular
standards for multimedia document models, such as HTML [1], XHTML+SMIL
[13], HyTime [14], MHEG-5 [15], MPEG-4 BIFS and XMT [16], SMIL [2], or SVG
[3], model the presentation of content by arranging basic media objects according
to temporal, spatial, and interaction relationships. Therefore, they mainly cover
the content’s media aspect, but disregard the semantic and functional aspects of
content, and provide no versioning support. Standards for modeling semantics,
such as RDF [17, 18], Topic Maps [19], MPEG-7 (especially MPEG-7’s Graph
tools for the description of content semantics [20]), or Conceptual Graphs [21],
clearly provide means for describing the semantic aspect of content. However,
they rather neglect the media aspect and functional aspect, and also do not
provide versioning support.

Within the CULTOS project, a distributed infrastructure of EMMO con-
tainers [22] and an authoring tool for the creation of EMMOs were developed.
For the realization of advanced operations on EMMOs, efficient retrieval and
processing of the information captured by EMMOs was still missing after the
completion of the CULTOS project. Therefore, we have developed the query
algebra EMMA, which provides a formal basis for querying EMMOs.

1 CULTOS was carried out from 2001 to 2003 by partners from 11 EU countries and
Israel. It aimed at providing a collaborative multimedia platform for researchers in
intertextual studies enabling them to share and communicate their knowledge about
the relationships between cultural artifacts. See http://www.cultos.org for more
information.

The contribution of this paper is to introduce the formal foundation of the
query algebra EMMA. The paper builds on, revises, and extends previous re-
search work published in [12], [23], and [24]. By addressing an EMMO’s media,
semantic, and functional aspect, as well as its versioning information, EMMA
is adequate and complete with regard to the EMMO model. EMMA comprises
an extensive set of simple and orthogonal query operators (extraction operators,
navigational operators, selection predicates, constructors, and a join operator),
which allow the construction of more complex queries against EMMOs, thus
providing the basis for efficient query rewriting and optimization.

The remainder of the paper is organized as follows. Section 2 introduces
and formally defines the EMMO model, Sect. 3 discusses the requirements of
a query algebra for EMMOs. Section 4 takes a look at related approaches and
Sect. 5 introduces a representative selection of EMMA’s formal foundation along
with illustrative examples. Section 6 briefly introduces the EMMO and EMMA
implementation and, finally, Sect. 7 concludes this paper and gives an outlook
on future work.

2 The EMMO Model

As mentioned before, EMMOs establish tradable, knowledge-enriched units of
multimedia content that indivisibly combine the content’s media, semantic, and
functional aspect, as well as its versioning information into one single object.

The formal components of the EMMO model are entities, which occur in
four different kinds – logical media parts representing media objects or parts of
media objects, ontology objects representing concepts of an ontology, associations
modeling binary relationships between entities, and EMMOs establishing an
aggregation of semantically related entities.

In the following subsections, we formally define entities and their four spe-
cializations and use real-world example EMMOs originating from the CULTOS
project (see [25]) to illustrate the EMMO model. Moreover, to exemplify the
integration of domain knowledge, we use an extended version of the Ontology of
Intertextual Studies [26].

2.1 Entities

Each entity w is characterized by thirteen properties:

– Each entity w has a global and unique object identifier (OID) ow represented
as universal unique identifier (UUID) [27], which enables the unique identi-
fication of entities in distributed scenarios.

– As UUIDs are not really useful for humans, each entity w has also a human
readable name nw expressed as string value.

– For classifying whether an entity w is a logical media part, an ontology
object, an association, or an EMMO, its kind kw is specified accordingly.

Hooper

Director

Dracula Movies

inspire inspire

Salem�s Lot

http://.../Salem183.avi

Movie

http://.../Salem112.avi

The Cabinet of
Dr. Caligari

MovieWiene

Director

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

duration: 183min
format: AVI
.....

duration: 112min
format: AVI
.....

RenderingImplementation

Rendering

http://../Caligari.mpeg

logical media part

ontology object

association

EMMO

connector

attribute

operation

entity-type

Symbols:

PaymentImplementation

Payment

feature

Timestamp: 200412230056

temporal:
begin:0
duration: 26

fullformat : MPEG
......

format : MPEG
......

full

full

Work-in-Progress

Fig. 1. EMMO “Dracula Movies” (emovies)

– Each entity w is described by a set of types Tw, i.e. a set of ontology ob-
jects, enabling the classification by concepts taken from a domain ontology,
e.g. entity w might be an instantiation of the concepts “Ancient Text” and
“Novel”, or an instantiation of the concept “Movie”. The semantics of on-
tology objects is specified in the underlying domain ontology, e.g. within the
ontology structure represented in Fig. 2.

– Each entity possesses an arbitrary number of application-dependent attributes
Aw. Attributes are represented as attribute-value pairs with the attribute
name being a concept of a domain ontology, e.g. by attaching the value
“Murnau” for the attribute “Director” to the entity representing the movie
“Nosferatu” (see Fig. 1), one can express that the movie was directed by
Murnau. The attribute value is per default untyped, however, typing con-
straints can be introduced via the domain ontology (see Fig. 2).

– For providing versioning support, a set of preceding versions Pw and suc-
ceeding versions Sw can be assigned to each entity w. Each version of w is
again an entity of the same kind kw. By also treating an entity’s versions as
entities, different versions of an entity can be interrelated just like any other
entities, thus allowing one to establish relationships between entity versions.
Figure 3 shows several versions of the EMMO “Dracula Movies” and their
interrelationships.

– As it might be necessary in an implementation of the model, to augment
an entity w with further low-level data, such as timestamps or status infor-
mation, in a flexible, ad-hoc manner, a set of features Fw, represented as
feature-value pairs, can be attached to the entity. In contrast to attributes,
feature names are not ontology objects but simple strings.

retell

inspire rework

globally-allude

Domain

inverse
is-retold

Long TextAncient Text

Novel

object concept

relational concept

Symbols:

inverse inverse concepts
SubConcept

symmetric concept

Domain

domain of
a concept transitive concept

Written Text

Text

Audio-Visual Text

Movie

Person

DirectorResearcher

State

Work-in -ProgressDiscussion

Range

range of
a concept

Range

assert

essential extension

Domain

Range

Domain

Attribute-Domain

domain of
attribute

Attribute-
Domain

Fig. 2. Graphical representation of a part of an Ontology of Intertextual Studies

As the remaining properties of an entity w are only relevant for certain kinds
of entities, at this point we will only provide a brief explanation as far as it is
necessary for the understanding of the following definitions; we will provide more
detailed definitions and examples in the following subsections.

– By specifying exactly one source and target entity sw and tw, an association
establishes a directed binary relationship between those entities.

– The connectors Cw establish a connection to the physical media data of a
logical media part. Each connector consists of a media profile which describes
the storage location by either embedding the raw media data or by referenc-
ing the media data via a URI, and of a media selector, which provides means
to address only selected parts of the media object.

succpred

Dracula Movies V1

pred succ

Dracula Movies V2

Dracula Movies V3

Dracula Movies

pred succ

Fig. 3. The versioning information of EMMO “Dracula Movies”

– An EMMO constitutes a container of all entities specified in the set nodes
Nw.

– An EMMO offers operations Ow, which can be invoked by external applica-
tions. The implementation of an operation is described by a mathematical
function.

After this informal intuitive description, we are now ready to provide a formal
definition of an entity. First we define some basic symbols we will use throughout
the rest of this paper.

Definition 1. [Symbols] Let Γ denote the set of all logical media parts, Θ the
set of all ontology objects, Λ the set of all associations, Σ the set of all Emmos,
and Ω = Γ ∪ Θ ∪Λ∪ Σ the set of all entities. Further, let MS be the set of all
media selectors, MP the set of all media profiles, OP the set of all operations.
Finally, let VAL be the set of all untyped data values, UUID ⊂ VAL the set of
all universal unique identifiers, STR ⊂ VAL the set of all strings, URI ⊂ STR
the set of all uniform resource identifiers, RMD the set of all raw media data,
and FUN the set of all functions.

On the basis of these common symbols, we define entities as follows.

Definition 2. [Entity] An entity w ∈ Ω is a thirteen-tuple
w = (ow, nw, kw, sw, tw, Tw, Aw, Cw, Nw, Pw, Sw, Fw, Ow), where ow ∈ UUID
denotes the unique object identifier (OID) of w, nw ∈ STR the name of w,
kw ∈ {“lmp”, “ont”, “asso”, “emm”} the kind of w, sw ∈ Ω ∪ {ε} the source
and tw ∈ Ω ∪{ε} the target entity of w with ε 6∈ Ω stating that such an entity is
undefined, Aw ⊆ Θ ×VAL the attributes, Tw ⊆ Θ the types, Cw ⊆MS×MP
the connectors, Nw ⊆ Ω the nodes, Pw ⊆ Ω the predecessors, Sw ⊆ Ω the

successors, Fw ⊆ STR × VAL the features, and Ow ⊆ OP the operations of w.
The following constraints hold for all entities:

∀w1, w2 ∈ Ω : ow1 = ow2 −→ w1 = w2 (1)

∀w, v ∈ Ω : v ∈ Pw ∨ v ∈ Sw −→ kw = kv (2)

Constraint (1) enforces that each entity has a unique identifer and Constraint
(2) assures that each version of w is again an entity of the same kind kw.

2.2 Logical Media Parts

Logical media parts are entities which enable the representation of media ob-
jects or parts of media objects at a logical level, and thus address an EMMO’s
media aspect. By decoupling the logical media part from any existing physical
representation, a person who is not owing a media object can still use it within
an EMMO. To express the difference between, for example, the movie “Salem’s
Lot” directed by Tobe Hooper and its underlying source material, the novel
“Salem’s Lot” written by Stephen King, the movie and the novel are modeled
as two different logical media parts.

Definition 3. [Logical media part] A logical media part l ∈ Γ is an entity with
kl = ”lmp” ∧ sl = tl = ε ∧ Nl = Ol = ∅.

By means of connectors Cw, logical media parts not only model media objects
at a logical level but additionally maintain connections to physical media data
representing these objects, and thus provide the media aspect of multimedia
content represented within the EMMO model. Connectors (see Def. 2) consist
of a media profile representing the physical media data and of a media selector
addressing the parts of the media data represented by the profile according to
textual, spatial, and temporal criteria.

As formally defined in Def. 4, a media profile combines the storage location,
which is called – following the MPEG-7 terminology – media instance, with low-
level metadata, such as storage format or file size. The media instance either
directly embeds media data or – if embedding is not feasible, e.g. because the
media data is a live stream – references media data via a URI.

Definition 4. [Media profile] A media profile mp = (imp, Mmp) ∈ MP is de-
scribed by its media instance imp ∈ URI ∪ RMD and its metadata
Mmp ⊆ STR × VAL .

Media selectors (see Def. 5) render it possible to address only selected parts
of the physical media data, such as the introductory section of a movie from the
first until the 26th minute, without having to extract that part, for instance, by
putting the scene into a separate file using an audio editing tool.

Definition 5. [Media selector] A media selector ms = (kms, Pms) ∈ MS is
described by its kind kms ∈ {“spatial”, “textual”, “temporal”, “full”} and by
its parameters Pms ⊆ STR × VAL .

In Example 1 we illustrate how the three logical media parts depicted in Fig. 1
representing the media objects “The Cabinet of Dr. Caligari”, “Nosferatu”, and
“Salem’s Lot” can be formally described within the EMMO model. The symbols
lcaligari, lnosferatu, and lsalem represent the three logical media parts. For example,
the thirteen-tuple lcaligari indicates that there exists an entity which is uniquely
identified by the OID “l2471”, is named “The Cabinet of Dr. Caligari”, is of kind
logical media part (“lmp”), specifies no source and target entity, is classified as
“Movie”, has the value “Wiene” for the attribute “Director”, describes its phys-
ical media data by the connector (ms1,mp1), is augmented by its timestamp
information, and specifies its sets of nodes, predecessors, successors, and oper-
ations as empty. The connector (ms1,mp1) references the temporal selection
of the first 26 minutes from the MPEG-movie “Caligari.mpeg”. (ms2, mp2)
represents the connector of the logical media part lnosferatu associating the com-
plete MPEG-movie “Nosferatu.mpeg”, and, finally, (ms3,mp3) and (ms4, mp4)
represent two versions of different length of the movie “Salem’s Lot”.

Example 1

lcaligari =(“l2471”, “The Cabinet of Dr. Caligari”, “lmp”, ε, ε, {omovie}, {(odirector, “Wiene”)},
{(ms1, mp1)}, ∅, ∅, ∅, {(“timestamp”, “200412230056”)}, ∅),

lnosferatu =(“l9462”, “Nosferatu”, “lmp”, ε, ε, {omovie}, {(odirector, “Murnau”)},
{(ms2, mp2)}, ∅, ∅, ∅, ∅, ∅),

lsalem =(“l6231”, “Salem’s Lot”, “lmp”, ε, ε, {omovie}, {(odirector, “Hooper”)},
{(ms3, mp3), (ms4, mp4)}, ∅, ∅, ∅, ∅, ∅),

ms1 =(“temporal”, {(“begin”,0), (“duration”,26)}),
mp1 =(“www.../Caligari.mpeg”, {(“format”, “MPEG”)}),
ms2 =(“full”, ∅),
mp2 =(“www.../Nosferatu.mpeg”, {(“format”, “MPEG”)}),
ms3 =(“full”, ∅),
mp3 =(“www.../Salem183.avi”, {(“format”, “AVI”), (“duration”, 183)}),
ms4 =(“full”, ∅),
mp4 =(“www.../Salem112.avi”, {(“format”, “AVI”), (“duration”, 112)}).

2.3 Ontology Objects

Ontology objects are entities that represent concepts of an ontology. By pro-
viding the basis for the description of entities and other properties by concepts
taken from an ontology, ontology objects contribute to the semantic aspect of
multimedia content modeling. Within the EMMO model, ontology objects are
applied in four different ways, i.e. they are used:

– for designating the types of entities,
– for designating the attributes of attribute values,
– for designating the operations attached to EMMOs (see Def. 9),

– as nodes within the EMMO knowledge structure (see Sect. 2.5).

Definition 6. [Ontology object] An ontology object o ∈ Θ is an entity with
ko = ”ont” ∧ so = to = ε ∧Co = No = Oo = ∅.
As can be seen from Def. 6, the types To of an ontology object o can be a non-
empty set, i.e. ontology objects can again be classified by other ontology objects.
This provides the basis for expressing ontological structures within the EMMO
model. The development of a dedicated ontology engineering environment is
focus of future work (see [28], [29], [30]). The final aim is the seamless integration
of ontological knowledge into the EMMO model.

In Example 2 all four different ways of using ontology objects are illustrated:
Within the EMMOs “Dracula Studies” and “Dracula Research”(see Fig. 4 and
Fig. 5), ontology object oinspire represents the type of the association connect-
ing the two logical media parts “Vampyre” and “Dracula”, ontology object
omovie the type of the logical media part “Nosferatu”; ontology object odirector

is used as name of the attribute attached to the logical media part “Nosfer-
atu”, and ontology object opayment represents the designator of the operation
provided by EMMO “Dracula Studies”. Moreover, the ontology object omiller,
which represents the concept “Elizabeth Miller”, is specified as node contained
within EMMO “Dracula Research”, and by additionally typing this ontology
object with the ontology object oresearcher, “Elizabeth Miller” is classified as
“Researcher”.

Murnau

Director

Nosferatu

Dracula Studies

inspire retell

PaymentImplementation

Payment

Movie

Vampyre

1819

Creationdate

Dracula

Novel

Stoker

Author
Ancient Text

http://.../Vampyre.txt http://.../Dracula.pdf

format : PDF
......

http://.../Nosferatu.mpeg

format : MPEG
......

full fullfullformat : txt
......

Open-to-Comments

Fig. 4. EMMO “Dracula Studies”(estudies)

Dracula Movies V3

essential extension

assert

Researcher

Elizabeth

Miller

Dracula Research

Dracula Movies

Dracula Studies

contradict

Discussion

Fig. 5. EMMO “Dracula Research”(eresearch)

Example 2

oinspire =(“o8421”, “inspire”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
omovie =(“o4302”, “Movie”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

odirector =(“o3418”, “Director”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
opayment =(“o6445”, “Payment”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

omiller =(“o3021”, “Elizabeth Miller”, “ont”, ε, ε, {oresearcher}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
oresearcher =(“o2166”, “Researcher”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅).

2.4 Associations

Associations describe binary directed semantic relationships between entities.
Thus, they contribute to the semantic aspect of multimedia content. By being
modeled as entities, associations can take part in other associations, and thus
facilitate the reification of statements in the EMMO model.

Definition 7. [Association] An association a ∈ Λ is an entity with ka = ”asso”∧
sa 6= ε ∧ ta 6= ε ∧ Ca = Na = Oa = ∅ ∧ |Ta| = 1.

Similar to other entities, an association’s type is represented by an ontology
object and determines the kind of semantic relationship. Different from other
entities, however, an association can only associate one type because it is sup-
posed to represent only a unique kind of relationship. By specifying exactly one
source and one target entity sa and ta, each association establishes a directed
binary relationship between those two entities.

Example 3 shows the formal description of the two associations aca→no and
ano→sa contained within EMMO “Dracula Movies”(Fig. 1) and of the four asso-
ciations amo→moV 3, amoV 3→st, ami→(mo→moV 3), and ami→(moV 3→st) contained
within EMMO “Dracula Research”(Fig. 5). Association amo→moV 3 models that
EMMO “Dracula Movies V3” is an essential extension of EMMO “Dracula
Movies”, and by expressing that this statement was asserted by “Elizabeth
Miller”, association ami→(mo→moV 3) exemplifies the reification of statements.

Example 3

aca→no =(“a0225”, “ca → no”, “asso”, lcaligari, lnosferatu, {oinspire}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
ano→sa =(“a5461”, “no → sa”, “asso”, lnosferatu, lsalem, {oinspire}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

amo→moV 3 =(“a6390”, “mo → moV 3”, “asso”, emovies, emoviesV3, {oessential-extension}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
amoV 3→st =(“a5461”, “moV 3 → st”, “asso”, emoviesV3, estudies, {ocontradict}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

ami→(mo→moV 3) =(“a4771”, “mi → (mo → moV 3)”, “asso”, omiller, amo→moV 3, {oassert}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
ami→(moV 3→st) =(“a7031”, “mi → (moV 3 → st)”, “asso”, omiller, amoV 3→st, {oassert}, ∅, ∅, ∅, ∅, ∅, ∅, ∅).

2.5 EMMOs

An EMMO constitutes the core component of our model. It is a container that
combines several entities into a single unit. By aggregating media data (i.e. logi-
cal media parts) and enriching this media data by semantic data (i.e. associations
and ontology objects), an EMMO addresses the media and semantic aspect of
multimedia content modeling. For instance, EMMO “Dracula Movies” groups
the semantic descriptions of the logical media parts “The Cabinet of Dr. Cali-
gari”, “Nosferatu”, and “Salem’s Lot” into one single unit. Since EMMOs are
modeled as entities, EMMOs can be contained within other EMMOs, just as any
other entity. Therefore, a structure of hierarchically nested EMMOs can be estab-
lished: EMMO “Dracula Research” in Fig. 5, for example, contains the EMMOs
“Dracula Movies”, “Dracula Movies V3”, and “Dracula Studies”. Furthermore,
an EMMO can also take part in associations, facilitating the representation of
knowledge about the EMMO. For instance, within EMMO “Dracula Research” it
is stated that EMMO “Dracula Movies V3” contradicts EMMO “Dracula Stud-
ies”. Finally, by specifying operations that process its content, EMMOs address
the functional aspect of multimedia content.

Definition 8. [EMMO] An EMMO e ∈ Σ is an entity with ke = ”emm”, and
se = te = ε ∧ Ce = ∅, such that

∀x ∈ Ne : kx = ”asso” −→ {sx, tx} ⊆ Ne (3)

According to this definition, an EMMO e constitutes a container of other
entities because its set of nodes Ne is not restricted to an empty set, as it is
the case with other kinds of entities. The contained entities form a connected
graph structure when they are interlinked by associations. Constraint 3 ensures
that associations can specify only those entities as source or target entity which
already belong to the EMMO’s nodes, and thus, guarantees that any established
relationship is fully contained within the EMMO.

A further difference between EMMOs and the other kinds of entities is that
its set of operations is not necessarily empty, allowing an EMMO to associate
arbitrary operations. Within the EMMO model, an operation is a tuple combin-
ing an ontology object acting as the operation’s designator with the operation’s
implementation, which can be described by any mathematical function.

Definition 9. [Operation] An operation op = (dop, iop) ∈ OP is described by its
designator dop ∈ Θ and its implementation iop ∈ FUN .

In Example 4, finally, the three EMMOs “Dracula Movies”, “Dracula Studies”,
and “Dracula Research” are formally described: EMMO “Dracula Movies” con-
sists of five nodes, i.e. the three logical media parts “The Cabinet of Dr. Cali-
gari”, “Nosferatu”, and “Salem’s Lot”, and two associations; it defines EMMO
“Dracula Movies V1” and EMMO “Dracula Movies V2” as its direct succes-
sor versions (see Fig. 3), and specifies the functions frender implementing a
“rendering” operation and fpayment implementing a “payment transaction” op-
eration. EMMO “Dracula Studies” aggregates five entities, i.e. the three logical
media parts “Vampyre”, “Dracula”, and “Nosferatu”, as well as two associa-
tions, and offers a payment functionality. Finally, EMMO “Dracula Research”
consists of eight nodes, i.e. the EMMOs “Dracula Movies”,“Dracula Movies V3”,
and “Dracula Studies”, the ontology object “Elizabeth Miller”, and four associ-
ations.

Example 4

emovies =(“e7921”, “Dracula Movies”, “emm”, ε, ε, {owork-in-progress}, ∅, ∅, {lcaligari, lnosferatu, lsalem,

aca→no, ano→sa}, ∅, {emoviesV1, emoviesV2}, ∅, {(orender, frender), (opayment, fpayment)}),
estudies =(“e3811”, “Dracula Studies”, “emm”, ε, ε, {oopen-to-discussion}, ∅, ∅,

{lvampyre, ldracula, lnosferatu, ava→dr, adr→no}, ∅, ∅, ∅, {(opayment, fpayment)}),
eresearch =(“e1411”, “Dracula Research”, “emm”, ε, ε, {odiscussion}, ∅, ∅, {emovies, emoviesV3, estudies,

omiller, amo→moV 3, amoV 3→st, ami→(mo→moV 3), ami→(moV 3→st)}, ∅, ∅, ∅, ∅).

The integration of ontology knowledge enables to restrict the usage of associa-
tions and attributes, i.e. to define constraints on the knowledge structures within
EMMOs. For example, by specifying the ontology represented in Fig. 2 as under-
lying domain ontology, it is determined that associations of type “retell” describe
relationships pointing from entities of type “Written Text” to entities of type
“Audio-Visual Text”. Within the axioms of the ontology, it can be additionally
specified that integrity constraints on associations are extended to subconcepts,

i.e. specifying entities of type “Audio-Visual Text” as permitted target entities
then also includes entities of type “Movie” as permitted value. Moreover, within
the ontology, one can specify the permitted domain of attributes, i.e. the types
of entities to which they can be attached, for instance, the concept “Director”
can only be used as attribute for entities of type “Audio-Visual Content”.

3 Requirements of a Query Algebra for EMMOs

For the realization of advanced operations on EMMO structures, a formal basis
for querying of EMMOs, i.e. an algebra providing a set of formal query operators
suitable for the EMMO model, is needed. The EMMO model has no inherent
semantics, i.e. the particular semantics of an application scenario implementing
the EMMO model is derived from the integrated domain ontology. Therefore,
the requirements for accessing the information captured by EMMOs result from
structural and syntactical issues, and have to be seen as being independent
from the semantics of any particular application scenario. In the following, we
introduce the essential requirements for such a query algebra.

The most important and fundamental prerequisite of such an algebra is to
provide operators for accessing an EMMO’s three aspects and its versioning
information. Thus, the algebra has to offer operators enabling the access to:

– an EMMO’s media aspect, i.e. operators that give access to logical media
parts and their connectors;

– an EMMO’s semantic aspect, i.e. operators that facilitate the retrieval of
all kinds of entities contained in an EMMO, the querying of the types of
entities and their attribute values, as well as the traversal of associations
between entities; the operators must be expressive enough to cope with the
more advanced constructs of the EMMO model, such as the reification of
associations and the nesting of EMMOs;

– an EMMO’s functional aspect, i.e. operators that allow the access to and
permit the execution of the operations of an EMMO;

– an EMMO’s versioning information, i.e. operators for the querying of an
entity’s direct and indirect versions.

In addition, an EMMO query algebra should meet basic query algebra re-
quirements. Its operators should be formally defined with precise semantics to
provide the basis for query rewriting and optimization. Furthermore, the opera-
tors should be orthogonal and arbitrarily nestable for enabling the formulation
of expressive queries.

To combine information contained within different EMMOs, the algebra
should support joins between entities. Moreover, a suitable algebra should sup-
port some basic construction and manipulation operators, such as union, in-
tersection, and difference. However, since we have a graphical authoring tool
available, such construction and manipulation operators can be kept simple.

Finally, because the EMMO model uses concepts of an ontology (i.e. ontology
objects) to describe the meaning of the entities contained in an EMMO and the

associations between them, a suitable EMMO query algebra should be expressive
enough to integrate ontological knowledge into a query. Thus, for example, it
should be possible to consider supertype/subtype relationships, transitive or
inverse associations, etc.

A query algebra which is sufficiently expressive to fulfill all these requirements
is said to be adequate and complete with regard to the EMMO model.

4 Related Approaches

On the search for a suitable query algebra for EMMOs, we will first take a
brief look at object-oriented query approaches and query approaches for semi-
structured data and multimedia content, before we analyze query approaches for
semantic standards and examine their adequacy and completeness with regard
to the EMMO model.

Although object-oriented database systems establish a graph-based data model,
the object-oriented data model and the EMMO model are very different from
each other, i.e. the former operates on the schema level and gathers objects
of a particular type within one class, whereas the EMMO model operates on
the instance level, defines no object classes, and leaves the specification of the
type semantics to the integrated domain ontology. However, for accessing the
information captured by EMMOs, i.e. an EMMO’s three aspects and versioning
information, one needs an adequate EMMO query approach. Therefore, we did
not analyze query languages for object-oriented databases, such as OQL [31],
AQUA Algebra [32], or XSQL [33], in further detail.

The Object Exchange Model OEM [34] is the widely accepted data model
for semi-structured data. Similar to the EMMO model, OEM is schema-less and
describes graph structures. Nevertheless, there are many differences between the
two data models. OEM does neither address the three aspects of multimedia
content, nor provides versioning support. Therefore, query languages for semi-
structured data, such as Lorel [35], UnQL [36], SAL [37], XQuery [38], or XPath
[39], are inadequate for querying EMMOs. However, query languages for semi-
structured data provide a profound basis for graph navigation by establishing
regular path expressions. Thus, we could use those query languages as inspiration
for the design of the regular path expressions and navigational operators in
EMMA (see Sect. 5.3).

In the literature, several query algebras for multimedia content have been
proposed, such as GCalculus/S [40], Algebraic Video [41], or the Multimedia
Presentation Algebra (MPA) [42]. These algebras have in common that they
mainly address the media aspect of multimedia content. They focus on querying
the temporal and spatial relationships between the basic media of multimedia
content and the construction of new presentations out of these media. However,
they ignore semantic relationships between media as well as the functional aspect
of multimedia content.

In the context of the Semantic Web, several standards have emerged that
can be used to model the semantic relationships between the basic media of

multimedia content addressing the content’s semantic aspect, such as RDF [17,
18], Topic Maps [19], and MPEG-7 (especially MPEG-7’s Graph tools for the
description of content semantics [20]). For these standards, a variety of proposals
for query languages and algebras have been made.

Since the RDF data model, compared to the EMMO model, rather neglects
the media aspect of multimedia content, it does not address the functional as-
pect of content, and does neither provide explicit support for versioning nor
a hierarchical structuring of resource descriptions; the same is generally true
for RDF-based query approaches as well. There are quite a few proposals for
RDF query languages, such as RQL [43], SquishQL [44], or RAL [45], which
can be used for querying the semantic aspect of multimedia content, but pro-
vide no means for querying the media and functional aspect or the versioning
information of multimedia content. Thus, those approaches are incomplete and
inadequate with regard to the EMMO model.

The situation for Topic Maps is quite similar to RDF. The Topic Map data
model focuses on the semantic aspect and – considering the EMMO model’s
ability to include raw media data and metadata about the media by means of
media profiles within an EMMO – neglects the media and functional aspects
of multimedia content. Moreover, although Topic Maps can be hierarchically
nested like EMMOs, they have no explicit versioning support. Consequently,
query languages for Topic Maps are also in general incomplete and inadequate
with regard to the EMMO model.

Within the context of the ongoing standardization of a Topic Maps Query
Language TMQL [46], several approaches, such as Tolog [47], TMPath [48],
XTMPath [49], or [50] have been introduced. However, those proposals remain
again on the syntactic level and do not provide formal definitions of their oper-
ators. No formal algebra as a sound foundation for the querying of Topic Maps
exists so far.

Finally, concerning the querying of semantic descriptions of multimedia con-
tent on the basis of MPEG-7’s Graph tools, there are quite a few approaches
adapting XQuery for the querying of MPEG-7 media descriptions (see [51]), but
these approaches do not provide specific operators that would allow a reasonable
processing of the Graph tools.

To summarize, looking at related work, we have not been able to find a
formally sound foundation that would allow an adequate querying of EMMOs.
Although there are some formal algebras available for querying the media as-
pect of multimedia content like GCalculus/S, Algebraic Video, or MPA, as well
as for querying the semantic aspect of multimedia content, such as the RDF-
based RAL, those algebras are neither adequate nor complete with regard to the
EMMO model, which addresses the media, semantic, and the functional aspects
of multimedia content, as well as versioning support.

As a consequence, we were forced to develop a dedicated query algebra to
obtain a sound foundation for querying EMMOs. At least for the design of this
algebra, we were able to gain valuable insights from the approaches we examined
to incorporate certain aspects of their design.

5 EMMA Query Algebra

The design of the EMMO query algebra EMMA was in the first place driven by
the requirement for accessing the complete information stored within an EMMO,
i.e. the access to the three aspects of an EMMO, as well as its versioning informa-
tion. To enable query optimization, the query algebra’s operators are of limited
complexity and orthogonal. Through the combination and nesting of modular
operators, complex queries can be formulated.

There are five general classes of EMMA’s query operators: the extraction op-
erators provide the basis for querying an EMMO’s three aspects, as well as its
versioning information. The navigational operators enable the navigation along
an EMMO’s semantic graph structure and provide means for the integration of
ontological knowledge. The selection predicates facilitate the selection of only
those entities satisfying a specific condition, and the constructors enable the
modification, combination, and creation of new EMMOs. Finally, the join oper-
ator relates several entities or EMMOs with a join condition.

Before we present the formal basis of the five operator classes in the follow-
ing subsections, we will provide some definitions required for the understanding
of the definitions to follow. To guarantee the readability of the paper, we will
introduce the most representative EMMA operators by giving their formal defin-
itions accompanied with illustrative real-world example queries originating from
the CULTOS project. We will omit any EMMA operator which is used for ac-
cessing only some very specific aspects and information captured by the EMMO
model. The complete list of formal definitions of EMMA operators can be found
in [52].

To conclude this section, we will explain in a summary subsection how these
operators contribute to fulfil the requirements for an EMMO query algebra.

5.1 Basic Definitions

The input and output values of EMMA operators, i.e. their signatures, are de-
scribed by sets and sequences.

Definition 10. [Set and Sequence] Let IN denote the set of all natural numbers,
I an arbitrary index set, BOO = {true, false} the Boolean set, and SET the set
of all sets. Let A and B be arbitrary sets, then P(A) = {x |x ⊆ A} denotes the
powerset of A and A×B := {(x, y) |x ∈ A ∧ y ∈ B} the Cartesian product over
A and B. The elements of a Cartesian product are called sequences or tuples.
SEQ denotes the set of all sequences. A sequence of length 1 is equal to its single
entry element, i.e. ∀x (x) = x. Let j ∈ I then πj :

∏
i∈I Ai −→ Aj with

πj(a1, a2, . . . , an) = aj denotes the jth projection of
∏

i∈I Ai.

EMMA operators are either functions or predicates.

Definition 11. [Function and Predicate] Let A,B ∈ SET and f ∈ FUN with
f : A −→B be a function, then D(f) = A denotes the domain and R(f) = B
the range of function f , FUNA the set of all functions with D(f) = A, and

FUN [A,B] the set of all functions with D(f) = A and R(f) = B. Furthermore,
p ∈ FUN [A,BOO] denotes a predicate, PREA = FUN [A,BOO] the set of all predi-
cates with domain A, and PRE = {PREA |A ∈ SET } the set of all predicates.
Let f ∈ FUNQ

i∈I Ai
,j∈I, x∈Aj and (a1, . . . , aj−1, aj+1, . . . , an) ∈ ∏

i∈I\{j}Ai,
then the function f[a1,...,aj−1,$,aj+1,...,an] : Aj −→ SET with
f[a1, ... ,aj−1,$,aj+1,...,an](x) = f(a1, . . . , aj−1, x, aj+1, . . . , an) is called f -projection
onto Aj.

EMMA operators are designed to be modular and simple. By using modular
EMMA operators in combination with the operators Apply and Elements, more
complex EMMA operators can be defined, and complex queries can be formu-
lated. The operator Apply takes a function and a set as input values and returns
the set consisting of all return values of the specified function being applied to
each element in the specified set.

Definition 12. [Apply] Let A ∈ SET and f ∈ FUN , then the operator
Apply : FUN × SET −→ SET is defined as Apply(f, A) = {f(x) |x ∈ A∩D(f)}.
The operator Elements is used to flatten data returned by other operations, e.g.
for the specified input set it returns all elements being contained in at least one
element of the specified set.

Definition 13. [Elements] Let A ∈ SET , then the operator
Elements : SET −→ SET is defined as Elements(A) = {x | ∃X ∈ A ∧ x ∈ X}.
Additionally, for enabling the combination and nesting of EMMA operators,
their signatures are always specified in the most general way, i.e. their input and
output values are specified as set of entities. Thus, operators which only return
valid results if applied to specific kinds of entities can still be applied to other
kinds of entities yielding an empty result.

5.2 Extraction Operators

The extraction operators render it possible to access the information stored
within an EMMO. In the following, we define a representative subset of the
extraction operators for the three different aspects, as well as for the versioning
information.

Media Aspect Logical media parts model media objects at a logical level
and maintain connections to their physical representations, i.e. to their media
profiles and media selectors. For accessing the information described by a logical
media part’s connectors, EMMA defines several modular operators, as well as
some more complex operators defined by nesting those modular operators. For
example, the operator MediaProfiles can be used for locating media profiles, i.e.
applying the operator MediaProfiles to a logical media part returns the union of
all its associated media profiles, e.g. (see Fig. 1) the query expression

MediaProfiles(lsalem) = {(www.../Salem183.avi, {(“duration”, 183), (“format”, “AVI”)}),
(www.../Salem112.avi, {(“duration”, 112), (“format”, “AVI”)})}

gives a set of two media profiles, each of them consisting of a URI locating
the media data and a metadata set describing the low-level characteristics of
the media data. The operator MediaProfiles is defined as a combination of the
operators connectors and MediaProfile. For a specified entity, the operator con-
nectors returns its set of connectors, and the operator MediaProfile returns the
media profile for a given connector. By using the operators Apply and Elements
in its definition, the operator MediaProfiles can be used to access the union of
associated media profiles of a logical media part.

Definition 14. [connectors and MediaProfiles] Let w ∈ Ω , ms ∈ MS, and
mp ∈ MP , then the operator connectors : Ω −→ P(MS ×MP) is defined as
connectors(w) = Cw, the operator MediaProfile : MS × MP −→ MP as
MediaProfile(ms,mp) = mp, and MediaProfiles : Ω −→ P(MP) as
MediaProfiles(w) = Elements(Apply(MediaProfile, connectors(w))).

Semantic Aspect By attaching concepts of an ontology to entities, entities
get meaning. The operator types accesses an entity’s set of classifying ontology
objects. For example, applying the operator types to the logical media part
“Nosferatu” yields the set containing the ontology object “Movie” (see Fig. 1):

types(lnosferatu) = {omovie}.
Definition 15. [types] Let w ∈ Ω , then the operator types : Ω −→ P(Θ) is
defined as types(w) = Tw.

For retrieving the attributes of an entity, the operator attributes can be used.
Requesting, for example, all attribute-value pairs of the logical media part “Nos-
feratu”, i.e.

attributes(lnosferatu) = {(odirector, “Murnau”)},
yields the set including only one attribute-value pair, i.e. the ontology object
“Director” with the string value “Murnau”. The operator attributes returns the
set of associated attribute-value pairs for a given entity.

Definition 16. [attributes] Let w ∈ Ω , then the operator
attributes : Ω −→ P(Θ × VAL) is defined as attributes(w) = Aw.

EMMOs encapsulate a graph-like knowledge structure of entities. The algebra
provides the operator asso for accessing all associations representing binary di-
rected semantic relationships between other entities, e.g. the query expression

asso(eresearch) = {amo→moV 3, amoV 3→st,

ami→(mo→moV 3), ami→(moV 3→st)}
returns the associations within EMMO “Dracula Research” (Fig. 5).

Definition 17. [asso] Let w ∈ Ω , then the operator asso : Ω −→ P(Λ) is
defined as asso(w) = {x |x ∈ Nw ∩ Λ}.

As associations are modeled as entities, they belong to an EMMO’s set of nodes.
The algebra provides the operator nodes for accessing all entities contained
within an EMMO, e.g. the query expression

nodes(eresearch) = {emovies, emoviesV3, estudies, omiller, amo→moV 3,

amoV 3→st, ami→(mo→moV 3), ami→(moV 3→st)}
yields a set consisting of all entities in EMMO “Dracula Research”.

Definition 18. [nodes] Let w ∈ Ω , then the operator nodes : Ω −→ P(Ω) is
defined as nodes(w) = Nw.

As EMMOs are also entities, EMMOs can be nested hierarchically. The oper-
ator AllEncEnt can be used for accessing all encapsulated ent ities of an EMMO,
i.e. it computes all entities recursively contained within an EMMO. For example,
the query expression

AllEncEnt(eresearch) = nodes(eresearch) ∪ nodes(emovies) ∪ nodes(emoviesV3)
∪nodes(estudies) =

= {emovies, emoviesV3, estudies, omiller, amo→moV 3, amoV 3→st,

ami→(mo→moV 3), ami→(moV 3→st), lcaligari, lnosferatu,

lsalem, aca→no, ano→sa, ldracula, lreturn,

adr→no, asa→re, lvampire, ava→dr}
unifies the nodes of EMMO “Dracula Research” with the nodes of the EMMOs
“Dracula Movies” (Fig. 1), “Dracula Movies V3” (see Fig. 6), and “Dracula
Studies” (Fig. 4), because these EMMOs are contained within EMMO “Dracula
Research” and contain no further EMMOs themselves.

The operator AllEncEnt is defined by means of induction over the natural
numbers IN and is based on the operator EncEnt. We say

– “entity w1 is contained in EMMO w0 at first level”, if w1 belongs to EMMO
w0’s nodes,

– “entity wn+1 is contained in EMMO w0 at n+1th-level”, if there exists a
sequence of n EMMOs, i.e. w1, . . . , wn, such that for all k ∈ {1, . . . , n + 1}
entity wk belongs to EMMO wk−1’s nodes,

– “w is recursively contained or encapsulated in EMMO w0”, if there exists a
natural number n, such that w is contained in EMMO w0 at nth-level.

To provide a basis for the combination with other EMMA operators, the
operators AllEncEnt and EncEnt both take entities as input value, but only
return a reasonable result, if the input entity is of kind EMMO. In all other
cases, the empty set is returned. In this way, the operator EncEnt takes an
EMMO e and a natural number n as input, and returns the nodes of EMMO
e at nth level. By defining a unification over the operator EncEnt, the operator
AllEncEnt returns, for a specified EMMO, the set of all its recursively contained
entities.

Hooper

Director

Dracula Movies V3

inspire inspire

similar audience

retell

Salem�s Lot

Movie
The Cabinet of

Dr. Caligari

http://../Caligari.mpeg

format�

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

format....

Movie

Murnau

Director

A Return to
Salem�s Lot

http://../ReturnSalem.avi

format...

Movie

Cohen

Director

Dracula

http://../dracula.pdf

filesize��

Novel

Stoker

Author

http://.../Salem183.avi

duration: 183min
format: AVI
.....

full

....

....

........

http://.../Salem112.avi

....duration �

Work-in-Progress

Fig. 6. EMMO “Dracula Movies V3” (emoviesV 3)

Definition 19. [AllEncEnt] Let e ∈ Ω , then the operator
EncEnt : Ω × IN −→ P(Ω) is defined inductively over IN as follows:
EncEnt(e, 1) = Ne, and by assuming EncEnt(e, n) is defined, one defines
EncEnt(e, n+1) = {x ∈ Ω | ∃y ∈ EncEnt(e, n) ∩ Σ ∧ x ∈Ny}. The operator
AllEncEnt : Ω −→ P(Ω) is defined as AllEncEnt(e) =

⋃
i≥1 EncEnt(e, i).

Functional Aspect EMMOs offer functions for dealing with their content.
For the execution of an EMMO’s functionality, the query algebra EMMA spec-
ifies the operator Execute. Applying the operator Execute to EMMO “Dracula
Movies” (Fig. 1), the ontology object “rendering”, and the parameter HTML, i.e.

Execute(emovies, orender, HTML) = frender(emovies, HTML) = DraculaMovies.html,

returns an HTML-document representing the content of EMMO “Dracula Movies”,
for example, an HTML-document of a table with the rows being the EMMO’s
associations as illustrated in the left part of Fig. 7.

Applying the operator Execute to the same EMMO and the same ontology
object, but with the parameter SMIL, i.e.

Execute(emovies, orender, SMIL) = frender(emovies, SMIL) = DraculaMovies.smil,

yields a SMIL-document about the EMMO’s content, for example, a SMIL-
document sequentially representing the EMMO’s associations as illustrated in
the right part of Fig. 7.

<html>

<body>

<h1>EMMO Dracula Movies</h1>

<table border="1">

<tr><th>Source</th>

<th>Association</th>

<th>Target</th></tr>

<tr><td>

The ..Caligari</td>

<td>Inspire</td>

<td>Nosferatu</td></tr>

<tr><td>Nosferatu</td>

<td>Inspire</td>

<td>Salem's Lot

Salem's Lot

</td></tr>

</table>

</body>

</html>

<smil>

<head><layout>

<root-layout height="200" width="620"/>

<region id="l" left="0"/>

</layout></head>

<body> <seq>

<par end="60s" >

<video src="./Caligari.mpeg" type="video/mpeg" region="l"/>

<text src="./inspire.txt" type="text/plain" region="m"/>

<video src="./Nosfertatu.mpeg" type="video/mpeg" region="r"/>

</par>

<par end="60s" >

<video src="./Nosferatu.mpeg" type="video/mpeg" region="l"/>

<text src="./inspire.txt" type="text/plain" region="m"/>

<video src="./Salem183.avi" type="video/mpeg" region="r"/>

</par>

</seq></body>

</smil>

Fig. 7. DraculaMovies.html and DraculaMovies.smil

The operator Execute takes an EMMO, a function, and a sequence of pa-
rameters as input values and returns the result value of the execution of the
function with the specified EMMO and sequence of parameters as input values.
If the operator Execute is applied to an entity which is not of kind EMMO, or
the specified operation does not belong to the operations of the specified EMMO,
or the sequence of parameters constitutes no valid input value for the specified
operation, the empty set is returned.

Definition 20. [Execute] Let e ∈ Ω , op ∈ OP , and s ∈ SEQ , then the operator
Execute : Ω ×OP × SEQ −→ SET is defined as

Execute(e, op, s) =
{

π2(op)(e, s) if op ∈ Oe ∧ (e, s) ∈ D(π2(op))
∅ else

Versioning Each entity describes a set of succeeding and a set of preceding
versions. The operator successors can be used for accessing all direct successors
of an entity, e.g. the query expression

successors(emovies) = {emoviesV 1, emoviesV 2}
returns EMMO “Dracula Movies V1” and “Dracula Movies V2”, the two direct
successor versions of EMMO “Dracula Movies” (see Fig. 3). For accessing all
succeeding versions, the operator AllSuccessors is applied, e.g.

AllSuccessors(emovies) = {emoviesV 1, emoviesV 2, emoviesV 3}.
The operator successors retrieves all direct successors of the specified entity.

Definition 21. [successors] Let w ∈ Ω , then the operator
successors : Ω −→ P(Ω) is defined as successors(w) = Sw.

The operator AllSuccessors is defined by means of induction over the natural
numbers IN and returns the set of all successors for a specified entity. The
operator’s definition is based on the operator successors serving as initial step
of the induction and on the operator Successors which returns the set of all
nth-successors for a specified entity and natural number n. An entity w′ is called
nth successor of entity w, if there exists a sequence of n-1 entities, with each
entity in the sequence representing the direct successor of its subsequent entity.

Definition 22. [AllSuccessors] Let w ∈ Ω , then the operator
Successors : Ω × IN −→ P(Ω) is defined by induction over IN as follows:
Successors(w, 1) = successors(w), and by assuming Successors(w, n) is de-
fined, one defines Successors(w, n + 1) = {x ∈ Ω | ∃y ∈ Successors(w, n) ∧
x ∈ successors(y)}, and the operator AllSuccessors : Ω −→ P(Ω) as
AllSuccessors(w) =

⋃
i≥1 Successors(w, i).

For the access to an entity’s preceding versions, EMMA also provides the oper-
ators predecessors, Predecessors, and AllPredecessors, which are defined analo-
gously.

5.3 Navigational Operators

An EMMO establishes a graph-like knowledge structure of entities with asso-
ciations being labeled by ontology objects describing the edges in the graph
structure. The navigational operators provide means for traversing the semantic
graph structure of an EMMO. Navigation through an EMMO’s graph structure is
controlled by a navigation path defined as a set of sequences of ontology objects.
A mapping for each ontology object in the sequence to the corresponding asso-
ciation of an EMMO defines the traversal path of the graph structure. We have
defined regular path expressions over ontology objects for describing the syntax
of a navigation path. The basic building blocks of regular path expressions are
ontology objects which can be modified and combined using conventional regular
expression operators.

Definition 23. [Regular path expression] Given a symbol set
S = {ε, , +, ∗, ?, |, –, (,)}, an alphabet Ψ = Θ ∪ S, and Ψ∗, the set of words
over Ψ (finite strings over elements of Ψ). Then, we define REG ⊆ Ψ∗ as the
smallest set with the following properties:

(1) ∀o ∈ Θ : o ∈ REG , (6) ∀r ∈ REG : r? ∈ REG ,
(2) ε ∈ REG , (7) ∀r ∈ REG : r+ ∈ REG ,
(3) ∈ REG , (8) ∀r ∈ REG : r∗ ∈ REG ,
(4) ∀r1, r2 ∈ REG : r1 |r2 ∈ REG , (9) ∀o ∈ Θ : o– ∈ REG ,
(5) ∀r1, r2 ∈ REG : r1r2 ∈ REG , (10) ∀r ∈ REG : (r) = r,

and denote REG as the set of regular path expressions over ontology objects.

Navigational operators take a regular path expression as input and spec-
ify how this syntactic expression is applied to navigate the graph structure.
For example, for a given EMMO, starting entity, and regular path expression,

the navigational operator JumpRight returns the set of all entities that can be
reached by traversing the navigation path in the right direction, i.e. by following
associations from source to target entities. Applying the operator JumpRight
to EMMO “Dracula Movies V3”(see Fig. 6), the starting entity “The Cabinet
of Dr. Caligari”, and the regular path expression consisting of only one single
ontology object “oinspire” yields the logical media part representing the movie
“Nosferatu”:

JumpRight(emoviesV3, lcaligari, oinspire) = {lnosferatu}.
As already mentioned, the basic building blocks of regular path expressions are
ontology objects, which can be modified and combined using conventional regu-
lar expression operators. For example, adding the operator “∗” to a regular path
expression specifies an iteration of path expressions, which is interpreted as nav-
igation along the same regular path expression any number of times. Applying
the operator JumpRight to the same EMMO and starting entity as in the above
query, as well as the regular path expression “oinspire∗” returns three logical me-
dia parts representing the movies “The Cabinet of Dr. Caligari”, “Nosferatu”,
and “Salem’s Lot”:

JumpRight(emoviesV3, lcaligari, oinspire∗) = {lcaligari, lnosferatu, lsalem}.
Regular path expressions can also be concatenated or defined as optional. For
example, applying the operator JumpRight to EMMO “Dracula Movies V3”, the
starting entity “Nosferatu”, and the regular path expression “oinspireosimilar?”,
yields the logical media parts “Salem’s Lot” and “A Return to Salem’s Lot”:

JumpRight(emoviesV3, lnosferatu, oinspireosimilar?) = {lsalem, lreturn}.
The choice operator “|” can be used to combine regular path expressions as
alternate versions, e.g.

JumpRight(emoviesV3, lnosferatu, oinspire |oretell) = {lsalem}.
By adding the operator “−” to a regular path expression, the inversion of the reg-
ular path expression, i.e. the change of direction of navigation, can be expressed,
e.g.

JumpRight(emoviesV3, lnosferatu, oretell−) = {ldracula}.
Traversal along the opposite direction of associations can also be expressed with
the navigational operator JumpLeft, e.g.

JumpLeft(emoviesV3, lnosferatu, oretell) = JumpRight(emoviesV3, lnosferatu, oretell−).

Navigational operators provide the basis for the integration of ontological knowl-
edge into queries. For example, the transitivity of association types, such as
the transitivity of associations of type “inspire”, can be reflected by replac-
ing the navigation path oinspire with the navigation path oinspire∗ (see exam-
ple above). Knowledge about inverse association types, such as the association

types “retell” and “is-retold”, can be integrated within the queries as well, for
instance, by replacing the navigation path ois−retold with the navigation path
ois−retold |oretell−, e.g.

JumpRight(emoviesV3, lnosferatu, ois−retold |oretell−) = {ldracula}.

The operator JumpRight, which is formally defined below, takes two entities
and one regular path expression as input values. The first input entity – which
has to be of type EMMO for the operator JumpRight to return a non-empty
result value – determines the navigation space, the second entity specifies the
starting point of navigation, and the regular path expression describes the set
of all possible navigation paths.

Definition 24. [JumpRight] For e, w ∈ Ω , and a regular path expression r ∈
REG , the operator JumpRight : Ω × Ω ×REG −→ P(Ω) is defined as follows:
(1) ∀r ∈ Θ : JumpRight(e, w, r) = {x ∈ Ne | ∃y y∈asso(e)∧

∧ r∈ types(y) ∧ w = sy ∧ x = ty}
(2) r = ε : JumpRight(e, w, ε) = {w |w ∈ Ne}
(3) r = : JumpRight(e, w,) = {x ∈ Ne | ∃y ∈ asso(e)∧

∧w = sy ∧ x = ty}
(4) ∀r1, r2 ∈ REG : JumpRight(e, w, r1 |r2) =

⋃
x∈{r1,r2} JumpRight(e, w, x)

(5) ∀r1, r2 ∈ REG : JumpRight(e, w, r1r2) =
=

⋃
x∈JumpRight(e,w,r1)

JumpRight(e, x, r2)
(6) ∀r ∈ REG : JumpRight(e, w, r?) =

⋃
x∈{r,ε} JumpRight(e, w, x)

(7) ∀r ∈ REG : JumpRight(e, w, r+) =
⋃

n≥1 JRn(e, w, r) with
JRn(e, w, r)defined by induction over IN :

JR1(e, w, r) = JumpRight(e, w, r)
JRn(e, w, r) =

⋃
x∈JRn−1(e,w,r) JumpRight(e, x, r)

(8) ∀r ∈ REG : JumpRight(e, w, r∗) =
⋃

x∈{r+,ε} JumpRight(e, w, x)
(9) ∀o ∈ Θ : JumpRight(e, w, o–) = {x ∈ Ne | ∃y y∈asso(e)∧

∧ o∈ types(y) ∧ x = sy ∧ w = ty}.

The navigational operator JumpLeft is defined analogously.

5.4 Selection Predicates

The selection predicates allow the selection of only those entities that satisfy a
specific condition. They basically use the result values of extraction operators
to create Boolean operators. For instance, applying the operator IsType to the
logical media part “Dracula” (Fig. 6) and the set containing one ontology object
“Book” returns false:

IsType(ldracula, {obook}) = false.

By taking a set of ontology objects as second input parameter, the operator
IsType enables the integration of supertype/subtype relationships within queries.

The ontological knowledge about a subtype relationship, e.g. the subtype rela-
tionship between the ontology objects “Novel” and “Book”, can be reflected
within the query expression, e.g.

IsType(ldracula, {obook, onovel}) = true.

Assuming that ontological knowledge about supertype/subtype relationships is
also represented within EMMOs (e.g. in an EMMO eontology), e.g. by means of
associations of type “is a”, the subtypes of “Book” in the previous query could
also be calculated dynamically during query execution by using an appropriate
JumpLeft expression:

IsType(ldracula, JumpLeft(eontology, obook, ois a∗)) = true.

Although we have not yet developed a language which governs the expression
of such ontological knowledge within the EMMO model, the query algebra is
sufficiently expressive to be ready for exploiting this knowledge once it becomes
available.

Definition 25. [IsType] Let w ∈ Ω , and O ⊆ Ω , then the operator
IsType : Ω × P(Ω) −→ BOO is defined as

IsType(w,O) =
{

true if ∃o∈O o∈ types(w)
false else

The selection predicates can be combined with the generic Select operator,
which takes a predicate and an arbitrary set as input values, and returns all
elements of the set that satisfy the condition of the specified predicate. For
instance, if we apply the Select operator to the selection predicate IsType with
the set consisting of the ontology objects “Book”and “Novel” as fixed parameter
value and to the set of all logical media parts contained within EMMO “Dracula
Studies” (see Fig. 4), the result set consists of the logical media part representing
Stoker’s novel “Dracula”:

Select(IsType[$,{obook,onovel}], lmp(estudies)) = {ldracula}.

Definition 26. [Select] Let A ∈ SET and p ∈ PRE , then let the operator
Select : PRE × SET −→ SET be Select(p,A) = {x |x ∈ A ∩ D(p) ∧ p(x)}.

Being based on the return values of extraction operators, the list of selection
predicates has the same length as the list of extraction operators. Any infor-
mation which can be accessed by the extraction operators is again used for the
selection of entities. Thus, for example, selection predicates allow the selection
of all logical media parts within EMMO “Dracula Movies”(see Fig. 1) associated
with a media profile describing media data in AVI format, i.e.

Select(HasMediaProfileValue[$,“format”,Equal[$,“AVI”]]
, lmp(emovies)) = {lsalem}

yields the logical media part “Salem’s Lot” specified by two media profiles which
both contain the attribute “format” with value “AVI” in their sets of metadata.

The operator HasMediaProfileV alue takes three input parameters, i.e. an
entity w, a string value s, and a predicate p, and returns true, if the entity w
contains a media profile with a set of metadata including a name-value pair, with
the name being equal to s and the value satisfying the condition described by
the specified predicate p, e.g. in the above example the predicate Equal returns
true if its two specified parameters are equal, otherwise false.

Definition 27. [HasMediaProfileValue] Let w ∈ Ω , s ∈ STR , and p ∈ PRE ,
then HasMediaProfileV alue : Ω × STR × PRE −→ BOO is defined as

HasMediaProfileV alue(w, s, p) =

true if ∃c ∈ Cw

∃k ∈ Metadata(MediaProfile(c))
(π1(k) = s ∧ p(π2(k)))

false else

5.5 Constructors

EMMA specifies five constructors for EMMOs, i.e. the operators Difference,
Union, Intersection, Nest, and Flatten. All the constructors take at least one
EMMO and possibly other parameters as input values, and return exactly one
EMMO as output value. The Difference operator takes two EMMOs and a string
value. It creates a new EMMO which is denoted by the specified string value.
The new EMMO’s nodes encompass all entities belonging to the first, but not
to the second EMMO, and additionally, the source and target entities of each
association contained within the first EMMO.

Applying the Difference operator to the successor EMMO “Dracula Movies
V3”(Fig. 6) and the original EMMO “Dracula Movies”(Fig. 1), generates a new
EMMO “Newcomers” (see Fig. 8) consisting of the logical media parts describing
the movies “Nosferatu”, “Salem’s Lot”, and “A Return to Salem‘s Lot”, and the
novel “Dracula”, as well as two connecting associations, i.e.

Difference(emoviesV3, emovies, “Newcomers”) = enewcomers

with nodes(enewcomers) = {ldracula, adr→no, lnosferatu, lsalem, asa→re, lreturn}.

Definition 28. [Difference] Let e1, e2 ∈ Σ and s ∈ STR then the operator
Difference : Σ × Σ × STR −→ Σ is defined as
Difference(e1, e2, s) = (oes , “s”, “emm”, ε, ε, ∅, ∅, ∅, Nes , ∅, ∅, ∅, ∅) with oes ∈ UUID
and Nes = nodes(e1)\nodes(e2) ∪ {x | ∃y∈asso(e1)\asso(e2) x = ty ∨ x = sy}.

The operators Union and Intersection are defined in a similar way, the operator
Nest extracts the information stored within a set of associations from an EMMO,
i.e. triples consisting of source entity, association, and target entity, into a new
EMMO knowledge structure, and the operator Flatten generates a flattened
EMMO, i.e. all recursively contained higher level entities are added as first level
entities to the nodes of the EMMO. Due to space restriction, we omit the formal
definitions.

Newcomers

A Return to

Salem�s Lot

Dracula Nosferatu

Salem�s Lot

retell

similar audience

Fig. 8. EMMO “Newcomers”(enewcomers)

5.6 Join Operator

The Join operator renders it possible to extend queries across multiple EMMOs.
It specifies how to relate n sets of entities, possibly originating from different
EMMOS, within a query. The join operator takes n entity sets, n operators, and
one predicate as input values. We compute the Cartesian product of the n entity
sets and select only those tuples that satisfy the predicate after applying the n
operators to the n entities. The result set of tuples is projected onto the first
entry. For example, asking for all entities within EMMO “Zoa’s Research” (see
Fig. 9) which contain within their nodes the logical media part “Icarus’ Fall”
corresponds to the query expression

Join(nodes(ezoa), {licarus},nodes, id,⊇) = {estudiesfall}

and yields EMMO “Studies about the Fall”, because this EMMO includes the
logical media part “Icarus’ Fall”.

Definition 29. [Join] Let i ∈ I = {1, . . . n}, n ∈ IN,Wi ⊆ Ω , fi ∈ FUN and
p ∈ PRE , then the operator Join :

∏
i∈I P(Ω)×∏

i∈I FUN ×PRE −→ SET is
defined as Join(W1, . . . , Wn, f1, . . . , fn, p) = {π1(w1, . . . , wn) | ∀i∈I
(wi ∈ Wi ∧ fi ∈ FUNWi ∧ p ∈ PREQ

i∈I R(fi) ∧ p(f1(w1), . . . , fn(wn)))}.

The Join operator is a generalization of the Select operator accounting for
constraints defined on not only one but several entity sets. Defining the identity
function id, i.e. id(x) = x, any select operation can be expressed by a join
expression taking only one set, one operator, and one predicate p as input values,
e.g.

Join(nodes(estudies), id, p) = Select(p,nodes(estudies)).

RenderingImplementation

Rendering

Zoa�s Research

opposed
representation

B. Zoa

believes

Bible Text
Studies

cultural concept

New Testament

The Fall of
Adam & Eve

http://.../Adam.txt

format: txt
..... full

The Fall

http://.../fall.doc

format: doc
..... full

Ribner

Author

Text

reference

Metamorphoses

ekphrasis

Studies
about the Fall

format: jpg
..... full

Icarus� Fall

http://.../IcarusFall.jpg

Painter

The Fall

http://.../fall.doc

format: doc
..... full

Ribner

Author

http://.../metam.pdf

format: pdf
..... full

Author

Ovid

Text

Painting

Text

Text

Breugel

Fig. 9. EMMO “Zoa’s Research”(ezoa)

5.7 Summary of EMMA Operators

EMMA provides operators to access the three aspects and the versioning in-
formation. The access to an EMMO’s media aspect is realized by the operator
connectors returning all connectors of a logical media part and the operator Me-
diaProfiles returning all media profiles of a logical media part. For accessing the
semantic aspect, EMMA provides the operator types accessing the types of an
entity, the operator attributes returning an entity’s attribute values, the operator
asso retrieving all associations within an EMMO, the operator nodes yielding all
entities within an EMMO, the operator AllEncEnt attaining all recursively con-
tained entities within an EMMO, and the operators JumpRight and JumpLeft
enabling the navigation of an EMMO’s graph structure. The operator Execute
addresses the functional aspect, and the operators successors (predecessors) and
AllSuccessors (AllPredecessors) ensure the access to the versioning information.

The ability to arbitrarily nest and combine operators guarantees the high
orthogonality of EMMA’s operators. The basic Select operator takes a selection
predicate and an arbitrary set – possibly the return set of another EMMA oper-
ation. The operator Apply allows one to use a specified operator not only for a
single input value, but for a set of input values. As some of the operator’s output
values are represented in a format which cannot be directly used as input value
for other operators, EMMA provides operators to transform and prepare the
data for the use by other operators: the operator Elements allows the flattening
of data sets and the Nest operator facilitates the nesting of an arbitrary set of
associations into an EMMO knowledge container.

By extending queries across multiple EMMOs and entities, the join opera-
tor allows one to correlate the information contained in different EMMOs. The
construction operators establish primitive operators for the construction and
manipulation of EMMOs.

Finally, EMMA allows one to capture ontological knowledge within a query.
Within the EMMO model, ontological knowledge is represented by ontology ob-
jects. The operator types accesses the classification of an entity (represented by a
set of ontology objects), and the operator IsType selects entities of specific types.
As the operators JumpRight and JumpLeft allow the specification of navigation
along associations by means of powerful regular path expressions, they enable
the inclusion of ontological knowledge such as transitive and inverse association
types, and supertype/subtype relationships.

By fulfilling all the requirements described in Sect. 3, EMMA can be said to
be adequate and complete with regard to the EMMO model.

6 Implementation

For enabling content sharing and collaborative authoring of EMMOs, the im-
plementation had to be realized on a distributed infrastructure. Thus, we have
established EMMO containers constituting a management component for EM-
MOs, i.e. the space where EMMOs “live”. The EMMO containers are not in-
tended as a centralized infrastructure realized by one single Root EMMO con-
tainer running at one server. Instead we establish a decentralized infrastructure
with EMMO containers of different scale and sizes running at different, distrib-
uted servers. To realize a decentralized EMMO management infrastructure two
requirements need to be fulfilled:

– The users of EMMO containers are manifold, i.e. ranging from individual
users running a home PC to multimedia content publishers. In other words,
the systems running the EMMO containers are very heterogeneous servers
with different sizes, operating systems, capabilities, and requirements. There-
fore, the implementation of the EMMO container infrastructure needed to
be platform independent and scalable. We have implemented the EMMO
containers in Java and used the object-oriented DBMS ObjectStore for their
persistent storage. By using Java we achieved platform independency and
by using ObjectStore for the persistent storage of EMMOs the scalability
of EMMO containers could be realized, i.e. besides a full-fledged database
server implementation suitable for larger content providers, ObjectStore also
provides a code-compatible file-based in-process variant PSEPro that better
suits the limited capabilities and needs of home users.

– For enabling the sharing and collaborative authoring of multimedia con-
tent, EMMOs must be transferable between the different EMMO containers.
Therefore, export and import facilities for EMMO containers, reflecting an
EMMO’s content, i.e. its three aspects and versioning information, are re-
quired. As EMMOs can describe quite complex structures, it is important
for the users to specify the parts of the EMMO they want to export. They

can choose between four export options indicating whether the EMMO is
transferred with or without media objects, with or without versioning in-
formation, with or without encapsulated entities, and with or without the
attached operations. EMMO containers export their EMMOs to a bundle
structure, i.e. a ZIP archive that captures an EMMO’s three aspects and
versioning information, and indicates the specified export option.

We have implemented the EMMA query processing architecture with query
optimization in mind, however, the realization of a query optimizer is subject
of future work. The EMMA query processing architecture, which is depicted in
Fig. 10, is based on the implementation of the EMMO container infrastructure
described above. Its focus is the extraction and navigation of information stored
within the EMMO containers. The EMMA query processing architecture takes
syntactically well-defined query expressions as input. The processing of the query
expressions reflects the definition of the EMMA query operators and produces
a set of EMMO objects in a pre-defined output format.

EMMA query

model

Optimized EMMA

query model

EMMA

query

Query

result

EMMA parser Query optimizer

Query execution engine

[validation]

Fig. 10. The EMMA query processing architecture

For the implementation of the EMMA operators, we have chosen a func-
tional approach, i.e. each operator has a corresponding function that evaluates
according to its implementation-specific algorithm. For enabling consistency and
integrity checking, each function has a signature that defines the number and
types of input arguments, and, additionally, the types of the expected output
values. By typing all EMMO and EMMA model constructs according to an in-

ternal hierarchy, those constructs can be used for specifying the signature of
functions.

For realizing complex queries, i.e. the nesting of modular EMMA operators,
the EMMA query model is built up. The EMMA query model is a tree consisting
of nodes and leaves. Nodes represent algebraic operators, and leaves correspond
to EMMO and EMMA model constructs, i.e. values of the underlying EMMO
container. The EMMA query model is supplied with a built-in validation mech-
anism, ensuring that operators in the query tree contain only valid references
to subsequent nodes, i.e. before evaluating the complex structure of the query
model tree, a consistency and integrity check concerning the signature of the
functions implementing the EMMA operators is performed.

By applying a bottom-up evaluation technique, the execution computes the
final query result. This evaluation technique runs through several steps. First,
any EMMO or EMMA model construct captured by the EMMO containers that
represents a valid input value for the query expression is fetched. Then, all pos-
sible output values – represented as tuples – that can be derived when applying
the function’s algorithm reflecting the definition of the corresponding EMMA
operator of the fetched input values, are computed. Going up the tree hierarchy,
this process is repeated by applying functions to the set of objects in the EMMO
store together with those tuples which were inferred in the previous step. This
process is repeated until the root of the query tree is reached and the final result
set is delivered.

Query optimization is realized by the EMMA query optimizer, which takes a
query model and transforms it into an equivalent model that can evaluate more
efficiently. The design of the transformation algorithm is based on the evaluation
of the response time of query expressions and is subject of future work.

7 Conclusion

In this paper, we have introduced the formal basis of the query algebra EMMA,
which enables the efficient retrieval of the knowledge represented by EMMOs,
a novel approach to semantic multimedia meta modeling. EMMA’s operators
provide the access to all information and aspects stored within EMMOs and
are based on precise semantics, thus offering a formal basis for query rewriting
and optimization. EMMA features orthogonal, arbitrarily combinable operators
that range from simple selection and extraction operators to more complex nav-
igational operators, joins, and even rudimentary operators for the construction
and manipulation of EMMOs. Moreover, EMMA renders it possible to integrate
ontological knowledge within queries, such as supertype/subtype relationships,
transitive or inverse association types. We have briefly sketched the implemen-
tation of the EMMO container infrastructure and the EMMA query processing
architecture.

In our future work, we will focus on the realization of an eLearning scenario
by means of the EMMO infrastructure. Based on real-world data gathered from
this use case, we will carry out experiments for performance evaluation, in partic-

ular to achieve a detailed analysis and understanding of the effects of the various
factors on query performance. We will use the application-specific data as start-
ing point for the development of an EMMA query optimizer. Furthermore, we
are in the process of developing an ontology engineering environment, consist-
ing of an ontology description language compatible with the EMMO model, and
tools that enable the seamless integration of ontological knowledge into query
processing.

References

[1] Raggett, D., Hors, A.L., Jacobs, I.: HTML 4.01 Specification. W3C Recommen-
dation, World Wide Web Consortium (W3C) (1999)

[2] Ayars, J., et al.: Synchronized Multimedia Integration Language (SMIL 2.0).
W3C Recommendation, World Wide Web Consortium (W3C) (2001)

[3] Ferraiolo, J., Jun, F., Jackson, D.: Scalable Vector Graphics (SVG) 1.1. W3C
Recommendation, World Wide Web Consortium (W3C) (2003)

[4] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

[5] Cruz, I., Sayenko, O.: Semantically Driven Multimedia Querying and Presenta-
tion. In Srinivasan, U., Nepal, S., eds.: Managing Multimedia Semantics. IDEA
Group Publishing, Hershey PA, USA (2005)

[6] Hunter, J.: Enhancing the Semantic Interoperability of Multimedia Through a
Core Ontology. IEEE Transaction on Circuits and Systems for Video Technology
13 (2003)

[7] van Ossenbruggen, J., Nack, F., Hardman, L.: That Obscure Object of Desire:
Multimedia Metadata on the Web (Part I). IEEE MultiMedia 11 (2004)

[8] Nack, F., van Ossenbruggen, J., Hardman, L.: That Obscure Object of Desire:
Multimedia Metadata on the Web (Part II). IEEE MultiMedia 12 (2005)

[9] Nack, F., Hardman, L.: Towards a Syntax for Multimedia Semantics. CWI Report
INS-RO204, Centrum voor Wiskunde en Informatica (2002)

[10] Hammiche, S., et al.: Semantic Retrieval of Multimedia Data. In: Proc. of the
Second ACM International Workshop on Multimedia Databases, Washington, DC,
USA (2004)

[11] Srinivasan, U., Nepall, S., eds.: Managing Multimedia Semantics. IDEA Group
Publishing, Hershey PA, USA (2005)

[12] Schellner, K., Westermann, U., Zillner, S., Klas, W.: CULTOS: Towards a World-
Wide Digital Collection of Exchangeable Units of Multimedia Content for Inter-
textual Studies. In: Proc. of the Conference on Distributed Multimedia Systems
(DMS 2003), Miami, Florida (2003)

[13] Newman, D., Patterson, A., Schmitz, P.: XHTML+SMIL Profile. W3C Note,
World Wide Web Consortium (W3C) (2002)

[14] ISO/IEC JTC 1/SC 34/WG 3: Information Technology – Hypermedia/Time-
Based Structuring Language (HyTime). International Standard 15938-5:2001,
ISO/IEC (1997)

[15] ISO/IEC IS 13522-5: Information Technology – Coding of Hypermedia Infor-
mation – Part 5: Support for Base-Level Interactive Applications. International
Standard, ISO/IEC (1996)

[16] Pereira, F., Ebrahimi, T., eds.: The MPEG-4 Book. Pearson Education, California
(2002)

[17] Beckett, D.: Resource Description Framework (RDF) Model and Syntax Specifi-
cation. W3C Recommendation, World Wide Web Consortium (W3C) (2004)

[18] Brickely, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Working Draft, World Wide Web Consortium (W3C) (2004)

[19] ISO/IEC JTC 1/SC 34/WG 3: Information Technology – SGML Applications –
Topic Maps. ISO/IEC International Standard 13250:2000, International Organi-
zation for Standardization/International Electrotechnical Commission (ISO/IEC)
(2000)

[20] ISO/IEC JTC 1/SC 29/WG 11: Information Technology – Multimedia Content
Description Interface – Part 5: Multimedia Description Schemes. Final Draft
International Standard 15938-5:2001, ISO/IEC (2001)

[21] ISO/JTC 1/SC 32/WG 2: Conceptual Graphs. ISO/IEC International Stan-
dard, International Organization for Standardization/International Electrotech-
nical Commission (ISO/IEC) (2001)

[22] Westermann, U., Zillner, S., Schellner, K., Klas, W.: EMMOs: Tradeable Units
of Knowledge Enriched Multimedia Content. In Srinivasan, U., Nepal, S., eds.:
Managing Multimedia Semantics. IDEA Group Publishing, Hershey PA, USA
(2005)

[23] Zillner, S., Westermann, U., Winiwarter, W.: EMMA – Towards a Query Algebra
for Enhanced Multimedia Meta Objects. In: Proc. of the Fourth International
Conference on Computer and Information Technology (CIT 2004), Wuhan, China
(2004)

[24] Zillner, S., Westermann, U., Winiwarter, W.: EMMA – A Query Algebra for
Enhanced Multimedia Meta Objects. In: Proc. of the Third International Confer-
ence on Ontologies, Databases and Applications of SEmantics (ODBASE 2004),
Larnaca, Cyprus (2004)

[25] Billiani, F., et al.: Demonstrator of Intertextual Cultural Threads – Standard
Ontology-Extended Ontology. Public Deliverable Version 2.0, CULTOS Consor-
tium and Project Planning (2003)

[26] Benari, M., et al.: Proposal for a Standard Ontology of Intertextuality. Public
Deliverable Version 2.0, CULTOS Consortium and Project Planning (2003)

[27] Leach, P.: UUIDs and GUIDs. Network Working Group Internet-Draft, The
Internet Engineering Task Force (IETF) (1998)

[28] Zillner, S., Winiwarter, W.: Ontology-Based Query Refinement for Multimedia
Meta Objects. In: Proc. of the Sixth International Conference on Information
Integration and Web Based Applications & Services (iiWAS 2004), Jakarta, In-
donesia (2004)

[29] Zillner, S., Winiwarter, W.: Integrating Ontology Knowledge into a Query Algebra
for Multimedia Meta Objects. In: Proc. of the Fifth International Conference on
Web Information Systems Engineering (WISE 2004), Brisbane, Australia (2004)

[30] Zillner, S., Winiwarter, W.: Integration of Ontological Knowledge within the
Authoring and Retrieval of Multimedia Meta Objects. International Journal of
Web and Grid Services (IJWGS) 1 (2005)

[31] Cattell, R., ed.: The Object Database Standard: ODMG-93. Morgan, Kaufmann,
San Francisco, CA (1994)

[32] Leung, T., et al.: The Aqua Data Model and Algebra. In: Proceedings of the
Fourth International Workshop on Database Programming Languages – Object
Models and Languages, Manhattan, New York City (1993)

[33] Kifer, M., Kim, W., Sagiv, Y.: Querying Object-Oriented Databases. In: Proc. of
the ACM SIGMOD Conference on Management of Data, San Diego, CA (1992)

[34] Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object Exchange Across
Heterogeneous Information Sources. In: Proc. of the Eleventh International Con-
ference on Data Engineering, Taipei (1995)

[35] Abiteboul, S., et al.: The Lorel Query Language for Semistructured Data. Inter-
national Journal on Digital Libraries 1 (1997) 68–88

[36] Bruneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra
for Semistructured Data Based on Structural Recursion. The VLDB Journal –
The International Journal on Very Large Data Bases 9 (2000)

[37] Beeri, C., Tzaban, Y.: SAL: An Algebra for Semistructured Data and XML. In:
Proc. of the Second International Workshop on the Web and Databases (WebDB
99), Philadelphia, Pennsylvania, USA (1999)

[38] Boag, S., et al.: XQuery 1.0: An XML Query Language. W3C Working Draft,
World Wide Web Consortium (W3C) (2005)

[39] Berglund, A., et al.: XML Path Language (XPath). W3C Working Draft Version
2.0, World Wide Web Consortium (W3C) (2005)

[40] Lee, T., et al.: Querying Multimedia Presentations Based on Content. IEEE
Transactions on Knowledge and Data Engineering 11 (1999)

[41] Duda, A., Weiss, R., Gifford, D.: Content Based Access to Algebraic Video. In:
Proc. of the IEEE First International Conference on Multimedia Computing and
Systems, Boston, MA, USA (1994)

[42] Adali, S., Sapino, M., Subrahmanian, V.: A Multimedia Presentation Algebra. In:
Proc. of the ACM SIGMOD International Conference on Management of Data,
Philadelphia, Pennsylvania, USA (1999)

[43] Karvounarakis, G., et al.: RQL: A Functional Query Language for RDF. In Gray,
P.M.D., et al., eds.: The Functional Approach to Data Management. Springer,
Heidelberg, Germany (2003)

[44] Miller, L., Seaborn, A., Reggiori, A.: Three Implementations of SquishQL, a
Simple RDF Query Language. In: Proc. of the First International Semantic Web
Conference (ISWC2002), Sardinia, Italy (2002)

[45] Frasincar, F., et al.: RAL: An Algebra for Querying RDF. In: Proc. of the Third
International Conference on Web Information Systems Engineering (WISE 2000),
Singapore (2002)

[46] ISO/IEC JTC1 SC34 WG3: New Work Item Proposal, Topic Map Query Lan-
guage (TMQL). New Proposal, International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC) (2000)

[47] Garshol, L.: Tolog 0.1. Ontopia Technical Report, Ontopia (2003)
[48] Bogachev, D.: TMPath – Revisited. Online Article, available un-

der http://homepage.mac.com/dmitryv/TopicMaps/TMPath/TMPath Revis-
ited.html (2004)

[49] Barta, R., Gylta, J.: XTM::Path – Topic Map Management, XPath
Like Retrieval and Construction Facility. Online Article, available under
http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html (2002)

[50] Widhalm, R., Mück, T.: Topic Maps (in German). Springer, Berlin Heidelberg,
Germany (2002)

[51] Manjunath, B., Salembier, P., Sikora, T., eds.: Introduction to MPEG-7. John
Wiley & Sons, West Sussex, UK (2002)

[52] Zillner, S.: A Query Algebra for Ontology-enhanced Management of Multimedia
Meta Objects. PhD thesis, Vienna University of Technology (2005)

