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Abstract. Isolation, autonomy, and loose coupling are critical success
factors of microservice architectures. Unfortunately, systems tend to be-
come strongly coupled over time, sometimes even exhibiting cyclic com-
munication chains, making the individual deployment of services chal-
lenging. Such chains are highly problematic when strongly coupled com-
munication e.g. based on synchronous invocations is used, but also create
complexity and maintenance issues in more loosely coupled asynchronous
or event-based communication. Here, cycles only manifest on a concep-
tual or domain level, making them hard to track for algorithms that
rely solely on static analysis. Accordingly, previous attempts to detect
cycles either focused on synchronous communication or had to collect
additional runtime data, which can be costly and time-consuming. We
suggest a novel approach for identifying and evaluating domain-based
cyclic dependencies in microservice systems based on modular, reusable
source code detectors. Based on the architecture model reconstructed
by the detectors, we derived a set of architectural metrics for detecting
and classifying domain-based cyclical dependencies. By conducting two
case studies on open-source microservice architectures, we validated the
feasibility and applicability of our approach.

Keywords: Microservice API · domain-based cyclic dependencies ·met-
rics · source code detectors.

1 Introduction

One of the main goals of microservices is to reduce the complexity of large
monolithic applications by splitting them up into smaller, autonomously acting
services [30], each of them focused on a specific part of a (business) domain [4]
and independently deployable [19]. In addition to being isolated from each other
(and therefore also becoming more autonomous), lightweight inter-service com-
munication is central in microservice architectures [20]. The goal is to support
loose coupling of the services. Finding a balance between service isolation and
interaction is often a challenging task.

Communication dependencies are often problematic when they form cycles,
where a chain of service calls ends in the same service where it began [27]. As
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cycles increase the coupling between individual services, their independent de-
ployment is no longer possible [6, 33]. Cyclic communication paths make the
system more complex, which might also lead to higher maintenance and devel-
opment efforts and costs in the long run [17].

Several solutions for this problem have been suggested, all with their spe-
cific advantages or disadvantages: Applying the API Gateway pattern [28], as
recommended by Taibi and Lenarduzzi [27], is a possible way of decoupling the
system, switching to an asynchronous communication model is another [7, 19].
While the first approach reduces the coupling, it bears the risk of creating a sin-
gle point of failure in the system [15]. Worse, in this solution there is still a cycle
in the system, but just via the API gateway. Changing the communication flow
to asynchronous messaging is also debated among researchers. While it certainly
improves the testability of the overall system as parts of the communication can
easily be replaced by using message stubs, asynchronous communication makes
the system also more complex and difficult to reason about [20]. Wolff [33] even
argues in this context that switching from synchronous to asynchronous com-
munication alone does not resolve any cyclic dependencies, but instead only
shifts them to a different level. Before the transformation, cycles manifested
through direct synchronous communication links, such as HTTP REST calls or
Remote Procedure Calls (RPC ), and were easily recognizable in the infrastruc-
ture code. But using asynchronous communication flow, these dependencies are
expressed implicitly through the semantic information stored in the content of
asynchronously transferred messages. For this Wolff coined the term Unintended
Domain-Based Dependencies [33]. These dependencies – and especially the cycles
resulting from them – now manifest as part of the domain or business logic and
can only be resolved by redesigning the architecture. Especially tracking these
communication links is now even more complicated. On the one hand, conven-
tional metrics such as cohesion or coupling cannot correctly capture them, and
most static code analysis approaches also fall short in detecting them [33].

Some authors (see e.g. [15, 33]) suggest that the only effective way to resolve
these domain-based communication cycles is redesigning the architecture on the
domain level. However, for this, the cyclic connections first have to be identified,
which is not always a trivial task, considering the polyglot nature of microser-
vice implementations [26]. Besides, the communication flow within a microser-
vice system is often distributed over several endpoints, which makes tracking
the communication paths difficult. Another caveat lies in the fact that those
architectures have often evolved organically over time and their documentation
is not up-to-date, thus making architectural reconstruction tedious. The focus
on research so far has mainly been on recognizing cycles based on synchronous
connections [17, 32]. Tracking and analyzing asynchronous communication on
API operation level, as it would be necessary to identify domain-based cycles,
has only been occasionally the subject of research so far (see e.g. [5, 12]). This
work aims at filling this gap by presenting a novel approach for identifying both,
technical and domain-based cyclic dependencies on microservice API operation
level. To achieve this, our approach uses modular, reusable source code parsers,



Identifying Domain-Based Cyclic Dependencies in Microservice APIs 3

called detectors [21] for reverse engineering a communication model from an
underlying microservice’s source code. Based on this model, we define a set of
architectural metrics for detecting and evaluating potential cyclic dependency
structures within the architecture. In this context, we will study the following
research questions:

RQ1 How is it possible to identify domain-based cyclic dependencies between
microservices by only analyzing static source code artifacts?

RQ2 What is a minimal communication model need for tracking cyclic depen-
dencies on API operation level?

RQ3 Can architectural metrics for supporting software architects in redesigning
domain-based cycles be defined based on this model?

The structure of this paper is as follows: Section 2 compares to related works.
Next, Section 3 explains how our model of the inter-service communication is
generated with the help of our source code detectors. Based on this commu-
nication model, Section 4 defines various metrics for tracking and evaluating
technical and domain-based communication cycles in a given microservice sys-
tem. Section 5 subsequently applies these metrics on two open source example
projects as part of two case studies. The remaining Sections 6, 7 and 8 conclude
with a discussion of the research results, threat to validity, and future work.

2 Related Work

Cyclic dependencies are not a new phenomenon and have to be taken into ac-
count not only in microservice systems but also in monolithic applications [14].
However, their relevance for microservice systems has also been recognized in re-
cent years by various authors [6, 17, 27, 33]. In particular, Wolff [33] distinguishes
between technical and domain-based dependencies, with the latter describing de-
pendencies that exist on a conceptual level and are difficult to track trough static
analysis methods. Ma et al. [17] classify synchronous cyclic dependencies into
strong and weak cycles: Strong cycles are communication paths with the exact
same start and endpoint, while weak cycles end in the same microservice, but
at least at a different endpoint. According to the authors, strong cycles are way
more problematic as they bear the risk of potential deadlocks in case the cycle
has no termination condition. Our work adopts this concept of strong and weak
cycles, and extends the analyses also to asynchronous communication models.

To be able to analyze a microservice system in detail, many studies follow
the approach of reverse engineering an architecture model from existing artifacts,
such as architecture diagrams [18], source code or documentation [17, 22, 32], as
well as Docker and other configuration files [8, 22]. In addition, runtime data such
as log files or monitoring data [8, 12] is utilized for architecture reconstruction.
Especially the methods that focus on source code analysis have to make some
compromises regarding the used technology stack and communication protocols
to reduce the parsing effort. For example, some works [17, 32] focus on Java
Spring technologies and HTTP-based REST communication. In contrast, the
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architecture reconstruction method proposed in this work relies on lightweight,
modular, and reusable source code detectors [21] that are not restricted to any
specific programming language or framework.

Defining a specific set of metrics to assess the quality of a microservice archi-
tecture is also the subject of some studies: Zdun et al. [35] for instance describe
metrics covering the decomposition of microservice systems, whereas Selmadji
et al. [25] define a metric set for supporting the transformation of a monolithic
application into several microservices. A more visual approach is proposed by En-
gel et al. [5]: In their study, they introduce a graph-based visual representation
of their service metrics along with visualizations of metrics and their severity.

3 Static Analysis

3.1 Microservice API Communication Model

To model the communication flow observable at the API level, this paper uses
a directed graph-based approach, similar to [23, 35]. We define a microservice
system as a graph G = (V,E, F ) where V is a set of vertexes (nodes) V = V ms∪
V interface ∪ V api ∪ V con ∪ V other, with each subset representing one category of
vertexes. E are edges of the form (vi, vj) with vi, vj ∈ V . F = {ms, sync, async}
represents a set of additional functions and predicates that operate on the graph.
The different vertex categories are:

– V ms represents the Microservices, i.e. is the set of all microservice root
nodes in the system.

– V interface represents the API Interfaces. These nodes are part of the
public interface of a microservice and provide access to a specific group
of (business) functionalities [16]. While they are not technically necessary
for modeling the flow of communication in our model, they improve model
understandability by adding more structure to the model.

– V api represents the API Operations which play a crucial role in our com-
munication model. They are the only direct access points to the underlying
microservice functionality, making them the origin of any communication
path through the system. API operations can either be synchronous or asyn-
chronous, and have a unique address under which they can be reached, e.g.,
an HTTP endpoint, a queue/topic name, a specific message type, and so on.

– V con represents the Connection Operations. The invocation of an API
operation is expressed by connection operation nodes. Each of these nodes
represents a technology-specific invocation of an API, e.g. by calling an
HTTP endpoint or sending a message via a message broker.

– V other represents any Other Operations in the graph which are not cov-
ered by the previous sets, such as calls to business services or domain entities.

The Set F provides the following functions and predicates:

– ms is a function v −→ vms with v ∈ V, vms ∈ V ms. It returns the cor-
responding microservice vertex when given a vertex of an arbitrary type.
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That is, it returns the microservice the vertex is part of. The boundaries of
a microservice end at its connection operations.

– async is a predicate of the form vapi con −→ boolean with vapi conn ∈
V api ∨ vapi conn ∈ V con that returns true in case the input node uses an
asynchronous communication model, otherwise returns false.

– sync: vapi con −→ boolean with vapi conn ∈ V api ∨ vapi conn ∈ V con returns
true if the given node uses synchronous communication, otherwise false. It
can also be defined as ¬async.

Figure 1 shows our model as a UML meta-model.
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Fig. 1: Meta-model describing communication flow in a microservice system

The following constraints must be met to consider a microservice communication
model as sound concerning our definition:

C1 Matching Connection Types: ∀(vi, vj) with vi ∈ V con, vj ∈ V api :
(sync(vi) ⇐⇒ sync(vj)) ∨ (async(vi) ⇐⇒ async(vj)). This ensures
that an API operation can only be called by a connection operation with a
compatible communication model.

C2 A Microservice should not call its own API: ∀(vi, vj) with vi ∈
V con, vj ∈ V api : ms(vi) 6= ms(vj). Since our model focuses only on the
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API perspective, we do not include the case where microservices call them-
selves as we consider those calls as internal system calls, not API calls, and
therefore not relevant for our considerations.

C3 At least one operation per service: Since our model maps the commu-
nication on API level, we assume that a service must provide at least one
publicly available API to be part of our model.

Compared to other approaches (such as [8, 13]) our model has a clear communication-
centric focus. Thus, we consider connection operations and the API operations
they target as central elements for describing the communication flow.

3.2 Model Reconstruction

Due to the highly polyglot nature of microservices [20], using full-blown language
parsers for reconstructing the communication model out of the underlying source
code would not be a practical solution. Configuring each parser and keeping it up
to date would require a considerable amount of work and a deeper understanding
of each language structure. Instead, our approach uses a concept from our earlier
research, called modular, reusable source code detectors [21]. These lightweight
source parsers are based on the Python module PyParsing1 and scan the code
for predefined patterns, while at the same time ignoring all other source code
artifacts unrelated to the communication model. While these detectors must still
be adopted to identify technology-specific patterns, implementing and especially
maintaining them requires less effort than comparable approaches.

Figure 2 illustrates the four-phased reconstruction process based on an ex-
ample microservice taken from the Lakeside Mutual2 project. This open-source
project is also used later during the case studies (see Section 5). In Phase 1, the
detectors isolate all relevant model elements (also called Hot Spots) by scanning
the source code for concrete keywords and patterns. Phase 2 uses a bottom-
up search to establish invocation links between the various hot spots. During
this search, the algorithm also identifies additional classes and methods or func-
tion calls as part of the invocation paths and adds them to the model as nodes
of type V other. Top-down connections between microservices, API interfaces,
and their API operations can be created directly since, for them, no bottom-
up search is necessary. After the invocation call tree is reconstructed, a path
reduction algorithm again removes all non-hotspots from the model in Phase
3. Removing these elements simplifies the model drastically without losing any
communication-relevant information. While this step is not necessary from a
technical point of view, it significantly improves the human readability of the
model. Phase 4 finally connects the isolated microservice sub-graphs by mapping
the endpoint information stored in the connection operations to the correspond-
ing API operation endpoints. This happens by matching HTTP addresses used
for synchronous connections or mapping publishers and subscribers by their mes-
sage types in asynchronous channels. The latter is the core focus of our work.

1
https://github.com/pyparsing/pyparsing/

2
https://github.com/Microservice-API-Patterns/LakesideMutual
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(a) Phase 1: Hotspot Detection
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(b) Phase 2: Call Graph Construction

Customer Core Management Backend
: Microservice

Customer Information Holder
: API Interface

getCustomer
: API Operation

updateCustomer
: API Operation

getCustomer
: Java Feign Client

updateCustomer
: Java Feign Client

(c) Phase 3: Path Reduction

Customer Core
Management Backend

Customer Core
: Microservice

Customer Information
Holder

Customer Information
Holder

getCustomer
: API Op

getCustomer
: Conn Op

getCustomer
: API Op

HTTP REST
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Fig. 2: Process for reconstructing a microservice system communication model

4 Metrics

Based on our formal communication model introduced in Section 3.1, we define a
set of architectural metrics that allow us to identify and assess cyclic dependen-
cies within a microservice system. Using our definition of a microservice system
as a directed graph V , any communication chain through this system can be
considered a path pvu = (v = v1, v2, . . . , vn = u) such that (vi, vi+1) ∈ E for
1 ≤ i < n [10] and v, u ∈ V api. We furthermore specify P (v) as the set of
all outgoing communication paths starting in v. According to Ma et al. [17], a
communication path forms a cycle whenever its start and endpoint are iden-
tical or when both endpoints belong to the same microservice. While the first
case results in strong cycles, which are viewed as highly problematic, the latter
results in weak cycles, which still can negatively affect the deployability of the
system [17]. This leads already to the first two boolean metrics that operate on
a given communication path p ∈ P (v):

cycstrong(v, p) =

{
true, if v1 = vn with p = (v1, v2, . . . , vn), p ∈ P (v)

false, otherwise

cycweak(v, p) =

{
true, if ms(v1) = ms(vn) with p = (v1, v2, . . . , vn), p ∈ P (v)

false, otherwise

(1)
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These two metrics return true in case the communication path is either a strong
cycle (cycstrong) or a weak one (cycweak). By combining both metrics, we are
now able to decide whether a given communication path is cyclic at all, expressed
by the following boolean metric:

cycle(v, p) = cycstrong(v, p) ∨ cycweak(v, p) (2)

By applying this metric on all outgoing communication paths of a given API
operation v, one can now calculate the ratio of cyclic dependencies for this
specific API operation as follows:

cycRatioapi(v) =
|{p ∈ P (v) : cycle(p)}|

|P (v)|
(3)

Values larger than zero indicate that communication paths initiated by v result in
at least one cyclic dependency with another microservice. Further investigation
may be needed to determine whether this behavior is intended by design. There
exists also a scenario where P (v) = 0, meaning that API operation v does not
call any other microservices, and accordingly, has no outgoing communication
paths. Then the node v is not relevant, and the metric returns 0.

Another essential aspect and one of the main contributions of this paper
is the possibility to distinguish the nature of cycles further into technical and
domain-based ones. For this, we first define the set of all connection operations
within a given path p as C(p) = {c ∈ p : c ∈ V con}. Applying the predicate
async (see Section 3.1) on every element in C, we can determine whether a cycle
exists rather on a domain or technical level.

domainCycRatio(p) =
|{c ∈ C(p) : async(c)}|

|C(p)|
(4)

Since a communication path p must always have at least one connection op-
eration, this metric is always valid. The counterpart of this metric that measures
the ratio of technical connections in the cycle can trivially be expressed by:

techCycRatio(p) = 1− domainCycRatio(p) (5)

Specifying which type of cycle is less problematic is challenging to decide: While
in the literature, asynchronous techniques are often recommended over syn-
chronous ones [7, 33], scenarios with harder time constraints might require a
synchronous communication flow [9]. In practice, it might also happen that an
unintended cycle contains both synchronous and asynchronous service calls.

The last metric introduced here measures how often a specific API operation
is part of a cyclic communication chain without being the actual root of that
chain. Nodes through which disproportionately high traffic is routed are also
known as hubs and play a central role in a network’s topology [1]. Due to their
importance, they can also have a significant impact on the creation of cyclic
dependencies. Let Pcyc denote the set of all cyclic paths in an API model, we can
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then express this impact of a given vertex v through the CyclicMembershipRatio
metric as follows:

cycMemberRatio(v) =
|{p = (v1, v2, . . . , vn) ∈ Pcyc : v ∈ p ∧ v 6= v1}|

|Pcyc|
(6)

Calculating this metric for a given API operation can be done by comparing the
number of all cyclic paths through the given operation with the total amount of
all cyclic paths in the whole microservice system.

Our current implementation calculates all of these metrics as part of a post
processing step after the reconstruction process finished the model generation
(see Section 3.2). Finding outgoing paths and cycles from a given API operation
is achieved by using standard depth-first search and a cycle detection algorithm
such as the one proposed in [29], modified to detect both strong and weak cycles.

5 Case Studies

To evaluate our approach and test the performance of our metrics, we conducted
two case studies with two different open-source microservice architectures, both
taken from GitHub (see footnotes below). Based on the guidelines for observa-
tional case studies suggested in [24], the source code of the projects was not
altered in any way during the observation.

5.1 Case Study 1: Lakeside Mutual

Lakeside Mutual3 models a sample microservice system that realizes the business
process of a fictional insurance company (designed based on real-life insurance
systems). Its level of maturity and well-documented architecture makes it a good
substitute for a real production system. It is also used in several other research
studies [11, 22]. The system consists of seven mostly Java Spring technologies-
based backend microservices and four client applications – three Web frontends
and one Node.js console client. Communication between the various services
is mainly performed through synchronous HTTP REST calls and asynchronous
messaging. We considered two of the seven backend services as too infrastructure-
related [8] and therefore not relevant for our domain-centric approach. A third
one, the RiskManagementServer was also not incorporated in our communication
model as it does not provide any outgoing connections and hence cannot play
any role in API-level communication cycles.

Our detectors were able to identify 40 API operations in total, split up into
19 API interfaces, with a majority (35) of these operations as being synchronous
REST endpoints and only five asynchronous message handlers. From these 40
operations, we removed all that do not initiate a communication path, result-
ing in a total amount of 13 API operations for further analysis. Most of these
communication paths result from the circumstance that many of Lakeside’s mi-
croservices are designed as Backend for Frontends [3] to provide an individual

3
https://github.com/Microservice-API-Patterns/LakesideMutual



10 P. Genfer and U. Zdun

interface to the underlying Customer Core service. Because this core service
lacks any outgoing connections, none of these paths can be cyclic either.

However, our analysis found one API operation – respondToInsuranceQuote

– with a cycRatioapi of 0.66, meaning two-thirds of its communication chains
form a cycle. Figure 3 shows the operation in question and its resulting invo-
cation paths. Each initial invocation of this method leads to a follow-up call to
the receiveCustomerDecision operation. From there, communication branches
out in three different directions: While one path forwards to the CoreService

and terminates there, the two others route back to the original service, resulting
in two cyclic connections (see Cycle 1 and Cycle 2 in the diagram). Both can be
considered weak cycles as each one addresses a different endpoint than the one
from where the cycle started [17]. The domCycRatio for each of them reveals in
addition that both rely on asynchronous messaging, making them purely domain-
based. Resolving these cycles would therefore require a conceptual redesign of
the architecture. If such a redesign is desired, the receiveCustomerDecision

operation could be a possible starting point for further considerations: Its cy-
cMemberRatio value of 1 indicates that it plays a central role in creating both
cycles.

Customer Self Service Backend
: Microservice

receivePolicyCreatedEvent
: API Operation

respondToInsuranceQuote
: API Operation

receiveInsuranceQuote
ExpiredEvent

: API Operation

Policy Management Backend
: Microservice

receiveCustomerDecision
: API Operation

CustomerCore
: Microservice

getCustomer
: API Operation

cycRatio = 0.66

cycMemberRatio = 1

Cycle 1
domCycRatio = 1

Cycle 2
domCycRatio = 1

Fig. 3: Communication Cycles in the Lakeside Mutual Project

We detected these cyclic relations in the Spring Term 2020 release from
March 2020 of the Lakeside Mutual Project4, while in the most recent version, a
major refactoring happened, which led to a resolution of the cycle. Whether this

4
Available as a separate branch under https://github.com/Microservice-API-Patterns/
LakesideMutual/tree/spring-term-2020, last accessed on June 22, 2021
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was intended or just a side effect could not be determined. We checked that our
tool correctly identifies in the recent release that the cycle has been removed.

5.2 Case Study 2: eShopOnContainers

The eShopOnContainers5 repository is Microsoft’s reference implementation for
microservice applications and, as such, has also been the subject of various re-
search studies ([2, 31]). It provides several frontend clients for different platforms
and four backend microservices plus additional infrastructure-related services. As
in the Lakeside Mutual case study, we also focus on the three backend services
with the largest share of business-related domain logic. In contrast to the first
study, a major difference is that all communication here is handled exclusively
via an event bus (configurable to either RabbitMQ6 or Azure Service Bus7).
This design decision reduces the technical coupling between services to a min-
imum but lifts all potential cyclic dependencies to the domain level, making
them harder to track. But this event-based characteristic also reflects in the
implementation style of the project: The dispatch of domain messages is often
decoupled from the actual creation process through event queues or caches, mak-
ing the creation of an invocation graph a relatively challenging task compared
to the previous case study. Our analysis revealed one cyclic dependency in the
eShopOnContainers architecture (see Figure 4). Here, invoking CheckoutAsync

operation sends a message over the event bus that is handled by the Ordering
API, which sends its answer back to the Basket Service, where the responsible
event handler processes it. Because of the system’s asynchronous nature, these
dependencies manifest obviously only on the domain level. Although this is the
only cycle originating from this API operation, as can be determined by its Cy-
cRate metric value of 1, this link would be pretty hard to track manually since
the connections between the services are not immediately visible.

6 Discussion

Regarding RQ1, the case studies have shown that our approach is very well
suited for finding domain-based cycles. We identified this kind of cyclic depen-
dencies in both cases by only analyzing source code artifacts without gathering
time-consuming runtime information, with the second example project even us-
ing a very implicit communication model. This makes our approach particularly
interesting for agile or DevOps processes, as executing our cycle checks could
be done as part of the development or continuous integration pipelines. But our
case study also revealed that applying our detector approach requires some ad-
ditional initial effort, like identifying common technologies and coding patterns
that are applied during the whole system and writing the relevant detectors to

5
https://github.com/dotnet-architecture/eShopOnContainers, commit hash 6012fb... from April
12, 2021

6
https://www.rabbitmq.com/

7
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
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Basket API
: Microservice

CheckoutAsync
: API Operation

OrderStartedIntegrationEventHandler
: API Operation

Ordering API
: Microservice

UserCheckoutAcceptedIntegrationEventHandler
: API Operation

cycRatio = 1

cycMemberRatio = 1

Cycle 1
domCycRatio = 1

Fig. 4: Communication Cycle in eShopOnContainers

locate these patterns within the code. This upfront workload needs especially to
be considered for larger systems. Complex communication scenarios, where ser-
vice endpoint addresses are constructed during runtime, for example by reading
input parameters, would also bring our detector approach to its limits. Here the
use of additional heuristics to provide additional guidance would be necessary.

Considering RQ2, we could also show that our communication model con-
tains all relevant elements to describe the information flow within a microservice
system sufficiently and discover potential cycles. Focusing on API operations as
central communication elements allows for a very detailed analysis of various cy-
cle properties. At the time of this writing, we are not aware of any other research
that combines so many different cycle characteristics into a single analysis.

Regarding RQ3, we showed in the case studies that the metrics we defined in
our process provide a broad tool-set for architects to identify and assess potential
cycles within a microservice application. This is especially true for domain-based
cycles, which are not easily trackable as their structure often is hidden in the
underlying message system. Nevertheless, the final judgment, whether a specific
cyclic connection is problematic or intended, can only be made by an expert
who is familiar with the underlying business domain. However, our tool-set can
provide meaningful information to support a qualified decision.

7 Threats to Validity

This section gives a short overview of potential threats to validity (see e.g. [34])
and which mitigation measures we have applied:

Construct Validity expresses to what extent the correct measures were taken
to study the phenomenon and how well our abstraction represents the original
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system. Since we developed our detectors iteratively and compared the generated
model successively with the underlying source code, we can assume with a high
degree of certainty that our model and the derived metrics are correct with
respect to the underlying architecture. While in general possible, it is unlikely
that we have missed a cycle or misinterpreted one, or made a substantial mistake
in the reconstruction of the two architectures that occurred both in our manual
and automatic reconstruction.

Internal Validity plays a role when there might be unknown factors that could
affect the conclusions drawn from the study. Since our communication model
and, therefore, our derived metrics are based on source code artifacts, all im-
plementation related impacting factors are known at the time when the model
is generated. Nevertheless, there might still exist additional artifacts like re-
quirement specifications or specific domain knowledge that could have driven
architectural design decisions. Currently, we are not considering these artifacts.

External Validity describes how well the findings could be generalized to a
larger problem space and how relevant the results are beyond this specific re-
search. The ongoing discussion about cyclic dependencies in the research com-
munity (see, for instance [17, 33] or, for real-world scenarios [6]) underlines the
relevance of this problem and the example projects we used for our case studies
are both open-source systems, well known to the public and research community,
and combine various architectural styles and best practices. While they certainly
do not reflect all possible microservice implementations, they provide a repre-
sentative character to a specific extent. But still, generalization to commercial
systems or systems other than enterprise domains might not be possible without
adaptation of our approach.

8 Conclusions and Future Work

In this paper, we presented a novel approach for detecting technical and espe-
cially domain-based cyclic dependencies in microservice API architectures. Our
approach confirms that the detection is possible by relying solely on static source
code artifacts, which makes our method ideal to be applied in continuous inte-
gration pipelines. To extract our communication model from existing source code
repositories, we implemented modular, reusable source code detectors and ad-
justed them to support different microservice systems. While this requires some
upfront implementation work, our case studies revealed that this effort is man-
ageable and can also be reduced by reusing existing detectors where possible.
In the next step, we derived a set of metrics from our model, which we then
used to detect and classify potential communication cycles in two open-source
microservice systems during a case study. The study results show that the ap-
plied metrics can detect even inconspicuous domain-based cycles that manifest
only on a conceptual level. The information gathered through our cycle analysis
provides software experts with a solid foundation for making qualified decisions
regarding a microservice system’s architecture. While our approach can detect
the existence of various types of cycles, it cannot make any assumptions about
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whether and how often these cycles are actually called during execution or if the
deployment of the system is negatively affected through these cycles in practice.
Thus, it would be necessary to collect additional runtime data and enrich the
communication model with this supplementary information. We have already
taken the first steps in this research direction.
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