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Abstract
Differentially private algorithms protect individuals in data analysis scenarios by ensuring that
there is only a weak correlation between the existence of the user in the data and the result of the
analysis. Dynamic graph algorithms maintain the solution to a problem (e.g., a matching) on an
evolving input, i.e., a graph where nodes or edges are inserted or deleted over time. They output
the value of the solution after each update operation, i.e., continuously. We study (event-level
and user-level) differentially private algorithms for graph problems under continual observation,
i.e., differentially private dynamic graph algorithms. We present event-level private algorithms for
partially dynamic counting-based problems such as triangle count that improve the additive error
by a polynomial factor (in the length T of the update sequence) on the state of the art, resulting in
the first algorithms with additive error polylogarithmic in T .

We also give ε-differentially private and partially dynamic algorithms for minimum spanning tree,
minimum cut, densest subgraph, and maximum matching. The additive error of our improved MST
algorithm is O(W log3/2 T/ε), where W is the maximum weight of any edge, which, as we show, is
tight up to a (

√
log T /ε)-factor. For the other problems, we present a partially-dynamic algorithm

with multiplicative error (1+β) for any constant β > 0 and additive error O(W log(nW ) log(T )/(εβ)).
Finally, we show that the additive error for a broad class of dynamic graph algorithms with user-level
privacy must be linear in the value of the output solution’s range.
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1 Introduction

Differential privacy aims to protect individuals whose data becomes part of an increasing
number of data sets and is subject to analysis. A differentially private algorithm guarantees
that its output depends only very little on an individual’s contribution to the input data.
Roughly speaking, an algorithm is ϵ-differentially private if the probability that it outputs O

on data set D is at most an eϵ-factor of the probability that it outputs O on any adjacent
data set D′. Two data sets are adjacent if they differ only in the data of a single user.
Differential privacy was introduced in the setting of databases [9, 11], where users (entities)
are typically represented by rows and data is recorded in columns. An important notion
that allowed for the development of generic techniques and tools (like the Laplace and the
exponential mechanism) is the sensitivity of a function f : the static sensitivity ρ of f is
the maximum |f(D) − f(D′)| over all adjacent pairs D, D′. Differential privacy was later

ar
X

iv
:2

10
6.

14
75

6v
1 

 [
cs

.D
S]

  2
8 

Ju
n 

20
21

mailto:hendrik.fichtenberger@univie.ac.at
https://orcid.org/0000-0003-3246-5323
mailto:monika.henzinger@univie.ac.at
mailto:wolfgang.ost@univie.ac.at
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generalized to a more challenging setting, where data evolves over time [12, 6]: a differentially
private algorithm under continual observation must provide the same privacy guarantees as
before, but for a sequence (or stream) of data sets instead of just a single data set. Often,
this sequence results from updates to the original data set that arrive over time. In this
setting, the presence or absence of a single user in one update can affect the algorithm’s
output on all future data sets, i.e., two adjacent databases can differ on all future outputs
and, thus, have infinite sensitivity.

In this paper, we study differentially private graph algorithms under continual observation,
i.e., for dynamic graph problems. The input is a sequence of graphs that results from node
or edge updates, i.e., insertions or deletions. Partially dynamic algorithms only allow either
insertions or deletions, fully dynamic algorithms allow both. After each update, the algorithm
has to output a solution for the current input, i.e., the algorithm outputs a sequence of
answers that is equally long as the input sequence. For differentially private graph algorithms
two notions of adjacency of graph sequences exist: node-adjacency and edge-adjacency. Two
graph sequences are edge-adjacent if they only differ in a single insertion or deletion of an
edge. Similarly, two graph sequences are node-adjacent if they only differ in an insertion or
deletion of a node.1

We initiate the study of differentially private algorithms for non-local partially dynamic
graph problems. We consider a problem non-local if its (optimum) value cannot be derived
from the graph’s frequency histogram of constant-size subgraphs and call it local otherwise.
Non-local problems include the cost of the minimum spanning tree, the weight of the global
and s-t minimum cut, and the density of the densest subgraph. We also give improved
algorithms for local graph problems and show various lower bounds on the additive error for
differentially private dynamic graph algorithms.

Local problems. The only prior work on differentially private dynamic algorithms is an
algorithm by Song et al. [29] for various local graph problems such as counting high-degree
nodes, triangles and other constant-size subgraphs. We present an algorithm for these local
problems that improves the additive error by a factor of

√
T/ log3/2 T , where T is the length of

the update sequence. We also give the first differentially private partially-dynamic algorithm
for the value of the minimum spanning tree. Table 1 lists upper and lower bounds for these
results, where n is the number of nodes in the graph, W is the maximum edge weight (if
applicable), D is the maximum node degree, ϵ is an arbitrarily small positive constant, and δ

is the failure probability of the algorithm. We state below our main contributions in more
detail. The update time of all our algorithms is linear in log T plus the time needed to solve
the corresponding non-differentially private dynamic graph problem.

▶ Theorem 1 (see Section 3). Let ε, δ > 0. There exist an ε-edge-differentially as well as an
ε-node-differentially private algorithm for partially-dynamic minimum spanning tree, edge
count, the number of high-degree nodes, the degree histogram, triangle count and k-star count
that with probability at least 1− δ give an answer with additive error as shown in Table 1.

Non-local problems. For non-local problems we present an algorithm that, by allowing
a small multiplicative error, can obtain differentially private partially dynamic algorithms
for a broad class of problems that includes the aforementioned problems. Table 2 lists our
results for some common graph problems. The algorithm achieves the following performance.

1 Of course, a graph can also be represented by a database, where, e.g., every row corresponds to an edge,
but as we present algorithms that solve graph algorithmic problems we use the graph-based terminology
through the paper.
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Table 1 Additive errors for partially-dynamic ε-differentially private algorithms with failure
probability δ. We use D for the maximum degree and W for the maximum edge weight, n for the
maximum number of nodes of any graph in the input sequence, and Λ = log(1/δ)/ε. The upper
bounds follow from Corollary 14 and Table 3. See Section 5 for results on event-level lower bounds
and Section 6 for user-level lower bounds.

Graph function partially dynamic fully dynamic
edge-adj. node-adj. edge-adj. edge-adj.

event-level event-level event-level user-level

min. spanning tree Ω(W log T ),
O(W log3/2 T · Λ)

Ω(W log T ),
O(DW log3/2 T · Λ)

Ω(W log T ) Ω(nW )

min. cut,
max. matching

Ω(W log T ) Ω(W log T ) Ω(W log T ) Ω(nW )

edge count Ω(log T ),
O(log3/2 T · Λ)

Ω(log T ),
O(D log3/2 T · Λ)

Ω(log T ),
O(log3/2 T · Λ)

Ω(n2)

high-degree nodes Ω(log T ),
O(log3/2 T · Λ))

Ω(log T ),
O(D log3/2 T · Λ)

Ω(log T ) Ω(n)

degree histogram Ω(log T ),
O(D log3/2 T · Λ))

Ω(log T ),
O(D2 log3/2 T · Λ)

Ω(log T ) Ω(n)

triangle count Ω(log T ),
O(D log3/2 T · Λ))

Ω(log T ),
O(D2 log3/2 T · Λ)

Ω(log T ) Ω(n3)

k-star count Ω(log T ),
O(Dk log3/2 T · Λ)

Ω(log T ),
O(Dk log3/2 T · Λ)

Ω(log T ) Ω(nk+1)
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Table 2 Private algorithms with failure probability δ with additional multiplicative error of
(1 + β) for arbitrary β > 0. We use Λ = 1/(εδ log(1 + β)), D for the maximum degree, W for the
maximum edge weight and n for the maximum number of nodes of any graph in the input sequence.

Graph function partially dynamic, event-level
edge-adjacency node-adjacency

minimum cut O(W log(nW ) log(T ) · Λ) O(DW log(nW ) log(T ) · Λ)
densest subgraph O(log(n) log(T ) · Λ) O(log(n) log(T ) · Λ)
minimum s, t-cut O(W log(nW ) log(T ) · Λ) O(DW log(nW ) log(T ) · Λ)
maximum matching O(W log(nW ) log(T ) · Λ) O(W log(nW ) log(T ) · Λ)

▶ Theorem 2 (see Theorem 25). Let ε, β, δ, r > 0 and let f be a function with range
[1, r] that is monotone on all input sequences and has sensitivity ρ. There exists an ε-
differentially private dynamic algorithm with multiplicative error (1 + β), additive error
O(ρ log(r) log(T )/ log(1 + δ)) and failure probability δ that computes f .

Note that for partially dynamic graph algorithms it holds that T = O(n2). Thus for local
problems the bounds presented in Table 1 are superior to the bounds in Table 2.

Lower bounds. We complement these upper bounds by also giving some lower bounds
on the additive error of any differentially private dynamic graph algorithm. For the problems
in Table 1 we show lower bounds of Ω(W log T ), resp. Ω(log T ). Note that these lower bounds
apply to the partially dynamic as well as to the fully dynamic setting.

The above notion of differential privacy is also known as event-level differential privacy,
where two graph sequences differ in at most one “event”, i.e., one update operation. A more
challenging notion is user-level differential privacy. Two graph sequences are edge-adjacent
on user-level if they differ in any number of updates for a single edge (as opposed to one
update for a single edge in the case of the former event-level adjacency). Note that requiring
user-level edge-differential privacy is a more stringent requirement on the algorithm than
event-level edge-differential privacy.2 We show strong lower bounds for edge-differentially
private algorithms on user-level for a broad class of dynamic graph problems.

▶ Theorem 3 (informal, see Theorem 45). Let f be a function on graphs, and let G1, G2
be arbitrary graphs. There exists a T ≥ 1 so that any ε-edge-differentially private dynamic
algorithm on user-level that computes f must have additive error Ω(|f(G1) − f(G2)|) on
input sequences of length at least T .

This theorem leads to the lower bounds for fully dynamic algorithms stated in Table 1.
Technical contribution. Local problems. Our algorithms for local problems (Theo-

rem 1) incorporate a counting scheme by Chan et al. [6] and the difference sequence technique
by Song et al. [29]. The difference sequence technique addresses the problem that two adjacent
graphs might differ on all outputs starting from the point in the update sequence where their
inputs differ. More formally, let fG(t) be the output of the algorithm after operation t in
the graph sequence G. Then the continuous global sensitivity

∑T
t=1 |fG(t)− fG′((t)| might be

Θ(ρT ). Using the “standard” Laplacian mechanism for such a large sensitivity would, thus,
lead to an additive error linear in T . The idea of [29] is to use instead the difference sequence
of f defined as ∆f(t) = f(t)−f(t−1), as they observed that for various local graph properties

2 Node-adjacency on user-level is defined accordingly but not studied in this paper.
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the continuous global sensitivity of the difference sequence, i.e.,
∑T

t=1 |∆fG(t)−∆fG′((t)|
can be bounded by a function independent of T . However, their resulting partially-dynamic
algorithms still have an additive error linear in

√
T . We show how to combine the continuous

global sensitivity of the difference sequence with the binary counting scheme of Chan et
al. [6] to achieve partially-dynamic algorithms with additive error linear in log3/2 T .

Furthermore we show that the approach based on the continuous global sensitivity of the
difference sequence fails, if the presence or absence of a node or edge can significantly change
the target function’s value for all of the subsequent graphs. In particular, we show that for
several graph problems like minimum cut and maximum matching changes in the function
value between adjacent graph sequences can occur at every time step even for partially
dynamic sequences, resulting in a continuous global sensitivity of the difference sequence
that is linear in T . This implies that this technique cannot be used to achieve differentially
private dynamic algorithms for these problems.

Non-local problems. We leverage the fact that the sparse vector technique [13] provides
negative answers to threshold queries with little effect on the additive error to approximate
monotone functions f on graphs under continual observation (e.g., the minimum cut value
in an incremental graph) with multiplicative error (1 + β): If r is the maximum value of
f , we choose thresholds (1 + β), . . . , (1 + β)log1+β(r) for the queries. This results in at most
log1+β(r) positive answers, which affect the additive error linearly, while the at most T

negative answers affect the additive error only logarithmically instead of linearly.
Lower bounds. Dwork et al. [12] had given a lower bound for counting in binary streams.

We reduce this problem to partially dynamic graph problems on the event-level to achieve
the event-level lower bounds.

For the user-level lower bounds we assume by contradiction that an ϵ-differentially
private dynamic algorithm A with “small” additive error exists and construct an exponential
number of graph sequences that are all user-level “edge-close” to a simple graph sequence G′.
Furthermore any two such graph sequences have at least one position with two very different
graphs such that A (due to its small additive error) must return two different outputs at this
position, which leads to two different output sequences if A answers within its error bound.
Let Oi be the set of accurate output sequences of A on one of the graph sequences Gi. By
the previous condition Oi ∩Oj = ∅ if i ̸= j. As Gi is “edge-close” to G′, there is a relatively
large probability (depending on the degree of “closeness”) that Oi is output when A runs
on G′. This holds for all i. However, since Oi ∩ Oj = ∅ if i ̸= j and we have constructed
exponentially many graph sequences Gi, the sum of these probabilities over all i adds up to
a value larger than 1, which gives a contradiction. The proof is based on ideas of a lower
bound proof for databases in [12].

Related Work. Differential privacy, developed in [9, 11], is the de facto gold standard of
privacy definitions and several lines of research have since been investigated [2, 25, 20, 10, 16, 4].
In particular, differentially private algorithms for the release of various graph statistics such as
subgraph counts [19, 3, 7, 21, 32], degree distributions [18, 8, 33], minimum spanning tree [26],
spectral properties [31, 1], cut problems [16, 1, 14], and parameter estimation for special
classes of graphs [23] have been proposed. Dwork et al. [12] and Chan et al. [6] extended the
analysis of differentially private algorithms to the regime of continual observation, i.e., to
input that evolves over time. Since many data sets in applications are evolving data sets,
this has lead to results for several problems motivated by practice [5, 22, 27, 15, 30]. Only
one prior work analyzes evolving graphs: Song et al. [29] study problems in incremental
bounded-degree graphs that are functions of local neighborhoods. Our results improve all
bounds for undirected graphs initially established in [29] by a factor of

√
T/ log3/2 T in the
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additive error.

2 Preliminaries

2.1 Graphs and Graph Sequences
We consider undirected graphs G = (V, E), which change dynamically. Graphs may be
edge-weighted, in which case G = (V, E, w), where w : E → N. The evolution of a graph
is described by a graph sequence G = (G1, G2, . . . ), where Gt = (Vt, Et) is derived from
Gt−1 by applying updates, i.e., inserting or deleting nodes or edges. We denote by |G|
the length of G, i.e., the number of graphs in the sequence. At time t we delete a set of
nodes ∂V −

t along with the corresponding edges ∂E−
t and insert a set of nodes ∂V +

t and
edges ∂E+

t . More formally, Vt = (Vt−1 \ ∂V −
t ) ∪ ∂V +

t and Et = (Et−1 \ ∂E−
t ) ∪ ∂E+

t , with
initial node and edge sets V0, E0, which may be non-empty. If a node v is deleted, then
all incident edges are deleted at the same time, i.e., if v ∈ ∂V −

t , then (u, v) ∈ ∂E−
t for all

(u, v) ∈ Et−1. Both endpoints of an edge inserted at time t need to be in the graph at time t,
i.e., ∂E+

t ⊆ ((Vt−1 \∂V −
t )∪∂V +

t )×((Vt−1 \∂V −
t )∪∂V +

t ). The tuple (∂V +
t , ∂V −

t , ∂E+
t , ∂E−

t )
is the update at time t. For any graph G and any update u, let G ⊕ u be the graph that
results from applying u on G.

A graph sequence is incremental if ∂E−
t = ∂V −

t = ∅ at all time steps t. A graph sequence
is decremental if ∂E+

t = ∂V +
t = ∅ at all time steps t. Incremental and decremental graph

sequences are called partially dynamic. Graph sequences that are neither incremental nor
decremental are fully dynamic.

Our goal is to continually release the value of a graph function f which takes a graph as
input and outputs a real number. In other words, given a graph sequence G = (G1, G2, . . . )
we want to compute the sequence f(G) = (f(G1), f(G2), . . . ). We write f(t) for f(Gt). Our
algorithms will compute an update to the value of f at each time step, i.e., we compute
∆f(t) = f(t)− f(t− 1). We call the sequence ∆f the difference sequence of f .

Given a graph function g the continuous global sensitivity GS(g) of g is defined as the
maximum value of ||g(S)− g(S′)||1 over all adjacent graph sequences S, S′. We will define
adjacency of graph sequences below. In our case, we are often interested in the continuous
global sensitivity of the difference sequence of a graph function f , which is given by the
maximum value of

∑T
t=1 |∆fG(t)−∆fG′(t)|, where ∆fG and ∆fG′ are the difference sequences

of f corresponding to adjacent graph sequences G and G′.
Two graphs are edge-adjacent if they differ in one edge. We also define global sensitivity

of functions applied to a single graph. Let g be a graph function. Its static global sensitivity
GSstatic(g) is the maximum value of |g(G)− g(G′)| over all edge-adjacent graphs G, G′.

2.2 Differential Privacy
The range of an algorithm A, Range(A), is the set of all possible output values of A. We
denote the Laplace distribution with mean µ and scale b by Lap(µ, b). If µ = 0, we write
Lap(b).

▶ Definition 4 (ε-differential privacy). A randomized algorithm A is ε-differentially private
if for any two adjacent databases B, B′ and any S ⊆ Range(A) we have Pr[A(B) ∈ S] ≤
eε · Pr[A(B′) ∈ S]. The parameter ε is called the privacy loss of A.

To apply Definition 4 to graph sequences we now define adjacency for graph sequences.
First, we define edge-adjacency, which is useful if the data to be protected is associated with
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the edges in the graph sequence. Then, we define node-adjacency, which provides stronger
privacy guarantees.

▶ Definition 5 (Edge-adjacency). Let G, G′ be graph sequences as defined above with associated
sequences of updates (∂V −

t ), (∂V +
t ), (∂E−

t ), (∂E+
t ) and (∂V −

t
′), (∂V +

t
′), (∂E−

t
′), (∂E+

t
′).

Let ∂V −
t = ∂V −

t
′ and ∂V +

t = ∂V +
t

′ for all t. Let the initial node and edge sets for G and
G′ be V0 = V ′

0 and E0 = E′
0. Assume w.l.o.g. that ∂E−

t
′ ⊆ ∂E−

t and ∂E+
t

′ ⊆ ∂E+
t for all t.

The graph sequences G and G′ are adjacent on e∗ if |G| = |G′|, there exists an edge e∗ and
one of the following statements holds:
1. ∂E−

t = ∂E−
t

′ ∀ t and ∃t∗ such that ∂E+
t∗ \ ∂E+

t∗
′ = {e∗} and ∂E+

t = ∂E+
t

′ ∀ t ̸= t∗;
2. ∂E+

t = ∂E+
t

′ ∀ t and ∃t∗ such that ∂E−
t∗ \ ∂E−

t∗
′ = {e∗} and ∂E−

t = ∂E−
t

′ ∀ t ̸= t∗;

Remark. If G and G′ are edge-adjacent, then for any index i the graphs at index i in the
two sequences are edge-adjacent.

Two edge-adjacent graph sequences differ in either the insertion or the deletion of a single
edge e∗. There are several special cases that fit into this definition. For example, we may have
∂V −

t = ∂V −
t

′ = ∂V +
t = ∂V +

t′ = ∅, so only edge updates would be allowed. Similarly, we can
use the definition in the incremental setting by assuming ∂V −

t = ∂V −
t

′ = ∂E−
t = ∂E−

t
′ = ∅.

The definition of node-adjacency is similar to that of edge-adjacency, but poses additional
constraints on the edge update sets.

▶ Definition 6 (Node-adjacency). Let G, G′ be graph sequences as defined above with associated
sequences of updates (∂V −

t ), (∂V +
t ), (∂E−

t ), (∂E+
t ) and (∂V −

t
′), (∂V +

t
′), (∂E−

t
′), (∂E+

t
′).

Assume w.l.o.g. that ∂V −
t

′ ⊆ ∂V −
t and ∂V +

t
′ ⊆ ∂V +

t for all t. The graph sequences G and G′

are adjacent on v∗ if |G| = |G′|, there exists a node v∗ and one of the following statements
holds:
1. ∂V −

t = ∂V −
t

′ ∀ t and ∃t∗ such that ∂V +
t \ ∂V +

t
′ = {v∗} and ∂V +

t = ∂V +
t

′ ∀ t ̸= t∗;
2. ∂V +

t = ∂V +
t

′ ∀ t and ∃t∗ such that ∂V −
t \ ∂V −

t
′ = {v∗} and ∂V −

t = ∂V −
t

′ ∀ t ̸= t∗;
Additionally, all edges in ∂E+

t and ∂E−
t are incident to at least one node in ∂V +

t and ∂V −
t ,

respectively. Lastly, we require that ∂E+
t

′ (∂E−
t

′) is the maximal subset of ∂E+
t (∂E−

t ) that
does not contain edges incident to v∗.

We define the following notions of differential privacy based on these definitions of
adjacency.

▶ Definition 7. An algorithm is ε-edge-differentially private (on event-level) if it is ε-
differentially private when considering edge-adjacency. An algorithm is ε-node-differentially
private (on event-level) if it is ε-differentially private when considering node-adjacency.

When explicitly stated, we consider a stronger version of ε-differential privacy, which
provides adjacency on user-level. While adjacency on event-level only allows two graph
sequences to differ in a single update, user-level adjacency allows any number of updates to
differ as long as they affect the same edge (for edge-adjacency) or node (for node-adjacency),
respectively.

▶ Definition 8. Let G = (G1, . . .),G′ = (G′
1, . . .) be graph sequences. The two sequences

are edge-adjacent on user-level if there exists an edge e∗ and a sequence of graph sequences
S = (G1, . . . ,Gℓ) so that G1 = G,Gℓ = G′ and, for any i ∈ [ℓ−1], Gi and Gi+1 are edge-adjacent
on e∗. An algorithm is ε-edge-differentially private on user-level if it is ε-differentially private
when considering edge-adjacency on user-level.
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2.3 Counting Mechanisms
Some of our algorithms for releasing differentially private estimates of functions on graph
sequences rely on algorithms for counting in streams.

A stream σ = σ(1)σ(2) · · · is a string of items σ(i) ∈ {L1, . . . , L2} ⊆ Z, where the i-th
item is associated with the i-th time step. A binary stream has L1 = 0 and L2 = 1. We
denote the length of a stream, i.e., the number of time steps in the stream, by |σ|. Stream σ

and σ′ are adjacent if |σ| = |σ′| and if there exists one and only one t∗ such that σ(t∗) ̸= σ′(t∗)
and σ(t) = σ′(t) for all t ̸= t∗.

A counting mechanism A(σ) takes a stream σ and outputs a real number for every time
step. For all time steps t, A’s output at time t is independent of all σ(i) for i > t. At each
time t a counting mechanism should estimate the count c(t) =

∑t
i=1 σ(i).

Following Chan et al. [6] we describe our mechanisms in terms of p-sums, which are
partial sums of the stream over a time interval. For a p-sum p we denote the beginning and
end of the time interval by start(p) and end(p), respectively. With this notation the value of
p is

∑end(p)
t=start(p) σ(t). To preserve privacy we add noise to p-sums and obtain noisy p-sums:

given a p-sum p, a noisy p-sum is p̂ = p + γ, where γ is drawn from a Laplace-distribution.

2.4 Sparse Vector Technique
The sparse vector technique (SVT) was introduced by Dwork et al. [13] and was subsequently
improved [17, 28]. SVT can be used to save privacy budget whenever a sequence of threshold
queries f1, . . . , fT is evaluated on a database, but only c≪ T queries are expected to exceed
the threshold. Here, a threshold query asks whether a function fi evaluates to a value
above some threshold ti on the input database. Using SVT, only queries that are answered
positively reduce the privacy budget. We use the following variant of SVT, which is due to
Lyu et al.

▶ Lemma 9 ([24]). Let D be a database, ϵ, ρ, c > 0 and let (f1, t1), . . . be a sequence of
mappings fi from input databases to R and thresholds ti ∈ R, which may be generated
adaptively one after another so that ρ ≥ maxi GSstatic(fi). Algorithm 1 is ϵ-private.

Algorithm 1 SVT algorithm [24]

1 Function InitializeSvt(D, ρ, ϵ, c)
2 ϵ1 ← ϵ/2, ζ ← Lap(ρ/ϵ1), ϵ2 ← ϵ− ϵ1, count← 0
3 Function ProcessSvtQuery(fi, ti)
4 νi ← Lap(2cρ/ϵ2)
5 if count ≥ c then
6 return abort
7 if fi(D) + νi ≥ ti + ζ then
8 count← count + 1, return ⊤
9 else

10 return ⊥

3 Mechanisms Based on Continuous Global Sensitivity

Some of our mechanisms for privately estimating graph functions are based on mechanisms
for counting in streams. In both settings, we compute the sum of a sequence of numbers
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and we will show that the mechanisms for counting can be transferred to the graph setting.
However, there are differences in the analysis. In counting, the input streams differ at only
one time step. This allows us to bound the difference in the true value between adjacent
inputs and leads to low error. In the graph setting, the sequence of numbers can vary at
many time steps. Here however, we use properties of the counting mechanisms to show that
the total difference for this sequence can still be bounded, which results in the same error as
in the counting setting.

We first generalize the counting mechanisms by Chan et al. [6] to streams of integers
with bounded absolute value, and then transfer them to estimating graph functions.

3.1 Non-Binary Counting
We generalize the counting mechanisms of Chan et al. [6] to streams of numbers in {−L, . . . , L},
for some constant L. We view these algorithms as releasing noisy p-sums from which the
count can be estimated. The generic algorithm is outlined in Algorithm 2 on page 9.

The algorithm releases a vector of noisy p-sums over T time steps, such that at every
time step the noisy p-sums needed to estimate the count up to this time are available. Each
of the noisy p-sums is computed exactly once. See the proof of Corollary 14 for an example
on how to use p-sums.

In order to achieve the desired privacy loss the mechanisms need to meet the following
requirements. Let A be a counting mechanism. We define Range(A) = Rk, where k is the
total number of p-sums used by A and every item of the vector output by A is a p-sum. We
assume that the time intervals represented by the p-sums in the output of A are deterministic
and only depend on the length T of the input stream. For example, consider any two streams
σ and σ′ of length T . The ℓ-th element of A(σ) and A(σ′) will be p-sums of the same time
interval [start(ℓ), end(ℓ)]. We further assume that the p-sums are computed independently
from each other in the following way: A computes the true p-sum and then adds noise from
Lap(z · ε−1), where z is a sensitivity parameter. To analyze the error of the algorithms we

Algorithm 2 Generic counting mechanism

1 Input: privacy loss ε, stream σ of items {L1, . . . , L2} with |σ| = T

2 Output: vector of noisy p-sums a ∈ Rk, released over T time steps
3 Initialization: Determine which p-sums to compute based on T

4 At each time step t ∈ {1, . . . , T}:
5 Compute new p-sums pi, . . . , pj for t

6 For ℓ = i, . . . , j:
7 p̂ℓ = pℓ + γℓ, γℓ ∼ Lap((L2 − L1)ε−1)
8 Release new noisy p-sums p̂i, . . . , p̂j

need the following Corollary from Chan et al. [6]:

▶ Corollary 10 (Corollary 2.9 from [6]). Suppose γi are independent random variables, where
each γi has Laplace distribution Lap(bi). Let Y :=

∑
i γi and bM = maxi bi. Let ν ≥

√∑
i b2

i .
Suppose 0 < δ < 1 and ν > max

{√∑
i b2

i , bM

√
ln 2

δ

}
. Then, Pr

[
|Y | > ν

√
8 ln 2

δ

]
≤ δ.

To simplify our presentation and improve readability, we choose ν :=
√∑

i b2
i ·

√
ln 2

δ and
use the following slightly weaker result: with probability at least 1− δ, the quantity |Y | is at
most O(

√∑
i b2

i log 1
δ ).
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The next lemma is stated informally in [6].

▶ Lemma 11 (Observation 1 from [6]). Let A be a counting mechanism as described in
Algorithm 2 with L1 = 0 and L2 = 1 that releases k noisy p-sums, such that the count at
any time step can be computed as the sum of at most y p-sums and every item is part of
at most x p-sums. Then, A is (x · ε)-differentially private, and the error is O(ε−1√y log 1

δ )
with probability at least 1− δ at each time step.

Proof. The error follows from Corollary 10 since the noise at each time step is the sum of at
most y independent random variables with distribution Lap(1/ε).

We show that the vector of all noisy p-sums output by A preserves (x · ε)-differential
privacy. Then, since the count is estimated by summing over (x ·ε)-differentially private noisy
p-sums the count itself is (x · ε)-differentially private. As described above, Range(A) = Rk,
where k is the number of p-sums that the algorithm computes in total.

Let σ, σ′ be two adjacent streams. We consider the joint distribution of the random
variables Z1, . . . , Zk that correspond to the noisy p-sums output by A. Let pi(zi), p′

i(zi) for
zi ∈ Range(Zi) be the probability density function of Zi when the input to A is σ and σ′,
respectively. Note that each of these densities is the probability density function of a Laplace
distribution. Let p(z1, . . . , zk), p′(z1, . . . , zk) be the joint probability density when the input
to A is σ and σ′, respectively. Note that the random variables Zi are continuous, since the
noise added to the p-sums is drawn from a continuous distribution over R. Since the Zi are
independent, we have

p(z1, . . . , zk) =
k∏

i=1
pi(zi)

and

p′(z1, . . . , zk) =
k∏

i=1
p′

i(zi).

We now show that these joint densities differ by at most an exp(x ·ε)-factor for all possible
outputs of A. Let s = (s1, . . . , sk)⊤ ∈ Range(A). Note that A outputs a vector of noisy
p-sums from which the count can be computed, so each item in s is a noisy p-sum. Let
c = (c1, . . . , ck)⊤ be the noiseless p-sums of stream σ corresponding to the noisy p-sums
computed by A. Let I be the set of indices to (noisy) p-sums involving time t′. By assumption,
|I| ≤ x, since any item participates in at most x (noisy) p-sums.

p(s)
p′(s) =

k∏
i=1

pi(si)
p′

i(si)
=

∏
i∈I

pi(si)
p′

i(si)

=
∏
i∈I

exp(−ε|ci − si|)
exp(−ε|ci ± 1− si|)

=
∏
i∈I

exp(ε(|ci ± 1− si| − |ci − si|))

≤
∏
i∈I

exp(ε|ci ± 1− si − ci + si|)

= exp(ε)|I| ≤ exp(x · ε). (1)

The first equality follows from the assumption that the noisy p-sums are independent, as
discussed above. Since all noiseless p-sums that do not involve the item at t′ are equal, the
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densities pj(sj) and p′
j(sj) cancel out for j /∈ I, so we can take the product over just the

noisy p-sums corresponding to indices in I. Plugging in the density function of the Laplace
distribution and applying the reverse triangle inequality yields the first inequality. The
second inequality follows from the assumption |I| ≤ x.

Now, for any S ⊆ Range(A) we have

Pr[A(σ) ∈ S] =
∫

S

p(s)ds ≤
∫

S

ex·εp′(s)ds = ex·ε Pr[A(σ′) ∈ S],

where the inequality follows from (1). Thus, A is indeed (x · ε)-differentially private. ◀

To extend the counting mechanisms by Chan et al. to non-binary streams of values in
{−L, . . . , L}, we only need to account for the increased sensitivity in the scale of the Laplace
distribution. By Lemma 12, we can use the mechanisms of Chan et al. [6] to compute the
sum of a stream of numbers in {−L, . . . , L}, but gain a factor 2L in the error.

▶ Lemma 12 (Extension of Lemma 11). Let A be a mechanism as in Algorithm 2 (see page 9)
with L1 = −L and L2 = L that releases k noisy p-sums, such that the count at any time step
can be computed as the sum of at most y p-sums, and every item is part of at most x p-sums.
Furthermore, A adds noise Lap(2L/ε) to every p-sum. Then, A is (x ·ε)-differentially private,
and the error is O(Lε−1√y log 1

δ ) with probability at least 1− δ at each time step.

Proof. The error follows from Corollary 10.
We proceed as in the proof of Lemma 11. Let σ, σ′ be two adjacent streams that differ only

at time t′, i.e., σ(t) = σ′(t) for all t ̸= t′ and σ(t′) ̸= σ′(t′). We denote by δ′ = σ′(t′)− σ(t′)
the difference in the items at time t′. Note that |δ′| ≤ 2L, since σ(t), σ′(t) ∈ {−L, . . . , L} for
all t. Let c = (c1, . . . , ck)⊤ be the noiseless p-sums of stream σ corresponding to the noisy
p-sums computed by A. Let I be the set of indices to (noisy) p-sums involving time t′. By
assumption, |I| ≤ x, since any item participates in at most x (noisy) p-sums.

As in the proof of Lemma 11 we consider the joint probability density of the output of
A when the input is σ and σ′. Note that the noisy p-sums output by A are independent
continuous random variables with range R. We have

p(z) =
k∏

i=1
pi(zi)

and

p′(z) =
k∏

i=1
p′

i(zi),

where the pi and p′
i are the probability density function of the individual noisy p-sums with

input stream σ and σ′, respectively.
Let s = (s1, . . . , sk)⊤ ∈ Range(A).

p(s)
p′(s) =

k∏
i=1

pi(si)
p′

i(si)

=
∏
i∈I

pi(si)
p′

i(si)

=
∏
i∈I

exp
(
− ε|ci−si|

2L

)
exp

(
− ε|ci+δ′−si|

2L

)
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=
∏
i∈I

exp
(

ε(|ci + δ′ − si| − |ci − si|)
2L

)
≤

∏
i∈I

exp
(

ε|ci + δ′ − si − ci + si|
2L

)

= exp
(

ε|δ′|
2L

)|I|

≤ exp(x · ε).

Thus, A is x · ε-differentially private, since

Pr[A(σ) ∈ S] =
∫

S

p(s)ds ≤
∫

S

ex·εp′(s)ds = ex·ε Pr[A(σ′) ∈ S]

for any S ⊆ Range(A). ◀

3.2 Graph Functions via Counting Mechanisms

Algorithm 3 Generic graph sequence mechanism

Input: privacy loss ε, contin. global sensitivity Γ, graph sequence G = (G1, . . . , GT )
Output: vector of noisy p-sums a ∈ Rk, released over T time steps

1 Initialization: Determine which p-sums to compute based on T

2 At each time step t ∈ {1, . . . , T}:
3 Compute f(t) and ∆f(t) = f(t)− f(t− 1), f(0) := 0
4 Compute new p-sums pi, . . . , pj for the sequence ∆f

5 For ℓ = i, . . . , j:
6 p̂ℓ = pℓ + γℓ, γℓ ∼ Lap(Γε−1)
7 Release new noisy p-sums p̂i, . . . , p̂j

We adapt the counting mechanisms to continually release graph functions by following
the approach by Song et al. [29]. Algorithm 3 outlines the generic algorithm. It is similar
to Algorithm 2, with the difference that the stream of numbers to be summed is computed
from a graph sequence G. The algorithm is independent of the notion of adjacency of graph
sequences, however the additive error is linear in the continuous global sensitivity of the
difference sequence ∆f .

In counting binary streams we considered adjacent inputs that differ at exactly one time
step. In the graph setting however, the stream of numbers that we sum, i.e., the difference
sequence ∆f , can differ in multiple time steps between two adjacent graph sequences. We
illustrate this with a simple example. Let f be the function that counts the number of edges
in a graph and consider two node-adjacent incremental graph sequences G, G′. G contains an
additional node v∗, that is not present in G′. Whenever a neighbor is added to v∗ in G, the
number of edges in G increases by more than the number of edges in G′. Thus, every time a
neighbor to v∗ is inserted, the difference sequence of f will differ between G and G′.

To generalize this, consider two adjacent graph sequences G, G′ that differ in an update at
time t′. Let ∆fG and ∆fG′ be the difference sequences used to compute the graph function
f on G and G′. As discussed above we may have ∆fG(t) ̸= ∆fG′(t) for all t ≥ t′. Thus, more
than x p-sums can be different, which complicates the proof of the privacy loss. However,
we observe that the set P of p-sums with differing values can be partitioned into x sets
P1, . . . , Px, where the p-sums in each Pi cover disjoint time intervals. By using a bound on
the continuous global sensitivity of the difference sequence ∆f , this will lead to a privacy loss
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of x · ε. We now prove that the results on privacy loss and error transfer from the counting
mechanisms to the graph mechanisms.

▶ Lemma 13 (Lemma 12 for graph sequences). Let f be a graph function whose difference
sequence has continuous global sensitivity Γ. Let 0 < δ < 1 and ε > 0. Let A be a mechanism
to estimate f as in Algorithm 3 that releases k noisy p-sums and satisfies the following
conditions:
1. at any time step the value of a graph function f can be estimated as the sum of at most y

noisy p-sums,
2. A adds independent noise from Lap(Γ/ε) to every p-sum,
3. the set P of p-sums computed by the algorithm can be partitioned into at most x subsets

P1, . . . , Px, such that in each partition Px all p-sums cover disjoint time intervals. That
is, for all Pi ∈ {P1, . . . , Px} and all j, k ∈ Pi, j ≠ k, it holds that (1) start(j) ̸= start(k)
and (2) start(j) < start(k) =⇒ end(j) < start(k).

Then, A is (x · ε)-differentially private, and the error is O(Γε−1√y log 1
δ ) with probability at

least 1− δ at each time step.

Proof. As before the error follows from Corollary 10 and condition 1.
Let G = (G1, . . . , GT ), G′ = (G′

1, . . . , G′
T ) be two adjacent graph sequences and let

f(t) = f(Gt), f ′(t) = f(G′
t). By definition of adjacent graph sequences (see Definitions 5

and 6) we have f(0) = f ′(0) = f((V0, E0)). At every time step the algorithm computes
∆fG(t) = f(t)− f(t− 1) and ∆fG′(t) = f ′(t)− f ′(t− 1).

Note that the noisy p-sums computed by A are independent continuous random variables
with joint distribution

p(z) =
k∏

i=1
pi(zi)

and

p′(z) =
k∏

i=1
p′

i(zi)

when the input stream is G and G′, respectively. As in the proofs of Lemmas 11 and 12, the pi

and p′
i are the marginal probability density functions. The random variables are continuous,

since the noise added to the p-sums is drawn from a continuous distribution over R.
Furthermore, let c = (c1, . . . , ck)⊤ and c′ = (c′

1, . . . , c′
k)⊤ be the noiseless p-sums cor-

responding to the noisy p-sums output by A on inputs G and G′, respectively. For each
time step t ∈ {1, . . . , T} we define δ(t) = ∆fG′(t)−∆fG(t). Note that

∑T
t=1 |δ(t)| ≤ Γ, by

definition of the continuous global sensitivity Γ of the difference sequence. In this proof we
use start(i) and end(i) to denote the beginning and end of the time interval corresponding
to the p-sums with index i. For each i ∈ {1, . . . , k} we define δi = c′

i − ci =
∑end(i)

t=start(i) δ(t).
Let I = {i | δi ̸= 0} be the indices of p-sums where the values for the two graph sequences
are different. Lastly, let s = (s1, . . . , sk)⊤ ∈ Range(A).

p(s)
p′(s) =

k∏
i=1

pi(si)
p′

i(si)

=
∏
i∈I

pi(si)
p′

i(si)
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=
∏
i∈I

exp
(
− ε|ci−si|

Γ

)
exp

(
− ε|ci+δi−si|

Γ

)
=

∏
i∈I

exp
( ε

Γ · (|ci + δi − si| − |ci − si|)
)

≤
∏
i∈I

exp
( ε

Γ · |δi|
)

(2)

We use condition 3 and partition I into sets of indices I1, . . . , Ix such that for all j ∈ {1, . . . , x}
the p-sums corresponding to indices in Ij cover disjoint time intervals. For each set Ij we
then have

∑
i∈Ij

|δi| ≤
∑
i∈Ij

end(i)∑
t=start(i)

|δ(t)| ≤
T∑

t=1
|δ(t)| ≤ Γ. (3)

Combining (2) and (3) yields

p(s)
p′(s) ≤

∏
i∈I

exp
( ε

Γ · |δi|
)

=
x∏

j=1

∏
i∈Ij

exp
( ε

Γ · |δi|
)

=
x∏

j=1
exp

 ε

Γ ·
∑
j∈Ij

|δi|


≤

x∏
j=1

exp
( ε

Γ · Γ
)

= exp(x · ε).

Thus, A is x · ε-differentially private, since

Pr[A(σ) ∈ S] =
∫

S

p(s)ds ≤
∫

S

ex·εp′(s)ds = ex·ε Pr[A(σ′) ∈ S]

for any S ⊆ Range(A). This concludes the proof of Lemma 13. ◀

We can compute the p-sums in Algorithm 3 as in the binary mechanism [6] to release
ε-differentially private estimates of graph functions.

▶ Corollary 14 (Binary mechanism). Let f be a graph function whose difference sequence
has continuous global sensitivity Γ. Let 0 < δ < 1 and ε > 0. For each T ∈ N there exists
an ε-differentially private algorithm to estimate f on a graph sequence which has error
O(Γε−1 · log3/2 T · log δ−1) with probability at least 1− δ.

Proof. We show that the binary mechanism by Chan et al. [6] can be employed to construct
an algorithm as in Algorithm 3.

The binary mechanism divides the T time steps of the input sequence into ⌊T/2i⌋ intervals
of length 2i for each i = 0, . . . , log T . For each interval the binary mechanism computes a
p-sum. The p-sum of length 2i used to compute the output at time step t is indexed as

qi(t) =
i−1∑
j=0

⌊
T

2i

⌋
+

⌊
t

2i

⌋
.
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P0

P1

P2

P3

t = 1 2 3 4 5 6 7 8

Figure 1 For a stream of length 8 the binary mechanism computes p-sums as shown. The leaves
of the tree correspond to p-sums over the individual time steps; the root corresponds to a p-sum
over the full stream. Now assume that in Algorithm 3 ∆f differs at time steps 2, 4 and 5 (marked
in bold) for adjacent graph sequences. The p-sums involving these time steps (shaded circles) can
be partitioned into 4 sets P0, P1, P2, P3, indicated by dashed rectangles. Pi contains the p-sums of
length 2i.

Let a = (a1, . . . , ak) be the noisy p-sums of the difference sequence of a graph function f for
any graph sequence of length T . The value f(t) at time t is computed as the sum

log T∑
i=0

bini(t) · aqi(t),

where bini(t) is the i-th bit in the binary representation of t, with i = 0 for the least significant
bit.

We have y = log T , since the sum at any time t is computed from at most log T noisy
p-sums corresponding to the at most log T bits of the binary representation of t. Every time
step t participates in p-sums of length 2i for all i = 0, . . . , log T . Thus, x = log T + 1. The
set P of all p-sums can be partitioned into x subsets of disjoint p-sums as illustrated in
Figure 1: for each i = 0, . . . , log T the set Pi contains the p-sums of length exactly 2i. Thus,
using the binary mechanism to sum the noisy p-sums we obtain an algorithm that satisfies
the conditions of Lemma 13.

To obtain an ε-differentially private algorithm we set the privacy parameter in Lemma 13
to ε/x. The error is then O(Γε−1 · x · √y · log δ−1) with probability at least 1− δ. The claim
follows from x, y = O(log T ). ◀

3.3 Bounds on Continuous Global Sensitivity
Song et al. [29] give bounds on the continuous global sensitivity of the difference sequence
for several graph functions in the incremental setting in terms of the maximum degree D.
Table 3 summarizes the results on the continuous global sensitivity of difference sequences
for a variety of problems in the partially dynamic and fully dynamic setting, both for edge-
and node-adjacency. Note that bounds on the continuous global sensitivity of the difference
sequence for incremental graph sequences hold equally for decremental graph sequences as
for every incremental graph sequence there exists an equivalent decremental graph sequence
which deletes nodes and edges in the reverse order.
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Table 3 Global sensitivity of difference sequences

Graph Function f Continuous Global Sensitivity of ∆f

Partially Dynamic Fully Dynamic
node-adjacency edge-adjacency node-adj. edge-adj.

edge counta D 1 ≥ T 2
high-degree nodesa 2D + 1 4 ≥ T ≥ T

degree histograma 4D2 + 2D + 1 8D ≥ 2T ≥ 2T

triangle counta (
D
2
)

D ≥ T ≥ T

k-star counta D
(

D−1
k−1

)
+

(
D
k

)
2 ·

((
D
k

)
−

(
D−1

k

))
≥ T ≥ T

minimum spanning tree 2DW 2W − 2 ≥ T ≥ T

minimum cut ≥ T ≥ T ≥ T ≥ T

maximum matching ≥ T ≥ T ≥ T ≥ T
aBounds for partially dynamic node-adjacency from Song et al. [29]

In the partially dynamic setting, the continuous global sensitivity based approach works
well for graph functions that can be expressed as the sum of local functions on the neigh-
borhood of nodes. For non-local problems the approach is less successful. For the weight
of a minimum spanning tree the continuous global sensitivity of the difference sequence is
independent of the length of the graph sequence. However, for minimum cut and maximum
matching this is not the case. In the fully-dynamic setting the approach seems not to be
useful. Here, we can show that even for estimating the number of edges the continuous global
sensitivity of the difference sequence scales linearly with T under node-adjacency. When
considering edge-adjacency we only have low sensitivity for the edge count.

Using Corollary 14 we obtain ε-differentially private mechanisms with additive error that
scales with log3/2 T , compared to the factor

√
T in [29]. Note that we recover their algorithm

when using the Simple Mechanism II by Chan et al. [6] to sum the difference sequence.
For edge-adjacency we obtain the following bounds on the sensitivity of the difference

sequence.

▶ Lemma 15. When considering edge-adjacency in the incremental setting, the continuous
global sensitivity of the difference sequence of the
1. number of high-degree nodes is 4;
2. degree histogram is 8D;
3. edge count is 1;
4. triangle count is D;
5. k-star count is 2 ·

((
D
k

)
−

(
D−1

k

))
.

Proof. In the following, G and G′ are edge-adjacent incremental graph sequences that differ
in the insertion of an edge e∗ = {u∗, v∗}.

1. In G, the endpoints of e∗ may cross the degree-threshold τ as soon as e∗ is inserted,
increasing the number of high-degree nodes by 2. In G′, the same nodes may become
high-degree nodes at a later update, increasing the number of high-degree nodes by 1
each. Thus, the difference sequences differ by at most 4.

2. The degrees of u∗ and v∗ are one less in G′ compared to G, once e∗ is inserted. There are
up to D insertions of edges incident to u∗, v∗. For each of these updates, the increase
in the degree of u∗ affects 2 histogram-bins in G and G′, each. The same holds for the
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increase in the degree of v∗. Thus, the continuous global sensitivity of the difference
sequence of the degree histogram is 8D.

3. The edge-update sets ∂E+
t and ∂E+

t
′ have exactly the same size at all times, except when

e∗ is inserted. Thus, the global sensitivity of the difference sequence the edge count is
the number of edges that are inserted into G, but not into G′, which is 1.

4. In G′, the u∗ and v∗ are not part of shared triangles. In G however, they may become part
of up to D triangles. Thus, the continuous global sensitivity of the difference sequence of
the triangle count is D.

5. In G, after inserting e∗, u∗ and v∗ may be the center of up to
(

D
k

)
-many k-stars. Then,

they were the center of
(

D−1
k

)
-many k-stars before the insertion of e∗. Any k-star in G′ is

also present in G. Thus, the continuous global sensitivity of the difference sequence of
the k-star count is the number of k-stars that the insertion of e∗ can contribute, which is
2
((

D
k

)
−

(
D−1

k

))
. ◀

The following lemmata provide evidence that the difference sequence based approach is
not useful for fully dynamic graphs.

▶ Lemma 16. Let fτ ((V, E)) = |{v ∈ V | deg(v) ≥ τ}|. The difference sequence of fτ has
continuous global sensitivity at least T when considering edge-adjacent or node-adjacent fully
dynamic graph sequences.

Proof. For the edge-adjacency case consider two graph sequences G, G′, where the initial
graph is a τ -star with two edges e1, e2 removed. At time t = 1 insert e1 into G, but not into
G′. At odd times, insert e2 into both sequences; at even times delete e2 from both sequences.
The sequence G′ never has a node of degree at least τ , whereas G has one such node at odd,
but not at even time steps. Thus,

∑T
t=1 |∆fτ,G(t)−∆fτ,G′(t)| = T .

For the node-adjacency case we again consider two graph sequences G̃, G̃′, where the
initial graph is a τ -star with two nodes a, b and their incident edges removed. At time
t = 1 insert a and its incident edge into G̃, but not into G̃′. At odd times, insert b and its
incident edge into both sequence; at even times delete b from both sequences. As in the
edge-adjacency case it follows that

∑T
t=1 |∆fτ,G̃(t)−∆fτ,G̃′(t)| = T . ◀

▶ Lemma 17. The difference sequence of the degree histogram has continuous global sensitivity
at least 2T when considering edge-adjacent or node-adjacent fully dynamic graph sequences.

Proof. We refer to the adjacent graph sequences introduced in the proof of Lemma 16. In
one of the graph sequences, the bins in the degree histogram corresponding to degrees τ − 1
and τ are alternatingly zero and one. In the other graph sequence the same is true for the
bins corresponding to degrees τ − 2 and τ . Let hG(t), hG′(t) be the degree histograms of the
former and latter sequence at time t, respectively. The corresponding difference sequences
are ∆hG(t) = (dt,0, . . . , dt,n−1) and ∆hG′(t) = (d′

t,0, . . . , d′
t,n−1), where dt,i and d′

t,i is the
change in the number of nodes of degree i from time t− 1 to t. For odd t, we have dt,τ = 1,
dt,τ−1 = −1, d′

t,τ−1 = 1, d′
t,τ−2 = −1; for even t, we have dt,τ = −1, dt,τ−1 = 1, d′

t,τ−1 = −1,
d′

t,τ−2 = 1. Note that dt,1 = d′
t,1 for t ≥ 2 and d1,1 = 2 = d1,1′ + 1. All dt,i not explicitly

given are 0. It follows that
∑T

t=1 ||∆hG(t)−∆hG′(t)||1 ≥ 2T , which concludes the proof. ◀

▶ Lemma 18. Let H be a connected graph with at least two edges (nodes) and fH(G) be the
function counting occurrences of H in G. When considering edge-adjacent (node-adjacent)
fully dynamic graph sequences of length T , GS(∆fH) ≥ T .
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Proof. To show the edge-adjacency case consider adjacent graph sequences G, G′ of length
T , where the initial graph is a copy of H with two edges, say {a, b}, {c, d}, removed. In
the first time step (t = 1), insert {a, b} into G, but not into G′ and insert {c, d} into both
sequences. Thus, we have fH(G1) = 1 and fH(G′

1) = 0. In time steps where t is even, delete
{c, d} from both sequences; if t is odd, insert {c, d} into both sequences. At all time steps t

we have fH(G′
t) = 0 and |∆fH,G(t)| = 1, which implies

∑T
t=1 |∆fH,G(t)−∆fH,G′(t)| = T .

For the node-adjacency case consider again adjacent graph sequences G̃, G̃′ of length T ,
where the initial graph is a copy of H with two nodes, say a, b, removed. At time step t = 1
insert a along with the incident edges into G̃, but not G̃′. At every odd time step, insert b

along with the incident edges into both sequences; at every even time step delete b from both
sequences. Again, G̃′ never contains a copy of H, whereas G̃ contains a copy of H at every
odd time step, but no on the even time steps. Thus,

∑T
t=1 |∆fH,G̃(t)−∆fH,G̃′(t)| = T . ◀

▶ Corollary 19. The difference sequence of triangle count and k-star count has continuous
global sensitivity ≥ T when considering edge-adjacent or node-adjacent graph sequences. The
difference sequence of the edge count has continuous global sensitivity ≥ T when considering
node-adjacent graph sequences.

Proof. The claim follows from Lemma 18, by observing that triangles and k-stars have at
least two edges and nodes, and noting that for the edge count H = ({a, b}, {{a, b}}). ◀

▶ Lemma 20. The difference sequence of the weight of a minimum spanning tree has
continuous global sensitivity at least T when considering edge-adjacent or node-adjacent fully
dynamic graph sequences.

Proof. Let A = (VA, EA) and B = (VB , EB) be connected graphs with |VA|, |VB | ≥ 3 and
w(e) = 1 for all e ∈ EA ∪EB. We denote nodes in VA by ai, nodes in VB by bi with index
i = 0, 1, . . . . Let G0 = (VA ∪ VB , EA ∪ EB ∪ {{a0, b0}}) with w({a0, b0}) = W ≥ 3. Let G,
G′ be graph sequences of length T with initial graph G0.

At time t = 1 we insert the edge e∗ = {a1, b1} with weight w(e∗) = 1 into G. Then, if t is
even, we insert the edges e′ = {a2, b2} with weight w(e′) = W − 1 into G and G′. If t is odd,
we delete e′ from both sequences.

The sequences G and G′ are edge-adjacent. The weight of the minimum spanning tree in
G0 is w0 = |VA| − 1 + |VB | − 1 + W = |VA|+ |VB |+ W − 2. For all t ≥ 1, the weight of the
minimum spanning tree in G is wG = 1 + |VA| − 1 + |VB | − 1 = |VA|+ |VB | − 1. If t is even
and t ≥ 2, then the weight of the minimum spanning tree in G′ is w0 − 1; if t is odd it is w0.
Thus, we have

|∆wMSTG(t)−∆wMSTG′(t)| ≥ 1

for all t = 1, . . . , T , where wMSTG and wMSTG′ denote the weight of the minimum spanning
tree in G and G′, respectively. Summing over all t proves the claim for edge-adjacent
sequences.

To show that the bound holds for node-adjacent sequences, we replace the edge-insertions
by node-insertions as follows: instead of e∗ we insert a node v∗ along with edges e∗

1 = {a1, v∗}
and e∗

2 = {v∗, b1}, where w(e∗
1) = w(e∗

2) = 1; instead of e′ we insert a node v′ along with
edges e′

1 = {a2, v′} and e′
2 = {v′, b1}, where w(e′

1) = 1 and w(e′
2) = W − 1; where we delete

e′ in the edge-adjacency case we delete v′ and the incident edges. We use the same initial
graph G0 and obtain node-adjacent graph sequences where the weights of the minimum
spanning tree are increased by 1 compared to the weights in the corresponding node-adjacent
graph sequences. The claim for node-adjacent graph sequences follows as for edge-adjacent
graph sequences. ◀



H. Fichtenberger and M. Henzinger and W. Ost 19

For maximum cardinality matching and minimum cut the continuous global sensitivity
of the difference sequence scales linearly with the length of the input even in the partially
dynamic setting.

▶ Lemma 21. Let M(G) be the size of a maximum cardinality matching of G. The difference
sequence of M has continuous global sensitivity at least T when considering edge-adjacent or
node-adjacent partially dynamic graph sequences.

Proof. First, we construct edge-adjacent graph sequences G, G′, where |∆MG(t)−∆MG′(t)| =
1 for all t. Let V = {0, . . . , T}. At time t = 1 insert the edge {0, 1} into G and insert no edge
into G′. ∆MG(1) = 1, since G1 has a maximum cardinality matching of size 1. ∆MG′(1) = 0,
since G′

1 has no edges. At every time t > 1 insert the edge {t− 1, t} into both G and G′. If t

is even, then ∆MG(t) = 0 and ∆MG′(t) = 1. If t is odd, then ∆MG(t) = 1 and ∆MG′(t) = 0.
Thus, we have

∑T
t=1 |∆MG(t)−∆MG′(t)| = T .

For node-adjacency, both graph sequences start with the node 1. In G, we insert node 0
along with the edge {0, 1} at time 1. Then, at every time step t > 1 we insert node t and
the edge {t, t− 1} into both graph sequences. The difference sequence is the same as in the
edge-adjacency case. Thus, the continuous global sensitivity of the difference sequence is
also at least T . ◀

▶ Lemma 22. Let wCUT(G) be the weight of a minimum cut of G. The difference sequence
of wCUT has continuous global sensitivity at least T when considering edge-adjacent or
node-adjacent partially dynamic graph sequences.

Proof. We show that for any T ∈ N there exist edge-adjacent graph sequences G, G′, such
that

∑T
t=1 |∆wCUTG(t)−∆wCUTG′(t)| ≥ T .

Let A = (VA, EA), B = (VB , EB), C = (VC , EC) be graphs on at least T + 2 nodes with
minimum cut of weight at least W ·(T +1). We denote nodes in VA by ai, nodes in VB by bi and
nodes in VC by ci, with index i = 0, 1, . . . . Let G0 = (VA∪VB∪VC , EA∪EB∪EC ∪{eab, ebc},
where eab = {aT +1, bT +1} and ebc = {bT +1, cT +1} with w(eab) = 1 and w(ebc) = 2. Let G,
G′ be graph sequences with initial graph G0.

At time t = 1 we insert the edge e∗ = {a0, b0} with w(e∗) = W into G. Then, if t is even,
we insert the edge et = {at, bt} with w(et) = W into both G and G′; If t is odd, we insert the
edge et = {bt, ct} with w(et) = W into both G and G′.

These graph sequences are edge-adjacent since they differ only in the insertion of e∗. At
any time t the minimum cut in Gt is (VA ∪VB , VC). In G′, the minimum cut is (VA, VB ∪VC)
for odd t and (VA ∪ VB , VC) for even t.

In G, the value of the minimum cut increases by 1 at time t = 1 due to insertion of e∗ and
by W for odd t ≥ 3, since an edge of weight W across the minimum cut is inserted. That is,

∆wCUTG(t) =


1 if t = 1,

0 if t is even,
W if t is odd and t ≥ 3.

(4)

In G′, the value of the minimum cut does not change at time t = 1, since no edge is
inserted. At even times, the cut switches to the edges between VB and VC and the weight of
the minimum cut increases by 1. At odd times, the cut switches to the edges between VA

and VB , and the weight of the minimum cut increases by W − 1. The difference sequence for
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G′ is thus,

∆wCUTG′(t) =


0 if t = 1,

1 if t is even,
(W − 1) if t is odd and t ≥ 3.

(5)

From (4) and (5) we get |∆wCUTG(t) −∆wCUTG′(t)| = 1 for all t. Summing over all t we
get the proposed bound on the continuous global sensitivity.

We obtain the same bound for node-adjacent partially dynamic graph sequences by
modifying the above construction as follows: we start with the same initial graph G0 as
above. We replace an insertion of the edge {ai, bi} by an insertion of node a′

i along with
edges {a′

i, bi} and edges {a′
i, aj} for all aj ∈ VA; all these edges have weight W . Similarly, we

replace an insertion of the edge {bi, ci} by an insertion of node c′
i along with edges {c′

i, bi}
and edges {c′

i, cj} for all cj ∈ VC ; all these edges have weight W . By counting the nodes
a′

i and c′
i to VA and VC , respectively, we obtain the same sequence of minimum cuts as in

the edge-adjacency case. Thus, we get the same lower bound on global sensitivity for the
node-adjacency case. ◀

The difference sequence approach can be employed to privately estimate the weight of a
minimum spanning tree in partially dynamic graph sequences. If the edge weight is bounded
by W , then the continuous global sensitivity of the difference sequence is O(W ) and O(DW )
under edge-adjacency and node-adjacency, respectively. In Theorems 23 and 24 we prove
these bounds and use Corollary 14 to derive edge- and node-differentially private algorithms.

▶ Theorem 23. There exists an ε-edge-differentially private algorithm that outputs the weight
of a minimum spanning tree on an incremental graph sequence G with edge-weights from the
set {1, . . . , W}. At every time step, the algorithm has error O(Wε−1 · log3/2 T · log δ−1) with
probability at least 1− δ, where T is the length of the graph sequence.

Proof. We will show that the difference sequence for the weight of a minimum spanning tree
has global edge-sensitivity 2W − 2 in the incremental setting. The claim then follows by
Corollary 14.

Let G = (G1, . . . , GT ), G′ = (G′
1, . . . , G′

T ) be two adjacent graph sequences with initial
graphs G0 and G′

0. We are considering edge-differential privacy and thus edge-adjacency
(Definition 5). This means that G and G′ differ in the insertion of an edge e∗. Without loss of
generality, we assume that e∗ is inserted into G. For estimating GS(∆wMST) we can further
assume that e∗ is inserted into G0 to obtain G1, since ∆wMSTG(t) = ∆wMSTG′(t) for all
times t before the insertion of e∗. For all t = 0, . . . , T the edge set of Gt is a superset of the
edge set of G′

t. This implies wMST(Gt) ≤ wMST(G′
t) for all t.

Note that wMST(G0) = wMST(G′
0) = wMST(G′

1), which implies ∆wMSTG′(1) = 0.
As e∗ might either not replace any edge in a minimum spanning tree or might replace

an edge of weight W , it holds that 0 ≤ ∆wMSTG′(1) ≤ W − 1. Thus, it follows that
0 ≤ ∆wMSTG(1)−∆wMSTG′(1) ≤W − 1.

It remains to bound
∑T

t=2 |∆wMSTG(t)−∆wMSTG′(t)|. Any edge inserted into G is also
inserted into G′. If inserting an edge into G at time t reduces the weight of the minimum
spanning tree of G at time t, then the weight of the minimum spanning tree in G′ at time t is
reduced by at least the same amount. Thus there are two cases: (1) the weight of the minimum
spanning tree in G and G′ change by the same amount; (2) the weight of the minimum spanning
tree in G′ is reduced more than the weight of a minimum spanning tree in G. It follows
that for all t > 0, ∆wMSTG(t)−∆wMSTG′(t) ≥ 0. Thus,

∑T
t=2 |∆wMSTG(t)−∆wMSTG′(t)|
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=
∑T

t=2 ∆wMSTG(t) − ∆wMSTG′(t) =
∑T

t=2 ∆wMSTG(t) −
∑T

t=2 ∆wMSTG′(t). But then it
follows that

T∑
t=2

∆wMSTG(t)−
T∑

t=2
∆wMSTG′(t) = wMST(GT )−wMST(G1)−wMST(G′

T )+wMST(G′
1) ≤W−1,

where the last inequality follows from wMST(G′
1) − wMST(G1) ≤ W − 1 and wMSTGT ≤

wMSTG′
T .

Combining the results for t = 1 and t > 1, we get

T∑
t=1
|∆wMSTG(t)−∆wMSTG′(t)| ≤ 2W − 2,

which implies GS(∆wMST) ≤ 2W − 2.
We now show that this bound on the sensitivity is tight. Let A = (VA = {a1, . . . }, EA),

B = (VB = {b1, . . . }, EB) be arbitrary connected graphs with |A|, |B| > W + 1 and w(e) = 1
for all e ∈ EA ∪ EB. Let G = (VA ∪ VB , EA ∪ EB ∪ {a1, b1}) and w({a1, b1}) = W . Note
that the edge {a1, b1} is guaranteed to be in any minimum spanning tree.

We construct adjacent graph sequences Ga = (Ga1, Ga2, Ga3), Gb = (Gb1, Gb2, Gb3) with
Ga1 = Gb1 = G, such that

∑|Ga|
t=1 |∆wMSTGa

(t)−∆wMSTGb
(t)| = 2W − 2.

Starting with Ga1 = G we insert the edge {a2, b2} with w({a2, b2}) = 1 into Ga to obtain
Ga2. In Gb we insert no edges, i.e., Gb2 = Gb1 = G. Inserting the unit-weight edge into Ga

reduces the weight of a minimum spanning tree by W − 1. In Gb, the weight of a minimum
spanning tree does not change. Thus, we have |∆wMSTGa

(2)−∆wMSTGb
(2)| = W − 1.

In the subsequent time step we insert the edge {a3, b3} with w({a3, b3}) = 1 into Ga and
Gb, which yields the graphs Ga3 and Gb3, respectively. This does not change the weight of
the minimum spanning tree in Ga, but reduces the weight of the minimum spanning tree in
Gb by W − 1, since {a3, b3} replaces {a1, b1} in the minimum spanning tree. Thus, we have
|∆wMSTGa

(3)−∆wMSTGb
(3)| = W − 1.

This concludes the proof. ◀

▶ Theorem 24. There exists an ε-node-differentially private algorithm that outputs the weight
of a minimum spanning tree on an incremental graph sequence G with edge-weights from the
set {1, . . . , W}. At every time step, the algorithm has error O(DWε−1 · log3/2 T · log δ−1)
with probability at least 1 − δ, where T is the length of the graph sequence and D is the
maximum degree.

Proof. We will show that the difference sequence for the weight of a minimum spanning
tree has continuous global sensitivity 2DW under node-adjacency in the incremental setting.
The claim then follows by Corollary 14.

Let G = (G1, . . . , GT ), G′ = (G′
1, . . . , G′

T ) be two adjacent graph sequences with initial
graphs G0 and G′

0. We are considering node-differential privacy and thus node-adjacency
(Definition 6). This means that G and G′ differ in the insertion of a node v∗. Without loss of
generality, we assume that v∗ is inserted into G. For estimating GS(∆wMST) we can further
assume that v∗ is inserted into G0 to obtain G1, since ∆wMSTG(t) = ∆wMSTG′(t) for all
times t before the insertion of v∗.

The node v∗ has degree at most D, so we have |∆wMSTG(1)−∆wMSTG′(1)| ≤ DW .
We now bound

∑T
t=2 |∆wMSTG(t) − ∆wMSTG′(t)| =: Γ2. Let E∗ be the set of edges

incident to v∗. Note that |E∗| ≤ D. For each edge e ∈ E∗ there are three cases: (1) e is
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not in the minimum spanning tree when it is inserted; (2) e replaces a heavier edge; (3) e

increases the weight of the minimum spanning tree.
In case (1), there always exists a minimum spanning tree that does not contain e, since

no edges are ever deleted. Thus, e does not contribute to the continuous global sensitivity of
the difference sequence. To analyze case (2), let eH be the edge replaced by e. This edge
may be replaced in G′ at times different from the time at which e was inserted. However,
this contributes at most w(eH) ≤ W to Γ2. In case (3), the weight that e contributes to
the minimum spanning tree in G can be reduced by at most W − 1. However, the edge
used to replace e may increase the weight of a minimum spanning tree in G′ by 1. Thus, e

contributes up to W to Γ2.
With |E∗| ≤ D, we thus have Γ2 ≤ DW . This implies

GS(∆wMST) =
T∑

t=1
|∆wMSTG(t)−∆wMSTG′(t)|

= |∆wMSTG(1)−∆wMSTG′(1)|+ Γ2

≤ 2DW. ◀

4 Upper Bound for Monotone Functions

In Section 3.3, we show that privately releasing the difference sequence of a graph sequence
does not lead to good error guarantees for partially dynamic problems like minimum cut.
Intuitively, the reason is that even for neighboring graph sequences G,G′, the differences of
the difference sequence can be non-zero for all graphs Gi, G′

i. In other words, the difference of
objective values for the graphs Gi and G′

i can constantly fluctuate during continual updates.
However, the difference of objective values, regardless of fluctuations, is always small. We
show that, by allowing an arbitrarily small multiplicative error, we can leverage this fact
for a broad class of partially dynamic problems. In particular, we prove that there exist
ε-differentially private algorithms for all dynamic problems that are non-decreasing (or
non-increasing) on all valid input sequences. This includes, e.g., minimum cut, maximum
matching and densest subgraph on partially dynamic inputs. See Algorithm 4 for the details
and Table 2 on page 4 for explicit upper bounds for applications. We state the result
for monotonically increasing functions, but it is straightforward to adapt the algorithm to
monotonically decreasing functions.

Algorithm 4 Multiplicative error algorithm for monotone functions

1 Function Initialize(D, ρ, ϵ, r, β)
2 k0 ← 0
3 InitializeSvt (D, ρ, ϵ, log1+β(r)) // see Algorithm 1
4 Function Process(fi)
5 ki ← ki−1
6 while ProcessSvtQuery(fi, (1 + β)ki) = ⊤ do // see Algorithm 1
7 ki ← ki + 1
8 return (1 + β)ki

▶ Theorem 25. Let r > 0 and let f be any monotonically increasing function on dynamic
inputs (e.g., graphs) with range [1, r] and static global sensitivity ρ := GSstatic(f). Let



H. Fichtenberger and M. Henzinger and W. Ost 23

β ∈ (0, 1), δ > 0 and let α = 16 log1+β(r)ρ · ln(2T/δ)/ε. There exists an ε-differentially
private algorithm for computing f with multiplicative error (1 + β), additive error α and
failure probability δ.
Proof. We reduce the dynamic problem to a problem that can be solved using the sparse
vector technique: Assume that we are given the whole sequence of dynamic updates as a
database D in advance. We will remove this assumption later.

Formally, let D := G = (G1, . . . , GT ) be the input to the dynamic problem and let fi

be the function that evaluates f on the i-th entry Gi (e.g., graph) of such a database. To
initialize our algorithm, we run Initialize(D, ρ, ϵ, r, β). Then we call Process(fi) for all
fi, i ∈ [T ]. We claim that the output of Process(fi) is an approximation to fi(D) = f(Gi)
with multiplicative error (1 + β), additive error α and failure probability δ over the coins of
the whole algorithm, and that the algorithm is ϵ-differentially private.

Error. We condition on the event that all noises in Algorithm 1 are small, i.e., |ζ| < α/4
and, for all i, |νi| < α/4. It follows from the definition of the Laplace distribution and a
union bound over all queries that this event occurs with probability at least 1− e−αε1/(4ρ) −
T · e−αε2/(8 log1+β(r)ρ) ≥ 1 − δ. Consider query fi(D) and let f ′

i := fi(D) + νi − ζ. After
the while-loop of Process(fi), we know that fi(D) − α/2 ≤ (1 + β)ki and fi(D) + α/2 ≥
fi−1(D) + α/2 ≥ (1 + β)ki−1 due to the monotonicity of f1(D), ..., fT (D). We analyze the
return value of Process(fi) and show that it is a (1+β) approximation with additive error α:

fi(D)− α ≤
(

(1 + β)ki + α

2

)
− α ≤ (1 + β)ki

(1 + β)fi(D) + α ≥ (1 + β)
(

(1 + β)ki−1 − α

2

)
+ α ≥ (1 + β)ki .

Since f(GT ) ≤ r = (1 + β)log1+β(r), it follows that the algorithm has a multiplicative error
(1 + β) and an additive error of at most α with probability at least 1− δ.

Privacy. The privacy follows directly from Lemma 9 because the return value (1 + β)ki

is derived from the answers of Algorithm 1, which is ϵ-private, and public knowledge (i.e.,
the fact that k0 = 0).

Removing the assumption. Observe that to answer query fi on D, Algorithm 1 only
needs access to Gi or, equivalently, access to the first i updates of the dynamic update
sequence. In other words, Gi is read for the first time after answering query fi−1. Therefore,
we may ask all previous queries fj , j < i, even if Gi is not available yet, e.g., when processing
update j. For dynamic graph sequences and edge-adjacency or node-adjacency, any pair of
same-length prefixes of two graph sequences G1,G2 is neighboring if G1 and G2 are neighboring
(see Definitions 5 and 6). Therefore, privacy is not affected by making Gi only available to
Algorithm 4 just before the i-th query, as required by the dynamic setting. ◀

5 Lower Bounds for Event-Level Privacy

In this section we show lower bounds for the error of edge-differentially private algorithms in
the partially dynamic setting. We consider the problem of releasing the weight of a minimum
spanning tree, the minimum cut and maximum weight matching. To derive the bounds we
reduce differentially private counting in binary streams to these problems and apply a lower
bound of Dwork et al. [12], which we restate here.
▶ Theorem 26 (Lower bound for counting in binary streams [12]). Any differentially private
event-level algorithm for counting over T rounds must have error Ω(log T ) (even with ε = 1).
Note that any lower bound for the incremental setting can be transferred to the decremental
setting, using the same reductions but proceeding in reverse.
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5.1 Minimum Spanning Tree
We show a lower bound for the error in ε-edge-differentially private estimation of the weight
of a minimum spanning tree when the weights are bounded by W .

▶ Lemma 27. For any pair of adjacent binary streams σ, σ′ of length T there exists a pair
of incremental edge-weighted graph sequences G, G′ that are edge-adjacent, such that the
weights of minimum spanning trees in G and G′ are

wMST(Gt) = W

t∑
i=1

σ(i) + T

and

wMST(G′
t) = W

t∑
i=1

σ′(i) + T,

respectively, at all time steps t ∈ {1, . . . , T}, where edge weights are in {1, . . . , W}.

Proof. We construct graph sequences on the node set

V = {0, . . . , T} ∪ {T + 1, . . . , 2T + 1}. (6)

The nodes 1, . . . , T will form a path in these graph sequences. To achieve this we use the
edge set E0 = {{i − 1, i} | i = 1, . . . , T} with weight 1 for each edge and initial the graph
sequences with the graph G0 = (V, E0). The edges in E form a minimum spanning tree of
G0 of weight T .

For any two adjacent binary streams σ, σ′ we construct corresponding graph sequences
G, G′ with initial graph G0. At all times the node set of the graphs in G and G′ is V , as
defined in (6). We now define for each time t the sets of edge-insertions for G and G′. Let
et

0 = {t, (t + 2) mod T} with w(et
0) = W and et

1 = {T + t, T + t + 1} with w(et
1) = W . At

time t we insert

∂E+
t =

{
{et

0} if σ(t) = 0,

{et
0, et

1} if σ(t) = 1,

∂E+
t

′ =
{
{et

0} if σ′(t) = 0,

{et
0, et

1} if σ′(t) = 1,

into G and G′, respectively. Note that ∂E+
t ̸= ∂E+

t
′ only if σ(t) ̸= σ′(t). Thus, G and G′ only

differ in the insertion of a single edge and are adjacent.
Inserting an edge et

0 never changes the weight of a minimum spanning tree, since the
edges ei defined above make up a spanning tree of the nodes {1, . . . , T} and have lower
weight. Inserting an edge et

1 increases the weight of the minimum spanning tree by W . Thus,
at any time t, the weights of the minimum spanning trees in G and G′ are

wMST(Gt) = W

t∑
i=1

σ(i) + T

and

wMST(G′
t) = W

t∑
i=1

σ′(i) + T,

respectively, which concludes the proof. ◀
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▶ Lemma 28. For any pair of adjacent binary streams σ, σ′ of length T there exists a pair
of incremental edge-weighted graph sequences G, G′ that are node-adjacent, such that the
weights of minimum spanning trees in G and G′ are

wMST(Gt) = W

t∑
i=1

σ(i)

and

wMST(G′
t) = W

t∑
i=1

σ′(i),

respectively, at all time steps t ∈ {1, . . . , T}, where edge weights are in {1, . . . , W}.

Proof. Let G0 = (v0, ∅). Let G, G′ be graph sequences with initial graph G0.
At time t we insert the node sets

∂V +
t =

{
{ut} if σ(t) = 0,

{ut, vt} if σ(t) = 1,

∂V +
t

′ =
{
{ut} if σ′(t) = 0,

{ut, vt} if σ′(t) = 1,

(7)

into G and G′, respectively. When inserting vt we also insert the edge {v0, vt} with weight
W . The nodes ut stay isolated throughout the graph sequences. The weight of the minimum
spanning tree is the number of nodes vt that were inserted into the graph sequence, multiplied
by the maximum edge weight W . That is, at any time t, the weights of the minimum spanning
trees in G and G′ are

wMST(Gt) = W

t∑
i=1

σ(i)

and

wMST(G′
t) = W

t∑
i=1

σ′(i)

respectively, which concludes the proof. ◀

▶ Theorem 29. Any ε-edge-differentially private algorithm to compute the weight of a
minimum spanning tree in an incremental graph sequence of length T must have additive
error Ω(W log T ) when the edge weights are in {1, . . . , W}, even with ε = 1.

Proof. Suppose there exists an ε-edge-differentially private algorithm to compute the weight
of a minimum spanning tree in an incremental graph sequence with error o(W log T ) at all
time steps. Using this algorithm and the reduction from Lemma 27, we can compute the
sum of any binary stream with error o(log T ) while preserving ε-differential privacy. This
contradicts Theorem 26. ◀

▶ Theorem 30. Any ε-node-differentially private algorithm to compute the weight of a
minimum spanning tree in an incremental graph sequence of length T must have additive
error Ω(W log T ) when the edge weights are in {1, . . . , W}, even with ε = 1.



26 Differentially Private Algorithms for Graphs Under Continual Observation

Proof. Suppose there exists an ε-node-differentially private algorithm to compute the weight
of a minimum spanning tree in an incremental graph sequence with error o(W log T ) at all
time steps. Using this algorithm and the reduction from Lemma 28, we can compute the
sum of any binary stream with error o(log T ) while preserving ε-differential privacy. This
contradicts Theorem 26. ◀

5.2 Weighted Minimum Cut
We can prove a similar lower bound for edge-differentially private weighted minimum cut
in incremental graph sequences. We again reduce differentially private counting in binary
streams to differentially private minimum cut in incremental graph sequences.

▶ Lemma 31. For any pair of adjacent binary streams σ, σ′ of length T there exists a pair
of incremental edge-weighted graph sequences G, G′ that are edge-adjacent, such that the
weights of the minimum cut in G and G′ are

wCUT(Gt) = W

t∑
i=1

σ(i)

and

wCUT(G′
t) = W

t∑
i=1

σ′(i)

respectively, at all time steps t ∈ {1, . . . , T}, where edge weights are in {1, . . . , W}.

Proof. At the core of our reduction is a (T + 1)-edge-connected graph with sufficiently many
missing edges. We use the (T + 1)-dimensional hypercube graph Q = (VQ, EQ). Each node
v ∈ VQ is associated with a vector v ∈ {0, 1}T +1. We associate every time step t ∈ {1, . . . , T}
with two nodes in Q, which correspond to the following vectors:

bt = (b1, . . . , bT , 0)

and b̂t = (1− b1, . . . , 1− bT , 1),

where b1, . . . , bT ∈ {0, 1} such that t =
∑T

i=1 bi · 2i−1. Since bt and b̂t differ in at least 2
elements, they are not connected by an edge in Q.

In the following, every edge has weight W , including the edges in Q. Let G0 = ({v∗}, ∅)∪Q.
G0 has a minimum cut of weight 0, since v∗ is isolated. Let G, G′ be incremental graph
sequences with initial graph G0. For every time step we define the edges et

0 = {bt, b̂t} and
et

1 = {v∗, bt}. At time t we insert

∂E+
t =

{
{et

0} if σ(t) = 0,

{et
0, et

1} if σ(t) = 1,

∂E+
t

′ =
{
{et

0} if σ′(t) = 0,

{et
0, et

1} if σ′(t) = 1,

into G and G′, respectively. Note that these graph sequences differ in exactly one edge exactly
when σ(t) ̸= σ′(t).

Denote by degG(v∗, t) the degree of v∗ in G at time t. We observe that the degree of v∗

increases by 1 in the graph sequence if and only if there is a 1 in the corresponding binary
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stream. Otherwise, its degree does not change. The minimum cut is always the trivial cut
around v∗, since the degree of v∗ never exceeds T and Q is (T + 1)-edge-connected. Thus,
the weight of the minimum cut at time t is

wCUT(Gt) = W

t∑
i=1

σ(i)

and

wCUT(G′
t) = W

t∑
i=1

σ′(i),

which concludes the proof. ◀

▶ Lemma 32. For any pair of adjacent binary streams σ, σ′ of length T there exists a pair
of incremental edge-weighted graph sequences G, G′ that are node-adjacent, such that the
weights of the minimum cut in G and G′ are

wCUT(Gt) = W

t∑
i=1

σ(i)

and

wCUT(G′
t) = W

t∑
i=1

σ′(i)

respectively, at all time steps t ∈ {1, . . . , T}, where edge weights are in {1, . . . , W}.

Proof. Let G0 = ({u0, v0}, ∅). Let G, G′ be graph sequences with initial graph G0. In the
following all edges have weight W .

At time t we insert the node sets

∂V +
t =

{
{ut} if σ(t) = 0,

{ut, vt} if σ(t) = 1,

∂V +
t

′ =
{
{ut} if σ′(t) = 0,

{ut, vt} if σ′(t) = 1,

into G and G′, respectively. Along with every node ut, we insert the edges {ut, uj} for all
0 ≤ j < t. If we insert vt, we also insert the edges {vt, vj} for all 0 ≤ j < t and the edge
{vt, u0}.

Let Ut = {u0, . . . , ut} and Vt = {v0, . . . , vt}. The subgraphs induced by Ut and Vt are
always complete. The cut (Ut, Vt) always has minimum weight. The weight of this cut in G
increases by W only if σ(t) = 1; otherwise, it does not change. The same holds for G′ and σ′.
Thus, the weight of the minimum cut at time t is

wCUT(Gt) = W

t∑
i=1

σ(i)

and

wCUT(G′
t) = W

t∑
i=1

σ′(i),

which concludes the proof. ◀
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▶ Theorem 33. Any ε-edge-differentially private algorithm to compute the weight of a mini-
mum cut in an incremental graph sequence of length T must have additive error Ω(W log T )
when the edge weights are in {1, . . . , W}, even with ε = 1.

Proof. Suppose there exists an ε-edge-differentially private algorithm to compute the weight
of a minimum cut in an incremental graph sequence with error o(W log T ) at all time steps.
Using this algorithm and the reduction from Lemma 31, we can compute the sum of any
binary stream with error o(log T ) while preserving ε-differential privacy. This contradicts
Theorem 26. ◀

▶ Theorem 34. Any ε-node-differentially private algorithm to compute the weight of a mini-
mum cut in an incremental graph sequence of length T must have additive error Ω(W log T )
when the edge weights are in {1, . . . , W}, even with ε = 1.

Proof. Suppose there exists an ε-node-differentially private algorithm to compute the weight
of a minimum cut in an incremental graph sequence with error o(W log T ) at all time steps.
Using this algorithm and the reduction from Lemma 32, we can compute the sum of any
binary stream with error o(log T ) while preserving ε-differential privacy. This contradicts
Theorem 26. ◀

5.3 Maximum Weighted Matching
▶ Lemma 35. For any pair of adjacent binary streams σ, σ′ of length T there exists a pair
of incremental edge-weighted graph sequences G, G′ that are edge-adjacent, such that the
weights of the maximum weighted matching in G and G′ are

wM(Gt) = W

t∑
i=1

σ(i) + W · T

and

wM(G′
t) = W

t∑
i=1

σ′(i) + W · T,

respectively, at all time steps t ∈ {1, . . . , T}, where edge weights are in {1, . . . , W}.

Proof. Let G0 = (U ∪ V, E), where U = {u1, . . . , u2·T }, V = {v1, . . . , v2·T } and E =⋃T
i=1{ui, u(i+1) mod T }. All edges have weight W . Let G and G′ be graph sequences with

initial graph G0.
For all times t ∈ {1, . . . , T} we define the edges et

0 = {ut, vt} with w(et
0) = 1 and

et
1 = {uT +t, vt+T } with w(et

1) = W . At time t we insert

∂E+
t =

{
{et

0} if σ(t) = 0,

{et
0, et

1} if σ(t) = 1,

∂E+
t

′ =
{
{et

0} if σ′(t) = 0,

{et
0, et

1} if σ′(t) = 1,

into G and G′, respectively. Note that these graph sequences differ in exactly one edge exactly
when σ(t) ̸= σ′(t).

G0 has a matching of weight W · T , which consists of the edges in E. Inserting an edge
et

0 for any t does not change the weight of the maximum matching. Inserting an edge et
1
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however increases the weight of the matching by W , since two previously isolated nodes are
now connected by this new edge. Thus, the weight of the maximum matching at time t is

wM(Gt) = W

t∑
i=1

σ(i) + W · T

and

wM(G′
t) = W

t∑
i=1

σ′(i) + W · T,

which concludes the proof. ◀

We can also reduce differentially private binary counting to node-differentially private
maximum weight matching in incremental graph sequences.

▶ Lemma 36. For any pair of adjacent binary streams σ, σ′ of length T there exists a pair
of incremental edge-weighted graph sequences G, G′ that are node-adjacent, such that the
weights of the maximum weighted matching in G and G′ are

wM(Gt) = W

t∑
i=1

σ(i)

and

wM(G′
t) = W

t∑
i=1

σ′(i)

respectively, at all time steps t ∈ {1, . . . , T}, where edge weights are in {1, . . . , W}.

Proof. Let G0 = ({v1, . . . , vT }, ∅). Let G, G′ be graph sequences with initial graph G0.
At time t, we insert a node ut into G and G′. If σ(t) = 1 we additionally insert node v′

t

along with the edge {v′
t, vt} with weight W into G. Similarly, if σ′(t) = 1 we insert node v′

t

along with the edge {v′
t, vt} with weight W into G′.

Then, the weight of the maximum matching in G at time t increases by W if σ(t) = 1;
otherwise, it does not change. The same holds for σ′ and G′. Thus, the weight of the
maximum matching at time t is

wM(Gt) = W

t∑
i=1

σ(i)

and

wM(G′
t) = W

t∑
i=1

σ′(i),

which concludes the proof. ◀

▶ Theorem 37. Any ε-edge-differentially private algorithm to compute the weight of a
maximum weight matching in an incremental graph sequence of length T must have additive
error Ω(W log T ) when the edge weights are in {1, . . . , W}, even with ε = 1.
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Proof. Suppose there exists an ε-edge-differentially private algorithm to compute the weight
of a maximum weight matching in an incremental graph sequence with error o(W log T ) at
all time steps. Using this algorithm and the reduction from Lemma 35, we can compute the
sum of any binary stream with error o(log T ) while preserving ε-differential privacy. This
contradicts Theorem 26. ◀

▶ Theorem 38. Any ε-node-differentially private algorithm to compute the weight of a
maximum weight matching in an incremental graph sequence of length T must have additive
error Ω(W log T ) when the edge weights are in {1, . . . , W}, even with ε = 1.

Proof. Suppose there exists an ε-node-differentially private algorithm to compute the weight
of a maximum weight matching in an incremental graph sequence with error o(W log T ) at
all time steps. Using this algorithm and the reduction from Lemma 36, we can compute the
sum of any binary stream with error o(log T ) while preserving ε-differential privacy. This
contradicts Theorem 26. ◀

5.4 Subgraph Counting, High-Degree Nodes and Degree Histogram
We show that, for the number of high-degree nodes, the degree histogram and the subgraph
counting problems adjacent binary streams can be reduced to adjacent incremental graph
sequences. This implies a lower bound of Ω(log T ) on the error for these problems.

▶ Lemma 39. There exist functions Gτ , Gh, G∆, Gk, that map a binary stream to an
incremental graph sequence of the same length, such that the following holds: At time t

1. the number of nodes of degree at least τ in Gτ (σ),
2. the number of nodes of degree 2 in Gh(σ),
3. the number of triangles in G∆(σ) and
4. the number of k-stars in Gk(σ)
is equal to

∑t
i=1 σ(i). Furthermore, all functions map adjacent binary streams to edge-adjacent

graph sequences.

Proof. Let σ be a binary stream.
1. Gτ outputs a graph sequence with initial graph Gτ = ∪T

i=1Si. Each Si is a τ -star with
one missing edge. At time t, if σ(t) = 1, then the missing edge is inserted into St.

2. Gh outputs a graph sequence on the nodes Vh = ∪T
i=1{ai, bi, ci}. Initially, there are edges

{bi, ci} for each i ∈ {1, . . . , T}. At time t, if σ(t) = 1, then the edge {at, bt} is inserted.
Note that deg(bt) = σ(t) + 1 and deg(ai), deg(ci) ≤ 1 for all t.

3. G∆ outputs a graph sequence on the nodes V∆ = ∪T
i=1{ai, bi, ci}. Initially, there are edges

{ai, bi} and {bi, ci} for each i ∈ {1, . . . , T}. At time t, if σ(t) = 1, then the edge {at, ct}
is inserted.

4. Gk outputs a graph sequence with initial graph Gk = ∪T
i=1Si. Each Si is a k-star with

one missing edge. At time t, if σ(t) = 1, then the missing edge is inserted into St.
In all graph sequences no edge is inserted if σ(t) = 0; if σ(t) = 1, then a single edge is inserted.
Thus, the functions map adjacent binary streams to edge-adjacent graph sequences. ◀

▶ Lemma 40. There exist functions G′
τ , G′

h, G′
e, G′

∆, G′
k, that map a binary stream to an

incremental graph sequence of the same length with maximum degree D > 3, τ, k ≤ D, such
that the following holds: Let σ be a binary stream. At time t

1. the number of nodes of degree at least τ in G′
τ (σ),

2. the number of nodes of degree 2 in G′
h(σ),

3. the number of edges in G′
e(σ),
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4. the number of triangles in G′
∆(σ),

5. the number of k-stars in G′
k(σ)

is equal to D
∑t

i=1 σ(i). Furthermore, all functions map adjacent binary streams to node-
adjacent graph sequences.

Proof. Let σ be a binary stream.
1. G′

τ outputs a graph sequence with initial graph Gτ = ∪T
i=1Si. Each Si is the union of

(D − 1)-many (τ − 1)-stars. At time t, if σ(t) = 1, then a node vt is inserted into St,
along with edges from vt to the central node of each (τ − 1)-star in St. Since D ≥ τ ,
the number of τ -stars in St is D if σ(t) = 1 and zero otherwise. In St the centers of the
τ -stars have degree ≥ τ , all other nodes have degree < τ .

2. G′
h outputs a graph sequence with initial graph Gh = ∪T

i=1Mi, where Mi consists of
D pairwise connected nodes, i.e., Mi = (

⋃D
j=1{aj , bj},

⋃D
j=1{{aj , bj}}). At time t, if

σ(t) = 1, then a node vt is inserted into Mt along with edges {vt, aj} for all j = 1, . . . , D.
The number of nodes of degree 2 is D in Mt if σ(t) = 1 and zero otherwise.

3. G′
e outputs a graph sequence with initial graph Ge = ∪T

i=1Vi, where Vi = ({1, . . . , D}, ∅).
At time t, if σ(t) = 1, then a node vt is inserted into Vt along with edges from vt to all
nodes in Vt. The number of edges is D in Vt if σ(t) = 1 and zero otherwise.

4. G′
∆ outputs a graph sequence with initial G∆ = ∪T

i=1Ci, where Ci is a cycle of D nodes.
At time t, if σ(t) = 1, then a node vt is inserted into Ct along with edges from vt to every
node in Ct. Thus, if σ(t) = 1 the number of triangles in Ct is D; otherwise, it is zero.

5. G′
k outputs a graph sequence with initial graph Gτ = ∪T

i=1Si. Each Si is the union of
(D − 1)-many (τ − 1)-stars. At time t, if σ(t) = 1, then a node vt is inserted into St,
along with edges from vt to the central node of each (τ − 1)-star in St. Since D ≥ τ , the
number of τ -stars in St is D if σ(t) = 1 and zero otherwise.

In all graph sequences no node is inserted if σ(t) = 0; if σ(t) = 1, then a single node is inserted.
Thus, the functions map adjacent binary streams to node-adjacent graph sequences. ◀

▶ Theorem 41. Any ε-edge-differentially private algorithm to compute
1. the number of high-degree nodes,
2. the degree histogram,
3. the number of edges,
4. the number of triangles,
5. the number of k-stars
in an incremental graph sequence of length T must have additive error Ω(log T ), even with
ε = 1.

Proof. By Lemma 39, adjacent binary streams can be encoded in edge-adjacent incremental
graph sequences of the same length. Counting the number of edges is equivalent to binary
counting. The claim follows by Theorem 26. ◀

▶ Theorem 42. Any ε-node-differentially private algorithm to compute
1. the number of high-degree nodes,
2. the degree histogram,
3. the number of edges,
4. the number of triangles,
5. the number of k-stars
in an incremental graph sequence of length T must have additive error Ω(D log T ), where D

is the maximum degree, even with ε = 1.
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Proof. By Lemma 40, adjacent binary streams can be encoded in node-adjacent incremental
graph sequences of the same length. The claim follows by Theorem 26. ◀

6 Lower Bound for User-Level Privacy

We show that for several fundamental problems on dynamic graphs like minimum spanning
tree and minimum cut, a differentially private algorithm with edge-adjacency on user-level
must have an additive error that is linear in the maximum function value. Technically, we
define the spread of a graph function as the maximum difference of the function’s value
on any two graphs. Then, we show that any algorithm must have an error that is linear
in the graph function’s spread. We write this section in terms of edge-adjacency but the
corresponding result for node-adjacency carries over.

▶ Definition 43 (adjacency transformation). Let G1 and G2 be a pair of graphs. We define
τ(G1, G2) to be an update sequence u1, . . . , uℓ of minimum length that transforms G1 into
G2. We denote the graph sequence that results from applying τ(G1, G2) to G1 by T(G1, G2),
i.e., T(G1, G2) = (G1, G1 ⊕ u1, (G1 ⊕ u1)⊕ u2, . . . , G2).

▶ Definition 44 (spread). Let s, ℓ : N→ {2i | i ∈ N} be functions. A graph function f has
spread (s(n), ℓ(n)) on inputs of size n if, for every n, there exist two graphs G1, G2 of size n

so that |f(G1)− f(G2)| ≥ s(n) and |τ(G1, G2)| = ℓ(n). Furthermore, f spares an edge e if
e ∈ E(G1) ∩ E(G2).

See Table 1 on page 3 for the resulting lower bounds.

▶ Theorem 45. Let ϵ, δ > 0 and let f be a graph function with spread (s, ℓ) that spares
an edge e. For streams of length T on graphs of size n, where T > log(e4ϵℓ/(1 − δ)) ∈
O(ϵℓ + log(1/(1− δ))), every ϵ-differentially private dynamic algorithm with user-level edge-
adjacency that computes f with probability at least 1− δ must have error Ω(s(n)).

Proof. For any update u, let u−1 be the update that reverses u. For the sake of contradiction,
assume that there exists an ϵ-differentially private graph algorithm A with edge-adjacency
on user-level that with probability at least 1 − δ computes f with error less than s(n)/2.
Let n > 0, s := s(n), ℓ = ℓ(n) and let G1, G2 be graphs of size n with spread (s, ℓ) on f

that spares an edge e. We assume below wlog that ℓ is even, if it is odd the proof can be
easily adapted. Let u be the update operation that inserts e into the current graph (see
below). Let (o0, . . . , oℓ−1) := τ(G1, G2) and let (o′

0, . . . , o′
ℓ−1) := τ(G2, G1). Without loss

of generality, assume that T is a multiple of 2ℓ. Let B be the set of bit strings of length
T/(2ℓ). For every bit string b = (b0, . . . , bT/(2ℓ)−1) ∈ B, we construct a unique graph sequence
Gb = (H0, . . . , HT ) as follows, resulting in 2T/(2ℓ) different graph sequences.

The sequence is partitioned into phases of length 2ℓ. Each phase has a type: It is
either a forward phase or a backward phase. The sequence starts with a forward phase and
alternates between forward and backward phases. Intuitively, forward phases transform G1
into G2, while backward phases transform G2 into G1. This takes ℓ updates. To generate
an exponential number of different but “close” graph sequences each phase also contains ℓ

placeholder updates. The purpose of a placeholder update is to basically not modify the graph
in any of the graph sequences. Thus the first placeholder update updates e and the next
update is the inverse operation. This is repeated ℓ/2 times. For every phase, a corresponding
bit in b decides whether the transformation happens before the placeholder updates or after
placeholder updates. Thus, 2T/(2ℓ) different graph sequences are generated, where the graphs
at position 2iℓ for any integer i ≥ 0 in all these sequences are identical.
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Formally, for integer i = 0, 1, ..., T/(2ℓ)−1, the bit bi corresponds to the phase H2iℓ, . . . , H2(i+1)ℓ−1
in the sequence Gb. Bit bi corresponds to graphs in a forward phase if and only if i is even.
We define Gb as follows:
forward phase, bi = 0: For any j, 0 ≤ j < ℓ (i.e., the first half of the phase), we define

H2iℓ+j+1 := H2iℓ+j ⊕ oj . The second half of the phase, i.e., H(2i+1)ℓ, . . . , H2(i+1)ℓ−1, is
defined by alternating between H(2i+1)ℓ and H(2i+1)ℓ ⊕ u, which are placeholder updates.

forward phase, bi = 1: This phase results from swapping the first and the second half
of the forward phase with bi = 0. In particular, the first half of the phase, i.e.,
H2iℓ, . . . , H(2i+1)ℓ−1, is defined by alternating between H2iℓ and H2iℓ ⊕ u, which are
placeholder updates. For any j, ℓ ≤ j < 2ℓ, H2iℓ+j+1 := H2iℓ+j ⊕ oj−ℓ.

backward phase, bi ∈ {0, 1}: The graphs H2iℓ, . . . , H2(i+1)ℓ−1 are defined analogously to
a forward phase with bi = 0 or bi = 1, respectively. The only difference is that instead of
o0, . . . , oℓ−1, the updates o′

0, . . . , o′
ℓ−1 are used.

It follows from the construction that for any bit string b and its corresponding graph
sequence (H0, . . . , HT ), it holds that Hi = G1 if i mod 4ℓ = 0 and Hi = G2 if i mod 4ℓ =
2ℓ. However, for every pair of bit strings b, b′, b ̸= b′, and their corresponding graph
sequences (H0, . . . , HT −1) and (H ′

0, . . . , HT −1), there exists an i with i mod 2ℓ = ℓ, so that
|f(Hi) − f(H ′

i)| ≥ s. This stems from the fact that f has spread (s, ℓ) and that b and b′

must differ in at least one bit, say bi = 0 and b′
i = 1. Thus, by construction, H(2i+1)ℓ = G2

(as τ(G1, G2) has already been executed in this phase) and H ′
(2i+1)ℓ = G1 (as τ(G1, G2) has

not yet been executed in this phase).
Next we show that any graph sequence Gb is on user-level “edge-close” to a very generic

graph sequence. More specifically, let G′ be the sequence of graphs that alternates between
G1 and G1 ⊕ u, i.e., (G1, G1 ⊕ u, G1, G1 ⊕ u, . . .). We argue that there is a (short) sequence
Γ1, Γ2, . . . Γ3ℓ/2+1 of graph sequences such that Γi and Γi+1 are user-level edge-adjacent
graph sequences such that Γ1 = Gb and Γℓ+1 = G′. Said differently the sequence of graph
sequences transforms Gb into G′. Instead of talking about a transforming graph sequence
we use below the notation of user-level edge-adjacency operation: It takes one operation to
transform a graph sequence Γi into a user-level edge-adjacent graph sequence Γi+1.

We now give the details: For any b, each phase of Gb can be divided into two halves
(H2iℓ, . . . , H(2i+1)ℓ−1) and (H(2i+1)ℓ, . . . H(2(i+1)ℓ−1)): in one half (the first if bi = 0, the
latter if bi = 1), the updates are already alternating between u, i.e., inserting e, and u−1,
i.e., deleting e. Therefore, we only need to transform the updates on the other half into a
sequence that alternates between u and u−1. The other half is either T(G1, G2) (in forward
phases) or T(G2, G1) (in backward phases). By Lemma 46, there is a sequence of graph
sequences of length 3ℓ/2 + 1 that starts with T(G1, G2) and ends with G′ and a sequence of
edges (e1, . . . , e3ℓ/2+1) so that the i-th and the (i + 1)-th graph sequence in G′ are event-level
edge-adjacent on ei. Similarly, such sequence and edges (e′

1, . . . , e′
3ℓ/2+1) exists for T(G2, G1).

Recall that user-level edge-adjacency allows to modify a graph sequence by updating an
arbitrary number of graphs in the sequence using the same edge e, inserting e into some
graphs that do not contain e and removing it from some of the graphs that contain e. Also
recall that Gb consists of many repetitions of T(G1, G2). Thus one user-level edge-adjacency
operation using the edge e1 allows to modify all occurrences of T(G1, G2) to reflect the
update of edge e1. Afterwards a second user-level edge-adjacency operation using e2 modifies
the resulting sequence etc. After 3ℓ/2+1 user-level edge-adjacency operations all occurrences
of T(G1, G2) have been transformed into sequences that alternate G1 and G1 ⊕ u. The same
can be done for the repetitions of T(G2, G1). This shows that at most 3(ℓ + 1) user-level
edge-adjacency operations suffice to transform Gb into G′.
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Recall that we assumed the existence of an ϵ-differentially private graph algorithm A on
user-level that, with probability at least 1−δ, computes f with error less than s/2. After each
update A has to output f , i.e., the sequence of outputs has the same length as the sequence
of updates. Let Ob be the set of output sequences of A with additive error at most s/2 when
processing Gb with G1 as initial graph. Now we consider the family of output sets Ob for all
b ∈ B. For any two b, b′ ∈ B with b ̸= b′ consider the value of f applied to the two graph
sequences Gb and Gb′ and recall that there is at least one index in these two graph sequences
where the f -value applied to the two graphs at this index differs by at least s. Thus, the event
that A gives an answer with additive error less than s/2 on Gb (i.e., returns a sequence from
Ob) and the event hat A gives an answer with additive error less than s/2 on Gb′ (i.e., returns
a sequence from Ob′) are pairwise disjoint. However, for any b ∈ B by ϵ-differential privacy,
the probability that A outputs an sequence from Ob when run on G′, i.e. Pr[A(G′) ∈ Ob],
is at least e−4ϵℓ · Pr[A(Gb) ∈ Ob] ≥ e−4ϵℓ(1− δ). Since T > log(e4ϵℓ/(1− δ)), we have that
|B| = 2T > e4ϵℓ/(1−δ); it follows that Pr[A(G′) ∈ ∪b∈BOb] =

∑
b∈B e−4ϵℓ Pr[A(Gb) ∈ Ob] > 1,

which is a contradiction. ◀

▶ Lemma 46. Let n > 0 and let f be a graph function with spread (s, ℓ) that spares an
edge e on G1, G2 according to Definition 43. Let u be the update that inserts e, and let
G′ := (G1, G1 ⊕ u, G1, G1 ⊕ u, . . . , ) of length ℓ + 1 := |τ(G1, G2)|+ 1. Then, there exists a
sequence of graph sequences (G0 := T(G1, G2), . . . ,G3ℓ/2+1 := G′) and a sequence of edges
(e0, e1, . . . , e3ℓ/2+1) so that, for any 0 ≤ i ≤ 3ℓ/2, Gi and Gi+1 are event-level edge-adjacent
on ei.

Proof. For i ∈ {0} ∪ [2ℓ], we construct sequences Gi = (Gi,1, . . . , Gi,2ℓ+1). Define G0 :=
T(G1, G2). We transform G0 by alternatingly applying u (i.e. we insert e) and u−1 (i.e. we
delete e) to its graphs (in addition to the existing updates). For i ∈ {1, . . . , ℓ/2}, we define

Gi := (Gi−1,1, . . . , Gi−1,2i−1, Gi−1,2i ⊕ ui, Gi−1,2i+1 ⊕ u−1
i , Gi−1,2i+2, . . . , Gi−1,ℓ).

For example, for i = 2, G1 is the graph sequence where u and u−1 are applied for the graphs
G0,2 to G0,4. Let (u1, . . .) := τ(G1, G2). For i ∈ {ℓ/2 + 1, . . . , 3ℓ/2}, we define

Gi := (Gi−1,1, . . . , Gi−1,i, Gi−1,i+1 ⊕ u′
i
−1

, Gi−1,i+2 ⊕ u′
i
−1

, . . . , Gi−1,ℓ ⊕ u′
i
−1).

In other words, in Gi, the first i updates of T(G1, G2) are not present compared to Gℓ/2.
Since T(G1, G2) is a shortest sequence that transforms G1 into G2, an edge is either inserted
or deleted at most once. Thus, reverting u′

i by executing ⊕u′
i
−1 for all graphs Gi−1,j with

j ≥ i + 1 cannot invalidate the graph sequence. The claim follows because u′
i only affects a

single edge. ◀

▶ Fact 47. Minimum spanning tree has spread (Θ(nW ), Θ(n)). Minimum cut has spread
(Θ(nW ), Θ(n2)). Maximal matching has spread (Θ(n), Θ(n)). Maximum cardinality matching
has spread (Θ(n), Θ(n)). Maximum weight matching has spread (Θ(nW ), Θ(n)).

References
1 Raman Arora and Jalaj Upadhyay. On differentially private graph sparsification and applica-

tions. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32, pages 13399–13410.
Curran Associates, Inc., 2019.



H. Fichtenberger and M. Henzinger and W. Ost 35

2 Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy, and consistency too: A holistic solution to contingency table
release. In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’07, pages 273–282, New York, NY, USA, June 2007.
Association for Computing Machinery. doi:10.1145/1265530.1265569.

3 Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. Differentially private data
analysis of social networks via restricted sensitivity. In Proceedings of the 4th Conference on
Innovations in Theoretical Computer Science, ITCS ’13, pages 87–96, New York, NY, USA,
January 2013. Association for Computing Machinery. doi:10.1145/2422436.2422449.

4 BlumAvrim, LigettKatrina, and RothAaron. A learning theory approach to noninteractive
database privacy. Journal of the ACM (JACM), May 2013. doi:10.1145/2450142.2450148.

5 T. H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. Differentially Private Continual
Monitoring of Heavy Hitters from Distributed Streams. In Simone Fischer-Hübner and Matthew
Wright, editors, Privacy Enhancing Technologies, Lecture Notes in Computer Science, pages
140–159, Berlin, Heidelberg, 2012. Springer. doi:10.1007/978-3-642-31680-7_8.

6 T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
ACM Trans. Inf. Syst. Secur., 14(3), November 2011. doi:10.1145/2043621.2043626.

7 Shixi Chen and Shuigeng Zhou. Recursive mechanism: Towards node differential privacy
and unrestricted joins. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, pages 653–664, New York, NY, USA, June 2013.
Association for Computing Machinery. doi:10.1145/2463676.2465304.

8 Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing Graph Degree Distribution with Node
Differential Privacy. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD ’16, pages 123–138, New York, NY, USA, June 2016. Association for
Computing Machinery. doi:10.1145/2882903.2926745.

9 Cynthia Dwork. Differential Privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and
Ingo Wegener, editors, Automata, Languages and Programming, Lecture Notes in Computer
Science, pages 1–12, Berlin, Heidelberg, 2006. Springer. doi:10.1007/11787006_1.

10 Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09, pages
371–380, New York, NY, USA, May 2009. Association for Computing Machinery. doi:
10.1145/1536414.1536466.

11 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to
Sensitivity in Private Data Analysis. In Shai Halevi and Tal Rabin, editors, Theory of
Cryptography, Lecture Notes in Computer Science, pages 265–284, Berlin, Heidelberg, 2006.
Springer. doi:10.1007/11681878_14.

12 Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under
continual observation. In Proceedings of the Forty-Second ACM Symposium on Theory of
Computing, STOC ’10, page 715–724, New York, NY, USA, 2010. Association for Computing
Machinery. doi:10.1145/1806689.1806787.

13 Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan. On the
complexity of differentially private data release: Efficient algorithms and hardness results.
In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC
’09, pages 381–390, New York, NY, USA, May 2009. Association for Computing Machinery.
doi:10.1145/1536414.1536467.

14 Marek Eliás, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially Pri-
vate Release of Synthetic Graphs. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms (SODA), Proceedings, pages 560–578. Society for Industrial and Applied
Mathematics, December 2019. doi:10.1137/1.9781611975994.34.

15 M. A. Erdogdu and N. Fawaz. Privacy-utility trade-off under continual observation. In 2015
IEEE International Symposium on Information Theory (ISIT), pages 1801–1805, June 2015.
doi:10.1109/ISIT.2015.7282766.

http://dx.doi.org/10.1145/1265530.1265569
http://dx.doi.org/10.1145/2422436.2422449
http://dx.doi.org/10.1145/2450142.2450148
http://dx.doi.org/10.1007/978-3-642-31680-7_8
http://dx.doi.org/10.1145/2043621.2043626
http://dx.doi.org/10.1145/2463676.2465304
http://dx.doi.org/10.1145/2882903.2926745
http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1145/1536414.1536466
http://dx.doi.org/10.1145/1536414.1536466
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1145/1806689.1806787
http://dx.doi.org/10.1145/1536414.1536467
http://dx.doi.org/10.1137/1.9781611975994.34
http://dx.doi.org/10.1109/ISIT.2015.7282766


36 Differentially Private Algorithms for Graphs Under Continual Observation

16 Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Differen-
tially Private Combinatorial Optimization. In Proceedings of the 2010 Annual ACM-SIAM
Symposium on Discrete Algorithms, Proceedings, pages 1106–1125. Society for Industrial and
Applied Mathematics, January 2010. doi:10.1137/1.9781611973075.90.

17 Moritz Hardt and Guy N. Rothblum. A Multiplicative Weights Mechanism for Privacy-
Preserving Data Analysis. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pages 61–70, October 2010. doi:10.1109/FOCS.2010.85.

18 M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate Estimation of the Degree Distribution
of Private Networks. In 2009 Ninth IEEE International Conference on Data Mining, pages
169–178, December 2009. doi:10.1109/ICDM.2009.11.

19 Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Private analysis
of graph structure. Proceedings of the VLDB Endowment, 4(11):1146–1157, August 2011.
doi:10.14778/3402707.3402749.

20 S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What Can
We Learn Privately? In 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, pages 531–540, October 2008. doi:10.1109/FOCS.2008.27.

21 Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Ana-
lyzing Graphs with Node Differential Privacy. In Amit Sahai, editor, Theory of Cryptogra-
phy, Lecture Notes in Computer Science, pages 457–476, Berlin, Heidelberg, 2013. Springer.
doi:10.1007/978-3-642-36594-2_26.

22 Georgios Kellaris, Stavros Papadopoulos, Xiaokui Xiao, and Dimitris Papadias. Differentially
private event sequences over infinite streams. Proceedings of the VLDB Endowment, 7(12):1155–
1166, August 2014. doi:10.14778/2732977.2732989.

23 Wentian Lu and Gerome Miklau. Exponential random graph estimation under differential
privacy. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pages 921–930, New York, NY, USA, August 2014.
Association for Computing Machinery. doi:10.1145/2623330.2623683.

24 Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector technique for differential
privacy. Proceedings of the VLDB Endowment, 10(6), 2017.

25 F. McSherry and K. Talwar. Mechanism Design via Differential Privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), pages 94–103, October 2007.
doi:10.1109/FOCS.2007.66.

26 Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling
in private data analysis. In Proceedings of the Thirty-Ninth Annual ACM Symposium on
Theory of Computing, STOC ’07, pages 75–84, New York, NY, USA, June 2007. Association
for Computing Machinery. doi:10.1145/1250790.1250803.

27 J. Le Ny and G. J. Pappas. Differentially Private Filtering. IEEE Transactions on Automatic
Control, 59(2):341–354, February 2014. doi:10.1109/TAC.2013.2283096.

28 Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism. In
Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC ’10, pages
765–774, New York, NY, USA, June 2010. Association for Computing Machinery. doi:
10.1145/1806689.1806794.

29 Shuang Song, Susan Little, Sanjay Mehta, Staal Vinterbo, and Kamalika Chaudhuri. Differen-
tially private continual release of graph statistics, 2018. arXiv:1809.02575.

30 Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren. Real-Time and Spatio-Temporal
Crowd-Sourced Social Network Data Publishing with Differential Privacy. IEEE Transactions
on Dependable and Secure Computing, 15(4):591–606, July 2018. doi:10.1109/TDSC.2016.
2599873.

31 Yue Wang, Xintao Wu, and Leting Wu. Differential Privacy Preserving Spectral Graph Analysis.
In Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi Motoda, and Guandong Xu, editors,
Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, pages
329–340, Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-37456-2_28.

http://dx.doi.org/10.1137/1.9781611973075.90
http://dx.doi.org/10.1109/FOCS.2010.85
http://dx.doi.org/10.1109/ICDM.2009.11
http://dx.doi.org/10.14778/3402707.3402749
http://dx.doi.org/10.1109/FOCS.2008.27
http://dx.doi.org/10.1007/978-3-642-36594-2_26
http://dx.doi.org/10.14778/2732977.2732989
http://dx.doi.org/10.1145/2623330.2623683
http://dx.doi.org/10.1109/FOCS.2007.66
http://dx.doi.org/10.1145/1250790.1250803
http://dx.doi.org/10.1109/TAC.2013.2283096
http://dx.doi.org/10.1145/1806689.1806794
http://dx.doi.org/10.1145/1806689.1806794
http://arxiv.org/abs/1809.02575
http://dx.doi.org/10.1109/TDSC.2016.2599873
http://dx.doi.org/10.1109/TDSC.2016.2599873
http://dx.doi.org/10.1007/978-3-642-37456-2_28


H. Fichtenberger and M. Henzinger and W. Ost 37

32 Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui Xiao.
Private Release of Graph Statistics using Ladder Functions. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages
731–745, New York, NY, USA, May 2015. Association for Computing Machinery. doi:
10.1145/2723372.2737785.

33 Sen Zhang, Weiwei Ni, and Nan Fu. Differentially Private Graph Publishing with Degree
Distribution Preservation. Computers & Security, page 102285, April 2021. doi:10.1016/j.
cose.2021.102285.

http://dx.doi.org/10.1145/2723372.2737785
http://dx.doi.org/10.1145/2723372.2737785
http://dx.doi.org/10.1016/j.cose.2021.102285
http://dx.doi.org/10.1016/j.cose.2021.102285

	1 Introduction
	2 Preliminaries
	2.1 Graphs and Graph Sequences
	2.2 Differential Privacy
	2.3 Counting Mechanisms
	2.4 Sparse Vector Technique

	3 Mechanisms Based on Continuous Global Sensitivity
	3.1 Non-Binary Counting
	3.2 Graph Functions via Counting Mechanisms
	3.3 Bounds on Continuous Global Sensitivity

	4 Upper Bound for Monotone Functions
	5 Lower Bounds for Event-Level Privacy
	5.1 Minimum Spanning Tree
	5.2 Weighted Minimum Cut
	5.3 Maximum Weighted Matching
	5.4 Subgraph Counting, High-Degree Nodes and Degree Histogram

	6 Lower Bound for User-Level Privacy

