
On Comparing and Enhancing Two Common
Approaches to Network Community Detection

Niko Motschnig, Alexander Ramharter, Oliver Schweiger, Philipp Zabka, Klaus-Tycho Foerster
Faculty of Computer Science, University of Vienna, Vienna, Austria
{nmotschnig, aramharter, oschweiger, pzabka, ktfoerster}@cs.univie.ac.at

Abstract—In this work, we explore two common algorithms
for community detection in networks, namely Agglomerative
Hierarchical Clustering and the Louvain Method. We investigate
their mechanics and compare their differences in terms of
implementation and results of the clustering behavior on a
standard dataset. We further propose some enhancements to
these algorithms that show promising results in our evaluations,
such as self-neighboring for Neighbor Matrix constructions and
a deterministic and slightly faster version of the Louvain Method
that favors fewer bigger clusters.

Index Terms—Community Detection, Clustering, Social Net-
works, Network Algorithms, Partitioning, Network Analysis

I. INTRODUCTION

A. Motivation

Community detection is a hot topic in network research,
with a wide field of possible applications. As networks and
graphs are able to offer abstract representations of many
different domains, such as social dynamics, disease spread,
customer behaviour, and many more, community detection
can be employed to analyze and solve a whole range of
different problems especially in the field of sociology. It is
also applicable in other areas, such as, e.g., biology (protein-
protein interaction networks), computer science (for instance
finding groups of sites dealing with similar topics), and disease
control, e.g., in cattle-trade networks [1].

Whereas there are a multitude of new proposals for commu-
nity detection algorithms [2], we in this work follow a different
research direction. Instead of designing the next iteration of
some algorithmic variant, we take a step back and investigate
the technical implementation of common algorithms, based
on two selected examples: Agglomerative [2] and the Louvain
Method [3], which will be presented in the following sections.

To this end, we illustrate and study the general workings of
each of these algorithms, give details on their implementation,
and discuss on how they as thus differ in terms of results and
clustering behavior. In this investigation, our aim is on the one
hand to provide a different perspective on these algorithms,
namely, from a technical point of view, but on the other
hand, our approach also allows us to provide ideas for new
enhancements and optimizations of these seminal works, also
outlining possible future research directions.

To this end, we discuss related work in §II, present the
selected algorithms in §III, discuss results and adaptions to
them in §IV, concluding and proposing next steps in §V.

B. Contributions

We propose, implement from scratch, and evaluate a range
of adaptations to these well-known algorithms, namely:

1) Self-neighboring: for agglomerative hierarchical clus-
tering (using the euclidean distance as the distance
function to minimize), self-neighboring changes how
the neighbor matrix is being constructed and manages
to close “gaps” in the clustering results that would
otherwise happen without self-neighboring.

2) A deterministic Louvain method that is slightly faster
than its counterpart and creates fewer bigger clusters.

3) Lastly, in order to guarantee reproducibility and facilitate
other researchers to build upon our work, we make our
source code publicly available [4].

4) An extended version of this paper that examines two
additional clustering algorithms can be found at [5].

II. BACKGROUND

There are various methods to perform community detection
or clustering in (social) networks. One of the most well-known
overviews of this area is by Fortunato [2]1, who performed
an extensive survey on the topic and compared the different
algorithms in terms of quality (using normalized mutual in-
formation) and runtime complexity. We follow his work to
select two common approaches to community detection, to
investigate and compare their implementation details, and to
propose and evaluate different enhancements.

A popular method is by means of hierarchical clustering.
As there are various approaches in this area, we give a
brief overview here: Abbas compares them to k-means, self-
organization maps, and expectation maximization based tech-
niques and categorizes the kind of data that fits best for each
approach [6]. Others compare the performance of different
linkage function for agglomerative techniques, such as Yu et
al. [7] evaluating their technique based on single and complete
link clustering. Charpentier [8] introduces a new way of doing
hierarchical clustering using a modularity score called ’Paris’
and Bonald et al. [9] present another new technique utilizing
Node Pair Sampling. Bateni et al. [10] developed Affinity for
Google Research, a hierarchical clustering approach that is
able to handle trillions of nodes through MapReduce. Our
work focuses on understanding and visualizing the differences
of agglomerative clustering based on fundamental decisions

1Nearly 10 000 citations on Google Scholar.

such as distance and linkage functions, and moreover we
will provide some intuition on how the clustering algorithm
behaves based on the underlying choices and how these can
affect the structure of the resulting clusters.

Another approach of interest is the Louvain Method by
Blondel et al. [3], a greedy optimization algorithm for
community detection. The Louvain Method uses modularity
as its quality metric, showing positive results in compari-
son with other community detection algorithms on multiple
data sets [3]. Lastly, regarding modularity based community
detection algorithms, the generalized Louvain Method from
De Meo et al. [11] is a more modern development in this area.

III. ON INVESTIGATING COMMUNITY DETECTION

In this section, we investigate the selected standard ap-
proaches to community detection, namely, Agglomerative Hi-
erarchical Clustering and the Louvain Method (§III-B).

We also performed experiments and adaptations on other
algorithms, the results of which can be found in our public
repository [4]. However, due to space limitations, in this
paper we restrict ourselves to present selected findings of our
experiments with the Agglomerative and the Louvain Method.

To this end, for each approach, we first provide an overview,
and then present our implementation details and test configu-
rations, which motivate possible enhancements.

A. Agglomerative Hierarchical Clustering

1) Overview: Agglomerative Clustering describes a
bottom-up approach: given a network, each node starts off as
its own cluster. Step by step, the closest nodes/clusters are
joined together. This step is repeated until there is only one
cluster left, containing all nodes in the network. Closeness is
defined by the used distance function between two nodes i
and j. Additionally, there needs to be a method to measure
the distance between clusters, for which we employ linkage
functions. We will discuss how this affects the algorithm later
in this section.

Other elements that need to be known prior to running the
algorithm are the degree of each node i, denoted as ki, and
the Neighbor Matrix n, where each element ni,j describes the
number of adjacent nodes which i and j share in common.
Some distance functions also require to know the overall
number of nodes in the network N.

Lastly, we use a horizontal separation line (HSL) that
describes the strictness of the grouping. A dendrogram encodes
the order in which the nodes and clusters are joined together
in a tree-like structure, so that we can define the HSL to divide
the final dendrogram into separate groups again. The decision
on where to place the HSL has a major influence on the final
results, as every vertical dendrogram line the HSL crosses will
define its own cluster. The higher up the HSL is placed, the
fewer the amount of final clusters.

2) Implementation and Test Configurations: Our imple-
mentations [4] are designed to be modular, such that core
components can be swapped and replaced according to the use
case. To this end, one can utilize different distance functions,

linkage functions, and height of the HSL (among others), and
plug in further functions.

We compare three linkage functions and analyzed their
behavior, also in comparison to the other algorithms. The
distance function used was the network-centric version of the
Euclidean distance, defined as dij = ki +kj−2nij , where nij
describes the common neighbors to both node i and j. In the
following, we will limit ourselves to the euclidean distance
function only, since other distance function explored, such
as cosine similarity or Pearson correlation coefficient did not
result in a spatial grouping desired in community detection.
However, these experiment and their results can be still be
found in [4].

Concerning the linkage function, there are multiple ways
of applying the distance function to determine the distance
d(A,B) between two clusters A, B. Most commonly, one
would employ a simple aggregation function such as the
minimum, maximum or average, as shown below:

1) minimum or single-linkage:

d(A,B) = min{d(a, b)|a ∈ A, b ∈ B}

2) maximum or complete-linkage:

d(A,B) = max{d(a, b)|a ∈ A, b ∈ B}

3) average linkage:

d(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

d(a, b)

Finally, the last important parameter to pass in is the
HSL height. The lower the value, the higher up the HSL
will be placed, thus reducing the number of final clusters.
Our implementation allows to either pass in this value in an
absolute or relative level.

This set of parameters and functions was the baseline for
experimenting with our own implementation of the algorithm
and inspecting their differences in terms of resulting clusters.
We will discuss these results and further adaptations in §IV-A.

B. Louvain Method

1) Overview: The Louvain Method was published in 2008
by Blondel et al. [3]. It is a heuristic-based (actual modularity
optimization is NP-complete [12]) greedy approach that aims
to partition the graph into communities that optimize the
modularity score.

Modularity measures the density of links inside clus-
ters/communities in comparison to links between them, the
formula for the computation of the modularity in weighted
undirected graphs is [2, 3]: Q = 1

2m

∑
ij [Ai,j−kikj

2m]∗δ(ci, cj),
where:
• m is the sum of all edge weights in the network (if the

weight is always 1 it is just the total number of edges).
• i and j are nodes, ci and cj denote the community

assignments of the respective node.
• Ai,j denotes the edge weight between nodes i and j.
• ki and kj stands for the sum of weights of incoming

nodes to i and j respectively.

• δ(ci, cj) is the Kronecker-delta-function.
The Louvain method uses this formula indirectly as an

objective function that gets optimized in a heuristic based
greedy way. The algorithm consists of 2 distinct steps [3]:

1) For each node i in the graph calculate the change
in modularity that happens when removing it from
its current community ci and adding it to every of
its neighbouring communities. Then perform the swap
that results in the biggest increase in modularity. If no
positive change is observed the algorithm terminates.

2) Merge all nodes belonging to the same community
together into one node where all internal connections
(from nodes of community ci to nodes of ci) become
a self-loop to the same node and all external/outgoing
connections (from nodes of a community ci to nodes
of a different community cj) are also merged into one
edge. The weight of the merged edge is the sum of edge-
weights from all edges merged together.

In order to calculate the change in modularity when
node i gets assigned to the community cj of one of
its neighbours in Step 1), a more efficient formula is
used that does not require to compute a sum over all
nodes [3], by setting ∆Q =

[
Σin+2ki,in

2m −
(

Σtot+2ki

2m

)2] −[
Σin

2m −
(

Σtot

2m

)2 − (ki

2m

)2]
, where

• ki,in is the sum of weights of all edges from node ”i” to
target Community cj .

• ki stands for the sum of weights of all edges incoming
to node i.

• Σin denotes sum of weights of internal nodes of target
Community cj (sum of weights of edges between nodes
of Community cj).

• Σtot equals the sum of weights of all edges that go to
the target Community cj (also includes Σin).

However we believe this not to be the “complete” formula
to calculate ∆Q, since the original paper [3] states:

“A similar expression is used in order to evaluate
the change of modularity when i is removed from its
community. In practice, one therefore evaluates the
change of modularity by removing i from its com-
munity and then by moving it into a neighbouring
community.”

Surprisingly, this similar expression to compute the change in
modularity ∆Q for the initial removal is never mentioned in
the original paper itself [3], as well as any other literature we
came across during our investigations. We discuss whether or
not the formula is incomplete and the implications in §IV-B2.

Moving on, the algorithm starts by assigning each node of
the network to its own community and then iterates through all
in Step 1. The way how it reduces the network in the merging
step 2 and the efficient calculation of modularity change are
the reasons why the runtime is more efficient than other similar
approaches that aim to maximize modularity as well as other
community detection methods overall. Its biggest advantage
is that it delivers very good results in terms of modularity in

a runtime-complexity of O(n · log n) where n is the number
of nodes in the network [13], which outperforms many other
community-detection algorithms [3].

2) Planned Adaptations/Experiments: We investigated the
following modifications of the Louvain algorithm:
• First, we used the formula that computes the modularity

of the whole current partitioning for the network. This
would be computationally inefficient, but it would further
help to clarify whether the formula for the change in
modularity, as discussed in §III-B1 is complete or not and
it would be interesting to see the quality improvements
(in terms of modularity) by using this approach.

• Then, we checked how to improve the community assign-
ment of nodes and save iterations by chaining community
assignments together. In its normal form, the algorithm
assigns each node to the community of the best neigh-
bours or the assignment stays the same. This step is done
for every node. Hence, in this way, there might be some
inefficient assignment where, e.g., node 1 is assigned to
c2, node 2 is assigned to c3, and node 3 is assigned to c4,
and we propose to instantly merge nodes 1,2,3 together
into the same community.

• Additionally, we also studied the effect of the node order
(the order in which the nodes get iterated through in
step 1 of the algorithm). The original paper [3] states
that preliminary results on several test cases seem to
indicate that the order of the nodes does not have a
significant influence on the result quality in terms of
overall modularity score. We therefore randomize the
order of nodes in our implementation and want to see
how the results differ by running the algorithm repeatedly
on the same datasets.

• Lastly, we attempted to remove some of the greedy
aspects of the algorithm by removing the merging step.
This of course greatly increases the runtime complexity,
but it would be interesting to see if one could make such
adaptations to get a better result (in terms of modularity)
and in essence trade runtime complexity for result-quality.
This would make sense if one would e.g. only use
the algorithm on a smaller network/graph where quality
would be more important than execution speed.

These adaptations and experiments are discussed in §IV-B.

IV. RESULTS & DISCUSSION

To evaluate, test, and compare the implemented algo-
rithms we mainly used the popular Karate Club dataset from
Zachary [14] with 77 edges and 34 nodes. It is considered “a
standard benchmark in community detection” [2]: each node
corresponds to a member of the club, where the edges rep-
resent mutual friendship. Additionally we used small random
graphs for testing purposes.

We implemented both of these algorithms and their enhance-
ments from scratch in Python 3.7. NetworkX 2.5 was used to
generate the visualizations from the resulting clusterings.

Next we present our evaluations and discussion on both
selected algorithms in Sections §IV-A and §IV-B.

((a)) No self-neighboring ((b)) Improved Cluster cohesion
through the use of self-neighboring

Fig. 1: Agglomerative Clustering with Euclidean Distance,
maximum-linkage and the relative HSL-level=0.3 on the
Karate Club dataset

A. Agglomerative Hierarchical Clustering

1) Experiments & Results: Through a multitude of test
runs, we identified interesting and unexpected behavior, which
we discuss in this section.

Using the Euclidean distance function, together with max-
imum linkage and HSL-level = 0.3 results in a clustering of
the Karate Club dataset as shown in Fig. 1 (a).

This figure also illustrates what agglomerative clustering,
using Euclidean distance, identifies first and foremost: well-
connected nodes. The same behaviour can still be observed
for larger HSL levels. This result seems unexpected, as one
might anticipate the use of Euclidean distance to result in more
tightly grouped node clusters, as it is, for instance, outlined
in [15]. To reveal some of these shortcomings, consider
applying the Euclidean distance formula from §III-A2 to the
nodes A and B from the three example graphs depicted in
Fig. 2: for Graph 1 dAB = 2, for Graph 2 dAB = 0, and for
Graph 3 dAB = 2 again. Here, a node does not count itself
as its own neighbor, effectively making A and B in Graph 1
further apart than in Graph 2.

2) Adaptation: Self-neighboring: As such we experimented
on how the neighbor matrix n is being constructed, applying
an idea we denote as self-neighboring. By having each node
count itself as a neighbor, we can avoid the above situation
and change the distances between A and B in Fig. 2 to Graph
1: dAB = 0; Graph 2: dAB = 2; Graph 3: dAB = 4.

After testing this new approach, we observed that, for
minimum-linkage, self-neighboring nearly always managed to
produce a higher amount of total clusters than the conven-
tional way: even with the same HSL levels, self-neighboring
results in more diverse groups, though the overall effect of
clustering central and well-connected node first still remained.
For maximum-linkage, the exact opposite was observed: self-
neighboring combined with maximum-linkage tends to pro-
duce less outliers, often forming more cohesive groups. When
comparing Fig. 1 (a) and Fig. 1 (b), we see how this manifests:
with node 2 and 3 being joined with their surrounding cluster,
as well as node 25 joining its neighbors (which is especially
interesting because, in Fig. 1 (a), node 25 shared a cluster with
none of its neighbors) and node 33 and 34 now belonging

Fig. 2: Illustration of the intuition for self-neighboring

to the same group as well, it can be observed how self-
neighboring paired with maximum linkage increases cohe-
siveness and shrinks the overall amount of clusters, without
needing to raise the HSL level. A similar effect also occurs
for average linkage.

Based on these results, we propose self-neighboring, paired
with maximum linkage, as a possible approach to computing
neighbor matrices when trying to group clusters based on their
Euclidean distance, especially if it is desired to reduce outliers.

B. Louvain Method

1) Reducing Greediness for Quality: In order to adapt the
Louvain algorithm, we decrease its greedyness by removing
the merging step (2) of the algorithm, which reduces the graph
by creating one big node out of all nodes belonging to the same
community. Additionally, we also used the total modularity
formula for the whole graph (for reasons see Section §IV-B2),
which on the other hand increased the runtime complexity.
Herein, the general idea was to be able to trade higher runtime
complexity for potentially higher quality results.

On our small test graphs, this led to the same “optimal” re-
sult that we achieved using the standard greedy version, as well
as a standard (merging) version that used the total modularity
formula. However, this result was achieved independently of
the node order, and hence there is a qualitative benefit, as the
greedy method had some node orderings that led to a slightly
worse results.

In the bigger graphs, maybe surprisingly, the optimal result
also remained the same. However, in general, the results tend
to vary a lot more and there is a trend for more smaller
communities. Moreover, there are also potential results that are
worse than any of the results of the standard/normal version.
We visualize these findings in the violin plot in Fig. 3. If one
considers the violins of normal and total, the algorithm that
uses the total modularity formula instead of the one calculating
local change, and compares them to the violins of noMerge
and totalNoMerge its clearly visible that the first 2 versions in
general yield better results. A summary of the used methods
is also depicted in Table I. Therefore, we can state that the
merging step does not only contribute to a drastic reduction
of runtime complexity, but also creates better partitionings.

2) Completeness of modularity change formula: At first
our results with the standard version of the Louvain-algorithm
were appropriate matching the results of the NetworkX Python
library, as well as manual calculations using the total modu-
larity formula on a small test graph.

Fig. 3: Modularity scores for various Louvain-Algorithm ver-
sions (100 runs per version) on the Karate Club dataset [14]

However, while implementing the less greedy version (see
§IV-B1), we encountered the problem that the algorithm would
not terminate and loop indefinitely swapping node commu-
nity assignments.

The reason for that behaviour was that the formula, which as
stated by the original authors [3] and briefly touched upon in
§III-B1, is only partial and only captures the increase/decrease
in modularity one gets when assigning the node to another
community, but not how the removal of the node from its
current community affects it. We obtained further validation
by calculations using the “incomplete” formula on a small
graph where:
• the Assignment of a node to the same community would

still result in a modularity increase → this should not
change modularity at all,

• the removal of a node from a bigger community and
assignment to a new community consisting only of that
one node resulted in a modularity change of ”0” → this
should decrease modularity.

Another evidence for the incompleteness of the formula is
the violin plot in Fig. 3, where one can see that the version
using the total modularity formula (total) led to better results
more often than the normal one—if the formula would be
complete, then the behaviour of the 2 versions should be
exactly the same. We therefore believe that the formula from
the original paper [3] and other sources is not complete as it is
missing the effects on modularity that the removal of a node
from its current community has.

Notwithstanding, the algorithm works well without this
part of the formula (in the best case we reach the same
modularity score on the Karate Club dataset [14] as the
original authors [3]), since the cost of removal seems to be
often insignificant when working with the standard version of
the algorithm (especially after nodes get merged in Step 2).

Interestingly enough, as also depicted by the violin plot
(Fig. 3, label totalNoMerge), the total and complete formula
performs worse than the “incomplete” one if we omit the
merging step as described in §IV-B1. The results vary the most

((a)) Best Partitioning using our
standard Version of the Louvain-
Algorithm on the Karate Club dataset

((b)) Partitioning using our ex-
perimental Version of the Louvain-
Algorithm on the Karate Club dataset

Fig. 4: Partitionings using (a) the standard Louvain-Version
and (b) our experimental Louvain-Version

and in 100 runs, the best possible result was not achieved. We
cannot pinpoint a definitive explanation for this behavior—our
assumption is that even though the “incomplete” formula for
just the change calculation sometimes assigns nodes to initially
non-optimal communities, this might lead to more favorable
assignments later on.2

3) Faster merging experiment: We also adapted the algo-
rithm in by how nodes are assigned to clusters in a way
that assignments get merged/combined. If, e.g., node 1 gets
assigned to c2, node 2 gets assigned to c3, and node 3 gets
assigned to c4, they are put all in the same cluster/community
as their assignments are merged.

This led to a deterministic algorithm version as visible in
Fig. 3 with the label Exp. Since the assignments are only done
at the end of each iteration, they no longer depend on the
order in which one iterates through the nodes. The result had
a worse modularity score than all or most of the partitionings
that were determined by the standard as well as the other
version. In general, the results also had fewer clusters than
the near optimal partitioning in terms of modularity. However,
when considering the resulting community assignments, as in
Fig. 4 (b), the results are still good enough.

This, combined with a slightly faster run-time (see Table I),
and the advantage of deterministic results, might make it
attractive in certain situations.

Our implementation is available at [4].

V. CONCLUSION AND OUTLOOK

In this paper, we explored and implemented common com-
munity detection algorithms from the ground up, in order
to perform a technical investigation w.r.t. their algorithmic
behaviour on paper versus in code, and additionally proposed
and evaluated a range of enhancements based on our findings.

We investigated the partitioning behavior of Agglomerative
Clustering and how it is affected by the choice of distance
function, linkage function, and HSL level. Based on our

2Similar to evolutionary algorithms, where sometimes one needs to go into
a seemingly unfavorable direction to escape local maxima and move towards
the global maximum.

TABLE I: Comparison of Louvain versions (100 runs, Karate
Club dataset, Intel i7-3770k CPU@3.5GHz, 16GB RAM)

Label Description Max.
Score

Min
Score

Avg.
run-
time
(ms)

normal Algorithm as described in
the original paper [3]. 0.41979 0.38108 3.899

total

Algorithm as described
in the original paper [3]
that uses the formula
for the total modularity
of the whole graph to
calculate change instead of
the formula that directly
calculates the change.

0.41979 0.3792 440.799

noMerge

Like ”normal” but the
merging step (2.) of the
algorithm (see §III-B1 is
omitted and the algorithm
always works with the full
set of initial nodes.

0.41979 0.35396 57.314

total
NoMerge

Like ”total” but the merg-
ing step (2.) of the algo-
rithm (see §III-B1 is omit-
ted and the algorithm al-
ways works with the full set
of initial nodes.

0.39981 0.24499 1966.91

Exp

Experimental version de-
scribed in §IV-B3, creates
less bigger clusters and is
deterministic.

0.37443 0.37443 3.349

results, we proposed self-neighboring as an alternative way
to construct the neighbor matrix, which manages to improve
cohesion by closing gaps between clusters.

Regarding the Louvain Algorithm, we discovered that the
full formula for modularity change was not disclosed in the
original paper. We as thus investigated and analyzed the impact
of using the partial formula by comparing the results generated
by its use with the ones created by the total modularity
formula. Additionally, we also experimented with the merging
step of the algorithm as we tried to omit it and see how it
affects the results. Our main results in this context was that the
merging step of the algorithm not only reduces the runtime of
the algorithm but also helps to create better results in terms of
modularity, but that at the same time, the incomplete formula
still works well – except when omitting the merging step, but
can nonetheless cause an indefinite loop in certain situations.
We moreover proposed an adaptation, where we changed
the method how communities are assigned, to the Louvain
Method, that is faster, deterministic, and creates bigger clusters
compared to the normal version.

A. Future Work
One major area to focus on next would be the exploration of

additional data sets. The techniques presented were examined
to work on smaller examples and well-known data sets such
as the Karate Club one, but it still remains open how these
adaptations would fare in the context of thousands to mil-
lions of nodes. Additionally, with the agglomerative clustering

approach, where one can arbitrarily exchange the distance
function, there is good potential for further exploration and
investigation by leveraging more intricate distance functions.

Another possible direction for future work would be to
investigate and implement more clustering algorithms with
other underlying paradigms (such as, e.g., using random walks
as presented by Pons et al. [16]).

Regarding the Louvain method, a further step could be
to derive the complete formula to calculate the change (as
discussed in §IV-B2) and repeat the experiments. Furthermore,
there have also been orthogonal adaptations to the Louvain
method, such as, e.g., by De Meo et al. [11], who were able
to slightly improve the results of the original method using a
novel measure of edge centrality based on k-paths.

B. Reproducibility

In order to guarantee reproducibility and facilitate other
researchers to build upon our work, we make our source code
and artifacts publicly available [4].

REFERENCES
[1] L. Brzoska, M. Fischer, and H. H. Lentz, “Hierarchical structures in

livestock trade networks—a stochastic block model of the german cattle
trade network,” Frontiers in veterinary science, vol. 7, p. 281, 2020.

[2] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[4] N. Motschnig, A. Ramharter, O. Schweiger, and P. Zabka, “Network
community detection,” https://gitlab.cs.univie.ac.at/ct-papers/network-
community-dection/, 2021.

[5] N. Motschnig, A. Ramharter, O. Schweiger, P. Zabka, and K.-T. Fo-
erster, “On comparing and enhancing common approaches to network
community detection,” https://arxiv.org/abs/2108.13482, 2021.

[6] O. Abu Abbas, “Comparisons between data clustering algorithms,” Int.
Arab J. Inf. Technol., vol. 5, pp. 320–325, 07 2008.

[7] S. Yu, K. Yu, and V. Tresp, “Soft clustering on graphs,” 01 2005.
[8] B. Charpentier, “Multi-scale clustering in graphs using modularity,”

Master’s thesis, KTH Royal Institute of Technology, Brinellvägen 8,
114 28 Stockholm, Sweden, 2019.

[9] T. Bonald, B. Charpentier, A. Galland, and A. Hollocou, “Hierarchical
graph clustering using node pair sampling,” CoRR, vol. abs/1806.01664,
2018.

[10] M. Bateni, S. Behnezhad, M. Derakhshan, M. Hajiaghayi, R. Kiveris,
S. Lattanzi, and V. Mirrokni, “Affinity clustering: Hierarchical clustering
at scale,” in NIPS 2017, 2017, pp. 6867–6877.

[11] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Generalized louvain
method for community detection in large networks,” in 2011 11th
international conference on intelligent systems design and applications.
IEEE, 2011, pp. 88–93.

[12] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “Maximizing modularity is hard,” arXiv preprint
physics/0608255, 2006.

[13] A. Lancichinetti and S. Fortunato, “Community detection algorithms:
a comparative analysis,” Physical review E, vol. 80, no. 5, p. 056117,
2009.

[14] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” Journal of anthropological research, vol. 33, no. 4, pp.
452–473, 1977.

[15] D. Beers and R. Campbell, “Community detection with hierarchical
clustering algorithms.”

[16] P. Pons and M. Latapy, “Computing communities in large networks
using random walks,” in International symposium on computer and
information sciences. Springer, 2005, pp. 284–293.

