Computing
https://doi.org/10.1007/500607-021-01002-z

REGULAR PAPER

®

Check for
updates

Detector-based component model abstraction for
microservice-based systems

Evangelos Ntentos'® - Uwe Zdun' - Konstantinos Plakidas' - Patric Genfer’ -
Sebastian Geiger? - Sebastian Meixner? - Wilhelm Hasselbring?

Received: 11 November 2020 / Accepted: 7 August 2021
© The Author(s) 2021

Abstract

One of the chief problems in software architecture is avoiding architecture model
drift and erosion in all kinds of complex software systems. Microservice-based sys-
tems introduce new challenges in this context, as they often use a large variety of
technologies in their latest iteration, and are changed and released very frequently.
Existing solutions that can be used to reconstruct architecture models fall short in
addressing these new challenges, as they cannot easily cope with continuous evolu-
tion, their accuracy is too low, and highly polyglot settings are not supported well. In
this work, we report on a research study aiming to design a highly accurate architec-
ture model abstraction approach for comprehending component architecture models
of highly polyglot systems that can cope with continuous evolution. After analyzing
the results of related studies, we found two possible architecture model abstraction

B Evangelos Ntentos
Evangelos.Ntentos @univie.ac.at

Uwe Zdun
Uwe.Zdun@univie.ac.at

Konstantinos Plakidas
Konstantinos.Plakidas @univie.ac.at

Patric Genfer
Patric.Genfer @univie.ac.at

Sebastian Geiger
Sebastian.Geiger @siemens.com

Sebastian Meixner
Sebastian.Meixner @siemens.com

Wilhelm Hasselbring

hasselbring @email.uni-kiel.de

Research Group Software Architecture, Faculty of Computer Science, University of Vienna,
Vienna, Austria

Siemens Corporate Technology, Vienna, Austria

University of Kiel, Kiel, Germany

Published online: 28 August 2021 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-021-01002-z&domain=pdf
http://orcid.org/0000-0002-7997-905X

E. Ntentos et al.

approaches that meet the requirements of our study: an opportunistic, and a reusable
semi-automatic detector-based approach. We have conducted an empirical case study
for validation and comparison of the two approaches. We conclude that both detector
approaches are feasible. In our case study, the reusable approach breaks even in terms
of time and effort needed for establishing reuse, if modest reuse of detectors is pos-
sible, and is producing slightly more high quality and evolution-stable solutions than
the opportunistic approach.

Keywords Modeling - Detectors - Microservices - Software architecture -
Architecture reconstruction

Mathematics Subject Classification 68U35 - 68-02

1 Introduction

Microservice-based architectures are a kind of service-oriented architecture that con-
sist of independently deployable, modifiable, and scalable services, each having a
single responsibility [1,2]. Microservices typically do not share their data with other
services, are deployed in lightweight containers or other virtualized environments,
and communicate via message-based remote APIs in a loosely coupled fashion.
They feature polyglot programming and polyglot persistence, and are often combined
with DevOps practices such as continuous delivery and end-to-end monitoring (see
e.g. [3-5]). Microservices are one of many service-based architecture decomposition
approaches (see e.g. [6-9]). Just like other architecture decomposition approaches,
they do not address the classical software architecture problems of architecture drift
and erosion [10] well. That is, during system evolution, the architecture models
increasingly diverge from the actual software as changes are made in the source code
which either violate the architecture model’s original specifications, or are not reflected
in it, for example through the introduction of new features [11].

To address this problem, architecture reconstruction approaches have been proposed
to automatically or semi-automatically produce architecture models from the source
code [12—14]. Unfortunately, these approaches usually involve a substantial effort to
either manually maintain the reconstructed architecture model, or repeat the recon-
struction after the system has evolved (see [15]), meaning that they are not suited for
supporting continuous evolution of systems. In addition, automated approaches have
low accuracy (see [16]), and much additional, manual effort is needed for correcting
and augmenting their results. Finally, most reconstruction approaches focus on a very
limited number of programming languages and technologies (see [12]), meaning they
are hard to use with modern systems, such as microservice-based systems, which use
typically polyglot programming, persistence and technologies, often in their latest
iterations.

For these reasons, the prospects for ever developing a one-size-fits-all, generic
reconstruction method that can cope well with evolving microservice systems (and
similar polyglot systems) look bleak. Fortunately, there is hope in the fact that devel-
opers usually know a lot about their projects and thus a generic, fully automated

@ Springer

Detector-based component model...

reconstruction may not be necessary. In this paper, we report on a design science
research study [17] in which we aimed to design a new approach to enable the accurate
creation and continuous evolution of component architecture models in microservice-
based and similar polyglot settings with little extra effort. We set out to answer the
following research questions:

— RQ1 How to design a 100% accurate architecture model abstraction approach for
comprehending component architectures of systems that are highly polyglot?

— RQ2 How to support continuous comprehension of such systems in the context of
such an architecture model abstraction approach?

— RQ3 How high is the required time (effort) for creating and maintaining architec-
ture model abstractions in such an approach?

Our study was performed by first defining the design science study in terms of
design context, artifacts studied, stakeholders, and their requirements. We then selected
a case study for research validation and investigated the case by performing a manual
reconstruction of it, used later as a ground truth. We then analyzed the related studies
that fulfill our requirements best.

In particular, our work is an extension of the approach taken by [15], which is
presented in more detail in Sect. 3. Based on our experience with this work, we
designed an opportunistic detector-based approach which is capable of fulfilling all
our requirements regarding support for polyglot, continuously evolving systems. Our
evaluation of this first approach showed that it could be further refined by making the
detectors reusable, which we proceeded to accomplish. The result were two approaches
which are the key contribution of this paper:

Detectors are software components that continuously parse relevant parts of the
source code and create model abstractions from the code.

Reusable Detectors are detectors which can be reused across different model abstrac-
tion tasks and projects.

We realized both approaches fully (design, prototype development, validation in
the case study), and quantitatively and qualitatively compared the results of the two
approaches.

This paper is organized as follows. Section 2 examines related work and explains
our study’s contributions in the context of the state of the art. Next, in Sect. 3 we
explain the background of this study and Sect. 4 explains our research study design
and the two detector-based approaches in detail. In Sect. 5 we explain the case study
implementation, and in Sect. 6 we report on its evaluation. In Sect. 7 we provide a
brief overview of an implementation of the same approach in a different domain, as
addition proof of concept. We conclude with a discussion of the treats to validity of
our approach in Sect. 8, and our general summary in Sect. 9.

2 Related work

Related Works on Microservice Architectures Microservices [1,2,8] are, among
many other things, a way to decompose an architecture based on services [3]. This is
an area which has been studied intensively in recent years (see e.g. [6,7,9]). According

@ Springer

E. Ntentos et al.

to mapping studies [18,19], the focus of microservice research is — in contrast to our
study — frequently on specific system architectures or applications, often in relation to
questions of deployment, monitoring, performance, APIs, scalability, and container
technologies. The problems of complexity and service composition — relevant to our
study — are addressed often, but the majority of these studies focuses on a variety of
qualities (with many focusing on runtime aspects) [19]. Granchelli et al. [20] provide
one of the few existing microservice-specific architecture reconstruction approaches.
It statically analyses Docker and Docker Compose files for names and ports, and then
the Docker containers and network bridges dynamically, to reconstruct the deployed
microservices from the system’s communication logs. While having quite a differ-
ent goal than our study, this approach confirms our thesis that microservices require
different approaches to architecture reconstruction than those adopted by the exist-
ing literature on the topic. As Granchelli et al. only use information from Docker
files and related data, the reconstruction achieved is much more limited than the two
approaches reported in our study, but in contrast to our approach it considers informa-
tion on dynamic behavior as well.

Alshuqayran et al. [21] present an approach that is intended as a groundwork
for architecture reconstruction of microservices. From the analysis of 8 open source
projects, the approach derived a meta-model and possible mapping rules for microser-
vices. This approach misses the detection component, which is the major focus of
our approach, but additionally focuses on a broader set of concerns than just those
that can be modeled in component models. Vianden et al. [22] report on a study of a
microservice-based reference architecture as a starting point for enterprise measure-
ment infrastructures. This can be seen as an alternative to a reconstruction effort, but it
requires manual maintenance of the architecture in relation to the reference architec-
ture — which could, e.g., be provided by one of the approaches reported in our paper.
Rademacher et al. [23] suggest to address the polyglot nature of microservices using
an aspect-oriented modeling approach. Again, this approach requires manual effort.
It could be used as a modeling extension of our approach, where our approach can
deliver the information needed for creating and maintaining the model.

Related works on architecture reconstruction and abstraction Architecture recon-
struction focuses on automatically or semi-automatically producing architecture
abstractions from the source code [12—14,24]. Many approaches focus on identifying
components or similar abstractions through automatic clustering [24,25]. A variety
of approaches establish different kinds of abstractions between source code and the
architecture level. Some use graph-based techniques [26], while others utilize model-
driven techniques [27-29], or logic-oriented programming [14]. Other approaches [30]
analyze external dependencies to discover architectures and analyze a system’s quality
attributes. ExplorViz observes the runtime behavior of instrumented software systems
and reconstructs their architecture on software landscape and software application
level [31].

Unfortunately, these approaches have some major issues in practice: (1) architec-
ture reconstruction approaches focus on identifying abstractions from code, without
considering continuous software evolution. That is, once a reconstruction effort is fin-

@ Springer

Detector-based component model...

ished and a few subsequent evolution cycles of the software system have occurred, the
reconstructed architecture is once again outdated and a new reconstruction effort would
be needed. This would not be a big problem, if the reconstruction approach were low-
effort, fast, and largely automated. However, (2) automated reconstruction approaches
generally have rather low accuracy, precision, and recall ability. For example, a com-
parative study of nine approaches reports average accuracy of 31% to 58% [16]. Given
the tremendous effort needed to find and correct incorrectly-mapped source code ele-
ments in large-scale systems, in practice anything else than close to 100% accuracy
is hard to use. In other words, today a substantial manual effort is required to reach
close to 100% accuracy when starting off with the results of an automatic reconstruc-
tion. Finally, (3) most reconstruction approaches focus on a very limited number of
programming languages and technologies (e.g., only considering Java code and even
there ignoring special cases such as reflection, libraries that create dynamic depen-
dencies, dependencies injected by an external technology, and so on). Systems such
as today’s microservice systems use polyglot programming, persistence and technolo-
gies, often in their latest iteration; that is, different programming languages are used,
and in each of them various libraries, sometimes offering multiple APIs, are used
to perform tasks such as client invocations, server programming, publish/subscribe
interactions, database access, dependency injection, and so on. This is combined with
multiple technologies for persistence, dependency management, CI/CD, containeriza-
tion, end-to-end monitoring, call tracing, and so on, each coming with their specific
configuration or other domain-specific languages. New such libraries and technolo-
gies emerge constantly, which are quickly adopted by microservice projects, further
complicating the issue.

For this [15] proposed an approach for creating an architecture component view
from the source code using a domain-specific language (DSL) for architecture abstrac-
tion. In this approach, the architect would specify known facts, such as the names of
the major components, filter patterns for the relations of packages or classes to com-
ponents, and so on. The filter patterns are designed to require little or no change if
the source code changes. By studying various cases, it has been shown [15,32] that
this approach requires relatively little effort (compared to program size) and can cope
well with the evolution of systems. As this approach seems in a number of ways more
promising for practical support of continuous architecture abstraction than the exist-
ing reconstruction approaches, we decided to use it as groundwork for our study. Like
the other mentioned approaches, however, it too falls short in addressing the polyglot
nature of microservice-style systems.

3 Background

Our study of related works identified the approach by [15] as close to our research
requirements. From an architectural point of view, this approach uses program code in
Java, and the abstraction DSL, as inputs, and creates models as output. In a first step,
Java source code elements are mapped to an abstract syntax tree, from which then
a detailed UML model of the relevant parts of the code is created. Next, this model
is interpreted and transformed. In a background analysis we investigated to what

@ Springer

E. Ntentos et al.

extent it was possible to extend this Java parsing-based approach to support multiple
technologies and languages. We designed a similar solution based on ANTLR!, since
thatis one of the few polyglot parser frameworks that supports most of the grammars for
the languages used in our case study. Unfortunately, parsing with existing grammars for
ANTLR frequently failed for our case study (see Sect. 4.1.2) and other test examples,
as many ANTLR parsers do not support all the latest features of all languages used in
our case study.

We decided not to pursue this approach further, since it would have required sus-
tained effort to first correct and then maintain a wide variety of grammars, just to
be able to parse all language features that we might encounter. We concluded that
the approach would require us to maintain a polyglot parser framework or an adapter
framework to polyglot parsers.

4 Case study design

This study employs the design science research method, which supports studying
the design of artifacts in a specific context [17]. A design science research study is
performed in a number of design and engineering cycles. Wieringa et al. [17] defines
4 possible steps in such a research cycle: problem investigation, treatment design,
treatment validation, and design implementation. Evaluation of a cycle might lead
to a next cycle for improving the design. The last step of the research cycle, design
implementation, concerns the technology transfer into the real-world context, and is
optional. We have not performed it in our study. For treatment validation, several
validation methods can be applied, including various empirical methods. In our study,
we have opted for an empirical evaluation based on a case study. If empirical methods
are applied, Wieringa proposes a nested empirical cycle for performing the empirical
study.

4.1 Study definition

Figure 1 summarizes the main steps in our research study, which started with a problem
investigation, followed by a definition of requirements, and a background analysis of
the approach by [15] (described in Sect. 3) that our study has revealed as close to
our research requirements. In parallel we performed a manual reconstruction of a case
study as a ground truth (described in Sect. 4.1.2). Based on the insights of those research
steps, we designed and validated first the opportunistic detector-based approach and
then the reusable detector-based approach. Finally, we quantitatively and qualitatively
compared the results of the two approaches.

4.1.1 Problem investigation and treatment design

In an initial problem investigation and requirements definition phase, we have inves-
tigated the problem from a stakeholder and stakeholder goals perspective, followed

1 https://www.antlr.org/.

@ Springer

https://www.antlr.org/

Detector-based component model...

by a definition of the requirements. In parallel we have defined and studied the case
study; this has influenced the problem investigation and requirements definition, and
vice versa.

Context The specific context of our study is comprehending microservice architec-
tures; this context can be generalized to comprehending the component architectures
of polyglot and evolving software systems.

Artifact As we have argued above, to design a fully automated reconstruction tech-
nique that works well in this context is likely infeasible. Using the examples provided
below, we will illustrate why this is the case in more detail. Hence, we decided to
study instead as an artifact a semi-automatic architecture abstraction method inspired
by the work of [15].

Stakeholders The stakeholders of our study are microservice developers and archi-
tects whose systems are complex enough to make comprehension difficult; in a broader
context, any developers and architects who are in such a situation are the relevant
stakeholders.

Stakeholder goals and requirements We first investigated high-level stakeholder
goals and then derived the following concrete requirements for our design:

— R1 The approach should support stakeholders in getting an accurate understanding
of the component architecture of a system, in the form of a complete component
model at a sufficient level of detail, i.e., a model that contains all the possible
components and component types, connectors and connector types as well as the
related technologies.

— R2 The approach should lead to architecture component models that are — in the
absence of human error — 100% correct. Our approach enables 100% accuracy
since it involves a full and detailed manual reconstruction of the component archi-
tecture, which is the ground truth for the development of our detectors. The process
ensures that the detector developers will be familiarized with the architecture, if
that was not the case previously. The detectors are developed explicitly to cover
at least the ground truth established by the manually reconstructed architecture,
and are thus guaranteed to cover all architecturally relevant elements (per R1).
Please note that our approach could potentially use heuristics as detectors. We
have deliberately not chosen this option in this article’s case study. If it was cho-
sen that detection would be less than 100% correct as a downside, but the efforts
(R6/R7) could substantially be reduced this way. Investigating this option further
is beyond the scope of this article.

— R3 The approach should be applicable in a microservice setting. That is, it should
be possible with a reasonable time (effort) (see Requirements R6 and R7 below)

@ Springer

E. Ntentos et al.

Case Study Design
Approach 1 Approach 2

|
1
|
i Treament Design: Design Treament Design: Design
| treatment based on opportunistic treatment based on reusable
1
|

detector-based approach detector-based approach

Problem Investigation: Define
stakeholders and goals

prototype realization prototype realization

|
1
| Treatment Validation: Full Treatment Validation: Full
|
1

[Treatment Validation: Case | _J | Treatment Validation: Case
Study - Elm}ica] Cycle Study - Em‘nca] Cycle

Comparison of Approach 1 and
Approach 2

Fig.1 Overview of the research study execution steps

to cope with polyglot programming and projects which frequently adopt the latest

technologies.

— R4 The approach should support continuous comprehension. That is, the time
(effort) needed to recreate the architecture model after a change of the system
should be minimal, i.e., usually close to zero; and in exceptional cases, a fraction

Treament Design: Background Analysis POUUUNUPRP Y [P IP SpPP PR PP,
Define Requirements of the approach by Haitzer et al. T e e e B
Case Study Evaluation

of the time (effort) needed for creating the initial architecture model abstraction.

— RS The approach should support traceability between architecture model abstrac-

tions and the source code.

— R6 Compared to the overall time (effort) needed to engineer the system, stakehold-
ers should need to invest only a minimal amount of time (effort) for the manual
part of the architecture model abstraction. We estimate that less than 1% of the

development time (effort) is acceptable in practice.

— R7 Compared to the overall time (effort) needed to manually reconstruct an archi-
tecture, stakeholders should need to invest only a small amount of time (effort) for
the manual part of the architecture model abstraction. We estimate less than 10%

of the reconstruction time (effort) is acceptable in practice.

4.1.2 Case study: problem investigation

In order to provide a suitable case study, based on our requirements, we require

highly polyglot microservice-based system that applies a substantial number of dif-
ferent technologies. The case study should have a reasonable size, but not be too large
for us to be able to completely implement an architecture abstraction in the scope of
a research study, maybe multiple times in each of the research cycles. It should have
an industrial background (i.e., be implemented by industry experts, not a toy example
by researchers). One option would have been performing an observational case study
in industry. But as our study design demands that the design science artifact should

@ Springer

a

Detector-based component model...

substantially evolve within each research cycle, this would have required many imple-
mentation iterations performed by industry experts to adapt the case study according to
the research progress; this would have made rapid improvements of the method based
on intermediate case study results impossible. For this reason, we decided to perform
a so-called mechanism experiment [17], i.e. implement the architecture abstraction
prototypically for the case ourselves.

We selected an open-source system? that was built as a demonstrator for the Instana
monitoring technology. We report here on the master branch from 2019-10-23. Overall
it consists of 140 files with a total of 5311 lines of code. It was built by industry experts
from the company Instana in the timeframe Jan, 2018 — Oct, 2019; hence we believe it
to be a good representative example for the current industry practices in microservice-
based architectures. The project is highly polyglot: it consists of services written in
JavaScript/NodelS, Java/Spark, Python/Flask, Go, PHP/Apache, RabbitMQ messag-
ing, and Python/Go AMQP messaging. These services use Redis, MongoDB, and
MySQL as database technologies, accessed with various APIs for RESTful HTTP
communication. Angular]JS is used for the web frontend. Nginx is used as an API
gateway and web reverse proxy. Docker, Docker Compose, Docker Swarm, and Kuber-
netes are used for lightweight virtualization and autoscaling. DC/OS and OpenShift
are supported. End-to-end monitoring via Instana is supported, and some services have
Prometheus metrics endpoints. A load generator is built with Python/Locust. Paypal
is used as an external service.

For problem investigation, we performed a full manual reconstruction of the
component architecture of the system as a ground truth for the case study. Fig-
ure 2 shows the result, a detailed component model specifying the component types
(e.g., Services, Facades, and Databases), and connector types (e.g., RESTful HTTP,
Synchronous/Asynchronous, database connectors etc.). This figure is based on the
auto-generated figure created by the prototype implementing our proposed approach,
described below. The system consists of 18 components and 29 connectors. More
specifically, a Client, a Web UI, an API Gateway as entry point of the system, seven
Services, three Databases, a Message Broker, an External Component (Service), two
Monitoring Components, and a Tracing Component. We kept precise time records of
the manual reconstruction effort. It took us 2468 minutes (approx. 5 person-days) to
perform the reconstruction.

To study R3, for a very rough comparison of time (effort), we have used the numbers
estimated by COCOMO [33] that would be needed for constructing the case study in
an industry setting. We used the online calculator provided by COCOMO 3. To be
on the safe side, we used very conservative parameters for the COCOMO estima-
tions (assuming only nominal values for parameters such as experiences, capabilities,
developed for reusability, and so on). In total, the estimated effort for the case study
system was 23.7 person-months. This estimation is inline with the estimation in Code
Complete which states: “The industry-average productivity for a software product is
about 10 to 50 of lines of delivered code per person per day (including all noncoding
overhead).” [34]: Assuming 1720 working hours a year, the 23.7 person-months would

2 https://github.com/instana/robot-shop.
3 https://csse.usc.edu/tools/ COCOMOIIL.php.

@ Springer

https://github.com/instana/robot-shop
https://csse.usc.edu/tools/COCOMOII.php

E. Ntentos et al.

yield 1698.5 person-hours or 212.31 8-hour person days. This means 31.43 lines of
delivered code would be needed for the COCOMOII estimate, which is very close to
the average of the Code Complete estimate of 30.

4.2 Detector-based architecture abstraction approaches

In this section we present and describe in detail the design for Approach 1 and Approach
2. The code and models used in and produced as part of this study have been made
available online for reproducibility.* Both approaches are based on detectors and aim
to address architecture reconstruction challenges introduced by continuous evolution
of microservice-based systems and their polyglot nature. Approach 1 is more case-
specific and requires custom detectors, while Approach 2 provides detectors that can
be reused in multiple cases.

Note that both approaches presuppose that a system expert (architect) has identified
the high-level, component-and-connector architecture of the system—with which he
should be familiar either way—and modelled it in an execution script that iterates
the detectors over each system element. This involves a relatively small per-release
effort (removal and addition of services and links between releases, cf. R4, R6, R7
and Sect. 6.2), but can also be obviated altogether by adapting the detector approach
to this domain, as shown in Sect. 7.

4.2.1 Approach 1: opportunistic detector-based architecture model abstraction

The design used in the study was based on small detectors, one for each feature
relevant for detecting one or more architecture abstractions. For example, if code is
written in JavaScript/NodelS, importing the request library means that a RESTful
HTTP call could possibly be used in the file(s) using this specific technology; if a
request (...); is present in addition, an HTTP call is actually made in the file.
If a manual inspection confirms that a RESTful HTTP call is actually made, we have
precise evidence for the presence of a RESTful HTTP call and can establish traceability
links to all occurrences of such invocations. Based on such simple detectors, we can
correctly detect most evolution scenarios: if changes to other parts of the file are made,
it is not possible that the detection of the RESTful HTTP call will fail. If another
RESTful HTTP call is added, it will be detected, too. If all RESTful HTTP calls are
removed, the detection will fail, as it should, and manual action is required. Only if a
RESTful HTTP call with a different technology is made, would a remodeling of the
detector be required.

This new approach would not work better than the one from Sect. 3 in terms of pars-
ing, if we followed the same full-fledged parser-based approach. However, some parser
frameworks support scanning for the occurrence of parse rules rather than requiring
parsing the whole file. One such parser framework is pyparsing’, which we used to
only parse the relevant parts of the code. This solved the parsing issues described in
Sect. 3. To illustrate the approach, let’s consider a simple detection from our case study.

4 https://doi.org/10.5281/zenodo.5235931.
5 https://github.com/pyparsing/pyparsing.

@ Springer

https://doi.org/10.5281/zenodo.5235931
https://github.com/pyparsing/pyparsing

Detector-based component model...

[opouI TN B S JINIL, punoln) aInjodIyore Juauoduwiod pajonnsuodal o) JO MITAIOA0 :Apmis ase) Z *bi4

Jusuodwo) : Juaby euejsul
uauodwo) eussix3 ‘Buroeil» jusuoduwiog : yojedsia

IdLLHY Sl

Jusuodwon : gQ s19pI0 1950 anbojeIed
«gqobuop»

{,s1p10, = [aUUERYD}
«wauINsuo) abessep»
«dLLIH

husuodwo : DI Hagey
«iaxoig abessap»

jusuodwo) : g@ Juno) Jasn snowkuouy pue ey
«gasipay» «anpobuop»

{,s10p10, = jouuEyO}
«sonpoid abessej»

“TUdLLIH»

“Z/dLLH»

| D %) | D : Joyuop ues
«adinIag» _ «BuLIopUON»

jusuoduwiog : Aemeres juswiAed fedhed
uaUOdWIOD [euIRIXT ‘@OINIISH

«SnOUOIYOUASY ‘dLLH INLLS T «wopsuuog ! - dsT» 4T

«SNOUOIYOUAS ‘d1IH INLSTH»

Jusuodwog : peg Jusuodwiog : sesn

Jusuodwo) : g santo Buiddiys pue sbupey
«@d1AI08» «@d1nI08”

«gaTosAn»

“dLLH INLSTH»

jueuodwiod : JONUOIN SneyjeWOI JuswAed
«BuLIGyUON»

«wojoauU0) AIOWE-U

«SNOUCIYOUAS ‘dLLH INLSTY»

«08ar” | ¢dLLH 1S3y «SNOUCIYOUAS . [WASELEY

«|000j01d TOSAND

Jusuodwog : juewiked

Jusuodwiog : sbupex Jusuodwiog : Buiddiys
«ooinIog»

«@o1A19g» «2INIBG» “dLLHINIS3Y» [«dLLH INLSTY»

“dLLH INLSIY»

“dLLH INLSIY» “dLLH INLSIH» “dLIH N LSIY»

jusuodwo) : Aemales 14y XNION
«opeoe ‘30IAIg»

“dLLH» “dLLH 1S3

Jusuodwo) : Jualld IdY LSIY
ua»

yusuodwo) : uald IN 9oM
«In gem»

pringer

A's

E. Ntentos et al.

«Evidence% triggers model
: DetectInFile transformation to create «Service»
— {technology_types = ["Java",

file_name = "Main.java" "Spark", "Restful"]}
detector = JavaCartHTTPPost Shipping : Component

T -

«RESTful HTTP>»

«Detector» e | { TECNNOlOGY_types = ["Java",

JavaCartHTTPPost : SingleFileDector "Apache HTTP Client"]}

Pseudocode for detector function (context): -
«Service»

{technology_types = ["Javascript",

context.matches_pattern ("CART URL" + "=" +

word (printables, exclude = ";").matches_pattern("JS Express"]}
"http://" + "/shipping" + "CART_ENDPOINT") Cart : Component
context.matches_pattern("new" + "HttpPost" +
round_braces_block) .matches_pattern ("CART_URL")

Resulting Component Model

Fig.3 Opportunistic detector example: detecting a restful HTTP connector

Assuming that we have previously detected two components, the Shipping and Cart
services (cf. Fig. 2), we now want to determine the presence, and the technology, of any
connector between the two components. For detecting these two components we used
the JSExpressService and JavaSparkService detectors that return an evidence speci-
fying the corresponding technology types. The detector process will call the detector
instances listed in the DetectinFile evidence to determine the connections between the
two components (see Fig. 3). In this case, if the DetectInFile evidence is successful in
detecting (1) a Main.java file in the specified directories, and (2) successfully executes
the JavaCartHTTPPost detector, it adds a connector of the restful HTTP type between
the Shipping and Cart components to the model. Here, the DetectInFile() represents
the reusable code of the detector process, and JavaCartHTTPPost is a specific detector
required for this particular occurrence (i.e., detecting the presence of a Java HTTP call
from Shipping to Cart). As the specific code will be different for other occurrences,
we call this the opportunistic approach. Please note that usually, the specific code
required for a detection is rather small, e.g. in this case two lines of pseudo code are
enough.

As we will discuss in more detail below, following this approach, we were able to
design a solution that fulfills all the requirements of our study. However, we observed
that, as can be seen in the JavaCartHTTPPost example, a lot of code is very specific for
the particular case at hand, and that many aspects of the detection could be automated
to a higher degree, with a higher code reuse. For instance, in the simple example given
here, most likely many Java posts, or even other HTTP requests using the same API,
could be detected with a more generic detector. If this detector is selected, it is known
that it produces Restful HTTP connector links; thus a reusable solution could provide
this knowledge as default value. Also, it might not be necessary to specify the exact
file in which the request occurs, as this could be “guessed” from the directories of
the detected components. As a consequence, while the approach described here works
well, a reusable detector approach with less specification effort per case and more
automation potential might be possible. Consequently, we aimed to design such an
approach next.

That is, based on the current state of the art, this approach cannot satisfy Require-
ment R3 (concerning a “small amount of time (effort) for the manual part of the

@ Springer

Detector-based component model...

architecture abstraction”) and makes Requirement R4 hard to achieve (“continuous
comprehension”). Based on this experience, we designed an opportunistic detector-
based approach (Approach I) to cover all challenges that the approach by Haitzer and
Zdun cannot address. Based on this, we realized that it is also possible to design a
similar, but reusable, detector-based approach (Approach 2).

4.2.2 Approach 2: reusable detector-based architecture model abstraction

In the reusable detector-based approach, we aimed to reduce the necessary specifi-
cation in the abstraction model and completely get rid of any case-specific detector
code. Instead, all detection should be handled in reusable detectors. We managed to
bring almost all specifications of architecture abstractions down to a single line of
code per abstraction. To illustrate this approach, let us again consider the previous
example. We developed a generic, and hence reusable, detector for the Java Apache
HTTP technology, which we provide to the method, along with the IDs of the two
components, to create a link between them. The directory in which to search for the
link is taken from the component, where it is provided as a top-level directory only
(no specific directory or file names are provided anymore).

Given this dramatic reduction in the code size that needs to be written by users,
it might seem at first that full automation might be possible. However, this is not
correct: Note that the detector specification is meant as an assertion by a human
that a component or connector link of a certain type was found. With this little extra
information — which is much easier to obtain than performing a full manual architecture
model reconstruction — we can avoid the issues that make automatic detection hard
or even impossible. The problematic part that requires human input in this case is
the Cart URL and endpoint, which are two specific variable names used in the Java
implementation (see pseudo code in Fig. 3). We could potentially guess them to a
certain extent, but developers could find many ways to implement or change them in
the future, such as hard-coding the URL directly, obtaining them through a call to an
arbitrarily named method, reading them from a file, and so on. By requiring the human
identification of the occurrence once, we greatly reduce the possibility of any false
positives or negatives.

In our reusable detector, we use some heuristics, and the human user who specifies
the case-specific detection must be aware of the heuristics and their limitations. For
the example detection between the Shipping and Cart services we used in Sect. 4.2.1,
the JavaApacheHTTPLink reusable detector. It is able to find matches for get, put,
post, and delete requests, as illustrated in Fig. 4. For all of these, it checks in the
relevant Java files (file_endings = [“Java”]) if a respective new statement
is found. If so, we have previously auto-detected possible aliases for the component
names in various places; e.g., in the specific case, these were detected in Docker
env statements. If one of the HTTP method matches contains a match that links
to one of the target component’s aliases, we have found a match for calling from
source to target using an HTTP method. Otherwise we use the detector method
get_var_assignment_matches_containing_url_alias to find all Java variable assign-
ments that match one of the target aliases. If one of those is used in a match, it also
constitutes a match for calling from source to target component. Both are seen as evi-

@ Springer

E. Ntentos et al.

«Reusable Detector»
: JavaApacheHTTPLink

file_endings = ["java"]

Pseudocode for detect_in_context(context, target):
matches = []
new_http method matches = context.match_pattern("new" +

("HttpPost" | "HttpGet" | "HttpPut" | "HttpDelete") + «Service»

round_braces_block + ";") {technology_types = ["Java",
for new http method match in new http method matches { "Spark", "Restful"]}

if round braces_contains (new_http method match, Shipping : Component

target.alias) {
matches += new http method match) el «RESTful HTTP»
} else { triggers mode {technology_types = ["Java",

for var, var assignment match in transformation -~ "Apache HTTP Client"]}
- - to create

Y

get_var_assignments_containing url alias (context,

target) { =
if round braces_contains (new_http method match, var) «Service»
{technology_types = ["Javascript",
{
"JS Express"]}
Cart : Component

matches += [new_http_method_match,

var_assignment_match]
}
}

}
if matches {
return LinkEvidence (matches, «RESTful HTTP»,

{technology_types = ["Java", "Apache HITP Client"]}!
¥
return FailedEvidence("no apache http method call to
target found") Resulting Component Model

Fig.4 Reusable detector example: detecting a restful HTTP connector

dences for a link between the source and target components. This would then trigger
the model transformation for creating the Restful HTTP connector in the component
model.

With this design, the detector process can tolerate many changes in system evolution
(even more than in the design from Approach 1). For example, calling the URL directly
instead of using the CART_URL variable, moving to a different variable name, moving
the call to another method or file, and so on, are examples of possible non-breaking
evolution scenarios. The design also fulfills all requirements set for the design study.
Thus, we next studied how the two approaches compare with regard to our requirements
in the context of our case study to answer the research questions.

5 Case study implementation
5.1 Architecture UML profile

As the generation target of our model transformations we introduced a UML pro-
file. In it, components are extended by the stereotype component types (see Fig. 5),
and connectors by the stereotype connector types (see Fig. 6), for introducing the
microservice-specific modeling aspects. Thatis, to be able to apply our two approaches,
we first performed an iterative study of a variety of microservice-related knowledge
sources, and we refined a meta-model which contains all the required elements to
allow an adequate reconstruction of architecture model abstractions in the microser-
vice domain. The resulting stereotypes range from general notions such as the Service
component type, to very technology-specific classes such as the RESTful HTTP con-
nectors. As component types we support, for example, Service, Pub/Sub, Message
Broker, Event Sourcing, Steam Processing, Client, External Component, Web UI,

@ Springer

Detector-based component model...

Monitoring, Tracing, Logging, Saga Orchestrator, and various kinds of Databases. As
connector types we support, for example, various Service Connectors such as RESTful
HTTP, SOAP, or GRPC connectors, various Web Connectors such as HITP, HTTPS,
or HTTP/2, various kinds of Synchronous and Asynchronous connectors, various
Indirect connections, In-Memory connectors, various Database connectors, various
Event-based Connectors such as Publishers and Subscribers, and various Messaging
Connectors such as Message Producers and Message Consumers.

5.2 Detector framework

One of the contributions of this paper is a model for the design of a semi-automatic
detector framework for creating architecture abstractions along with traceability links
to the source code. The latest design for this part of our study in Approach 2 differs only
in details from the one from Approach 1. Thus we report only the latest design here, as
it is a few refactoring cycles ahead of our earlier design. As shown in Fig. 7, a number
of detections are abstracted in a Project. Each detection traverses the models to detect
features of interest. That is, to the project we add architecture abstraction in specifi-
cations such as those in Fig. 4. In those specifications, the Detectors that the project
should use to detect the abstractions are specified. For example, the 2 components
(Shipping and Cart) in Fig. 4 use the detectors JavaSparkService, JSExpressService,
and the connector between them uses the detector JavaApache HTTPLink. Two specific
subclasses of Detector are shown in Fig. 7: one for detecting at least one matching file
and one for detecting matches across multiple files. The former is used as superclass
for the majority of our current detectors; the latter is used occasionally. As illustrated
in Fig. 4, detectors use DetectorContexts, which implement the scanning and matching
methods and contain the text to be parsed. If detectors find matches, a Match is used
to store the matching text, its position in the parsed text, the file, and the directory;
this way, traceability to the source code is established. When all required matches are
found for an architecture abstraction, the detector creates an evidence for it (like the
LinkEvidence in used in Fig. 4). As shown in Fig. 7, Evidence has three main sub-
classes, called FailedEvidence, NamedEvidence, and LinkEvidence: NamedEvidence
has an additional subclass ComponentEvidence in which possible link types can be
collected on the component if its matches can be considered as enough items for a
link (e.g., a Web server, offering the component already, implies possible links to
the Web clients). It has also a subclass ServiceEvidence to specify the corresponding
component type.

The project stores detected components to use them for later detection; e.g., the
directory guessing in link detectors explained above works this way. Our design only
works for components and connector links so far; for supporting other abstractions,
more evidence types and additional functionality on the project would be needed. The
project stores all failed evidences, because we do not stop the detection if one failure
occurs, but rather let all detectors run through and provide the user with all failures
that occurred.

As proof of concept, we realized a process, using Python scripts, that takes the
polyglot source code and the detector specification as inputs. It creates an architectural

@ Springer

E. Ntentos et al.

sadK100193s Juouodwios :9[gyoid AN IMOANIYIIY G B4

210}g Juang aq sipay _ 80 paysesway 210}g youeag onse|3 210} dva1 _ _ aq obuol _ J19AI19G TOS _ _ 90 10sAN _ 80 Toseibisod 210} ejeq Aowap-u
L | | { L |
AN VWNM
sseqeieq
10je5350Y21Q EbES «odAjoaie)s» _ 10 GoM _ Jusy m:_mmmmem weang
«odAjosinys» | | «edKjosiols»
Vi Wi Vi v L

_ apeoey _ jusuodwo) [eusayx3y

19¥j01g _ _ o _ _ s01MI98

— Buioinog Juang

ho.muumm:ouo _ m_._amo._ _ _ m:_um._._. _ _m:_..a«_:c_z
L | | L L

XAV LA
~—edAy jusuodwog <}
«adAjoaia)s»

pringer

As

Detector-based component model...

s2d£10919)s 10300uu09 :d[goid TN IMIAYIIY 9 B4

[Tasm | [siw | [ommosuon| [osc0 | osar

L 1A I 1 A | IR S b

10901014 TOSAW

so100uu0 oseqereq|
«adAjosiorsn

o [e [v [[2 - [P

,.gu.i_e._,_._.__xs..__a_ _z.._..e..o;:;._._..e_a;m
L] 1 i} L]

awols sir
codfiossors | | codioasorss

souinsuog eesso| [1eonpoid obessel
«adhjoaizisy «adkiosiorsn

] o]

10100uu09 poyoeouwian

[Cavar |
L

| __..< | | 1] | | powena

[uj
codkiosiois | | codhioassis | |codkioaserss| | codhioaseis,

«odRiosi0rn

Buibesson
«odfioaiorsy

\

2y s0103uucs|
«adkioasersy

pringer

A's

E. Ntentos et al.

uses p

failed
evidences

Project Evidences

/\ /\

1
detected
components

%
Detected
Component

creates

FailedEvidence NamedEvidence

uses P
Detector DetectorContext

AtLeastOneFile MatchesAcross
MatchesDetector MultipleFilesDetector

| LinkEvidence

/\

Fig.7 Resulting design: domain model of the detectors

O # Detectors Development Process .
1 | Opportunistic Reusable :
performs— Detectors Development| ' ¢ [Detector-based| |Detector-based|
H Architecture Architecture 1
A -, Model Model :
ActivityInitial ActivityFinal Abstraction Abstraction
ARCHITECT _ _____________ J ______________ .
finpun
O #Detectors Implementation Processl
performs— Dz:ﬁt‘g::jf:d Codeable Model Visualization
Abstraction Gensrator Generator
ActivityInitial T T T ‘ T ‘ ActivityFinal
i

DEVELOPER input) -
input ‘ input -outpuf
develops Architecture Architecture e _nqtance of— Component
Abstraction UML Profile Model Pl:,lr::je’\f -
Specification
S Cod
L ource Code j

create:

Fig.8 Process flow architecture of the prototype

abstraction containing a UML-style component model together with Evidences and
Matches. Models are expressed using the Python modeling library CodeableModels ©,
a Python implementation for precisely specifying meta-models, models, and model
instances in code with a lightweight interface. The process contains a visualization
generator for generating PlantUML diagrams such as the one in Fig. 2.

While the process flow could be changed substantially compared to how we
constructed our prototype, the general process flow architecture illustrates how the
building blocks interact in order to enact the design explained above (see Fig. 7). The
process aims to generate models for the modeling library CodeableModels. As illus-
trated in Fig. 8, the performer of the process is envisaged as a developer or architect.
The architect specifies the architecture abstraction specification for a software system,
while the developer implements it in source code. Both roles can also be involved in
the development of detectors for the two approaches outlined above. The Detectors

6 https://github.com/uzdun/CodeableModels.

@ Springer

https://github.com/uzdun/CodeableModels

Detector-based component model...

Development Process produces as output either the Architecture Model Abstraction
based on the Opportunistic Detector or the Reusable Detector approach, which in
turn are used as inputs in the Detector-based Architecture Abstraction phase of the
Detectors Implementation Process. The architecture specification and the system’s
source code are also inputs of the Detector-based Architecture Abstraction phase. The
detector performs the architecture abstraction, and when successfully completed, uses
a code generator to generate the corresponding System Component Model with Code-
ableModels. The code generator utilizes the Architecture UML Profile to instantiate
the System Component Model from it. Finally, CodeableModels contains a Visual-
ization Generator, which uses the System Component Model as input, for generating
PlantUML diagrams such as the one in Fig. 2.

6 Case study evaluation
6.1 Effort and size

In this subsection, we want to give a rough estimation of the effort required to
design and implement prototypes for (1) the generic detectors approaches for our
two approaches and (2) the case-specific code in both approaches as well as a size
comparison in terms of lines of code (LoC). We discuss in Sect. 8 why such a com-
parison can only provide a rough estimate. More research is needed to generate solid
numbers, e.g. for precise effort prediction. However, for the purpose of this study,
roughly correct numbers are good enough, as we are interested in understanding the
effort and size relations in orders of magnitude. The efforts in minutes reported in
Table 1 are based on manual time recordings made throughout our project. Lines of
code are automatically counted using the VS Code plug-in VC Code Counter, which
supports the counting of only the Python code.

As can be seen, the generic code base needed for Approach 2 is substantially larger
(64.41%) than for Approach 1 and we needed moderately more time (21.62%) for
creating it. The effort increase is less than the code size increase, as the generic code
base contains a common code base of about 40% of the code, which was created
in 1900 minutes. In addition, a learning effect from the experience in the design
and implementation of Approach 1 probably also played a role in the reduction. We
believe that this learning effect is small, as the non-common code parts turned out to
be significantly different. In addition, Approach 2 contains reusable detectors as part
of the generic code, which Approach 1 does not; it contains the case-specific detectors
instead. Note that for our case study, the number of reusable detectors in Approach
2 is very high because we have studied a highly polyglot case, and started out with
zero detectors; for a less polyglot case (as the cases discussed in Sect. 7), or if already
extant detectors can be reused (e.g., from an open-source detector repository based
on our approach), would dramatically reduce the number of new detectors and the
concomitant effort expended. As a consequence of these numbers, the generic code
effort is much higher (146.78%) for Approach 2, and the LoC needed for Approach 2
are significantly more (338.89%).

@ Springer

E. Ntentos et al.

The situation for the case-specific parts is reversed: The case-specific model for
Approach 2 is much smaller (—43.69%) than for Approach 1, and requires much less
effort (—45.13%). In addition, Approach 1 requires 107 LoC for case-specific detectors
constructed in 870 minutes (which are totally absent in Approach 2). Consequently,
the case-specific code for Approach 2 is in total significantly smaller (—62.94%) than
for Approach 1 and required substantially less effort (—79.13%). That means that
realizing a reusable solution can pay off in the long run, when the approach would be
applied on many projects. If the approach is needed only once (and for a small-scale
case study as performed here), the reusable approach in Approach 2 does not pay off,
as the total effort and LoC comparisons show.

6.2 Requirements fulfillment

For Requirements R1 and R2 we can assess that both approaches are able to exactly
reproduce the component model from the ground truth. The same result would likely
be possible with the approach by Haitzer and Zdun (discussed in Sect. 3), but this has
not been fully implemented in our study. Our approach can lead to highly accurate
architecture model abstraction since no additional manual effort was needed to cor-
rect the resulting model. Moreover, the developers who create the detectors are very
familiar with the system, meaning that they hold in depth the system characteristics
and requirements. Requirement R3 is about supporting a highly polyglot setting, as
is typical of modern microservices. This seems infeasible for the approach by Haitzer
and Zdun with regard to required time and effort, unless the state of the art on polyglot
parser approaches and support for multiple well working grammars is significantly
improved. Both new Approaches support this requirement well.

Requirement R4 is about continuous comprehension. In order to test this, we have
examined the differences in architecture and technologies used in the system in four
additional releases: one prior to our case study, three later ones. We did not only test
evolution in later releases, but also in prior ones, in order to be able to test whether
our approach works for the removal of features. These are summarized in Table 3. Our
approaches are able to detect (a) the removal of services, (b) the removal of system-
level capabilities (e.g. Prometheus), and (c) the modification of specific technologies
(e.g. Go). As can be seen in the table, the additional time effort (in minutes) to the
script containing the abstracted architecture model (execution script) to each release
is negligible (a few minutes). However, there is a caveat for Approach 1: Due to the
many small opportunistic detectors, different implementations for similar concerns
and opportunistic code reuse (copy & paste) occurred. It is known that this leads to
problems during evolution, such as changes not being carried through for all simi-
lar code fragments, or that overly specific code for particular detections can lead to
breaking detectors.

Requirement RS concerns traceability from code to models. Both approaches estab-
lish trace links automatically. Requirement R6, i.e., how the amount of time (effort)
for creating the architecture abstractions compares to the overall amount of effort for
engineering the system, is fulfilled for Approach 1 and Approach 2: Compared to the
COCOMO II estimate for delivering the case study project as an industrial solution,

@ Springer

Detector-based component model...

BIV'L6T 79C 688 %LI"66 Prrel €€L9 [®10L
%¥6'C9- 911 €re %el'6L— £6C YO¥I 9pod dyroads-ased [elo],
%69 ey~ 911 90T BEI'Sh— €6C 12459 [9POIN dyroads-ase)
V/IN - LOT VIN - 0L8 $10)0939p dy1dads-ase)
%68'8¢E 8CST 9LS %8LIVI ISIET (Y43 9pod OLIAUSST [E10],
V/N 1851 - V/IN 0L99 - $1039939p J[qesnay
B1YV¥9 LY6 9LS %TI1C 18%9 (43 9seq 9p0J LU
‘JIQ 9pod jo saurf ¢ yorolddy opod jo saury | yoeoiddy ‘I semurw ur 10y ¢ yoeoiddy senurw ur 31039 | yoeoxddy

uostredwod 9z1s pue JoPH | dqel

pringer

As

E. Ntentos et al.

Table 2 Comparison between the two approaches on requirement fulfillment

Requirements Approach 1: case- Approach 2:
specific detectors reusable detectors
Component model 100% correctness (if detectors 100% correctness (if detectors are
reconstruction (R1&R2) are not heuristics) not heuristics)
Polyglot support (R3) Fully supported Fully supported
Continuous Fully supported Fully supported
comprehension (R4)
Traceability (RS) Automatically ensured Automatically ensured
Estimated percentage of 0.7% 0.1%

overall system
development effort (R6)

Comparison to manual 56.98% 6.76%
reconstruction (R7) as
percentage of manual
reconstruction

the efforts both for Approach 1 and Approach 2 are tiny. For instance, assuming 140
work hours per month, the case study construction would have consumed, according to
COCOMOI, 199080 minutes. That s, the case-specific effort for creating a model and
detectors for Approach 1 would be 0.7%, and for Approach 2 0.1%. That is, according
to our COCOMO II estimates both approaches are way beyond the set target of 1%.
Please note that this does not work out, if generic code base and reusable detectors
cannot be reused. Then we observed 4% for Approach 1 and 7% for Approach 2, which
might still be acceptable for some projects, but are beyond our 1% target. For more
extensive systems these numbers would be much smaller in comparison. Requirement
R7 is about the comparison of the approach to a manual reconstruction. If we compare
to the manual reconstruction effort for the case study (see Sect. 4.1.2), we can see
that Approach 1 requires a case-specific effort of 56.89% of the manual reconstruc-
tion effort; Approach 2 only requires 11.87% of the case-specific effort. Thus both
approaches, when combined with a single manual reconstruction (or with our approach
applied permanently from the inception of the project onwards), would require much
less effort than periodically repeated manual reconstruction efforts. Assuming the
existence of a large repository of reusable detectors (e.g., as an open-source project),
Approach 2 would be vastly superior to Approach 1, too; without it, the substantial
effort needed to create reusable detectors might eat up much of the benefit compared
to Approach 1.

Table 2 summarizes and compares Approach 1 and Approach 2 based on the stated
requirements. It is evident that, although both approaches meet the requirements we
have set, there is a considerable difference in performance in terms of effort in favor
of Approach 2.

@ Springer

Detector-based component model...

UOTSIoA 3seafal Apnis ased ayy 01 pareduwio)) . ‘osedfar snoradid oy 0y paredwo) |

JLULETIIIES

"90IAIAS

sSuney ul
paonponur uaaq
sey Ju)sI]

JLULETHINES

joog Sundg

0 yIedg eaef
woIJ JIomourery
pasueyd sey

JLULESTIINES

payipout
uaaq sey

VN

Pappe uddq

QARY BUBISU]

quowked [edAeq
‘snaylowoid e

Pappe ua2q sey

SUI G/urw g

poppe
1K jou vue)suy yuowiAed
redAeq ‘snoyjowiorq e

104 901AI0S STUNEY ON ®

(z yoroiddy / 1 yoeoaddy)
1d11os uonnoaxa jsnlpe
0] (S9InuIU UT) POPAdU dWIL],

Sa3ueyd WAISAS

JUOA UY do1Ales Surddryg e 901AIRS yojedsI(T ® QOIAIRS STUNEY ©
$I0309UU0D $I0109UU0D $10109UTU0D S10109UTU0D
6¢ suauodwod g| 6¢ suauodwod g 6¢ suauodwod g 6¢ siuauodwod g| $10109UU09 /| siuauoduwod 7| SIUQWIDLD WAISAS JO JoqUINN
ovLS L66Y SIIS Ties 059¢ 3P0 JO soul] WSS
120T20CT 020T"80°9¢ 020T°L0°90 610T°0T°€C 810C 091 asealal WoIsAg

(proq ur Apmjs 9seod ur paurwexa asedar) Joddns uorsuoyardwos snonunuo)) ¢ djqe]

pringer

As

E. Ntentos et al.

7 Extending the approach to cases from different domains

To further assess whether our approach is also applicable in different case study
settings, we applied it to two cases in the domain of modeling inter-service com-
munication in API-centric communication models. We did this with the purpose of
automatically detecting asynchronous cycles in communication at the API-level. These
unintended domain-based cyclic dependencies [35] manifest mainly on the conceptual
level and less on the implementation level and are therefore considered relatively dif-
ficult to track exclusively through static code analysis methods. However, collecting
runtime information to track these dependencies can often be very time-consuming.
Hence an approach that focuses on source code analysis would be preferred. To this
end, we implemented essentially two different types of detectors: The first type of
detectors was responsible for recognizing relevant architectural elements, like API
Interfaces, API Operations, and specific calls and invocations that establish interser-
vice communication. We, therefore, refer to them as Hot Spot Detectors. The second
type, Invocation Detectors, are responsible for tracking call chains between the vari-
ous hot spots, thus creating the final graph structure representing our communication
model. As the approach should be offered as a reusable component to be used e.g.
in a continuous delivery pipeline of a project, based on the data from our case study
reported in Sect. 4.1.2, we selected Approach 2 for the two additional cases. We devel-
oped reusable detectors that were not bound to any project-specific implementation,
apart from some project-specific code in order to reduce the implementation effort
(see below) (Table 3).

The first API model case study was conducted on two versions of the open-source
Lakeside Mutual” project. This project realizes the architecture of a fictional insur-
ance company and consists of several Java Spring-based backend microservices. To
detect the relevant hot spots and invocations, we had to implement ten detectors in
total. While these were specific to Java-based communication technologies, such as
SpringRestControllers, FeignClients or JmsTemplates, their usage would a) not be
restricted to any concrete project and b) could easily be adapted for other Java-based
microservice implementations. The overall implementation for analyzing the Lakeside
Mutual project took 431 lines of code (LoC) for Java-specific detectors and 373 lines
of generic code to orchestrate the detection process and generate the model, result-
ing in a total implementation size of 804 LoC. Using our detectors on the Fall 2020
revision of the project,® we were able to identify 40 different API operations (35 syn-
chronous and five asynchronous ones) and 16 interservice connectors between these
operations. Based on the generated model, we were able to track two domain-based
cycles in the system. Our detectors were also able to analyze the latest®. version of
the Lakeside Mutual project without requiring any changes to our existing code base.
The analysis revealed a slight decrease in synchronous API operations (to 29), and we
could verify that all cyclic dependencies we had detected in the previous version had

7 https://github.com/Microservice- API-Patterns/LakesideMutual.
8 https://github.com/Microservice- API-Patterns/LakesideMutual/tree/spring-term-2020.

9 https://github.com/Microservice- API-Patterns/LakesideMutual/commit/bdc6d30135149563¢c057dd30f2
1b7df68608c500.

@ Springer

https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/spring-term-2020
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/bdc6d30135149563c057dd30f21b7df68608c500
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/bdc6d30135149563c057dd30f21b7df68608c500

Detector-based component model...

been resolved. Although the architecture has undergone significant changes between
the two revisions, this case study demonstrates that our detectors were still able to
identify the relevant structural elements in both versions without adjustments, which
underlines the reusability aspect of our approach.

In the second API model case study, we examined the communication structure of
the eShopOnContainers'? system, an open-source microservice reference implemen-
tation for the .NET technology stack. Compared to Lakeside Mutual project, this one
uses a pure event-based asynchronous communication model for interservice commu-
nication. In addition, some service implementations pursue a domain-driven design
approach, resulting in a more implicit invocation call chain within the services them-
selves. While writing generic reusable detectors to track these invocations would be
possible, generically covering all of these cases would require a considerable amount
of implementation effort. Therefore our detector implementation used some heuristics
that were specifically tailored to the underlying project. Because of that, our imple-
mentation amounted to 162 lines of code for project-specific detectors and 181 lines
of generic detectors that could also be reused for other C#-based microservice appli-
cations. Table 4 summarizes the implementation efforts of our case studies. Please
note that due to the close syntactic relationship between Java and C#, the amount
of language-specific detector code could be reduced by implementing some of the
generic detectors in a language-agnostic way.

The two API model cases show that the detector-based approach is well suited for
problem-specific scenarios, too. The effort for implementation and configuration is
significantly lower than using language-specific parsers, especially if these language
parsers have to be kept up-to-date. While the generic detector approach might require
some upfront implementation, this work amortizes considerably soon if more than
one project revision needs to be analyzed, as seen in our first case. The ability to
combine both approaches in the second case in order to reduce implementation effort
shows that the approach is flexible, while the two projects show that detectors can be
used to retrieve the system architecture automatically, eliminating the need for manual
maintenance of the architecture model.

In terms of the design requirements, our approach satisfies in both cases R1 and
R2 (adapted to the given context, e.g. it does not need to cover the entire system
architecture). R3 is not applicable due to the mostly homogeneous code basis of the
relevant parts of the two projects examined, but the detectors could easily be (re)written
so as to cover both Java and C#-based systems. R4 is not relevant, as there is no
manually created architectural model. R5 is implicitly supported by the approach, but
traceability is not used any further in the cases. R6 and R7 are of limited relevance
due to the different context, i.e. the focus on a subset of the system, and the automatic
detection of relevant elements only; but the overall coding effort required in LoC (and
thus, implicitly, time) is a fraction of the project size, even when leaving aside the
gains from detector reuse relative to the changes in the project implementation over
time.

10 https://github.com/dotnet-architecture/eShopOnContainers.

@ Springer

https://github.com/dotnet-architecture/eShopOnContainers

E. Ntentos et al.

1202 114dy youelq 19)Sew/yourlq)z W4 -suridg z
/1Ur9510J001In0S 00[0//:dNY 10072 YIIM PAJR[NI[ED ‘S9[Y uoneIndyuod uos/1dadxa sy [V 1

9IL 91 181 €LE AVL8 stourejuod updoyse
$08 - ey €LE AV SE/ AT SE [emnu opIsaye]
QoD (07) 9pod
(Do) uon 9pod 1030919p J0109)9p d[qesnal (DOT)2pod _Gouc
-eyuowordur [ejof, oygroads-joafoig oyroads-oSen3ue| 9[qesnal OLIUAD) 71§ [LEIYN

sarpmys ased o[dwexa oMy 10§ suonejuawadur 10J03j9p Uaam)aq uostredwod 3z ¢ |qel

pringer

As

http://cloc.sourceforge.net/

Detector-based component model...

8 Threats to validity

It is important to consider the threats to validity during the design of the study to
increase its validity. Wohlin et al. [36] distinguish four types: conclusion, internal,
external, and construct validity. Internal validity address establishing a causal rela-
tionship between variables. It is not relevant for this study, as we do not aim to create
a causal relationship between variables using statistical means.

Conclusion Validity Threats to the conclusion are concerned with issues that affect
the ability to draw the right conclusions between the treatments and the outcome of
the study. As we do not apply statistical testing, related sources to conclusion validity
reported by [36] do not apply to our study. As data reported about the resulting design
and the case study ground truth is collected semi-formally (i.e., contains qualitative
elements), there is the risk that the researchers’ background, development experience,
and understanding influence the interpretations. This risk is reduced as the different
research team members carefully reviewed the steps taken by the other researchers. The
risk is further reduced by the researchers’ deep background in both the microservices
domain and architecture abstraction methods. Finally, we included industry experts
as authors to further reduce the bias. To ensure the reliability of our measures, we
used objective measurements such as precise time recording and lines of code. For
both a subjective element remains: other developers might have needed a different
amount of time or structured their lines of code differently. Also, a few minor aspects
of our measurements are estimated such as the common code base of Approach 1 and
Approach 2. As we only aim for the measurements to provide a very rough estimate
(i.e., in orders of magnitude), we believe possible differences to be negligible. The
choice to perform a so-called mechanism experiment [17], i.e. implement the archi-
tecture model abstraction prototypically for the case ourselves, might have negatively
influenced the reliability of the treatment implementation for the reported measure-
ments and the comparison between the two approaches. Regarding RQ1 and RQ2,
both of which investigate whether and how a feasible design is possible, the reliability
of the treatment implementation is given, as two feasible designs have been found. We
do not claim that the found designs are the only possible designs or optimal.

Construct Validity Construct validity is concerned with obtaining the right measures
and instruments for the phenomena being studied. Our study combines design science
and case study research to minimize possible mono-method bias. There is a risk of a
possible interaction between treatments, as the treatments in the two approaches are
applied one after another. Again, this does not impact the research for RQ1 and RQ2.
A learning effect may have impacted the comparison between the two approaches.
However, we argue that our goal is only to understand the differences in orders of
magnitude, and do not claim generalizability of the precise measures. Continuous
comprehension support, i.e., the ability of our detectors to detect all changes in the
implementation (addition, modification, removal) of connectors in every release ver-
sion of the system, has been tested in Sect. 6.2. The only problem we anticipate would
be in the case where major changes occur between releases, but this goes beyond
continuous comprehension, and effectively requires a de novo architectural recon-
struction. Additionally, the evolution aspect has been tested and validated in three
systems already for the predecessor work [15] of the approach presented here.

@ Springer

E. Ntentos et al.

External Validity Threats to external validity are conditions that limit our ability to
generalize the results. Our research has been performed by researchers and not in an
industrial setting. This might limit the generalizability to industrial practices. As our
main line of research aims to find a feasible design in context, the threat appears negli-
gible. For the approach comparisons and precise measurements, the threat is realistic
for the reasons given above. In addition, in order to come up with a sound design, we
applied substantial refactoring effort throughout the study, which may not reflect cur-
rent common practice in industry. That is, the reported effort might be slightly higher
than what a “quick and dirty” implementation in industry would actually require. On
the other hand, no effort was needed for meetings, design sessions, deployment, and
thus also not reported. This might substantially increase the relevant measurements
when creating industry-grade solutions. As all this should not considerably impact the
relative difference between Approach 1 and Approach 2, we believe the threat to be
negligible for RQ3. Finally, the basic soundness of the approach has been tested on
open-source case studies realized by industry practitioners. This way we have ensured
that our approach is applicable in a realistic setting. The fact that the case study projects
are merely demonstrators and not a production-ready systems might result in differ-
ences compared to actual industrial implementations. From our point of view, the risk
is that real-life industry systems are usually larger and less well-structured than the sys-
tem we have studied. From our experiences with industry systems in the microservice
domain (we included industry experts in the author team to confirm this point), many
current industry systems are realized in a similar fashion, and we are confident that a)
the chosen system is a representative cross-cut of current practices in the microservice
domain and b) that it applies a sufficient number of different technologies so as to
be a representative of industrial polyglot systems. The risk that our methods might
require additional engineering when applied to very large-scale systems remains, but
this is a question of additional adaptation and coverage effort, and does not invalidate
the basis of our approach. On the contrary, once a basic set of technologies has been
covered and a sufficiently large library of detectors exists, and with a more automated
method for detecting architecture changes so that the manual model maintenance is
further reduced, we are confident that the savings in effort due to the reusability of
the detectors will end up being much more pronounced in a continuously-evolved,
large-scale system than in our case study.

9 Conclusions and future work

In this paper we have reported on a design-science study combined with case-study
research for studying methods for comprehending the component architecture of
highly polyglot systems, as exemplified by state-of-the-art microservices systems.
With regard to RQ1, we conclude that our study revealed that the approach taken
by [15] (discussed in Sect. 3) probably allows to design a highly accurate architec-
ture abstraction, but that it involves considerable effort in a highly polyglot setting.
By contrast, both of the semi-automatic, detector-based approaches developed in our
study work well in the highly polyglot setting and fulfill all our requirements. We
further observed that the reusable detectors from Approach 2 tend to enable cleaner

@ Springer

Detector-based component model...

solutions: due to the detector specificity, similar detections sometimes led to different
approaches in Approach 1, whereas in Approach 2—as reuse was already a goal of the
design—the solution was provided by more generic, common code. Thus, Approach
2 makes it more unlikely that recurring code issues or possible defects stay unde-
tected. Moreover, in a system with 11 different technologies, we managed to retrieve
its component architecture with a reasonable effort (i.e., within a reasonably short
period of time), with high hopes for high reusability and small deltas during future
evolution of the same system. With regard to RQ2, all three approaches studied can
support continuous comprehension well. The approach by Haitzer and Zdun is limited,
as many parser technologies and grammars need continuous maintenance and testing
effort; the two detector approaches developed as part of the present study work better
in this regard. Approach 2 is superior to the one from Approach 1, as new or changed
detection requirements need to be realized only once, in reusable detectors, and are
then applied automatically for all projects using those same detectors. Approach 1, in
contrast, would require searching for all related custom detectors and changing them
individually. As a result, the reusable detector approach also seems to be slightly bet-
ter suited for RQ2, as it requires a lot of discipline and refactoring to reach the same
quality of evolution stability in Approach 1 as is built into Approach 2. For RQ3 we
have compared our two approaches in terms of time (effort), using time recording, and
lines of code measurements. The results indicate that creating new reusable detectors
for a single project requires substantially higher time (effort) for Approach 2 than for
Approach 1. Creating the case-specific code requires significantly less time (effort)
for Approach 2 than for Approach 1. Our data indicates there is a break-even point
where the reusable detector method pays off. A very rough estimation, based on the
averages in our case study data, indicates that the break even-point for effort is reached
at about 6 uses of a reusable detector. For the lines of code measurements, it is reached
after 8 uses. This does not consider the extra effort needed in Approach 1 compared
to Approach 2 during software evolution; to cover those, further studies of an evolv-
ing software system would be needed. Based on all data and observations, we thus
would recommend the reusable detector approach, unless a project is certain to use
all detectors a very few times at maximum. We have also tested the adaptability of the
same approach to different tasks, which are well suited to be used in combination with
the architecture abstraction detectors, potentially greatly reducing the already small
manual overhead required by our method.

As future research we plan to further investigate the methods reported in this paper
in an industry context, and for other kinds of models than component models. We
further plan to exploit the traceability links provided through our method in various
research approaches. It would also be interesting to investigate whether a more precise
prediction of required time and efforts is possible.

Acknowledgements This work was supported by: FFG (Austrian Research Promotion Agency) project
DECO, No. 864707; FWF (Austrian Science Fund) project API-ACE: I 4268; FWF (Austrian Science
Fund) project IAC2: I 4731-N. Our work has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 952647 (AssureMOSS project).

Funding Open access funding provided by University of Vienna.

@ Springer

E. Ntentos et al.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

—_

oo

10.

11.

12.

13.

14.

15.

16.

18.

. Newman S (2015) Building microservices: designing fine-grained systems. O’Reilly, Sebastopol
. LewisJ, Fowler M (2004) Microservices: a definition of this new architectural term. http://martinfowler.

com/articles/microservices.html

. Zimmermann O (2017) Microservices tenets. Computer Science - Research and Development

32(3):301-310

. Pautasso C, Zimmermann O, Amundsen M, Lewis J, Josuttis N (2017) Microservices in practice, part

1: Reality check and service design. IEEE Software 34(1):91-98

. Hasselbring W, Steinacker G (2017) Microservice architectures for scalability, agility and reliability in

e-commerce. In: Proceedings 2017 IEEE international conference on software architecture workshops
(ICSAW), IEEE, Gothenburg, Sweden, pp. 243-246, https://doi.org/10.1109/ICSAW.2017.11

. Pahl C, Jamshidi P (2016) Microservices: a systematic mapping study. In: 6th International conference

on cloud computing and services science, pp. 137-146

. Pautasso C, Wilde E (2009) Why is the web loosely coupled?: a multi-faceted metric for service design.

In: 18th International conference on world wide web, ACM, pp. 911-920

. Richardson C (2017) A pattern language for microservices http://microservices.io/patterns/index.html
. Zimmermann O, Gschwind T, Kiister J, Leymann F, Schuster N (2007) Reusable architectural decision

models for enterprise application development. In: International conference on the quality of software
architectures, Springer, pp. 15-32

Perry DE, Wolf AL (1992) Foundations for the study of software architecture. ACM SIGSOFT Software
Engineering Notes 17(4):40-52

Zimmermann O, Zdun U, Gschwind T, Leymann F (2008) Combining pattern languages and reusable
architectural decision models into a comprehensive and comprehensible design method. In: Software
architecture, 2008. WICSA 2008. Seventh working IEEE/IFIP conference on, pp. 157-166, https://
doi.org/10.1109/WICSA.2008.19

Ducasse S, Pollet D (2009) Software architecture reconstruction: A process-oriented taxonomy. IEEE
Transactions on Software Engineering 35(4):573-591

Murphy GC, Notkin D, Sullivan K (1995). Software reflexion models: bridging the gap between
source and high-level models, In: Proceedings of the 3rd ACM SIGSOFT symposium on Foundations
of software engineering, ACM, New York, NY, USA, SIGSOFT ’95, pp. 18-28

Mens K, Mens T, Wermelinger M (2002). Maintaining software through intentional source-code views,
In: Proceedings of the 14th international conference on software engineering and knowledge engineer-
ing, ACM, New York, NY, USA, SEKE 02, pp. 289-296

Haitzer T, Zdun U (2014) Semi-automated architectural abstraction specifications for supporting soft-
ware evolution. Science of Computer Programming 90:135-160

Garcia J, Ivkovic I, Medvidovic N (2013). A comparative analysis of software architecture recovery
techniques, In: Proceedings of the 28th IEEE/ACM international conference on automated software
engineering, IEEE Press, Piscataway, NJ, USA, ASE’13, pp. 486496

. Wieringa RJ (2014) Design science methodology for information systems and software engineering.

Springer

Alshuqayran N, Ali N, Evans R (2016) A systematic mapping study in microservice architecture. In:
IEEE 9th International conference on service-oriented computing and applications (SOCA), IEEE, pp
44-51

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/ICSAW.2017.11
http://microservices.io/patterns/index.html
https://doi.org/10.1109/WICSA.2008.19
https://doi.org/10.1109/WICSA.2008.19

Detector-based component model...

19.

20.

21.

22.

24.

25.

26.

27.
28.
29.

30.

31.

32.
33.
34.

35.
. Wohlin C, Runeson P, Hoest M, Ohlsson MC, Regnell B, Wesslen A (2012) Experimentation in

Francesco PD, Malavolta I, Lago P (2017) Research on architecting microservices: trends, focus,
and potential for industrial adoption. In: 2017 IEEE International conference on software architecture
(ICSA), pp. 21-30. https://doi.org/10.1109/ICSA.2017.24

Granchelli G, Cardarelli M, Francesco PD, Malavolta I, Iovino L, Salle AD (2017) Towards recovering
the software architecture of microservice-based systems. In: 2017 IEEE International conference on
software architecture workshops (ICSAW), pp. 46-53

Alshuqayran N, Ali N, Evans R (2018) Towards micro service architecture recovery: an empirical
study. In: 2018 IEEE International conference on software architecture (ICSA), pp 47-4709. https://
doi.org/10.1109/ICSA.2018.00014

Vianden M, Lichter H, Steffens A (2014) Experience on a microservice-based reference architecture for
measurement systems. In: 2014 21st Asia-Pacific software engineering conference, vol 1, pp. 183-190,
https://doi.org/10.1109/APSEC.2014.37

. Rademacher F, Sachweh S, Ziindorf A (2019) Aspect-oriented modeling of technology heterogeneity

in microservice architecture. In: 2019 IEEE International conference on software architecture (ICSA),
pp. 21-30. https://doi.org/10.1109/ICSA.2019.00011

von Detten M, Becker S (2011) Combining clustering and pattern detection for the reengineering
of component-based software systems. In: Proceedings of the joint ACM SIGSOFT conference —
QoSA and ACM SIGSOFT symposium — ISARCS on Quality of software architectures — QoSA and
architecting critical systems — ISARCS, ACM, New York, NY, USA, QoSA-ISARCS ’11, pp. 23-32
Corazza A, Di Martino S, Scanniello G (2010). A probabilistic based approach towards software
system clustering, In: Proceedings of the 2010 14th European conference on software maintenance
and reengineering, IEEE Computer Society, Washington, DC, USA, CSMR ’10, pp 88-96

Sartipi K (2003). Software architecture recovery based on pattern matching, In: Proceedings of the
international conference on software maintenance, IEEE Computer Society, Washington, DC, USA,
ICSM ’03, pp 293-

Stoermer C, Rowe A, O’Brien L, Verhoef C (2006) Model-centric software architecture reconstruction.
Softw Pract Exp 36(4):333-363. https://doi.org/10.1002/spe.699

Murphy G, Notkin D, Sullivan K (2001) Software reflexion models: bridging the gap between design
and implementation. IEEE Trans Softw Eng 27(4):364-380. https://doi.org/10.1109/32.917525
Knodel J, Muthig D, Naab M, Lindvall M (2006) Static evaluation of software architectures. In:
Software maintenance and reengineering, European conference on pp. 279-294

Ganesan D, Lindvall M (2014) Adam: External dependency-driven architecture discovery and analy-
sis of quality attributes. ACM Trans Softw Eng Methodol 23(2):17:1-17:51. https://doi.org/10.1145/
2529998

Fittkau F, Krause A, Hasselbring W (2017) Software Landscape and Application Visualization for
System Comprehension with ExplorViz. Information and Software Technology 87:259-277. https://
doi.org/10.1016/j.infsof.2016.07.004

Haitzer T, Navarro E, Zdun U (2017) Reconciling software architecture and source code in support of
software evolution. Journal of Systems and Software 123:119-144

Boehm B, Clark B, Horowitz E, Westland C, Madachy R, Selby R (1995) COCOMO 2.0. Ann Softw
Eng 1(1):1-24

McConnell S (2004) Code Complete: A Practical Handbook of Software Construction, 2nd edn.
Microsoft Press, Redmond

Wolff E (2016) Microservices: flexible software architecture. Addison-Wesley Professional

Software Engineering. Springer

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/APSEC.2014.37
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1002/spe.699
https://doi.org/10.1109/32.917525
https://doi.org/10.1145/2529998
https://doi.org/10.1145/2529998
https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1016/j.infsof.2016.07.004

	Detector-based component model abstraction for microservice-based systems
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Case study design
	4.1 Study definition
	4.1.1 Problem investigation and treatment design
	4.1.2 Case study: problem investigation

	4.2 Detector-based architecture abstraction approaches
	4.2.1 Approach 1: opportunistic detector-based architecture model abstraction
	4.2.2 Approach 2: reusable detector-based architecture model abstraction

	5 Case study implementation
	5.1 Architecture UML profile
	5.2 Detector framework

	6 Case study evaluation
	6.1 Effort and size
	6.2 Requirements fulfillment

	7 Extending the approach to cases from different domains
	8 Threats to validity
	9 Conclusions and future work
	Acknowledgements
	References

