
Visualizing Metric Trends for Software Portfolio
Quality Management

Patric Genfer∗, Johann Grabner†, Christina Zoffi†, Mario Bernhart† and Thomas Grechenig†
∗ University of Vienna, Research Group Software Architecture, Vienna, Austria

Email: patric.genfer@univie.ac.at
† Research Group for Industrial Software, TU Wien, Vienna, Austria

Email: {johann.grabner, christina.zoffi, mario.bernhart, thomas.grechenig}@inso.tuwien.ac.at

Abstract—Software portfolios of today’s companies are com-
prised of a variety of heterogeneous, modular, and often polyglot
software solutions. Ensuring high-quality standards across these
entire portfolios raises additional challenges for quality engineers
and requires new strategies and visualization approaches to
support software quality management decisions. In this paper,
we study the information needs of software quality engineers that
drive these decisions on portfolio-level and propose Portfoliotrix -
an expert visualization prototype for a portfolio-wide analysis and
comparison of software quality metric trends. For this, we first
introduce our four-phase fully automated data-mining process
for gathering and aggregating quality metric data from the
underlying software repositories. We then present our application
frontend that implements different visualization and filtering
concepts to satisfy eight specific information needs derived
from our prior qualitative semi-structured expert interviews.
A final scenario-based expert evaluation confirms the practical
relevance of our prototype. Experts took less time to complete
quality-related management tasks with our tool than they had
estimated when relying only upon existing toolsets. Moreover, our
visualization system reached the System Usability Scale (SUS)
score of “good” with 76.7 points.

Index Terms—Data visualization, software metrics, software
portfolios, software quality, trend analysis

I. INTRODUCTION

While in past years managing software portfolios had
mainly been considered a matter of larger enterprises [1],
the topic is also gaining traction for mid-size or smaller
companies recently. With the increasing acceptance of mi-
croservice architectures [2] and the growing usage of software
product lines as application platforms [3], today, even smaller
businesses can benefit from the advantages of heterogeneous
software landscapes [1]. In addition, even larger companies
have been steadily expanding their portfolios, either through
organic growth of their software products [4] or, notably in
the last decade, by taking over competitors together with their
software solutions1. Regarding these growing portfolio sizes,
some aspects need to be considered on a much larger scale.

One of these issues, which is also the main subject of our
work, is the process of analyzing and managing the quality
within software portfolios, for which we use the term Software
Portfolio Quality Management (SPQM). While quality man-
agement is a vast area on its own, here, we understand SPQM
as any decision-making activity that ensures and supports a

1https://www.visualcapitalist.com/interactive-major-tech-acquisitions/

common quality standard and process across multiple related
software artifacts. We further assume that the relationship
shared by the software is arbitrary and ranges from divergent
development branches of a single application through product
lines up to all applications of an organization.

SPQM at this portfolio scale can create some particular
challenges software quality experts have to face. According
to Elonen and Artto [5], one major challenge for stakeholders
is to dissect the relevant information for decision-making from
the pool of available data, which becomes even more difficult
for larger portfolios where the amount of collected data can
quickly reach a significant size. If the gathered data is not
filtered or aggregated appropriately, this can lead to a potential
information overflow, resulting in inadequate or even wrong
decisions [5]. Nevertheless, to identify the information relevant
for quality managers, it would first be necessary to define their
specific information needs regarding software portfolio quality
precisely. However, previous research in this area has mainly
focused only on single repositories (see, e.g. [6, 7]) and not
on SPQM as a whole. This limitation is also the case for
the majority of commercial quality platforms, most notably
SonarQube2, which plays a dominant role in this section.

While most solutions provide a feature-rich experience for
tracking and visualizing various quality metrics for single
repositories, they show only limited support for handling large
software portfolios. But especially this lack of possibilities
to trace quality standards on portfolio level is a huge deficit
that needs to be addressed, especially if one considers the
growing numbers of projects within portfolios. Having a
convenient way of tracking portfolio-specific quality metrics
and analyzing their trends over a longer period would allow
quality experts to adjust their resources better [1] and adapt
their overall project strategies to achieve the best possible
results [4]. To bring such a holistic portfolio monitoring
approach to life, a new kind of expert visualization tool would
be necessary, one that addresses the concrete requirements
of portfolio-level quality analysis. However, to realize such
a visualization system, some hurdles have to be overcome:

• In contrast to single repositories, portfolios can be very
polyglot and host applications of various technologies and

2https://www.sonarqube.org/

https://www.visualcapitalist.com/interactive-major-tech-acquisitions/
https://www.sonarqube.org/


use cases [8], making it challenging to define an overall
quality standard suitable for all projects.

• Projects within the portfolio can have different develop-
ment and release cycles, making it difficult to compare
their quality aspects over a more extended period.

• Combining various quality metrics from several software
projects can quickly lead to information overload. This
information must be reduced to a reasonable level without
losing too much detail.

All these aspects must be considered when providing a holistic
solution for SPQM. The purpose of this paper is, therefore, to
develop Portfoliotrix (from Portfolio Metrics), a prototypical
expert visualization system for monitoring and analyzing qual-
ity metrics on the software portfolio level. In this context, we
also aim at answering the following research questions:
RQ1: What are the information needs in software portfolio

quality management? To discover these information
needs, we conducted qualitative semi-structured expert
interviews after a systematic literature review. Thus, we
combined the current state of the art with our vision and
the knowledge from domain experts.

RQ2: How does a visualization satisfy these information
needs? Utilizing the findings of the previous research
question, we performed a requirement analysis and
specification to derive and rank requested visualization
features. Then, an iterative agile software engineering
process followed that concluded with the implemen-
tation of Portfoliotrix, our expert visualization system
prototype.

RQ3: How satisfied are experts with the proposed visual-
ization? We evaluated our prototype with a scenario-
based expert evaluation accompanied by a quantitative
questionnaire about task complexity and relevance. At
last, we let the experts rate the visualization usability
and debriefed them with an open discussion.

After discussing the related work, this paper has dedicated one
section for each research question above in the same order.
The remaining Sections VI and VII discuss the results of our
study and conclude with an outlook on further research efforts
in this area.

II. RELATED WORK

While there are several studies about the information needs
of software developers and managers (see [6, 7, 9, 10, 11]),
most of them focus on different aspects than portfolio qual-
ity management. Buse and Zimmermann [6], for instance,
studied the information needs of over 100 software and lead
developers at Microsoft. While their research concentrates on
single software repositories, some of their findings can also be
adapted on the portfolio level. Jedlitschka et al. [7] categorized
the information needs of software managers, but their focus
was more on identifying the demands that drive the decision
process for selecting appropriate development technologies.
In this context, the research of Elonen and Artto [5] and

Kuipers and Visser [4] are some of the few studies that
address the concrete challenges software managers encounter
when managing software portfolios. While the first mentioned
authors identified a set of problem areas portfolio managers
have to face, the latter ones describe an iterative tool-based
process to gather and analyze portfolio quality metrics on
different levels.

As another essential part of portfolio quality management,
data visualization has also been the subject of several studies.
A general overview of different data visualization techniques
is provided by Keim [12] and Grant [13]. Both introduce
different visualization techniques and provide various use
cases for their application. Kienle and Müller [14] present
a comprehensive study regarding the functional and non-
functional requirements a visualization tool must meet. Al-
though their investigation aimed mainly at research-related
tools for monitoring software quality and maintenance, their
findings can easily be applied to our SPQM approach. A more
portfolio-specific study was conducted by Staron et al. [15]:
The authors derived some structural and functional recom-
mendations a quality project dashboard should ideally meet,
based on their examination of three real-world companies’
development process. Many of these considerations influenced
the development process of our visual components.

Most of the aforementioned studies deal with the topic in a
more observational sense and do not include any prototypical
implementations. In contrast, Sakamoto et al. [16] imple-
mented MetricsViewer, a concrete frontend client application,
as part of their approach to collect quality metrics from source
code repositories. While their prototype focuses on monitoring
the evolution of single repositories, the Empirical Project
Monitor introduced by Ohira et al. [17] allows, albeit to
a limited extent, the combination of metrics from different
projects into a single view.

III. INFORMATION NEEDS IN SOFTWARE PORTFOLIO
QUALITY MANAGEMENT

Besides their decision-making in software quality, engineers
may also fulfill other roles in their organization [18]. There-
fore, it is not easy to differentiate the target group of quality
managers from other quality-related positions like software
developers or architects [6]. We thus have not limited ourselves
to a specific job position but instead considered all roles
with responsibility for quality-related tasks as relevant for
addressing RQ1 in this section.

According to our definition of SPQM, we initially collected
relevant information needs and problems from the scientific
literature. Our problem selection criteria were that their cause
is an underlying unsatisfied information need and that visu-
alizations can solve them. For these problems, we uncovered
their related information needs.

The study in [5] reports known and uncovers additional
problems that arise while managing project portfolios. From
these issues, we derived the following information needs (IN):
IN1: Personalized Detail Levels: Project managers, software

architects, and developers need information at the detail



level of their tasks, but also the possibility to seamlessly
navigate between these different detail levels. If tools
neglect this requirement, the consequence is either in-
formation overload or lacking data quality.

IN2: Data Actuality, Consistency, and Centralization: Since
software comprises many source code and configuration
changes that immediately affect quality, the analysis data
must stay updated. Infrequent monitoring leads to wrong
conclusions about the current status. Furthermore, the
data acquisition method must be equal across the port-
folio, or the projects lose their comparability. Finally,
decision-makers require centralized data for overviews
and comparisons. Fragmented and distributed data hin-
der their work and make it more error-prone.

The symptoms of inadequate portfolio management com-
piled in [1] enabled us to infer two more new information
needs:
IN3: Early Problem Notifications: The decision-makers need

early notifications about low-quality conditions. If un-
detected, these situations have an unconfined negative
impact on the project. Moreover, worsening quality leads
to escalations that require unplanned reallocations of
project resources.

IN4: Shared Quality Guidelines: Objective decisions on the
portfolio level need to be backed by transparent and
shared quality guidelines. Otherwise, differing standards
across projects become incomprehensible on the portfo-
lio level.

Based on our conclusions from the scientific literature,
we designed a semi-structured expert interview with quali-
tative and quantitative questions to answer our first research
question. The goal of our interview was to discover new
information needs and validate the existing ones. After a
pilot session to improve the completeness and clarity of our
questions, we conducted three interviews. According to our
SPQM definition, we selected three experts - two engineers
and one software architect - from a software research and
development organization with over 300 employees. In this
study, we asked our participants to explain their answers
with reasons and relied on our logical assessment of their
soundness.

While finding more evidence for the derived information
needs, we also discovered new ones in our interviews:
IN5: Historical Quality Trends: For our interviewees, the

history of quality metric changes over a project duration
was as relevant as the current state. Being aware of
ongoing downward trends enables the early prevention
of severe conditions before they arise.

IN6: Health Indicators with Thresholds and Exceptions: As
the data density of quality metrics in a portfolio quickly
causes information overload, our experts expressed the
need for an aggregated quality indicator per project.
Furthermore, configurable metric thresholds would assist
them in applying a shared quality standard across the

portfolio. However, they deemed making occasional
exceptions with configurable thresholds per project nec-
essary for rare circumstances.

IN7: Project Comparison: Although this need is evident, we
learned that our experts are not satisfied with their
current means of overseeing a portfolio and comparing
different metrics across projects. What is missing for
them is a configurable side-by-side view across projects
that promotes exploration and comparison while present-
ing their most important quality metrics at a glance. The
combination of different metrics was also rated as an
essential feature by our experts, as single metrics are
often not expressive enough, a conclusion also supported
by literature (see [19]).

IN8: Code Proximity: Our experts called for actionable tool
support while monitoring portfolios. Next to the process
and documentation, source code is the main contributor
to software quality. In this context, actionable means
that portfolio monitoring needs to uncover the causes for
quality changes in the source code itself. Knowing the
cause makes deriving concrete counter-measures with a
high positive impact on quality straightforward.

Due to our questioning, we also explored the background
information and rationales behind our interviewee’s answers.
When asked about the usefulness of different quality metrics
representations, participants favored statistical distributions
first, followed secondly by minimum and maximum aggre-
gations, and the commonly used mean and median at last.
With this quality data exposed, it would be easier for them
to fight technical debt, measure the effectiveness of their
quality measures, and communicate the condition of projects
to other stakeholders. A portfolio quality visualization would
also enable them to assess and compare different frameworks
and libraries. At last, noteworthy is that they see the quality
analysis necessary per single commit because the combined
impact of multiple commits makes it hard to identify the
causes.

IV. SOFTWARE PORTFOLIO QUALITY VISUALIZATION

To satisfy the information needs mentioned above and
answer RQ2, we examined various visualization approaches
and combined them into our prototype. This section gives
an overview of our implementation and how the concepts
used serve the specific information needs and requirements
identified in Section III.

A. Data Mining Process

Before serving the portfolio quality metrics to individual
stakeholders, a four-phase fully automated data-mining pro-
cess, as described in Figure 1, extracted and calculated the
relevant quality metric data from the underlying source code
repositories. The collected code artifacts and the computed
metric values were then interlinked and stored in a document-
based graph database3 for later processing through the visu-

3https://www.arangodb.com/

https://www.arangodb.com/


Figure 1. Metric Visualization Process

alization client. Aggregate functions like Average, Median, or
Sum, but also metric distributions per commit were calculated
upfront to improve rendering speed at runtime and thus provide
a better user experience [14].

Our data-mining process supports GitHub4 repositories as
sources but can easily be configured to support other hosters
as well. The same applies to the external metric calculation
tool used during the second execution step. Currently, Under-
stand5, a third-party quality metric suite, is preconfigured but
integrating other metric calculators that provide other, more
portfolio-specific metrics is also possible. For our prototype,
we relied on commonly used static OOP and complexity
metrics provided by Understand, like Lack of Cohesion of
Method (LCOM), Coupling between Object Classes (CBO) or
Cyclomatic Complexity (CC) [20]. Incorporating other, more
runtime-related metrics would have also been possible, but
as compiling and running repositories can be time-consuming
and error-prone [21], this was outside the scope of this work.
While some initial manual configuration steps, like setting
up the repository access and integrating the external metric
calculator, are necessary, the actual data mining process runs
fully automated. Extracting the relevant repository commits
and calculating the selected metric values is achieved with-
out any human interaction, making this approach especially
well suited for DevOps or Continuous Integration scenarios,
allowing a consistent portfolio analysis (see also IN2 in this
context).

4https://github.com/
5https://www.scitools.com/

B. Portfolio Dashboard

Portfoliotrix’s initial application screen, the Portfolio Dash-
board in Figure 2, provides a comprehensive overview of all
portfolio projects (2) and allows stakeholders to get a quick
overview of the overall portfolio (IN1, IN2). As 2D line charts
are considered a common and familiar way of presenting his-
torical time series [13], they were used throughout the whole
dashboard for visualizing the quality metric trends. By default,
every project metric is rendered into a single diagram (4)
to prevent potential cognitive overload (overplotting [14]).
However, users can also combine several metrics into a single
trend chart to compare trends more efficiently (3) as demanded
by information needs like IN5 and IN7. In addition, users
can choose from three different aggregate functions (7) to
visualize different metric trends. While all metrics support
Median and Average value representations for all artifacts of
a commit, some specific ones, like Lines of Code (LOC),
also provide a cumulative display. Portfoliotrix also supports
the option to switch the representation from absolute values
to relative changes starting at the initial value to facilitate
a more straightforward comparison of metrics with different
value ranges [13].

C. Health Indicator

As many experts mentioned during the interviews, getting
a fast overview of the overall quality state, together with a
notification system in case of quality violations, is crucial
functionality for them (IN3, IN4, IN6). Therefore, our fron-
tend provides the possibility to define and fully customize

https://github.com/
https://www.scitools.com/


1
2

3

4

5

6

7

8

Figure 2. Portfoliotrix Dashboard View with the following elements: (1) selected portfolio and overall health state, (2) list of projects within portfolio, (3)
list of selected metrics, (4) trend visualization of selected metrics per project, (5) metric threshold, (6) sort order of projects, (7) controls for adjusting trend
graph visualization, (8) individual project health state

threshold-based health indicators. Quality experts can define
individual lower and upper thresholds for every metric, either
individually per project or on a global portfolio-wide scope.
The threshold is visualized through a horizontal indicator line
in the respective diagram chart (5). An iconic display [12]
further encodes the overall quality status: A circular symbol
next to the project’s name (8) expresses any rule violation
using a four-color code similar to a traffic light [15]. A red-
colored indicator symbolizes that the metric trend has recently
violated the threshold, while a green circle background means
that all parameters are within the optimal range. If the indicator
changes to orange, then the trend is not yet violating the
quality rule, but it is constantly worsening. On the other side,
a yellow color shows that the trend is near the critical value
but improving.

The last two color indicators can also be considered as an
early warning system, allowing experts to react before the
actual quality violation happens [15]. The overall portfolio
state (1) arises from the highest project-specific rule violation
(unless the rule is explicitly excluded from the overall state).
In that way, a user can immediately recognize whether any
quality rule is violated without investigating each project
separately.

Figure 3. Custom Health Indicators. While the first two projects use the same
quality rules, recognizable through the letter A in their health indicator circle,
the last one uses a project-specific indicator r.

D. Snapshot View

In addition to the dashboard, users also have access to a
view that provides detailed information per snapshot/commit.

This Snapshot View in Figure 4 combines different visualiza-
tion concepts, each focusing on a specific quality aspect, and
by providing a much finer level of detail than the dashboard
view, it focuses mainly on the needs of software architects
and engineers (see IN1). The view’s root element is a trend
graph similar to the ones used in the dashboard view, but with
the additional option to combine several metrics as well as
multiple projects within a single diagram (1). Besides, this
chart also provides a vertical slider control (2) that allows users
to navigate back and forth through the portfolio’s entire history
(IN5). The layout of the remaining view organizes the selected
projects into separate columns, each column containing a
header cell with additional commit metadata (3) and various
visualizations. Users can freely choose which projects they
want to incorporate into this view (4), allowing for a better
direct comparison, as requested by some experts (IN7).

The second cell presents the distribution of the recorded
metric values in a histogram (5). The frequencies are sum-
marized in buckets, with the number of elements per group
displayed above each category. Since histograms contain even
quite dense multidimensional data when used only for a single
metric, combining several metrics into a single chart would
significantly increase the cognitive load [13]; therefore, users
can only select a single metric at once for visualization. To
limit the information density further, filtering code artifacts by
their granularity level, either file, class, or method (6), is also
possible.

The following row, the Artifact List (7), provides the most
granular access to the underlying source code artifacts within
the whole application and gives users direct access to source
code (IN8). Studies have also shown that accessing all rel-
evant information like metrics and source code through a
single application can improve developers’ efficiency during
work [22], as they do not have to switch between different
applications to connect metric values with their corresponding
artifacts. Therefore, this visual component shows all tracked



1

2

3
4

5

6

7

8

Figure 4. Portfoliotrix Snapshot Centric View with following elements: (1) combined trend graph for selected projects, (2) slider to navigate to individual
snapshots, (3) meta data of selected snapshots, (4) list of projects selected for visualization, (5) distribution of selected metric for current snapshot, (6) artifact
filter, (7) list of metric values per artifact, (8) polar chart with normalized metric values

artifacts together with their recorded metric values. A click on
a specific list entry lets the user jump directly to the hosted
artifact’s source code in the GitHub repository. Analogous to
the histogram component, this view also provides filter options
to narrow down the type of artifact.

The final visualization component uses polar charts (8)
to let the user combine several metric values into a single
diagram. In this chart, every metric gets a separate axis, and
the value ranges are normalized from zero to one over the
whole project lifetime. In that way, users can compare the
relation of selected metrics to each other at a specific point
in time to answer, for instance, questions like “While the
lines of code have doubled between two commits, how did
the documentation ratio develop during this time? ”. Another
advantage of this kind of visualization is that specific metric
combinations build reoccurring shapes, which makes it easier
to detect specific architectural anti-patterns [23]. While this
view can provide some meaningful cross-project insights, its
relatively high information density requires a certain degree
of expert knowledge about the structure and characteristics of
individual projects and therefore is more suited for advanced
scenarios.

V. EVALUATION

For answering RQ3 of how satisfied experts are with our
visualization prototype, we conducted a scenario-based expert
evaluation. We built our evaluation and structure of this section
upon the approach presented in [24]. After going through the
evaluation methodology, this section reports the participant
demographics, the task scenarios, and the results.

A. Methodology

Initially, we created a plan to define our goals, scenarios,
questionnaires, and the procedure for our scenario-based ex-
pert evaluation. For answering our third research question, the
goals were to collect demographic participant data, provide
practically relevant scenarios, compare our visualization to
existing tools, and learn about its perceived usability. Due to
the need for social distancing because of the COVID-19 pan-
demic, we designed the evaluation procedure for conducting
it remotely in an online meeting with Zoom6.

As a portfolio to visualize, we chose a small subset of
projects7 from the Apache Software Foundation. As down-
loading and analyzing the relevant commits of all repositories
and generating the highly connected metric-artifact database
afterward takes a considerable amount of time, we defined the
condition for selecting a project as the conjunction of three
criteria to retain resource and cost-efficiency. The projects
should have less than 200 KLOC, use Java or C# as a language,
and be popular on GitHub. Applying these criteria resulted in
RocketMQ8, Maven9, Log4j10, and log4net11 as our evaluation
data set. Table I summarizes the project selection criteria.

Especially the comparison between log4j and log4net, where
the latter is a port of the first one to a different language,
provides interesting insides regarding the use of different
technologies for solving the same problem.

6https://zoom.us/
7https://projects.apache.org/projects.html
8https://github.com/apache/rocketmq
9https://github.com/apache/maven
10https://github.com/apache/log4j
11https://github.com/apache/logging-log4net

https://zoom.us/
https://projects.apache.org/projects.html
https://github.com/apache/rocketmq
https://github.com/apache/maven
https://github.com/apache/log4j
https://github.com/apache/logging-log4net


Table I
SELECTED ASF PROJECTS USED FOR EVALUATION

Repository Description KLOC Stars Analyzed
commits

log4j Java based 127 704 1,5 %
logging framework

log4net C# port of log4j 129,4 459 4,7 %
Maven project management 191 2,1 K 0,5 %

and build tool
RocketMQ distributed messaging 173 10,9 K 3,75 %

platform

Like in our expert interviews, we ran one pilot session
to identify critical problems with the visualization prototype,
task descriptions, and the evaluation process itself. After the
incorporation of the findings, we proceeded to our six evalu-
ation sessions. Three out of the six participants had already
taken part in our past interviews for RQ1. From the same
organization as before, we selected three software engineers
with SPQM activities as new participants.

Our evaluation sessions started with an introduction to
explain the procedure and the visualization context to every
participant. With the participant’s consent, we began recording
the video and audio of our online conference. The participant
got access to the testing environment through screen-sharing
with remote control, where we had prepared three browser
tabs containing the questionnaire, a cheat sheet, and the
visualization prototype. After a participant had answered the
demographic questions, we provided her or him additional
time to consult the digital cheat sheet that summarized the
main features of our visualization. The sheet was also available
to every individual throughout the whole session. When the
participant was ready to go on, we continued with the task
scenarios.

Each participant had a unique order of scenarios because
of our counterbalancing against learning effects with a Latin
square [25]. Since we had seven scenarios for six participants,
we packed the closely related scenarios C and D into one
Latin square element. Thus, these two scenarios were always
in consecutive order.

Before using our visualization to solve each scenario, the
participants had to rate the difficulty and estimate the time
investment of solving it with their familiar toolset. We en-
couraged all participants to be vocal about their thoughts while
giving their answers and using our visualization. As test mod-
erators, our predefined criteria for intervening in a scenario
were when we discovered a participant’s misunderstanding of
the task or when our visualization showed unexpected behav-
ior. The participants had to solve the tasks self-sufficiently,
and interventions from our side according to our rules were
rare. To compare our participants’ effort estimations with our
visualization, we measured the task completion times. Once
our participants came up with a solution, we asked them to
rate the practical relevance of the task to their work.

After working through all scenarios, the participants had to

rate the user interface’s suitability and information density and
fill out the System Usability Scale (SUS) [26] form. Finally,
we concluded each test session with a debriefing in the form
of an open interview where we asked the participants for their
impressions and thoughts about the visualization.

B. Participant Demographics

We selected our participants across different project teams
of the same organization, and all of them performed SPQM
activities as part of their work. The participants’ average age
was 34 years. Out of the six people, one identified as female
and the remaining five as male. Their organization considered
all of them senior software engineers. On average, they had
11 to 15 years of experience in software development and 6
to 10 in software quality activities. They estimated their daily
investment in software quality as an average of 18 percent of
their working time. Figure 5 summarizes the demographics of
our participants.

31 32 33 34 35 36 37 38 39 40

(a) Participants’ age in years

<
1

[1, 2]
[3, 5]

[6, 10]

[11, 15]

[16, 20]

>
20

Software
Development

Software
Quality

(b) Participants’ experience in years per topic

0 10 20 30 40 50 60 70 80 90 100

(c) Participants’ estimated percentage of SPQM activities in their work

Figure 5. Demographics of the participants

C. Task Scenarios

The following list documents the tasks that our participants
had to complete in our evaluation sessions. Additionally,
the list provides titles to disclose the intended idea behind
every task. However, we did not show these titles to our
participants because this knowledge provides unwanted hints
at the scenarios’ solution processes.
(A) Comparing metric trends: Regarding Maven, do the

changes of the average Lines of Code metric correlate
stronger with the changes of the average Comment to
Code Ratio or with the average Cyclomatic Complexity
metric?

(B) Determining the health state of the portfolio and its
projects on lower detail level: Regarding their latest trend,
which projects have a median lack of cohesion (LCOM)
that is higher than 65?



(C) Determining the health state of the portfolio and its
projects on higher detail level: Regarding its latest trend,
which project has an artifact (file or class) that has a
maximum cyclomatic complexity of more than 50?

(D) Define individual health criteria per project: Keep the
portfolio state to green even if RocketMQ does violate
the previously defined cyclomatic complexity rule.

(E) Identify single classes within the whole portfolio: Regard-
ing Maven and RocketMQ, which is the highest class
coupling value a class has and which class is it?

(F) Comparing projects on different detail levels: What might
be a possible reason that the total lines of code of log4j
and log4net became more similar?

(G) Monitoring metrics over time: Regarding the Maven
project, how does the amount of classes with one base
class and classes with two base classes change between
May 15, 2009 and Jun 20, 2020?

D. Results

Our evaluation results consist of the participants’ task and
usability ratings, their qualitative feedback, and the recorded
task completion times.

1) Task Scenario Rating and Completion Times: Before
solving a task, our participants rated its difficulty and estimated
how long they would need to solve it with their familiar
toolset. After completing each task, they judged how relevant it
is to their SPQM activities. For all three ratings, we employed
a quinquepartite scale. The difficulty and relevance rating had
a scale of attributes ranging from the lowest to the highest
value. The effort rating utilized a scale of duration intervals
from less than five minutes to over an hour.

Figure 6 shows our participants’ ratings and our measure-
ments in detail. The participants rated tasks F and G as the
most difficult of all. In comparison, the other ratings tilted to a
lower difficulty. Effort estimation ratings showed a similarity
to the assessed difficulty. Regarding the relevance, we received
answers with averages close to the value of 4 for each scenario,
which means the majority of our participants rated the tasks
as either relevant or very relevant for their daily work. For
comparing participants’ effort estimates with their actual time
investment, we measured the scenario completion times. The
average time was always under 4 minutes. In most cases,
the experts solved the scenarios by a margin below their
estimations. Furthermore, they also completed the two most
demanding tasks significantly under their expectations.

2) Visualization Rating and System Usability Scale (SUS):
As another part of our evaluation, we investigated the use-
fulness and usability of our visualization prototype. After the
participants had worked through the scenarios, we asked them
to rate the suitability and information density of the user
interface. Figure 7 shows that the experts largely agreed that
the interface was well suited for the tasks while the amount
of information was still manageable. Up next, we presented
the frequently used System Usability Scale [26] form to our

participants. In Figure 8, we show the detailed results. Our
prototype scored an average of 76.7 points on this scale, which
translates to the attribute of “good” usability. Three noteworthy
points on which all experts highly agreed were the system’s
consistency, the well-integrated feature set, and a personal low-
entry barrier for using the system.

3) Qualitative Feedback: While our participants worked
through the scenarios and in our concluding debriefing at the
end, they gave us qualitative feedback on the prototype and
voiced their associative thoughts on SPQM.

The experts received the visualizations of the statistical
distributions of quality metrics well. They acknowledged this
feature as an advantage over their familiar tools. There was
even an interest to see how these distributions change over time
to be more aware of quality trends. The visualization should
actively aid in making distribution changes over time more
transparent. Switching between consecutive snapshot views is
not enough to draw comparisons conveniently.

The participating experts also wished for more customiz-
ability in the visualization. Their feedback repeatedly indicated
that they want dynamic views to add and remove different
visualization elements freely to suit their use cases. We heard
a broad range of different ideas ranging from supporting more
quality metrics to dynamically constructing custom views
with the available visualization components. These ideas also
suggested that the components should be more customizable
and come with more interaction methods. Zooming, panning,
and also resizing were requested features. The wish for more
customizability also showed up in the feature request for
saving and loading configurable views and reports, especially
for the dashboard area.

As another additional interaction method, the experts wished
for more filtering options. The experts also deemed the times
relevant when the project activity happened, so there should
be filter options for specific time intervals. Although our scope
was on the portfolio level, an expert wanted to have project-
specific filtering options that take the source code structure into
account. This type of filtering would add value on the portfolio
level too, when multiple projects have similar components like
front- and backends.

Another category of feedback was that the system should
also act as an assistant. Before counter-measures can address
quality problems in a portfolio, somebody has to discover the
issues first. Therefore, the system should actively notify about
problems and thereby increase quality awareness.

Lastly, minor usability issues surfaced due to the apparent
prototype status of our visualization system. The experts
discovered contrast and alignment issues and called for a
proper description of all axes and labeling improvements.
Despite being resolved quickly, these issues showed to have a
considerable negative impact on usability.

E. Threats to Validity

This section gives an overview of some common threats to
validity (see also [27]) we encountered during our research
and how we addressed them.



1: very easy

2 3 4 5: very difficult

A

B

C

D

E

F

G

E
va

lu
at

io
n

Ta
sk

Sc
en

ar
io

s
Difficulty Rating

1: <
5

2: [5, 10]

3: ]10, 30[

4: [30, 60]

5: >
60

minutes

Estimated Effort

1: irrelevant

2 3 4 5: very relevant

Practical Relevance

0 1 2 3 4 5 6 7 8

minutes

Recorded Completion Time

Figure 6. Participants’ rating of the task difficulty, estimated effort, and practical relevance compared with the recorded completion time

1
Strongly
disagree

2 3 4 5
Strongly

agree

The interface was well suited
for solving the tasks.

The amount of information was
always manageable.

Figure 7. Participants’ rating of the user interface and information density

• Internal Validity can be affected by unknown factors
which can influence the evaluation results without being
recognized by the researchers. Some of these threats we
identified were possible learning effects when participants
executed our scenarios. We tried to minimize this effect
by providing each expert with a different order of the test
scenarios. Furthermore, we should also note that all our
participants were employed at the same company, result-
ing in a potentially biased test audience. To compensate
for this bias, we still have to validate our insights with
larger samples from different organizations.

• Construct Validity expresses how well our research ap-
proach and the corresponding results represent the real-
world situation. We used a combination of time and com-
plexity estimations and qualitative interview questions
from our participants to benchmark our prototype with
existing solutions. While each of these factors in isolation
would not have been sufficient enough to draw any sound
conclusions, using all factors together to evaluate the
prototype might have reduced this threat. Nevertheless,
additional measurement criteria would strengthen our
results.

1
Strongly
disagree

2 3 4 5
Strongly

agree

1. “I think that I would like to
use this system frequently”

2. “I found the system
unnecessarily complex”

3. “I thought the system was
easy to use”

4. “I think that I would need the
support of a technical person to
be able to use this system”
5. “I found the various functions
in this system were well
integrated”
6. “I thought there was too
much inconsistency in this
system”
7. “I would imagine that most
people would learn to use this
system very quickly”

8. “I found the system very
cumbersome to use”

9. “I felt very confident using
the system”

10. “I needed to learn a lot of
things before I could get going
with this system”

(a) Responses to the items of the System Usability Scale

0 10 20 30 40 50 60 70 80 90 100

(b) Total scores on the System Usability Scale

Figure 8. Results of the System Usability Scale [26] evaluation



• External Validity describes how well the gathered results
could be generalized to a larger problem space. While
we gathered a subjective impression of our prototype by
a group of selected quality experts through our interviews,
our results cannot be considered representative due to
our small sample size. Also, our study revealed that
the target group of software quality managers is much
more inhomogeneous than our test audience group, and
interviews on a much larger scale would be necessary for
more representative results.

VI. DISCUSSION

The interviews conducted for RQ1 revealed that apart from
appropriate tools, SPQM as an activity is currently not yet
sufficiently addressed in practice, although the experts concede
a clear added value through organization-wide cross-portfolio
quality standards. If carried out at all, SPQM is not installed as
an explicit role but rather carried out by experts from different
fields of activity as part of their work. This is seen as an
interesting finding and calls for a broader investigation of
information needs of the different individual roles involved.
Furthermore, we identified a strong prevalence of SonarQube
as a platform for quality-related activities among all three
experts interviewed, which may have impacted the preferred
metrics and functions.

As for RQ2, our visualization system has holistically shown
how to incorporate the discovered information needs. How-
ever, a recurring theme in the expert’s feedback was that
they want the visualization to be more customizable and
dynamic. Although our solution shows rudiments for flexibility
by allowing the user to add more rows in the dashboard, most
components and their layouts are still static. A logical remedy
for this rigidity is to provide the current user interface elements
as layout-responsive components that act as building blocks
of a visualization construction kit. A preset would provide
the current layout, and the users could build and rearrange
their dashboards for different use cases while every component
adapts its level of detail respective to its size.

Considering the measured results, the qualitative feedback
and the SUS score, we deduce for RQ3 that the experts
perceived our prototype very positively and were satisfied with
the visualizations and functions provided. When questioned
about how well the individual functions were implemented in
the prototype, five out of six participants rated at least four out
of possible five points. In addition, also the overall information
density of the visualizations provided was noticed highly
manageable (4.2 on average) by the experts. The positive
perception in conjunction with the high level of agreement on
the practical relevance of the quality-related activities covered
in the scenarios (on average between 3.8 and 4.7 for all
scenarios) can be interpreted as validation and fulfillment
of the prior derived information needs. The detailed values
in Figure 6 show that experts were able to complete the
majority of tasks significantly faster than they had initially
estimated when relying upon existing toolsets. It was also
interesting to see that experts rated some specific scenarios

as very complex and estimated a much higher effort for
solving them with existing toolsets, as they eventually required
when using Portfoliotrix. For example, five out of six experts
indicated 30 to 60 minutes for scenario F but completed it
only within a few minutes (03:50 min on average) with our
prototype. This observation leads to the assumption that many
quality-related activities on portfolio-level are currently not
sufficiently covered by existing tools and might have been
misestimated by the experts in terms of difficulty and effort.

VII. CONCLUSION

In this paper, we examined the information needs of soft-
ware quality engineers to ensure high-quality standards across
entire software portfolios and support them with portfolio-
wide quality management decisions. Using qualitative semi-
structured expert interviews, we derived and validated four
existing information needs drawn from literature and identified
four additional new ones. Furthermore, we presented a fully
automated, highly configurable, and extensible data mining
process for calculating and aggregating quality metrics from
source code repositories of a given software portfolio.

We then introduced Portfoliotrix, our prototype of an expert
visualization system that addresses the prior determined infor-
mation needs and allows monitoring and analysis of software
quality metric trends on a portfolio level. We provided a
holistic solution to track and compare project-specific quality
metrics on a portfolio level, establish health indicators, and
evaluate the effectiveness of applied quality measures.

A scenario-based expert evaluation with six software en-
gineers - all with at least six years of experience in soft-
ware quality assurance - confirmed the practical relevance
of quality-related management activities facilitated by our
prototype. Moreover, our evaluation showed that experts could
complete specific tasks in significantly less time than they had
estimated when solving the same tasks with existing toolsets.
Finally, we reached a SUS score of “good” with 76.7 points
which confirmed the usability of our prototype.

To conclude, the obtained information needs, together with
the proposed visualization concepts, serve as a foundation for
further research in this area. The interviews carried out in this
paper can - due to the limited number of participants - only
be regarded as an initial contribution. A broader analysis of
information needs should be deeper explored in future studies.
Furthermore, our current prototype visualizes solely quality
metric data retrieved from source code repositories. However,
today’s software engineering projects also consist of database
schemes, environments, build-and deployment configurations
for DevOps processes, or even machine learning models, as
additional essential artifacts of a holistic, cross-portfolio qual-
ity management process. Depending on the respective artifact,
new metrics, quality analysis tools, and visualization concepts
might also be necessary. Last, further research should also
investigate expanding our prototype with novel functionalities.
A portfolio-wide AI-based automated hotspot/point of interest
detection mechanism would be another area that offers high
potential for future work.



REFERENCES

[1] J. Vahaniitty, K. Rautiainen, and C. Lassenius, “Small
software organizations need explicit project portfolio
management,” IBM Journal of Research and Develop-
ment, vol. 54, no. 2, pp. 1:1–1:12, 2010.

[2] N. Alshuqayran, N. Ali, and R. Evans, “A systematic
mapping study in microservice architecture,” in 2016
IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA). IEEE, 2016, pp.
44–51.

[3] J. Bosch and P. Bosch-Sijtsema, “From integration to
composition: On the impact of software product lines,
global development and ecosystems,” Journal of Systems
and Software, vol. 83, no. 1, pp. 67–76, 2010. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0164121209001617

[4] T. Kuipers and J. Visser, “A tool-based methodology for
software portfolio monitoring,” in Proceedings of the 1st
International Workshop on Software Audits and Metrics
- SAM, (ICEIS 2004), INSTICC. SciTePress, 2004, pp.
118–127.

[5] S. Elonen and K. A. Artto, “Problems in
managing internal development projects in multi-
project environments,” International Journal of Project
Management, vol. 21, no. 6, pp. 395–402, 2003. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0263786302000972

[6] R. P. L. Buse and T. Zimmermann, “Information needs
for software development analytics,” in Proceedings
of the 34th International Conference on Software
Engineering, ser. ICSE ’12. IEEE Press, 2012, p.
987–996. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2337223.2337343

[7] A. Jedlitschka, N. Juristo, and D. Rombach, “Reporting
experiments to satisfy professionals’ information needs,”
Empirical Software Engineering, vol. 19, no. 6, pp.
1921–1955, 2014.

[8] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amund-
sen, Microservice architecture: aligning principles, prac-
tices, and culture. O’Reilly Media, Inc., 2016.

[9] D. N. Card and C. L. Jones, “Status report: practical
software measurement,” in Third International Confer-
ence on Quality Software, 2003. Proceedings., 2003, pp.
315–320.

[10] A. Begel and T. Zimmermann, “Analyze this! 145
questions for data scientists in software engineering,”
in Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE 2014. New York,
NY, USA: Association for Computing Machinery, 2014,
p. 12–23. [Online]. Available: https://doi.org/10.1145/
2568225.2568233

[11] A. J. Ko, R. DeLine, and G. Venolia, “Information
needs in collocated software development teams,” in
29th International Conference on Software Engineering
(ICSE’07), 2007, pp. 344–353.

[12] D. A. Keim, “Information visualization and visual data
mining,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 8, no. 1, pp. 1–8, 2002.

[13] R. Grant, Data visualization: charts, maps, and interac-
tive graphics. Crc Press, 2018.

[14] H. M. Kienle and H. A. Müller, “Requirements of
software visualization tools: A literature survey,” in 2007
4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis, 2007, pp. 2–9.

[15] M. Staron, W. Meding, J. Hansson, C. Höglund,
K. Niesel, and V. Bergmann, “Chapter 8 - dashboards
for continuous monitoring of quality for software
product under development,” in Relating System Quality
and Software Architecture, I. Mistrik, R. Bahsoon,
P. Eeles, R. Roshandel, and M. Stal, Eds. Boston:
Morgan Kaufmann, 2014, pp. 209–229. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/B9780124170094000089

[16] Y. Sakamoto, S. Matsumoto, S. Saiki, and M. Nakamura,
“Visualizing software metrics with service-oriented min-
ing software repository for reviewing personal process,”
in 2013 14th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing, 2013, pp. 549–554.

[17] M. Ohira, R. Yokomori, M. Sakai, K.-i. Matsumoto,
K. Inoue, and K. Torii, “Empirical project
monitor: a tool for mining multiple project
data,” IET Conference Proceedings, pp. 42–46(4),
2004. [Online]. Available: https://digital-library.theiet.
org/content/conferences/10.1049/ic 20040474

[18] S. Komi-Sirvio, P. Parviainen, and J. Ronkainen, “Mea-
surement automation: methodological background and
practical solutions a multiple case study,” in Proceed-
ings Seventh International Software Metrics Symposium,
2001, pp. 306–316.

[19] J. Rosenberg, “Some misconceptions about lines of
code,” in Proceedings Fourth International Software Met-
rics Symposium, 1997, pp. 137–142.

[20] L. H. Rosenberg and L. E. Hyatt, “Software quality met-
rics for object-oriented environments,” Crosstalk journal,
vol. 10, no. 4, pp. 1–6, 1997.

[21] H. Barkmann, R. Lincke, and W. Löwe, “Quantitative
evaluation of software quality metrics in open-source
projects,” in 2009 International Conference on Advanced
Information Networking and Applications Workshops,
2009, pp. 1067–1072.

[22] M. Lanza and S. Ducasse, “Polymetric views - a
lightweight visual approach to reverse engineering,”
IEEE Transactions on Software Engineering, vol. 29,
no. 9, pp. 782–795, 2003.

[23] M. Pinzger, H. Gall, M. Fischer, and M. Lanza,
“Visualizing multiple evolution metrics,” in Proceedings
of the 2005 ACM Symposium on Software Visualization,
ser. SoftVis ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 67–75. [Online].
Available: https://doi.org/10.1145/1056018.1056027

https://www.sciencedirect.com/science/article/pii/S0164121209001617
https://www.sciencedirect.com/science/article/pii/S0164121209001617
https://www.sciencedirect.com/science/article/pii/S0263786302000972
https://www.sciencedirect.com/science/article/pii/S0263786302000972
http://dl.acm.org/citation.cfm?id=2337223.2337343
http://dl.acm.org/citation.cfm?id=2337223.2337343
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1145/2568225.2568233
https://www.sciencedirect.com/science/article/pii/B9780124170094000089
https://www.sciencedirect.com/science/article/pii/B9780124170094000089
https://digital-library.theiet.org/content/conferences/10.1049/ic_20040474
https://digital-library.theiet.org/content/conferences/10.1049/ic_20040474
https://doi.org/10.1145/1056018.1056027


[24] J. Grabner, R. Decker, T. Artner, M. Bernhart, and
T. Grechenig, “Combining and visualizing time-oriented
data from the software engineering toolset,” in 2018
IEEE Working Conference on Software Visualization
(VISSOFT), 2018, pp. 76–86.

[25] J. V. Bradley, “Complete counterbalancing of immediate
sequential effects in a latin square design,”
Journal of the American Statistical Association,
vol. 53, no. 282, pp. 525–528, 1958. [Online].
Available: https://www.tandfonline.com/doi/abs/10.1080/
01621459.1958.10501456

[26] J. Brooke, “SUS - A quick and dirty usability scale,”
Usability Evaluation in Industry, vol. 189, no. 194, pp.
4–7, 1996.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén, Experimentation in Software Engi-
neering. Springer Berlin Heidelberg, 2012.

https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501456
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501456

