
Brief Announcement: Toward Self-Adjusting Networks
for the Matching Model

Evgeniy Feder

efeder@itmo.ru

ITMO University

St. Petersburg, Russia

Ichha Rathod

mt1180755@iitd.ac.in

Indian Institute of Technology Delhi

New Delhi, India

Punit Shyamsukha

punit99iitd@gmail.com

Indian Institute of Technology Delhi

New Delhi, India

Robert Sama

robert.sama@univie.ac.at

Faculty of Computer Science

University of Vienna

Vienna, Austria

Vitaly Aksenov

aksenov@itmo.ru

ITMO University

St. Petersburg, Russia

Iosif Salem

iosif.salem@univie.ac.at

Faculty of Computer Science

University of Vienna

Vienna, Austria

Stefan Schmid

stefan_schmid@univie.ac.at

Faculty of Computer Science

University of Vienna

Vienna, Austria

ABSTRACT

Self-adjusting networks (SANs) utilize novel optical switching tech-

nologies to support dynamic physical network topology reconfigu-

ration. SANs rely on online algorithms to exploit this topological

flexibility to reduce the cost of serving network traffic, leveraging

locality in the demand. Models in prior work assign uniform cost

for traversing and adjusting a single link (e.g. both cost 1). In this

paper, we initiate the study of online algorithms for SANs in a

more realistic cost model, the Matching Model (MM), in which the

network topology is given by the union of a constant number of

bipartite matchings (realized by optical switches), and in which

changing an entire matching incurs a fixed cost 𝛼 . The cost of rout-

ing is given by the number of hops packets need to traverse. We

present online SAN algorithms in the MM with cost 𝑂 (
√
𝛼) times

the cost of reference algorithms in the uniform cost model.

CCS CONCEPTS

• Theory of computation → Online algorithms; • Networks

→ Network algorithms.

KEYWORDS

self-adjusting networks; matching model; online algorithms

ACM Reference Format:

Evgeniy Feder, Ichha Rathod, Punit Shyamsukha, Robert Sama, Vitaly Ak-

senov, Iosif Salem, and Stefan Schmid. 2021. Brief Announcement: Toward

Self-Adjusting Networks for the Matching Model. In Proceedings of the

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’21, July 6–8, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8070-6/21/07.

https://doi.org/10.1145/3409964.3461824

33rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA

’21), July 6–8, 2021, Virtual Event, USA. ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3409964.3461824

ACKNOWLEDGMENTS

This project has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme (864228 - AdjustNet). Vitaly Aksenov

is supported by JetBrains Research.

1 INTRODUCTION

In this work, we study Self-Adjusting Networks (SANs) from an

algorithmic point of view. SAN algorithms dictate how the network

topology should change when there are shifts in the traffic demand,

and especially, in the set of large “elephant flows” [1, 5]. In particu-

lar, in this paper we consider a model where the network needs to

serve routing requests which arrive over time, in an online manner.

Existing SAN algorithms are based on a uniform cost model where

both traversing and changing a link have unit cost [4, 8]. This is a

useful basic model that enabled the first algorithmic results. In prac-

tice, however, switching hardware usually allows to reconfigure the

topology on a per-matching granularity, and changing a matching

in a demand-aware manner is more costly than traversing a link

(e.g., in terms of time) [2, 5].

The Matching Model (MM) proposed in [2] addresses this dis-

crepancy, by assuming that traversing a single link has unit cost and

changing the whole topology 𝐺 to a new one 𝐺 ′
comes at a fixed

cost. Any topology can be defined as a union of matchings over the

set of nodes and the MM assumes that rearranging the edges (links)

of a single matching comes at a fixed cost (e.g., time), say 𝛼 . Thus

the total cost for adjusting the whole topology to a new one is the

product of 𝛼 and the number of matchings needed to construct the

topology. In this paper we focus on scalable topologies where the

https://doi.org/10.1145/3409964.3461824
https://doi.org/10.1145/3409964.3461824

maximum degree Δ is a constant and, thus, the topology reconfigu-

ration cost in the MM is O(𝛼), as the number of matchings needed

is constant as well. This model better fits systems and hardware

properties and early work has shown its relevance [6]. However, so

far, we lack algorithmic and analytical techniques for this model.

This paper presents a first analysis of the Matching Model and

describes efficient online algorithms for this model. We present

our results for the MM in three steps; we start with line topolo-

gies, then we move to tree topologies, and we finally reach our

main goal—bounded-degree networks. Our main contribution is a

method for designing efficient online SAN algorithms in the MM,

when compared to reference SANs in the uniform cost model. We

cache a constant amount of topology adjustments and then lazily

apply them by switching to a topology that is a result of all cached

adjustments when it is most beneficial to pay the cost 𝛼 of topology

reconfiguration. Ourmethod of lazy topology reconfiguration trans-

forms a self-adjusting algorithm from the uniform-cost model to

one in the MM.We show that in the three bounded-degree topology

families we studied, the SANs in the MM cost O(
√
𝛼) times the algo-

rithm cost in the uniform cost model, which is a clear improvement

from the naive 𝛼 factor that we mentioned earlier.

2 LAZY BOUNDED-DEGREE SANS

We start with presenting SANs and their optimality properties,

before we present our SAN algorithms for the Matching Model.

Self-Adjusting Networks (SANs). Let 𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑚) =
((𝑢1, 𝑣1), (𝑢2, 𝑣2), . . . , (𝑢𝑚, 𝑣𝑚)), where 𝑢𝑖 , 𝑣𝑖 ∈ 𝑉 , be a sequence

of routing requests to forward a packet from node 𝑢𝑖 to 𝑣𝑖 over a

network topology𝐺 = (𝑉 , 𝐸). If we assume that our topology has

a distinguished node 𝑆 , e.g., head for Lists and root for Trees, then

instead of routing requests we perform search requests from node

𝑆 when 𝑢𝑖 = 𝑆 for all 𝑖 and the notation of these requests will be

𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑚), where𝜎𝑖 ∈ 𝑉 . After serving request𝜎𝑡 in𝐺𝑡−1,
a SAN algorithm can change𝐺𝑡−1 to𝐺𝑡 . For a request 𝜎𝑡 , we denote

by 𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 (𝐺𝑡−1, 𝜎𝑡) and 𝑎𝑑 𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 (𝐺𝑡−1,𝐺𝑡) the rout-
ing (in terms of packet hops) and adjustment (in terms of adjusting

𝐺𝑡−1 to 𝐺𝑡) costs, respectively.

In the Standard Model (SM) the cost of traversing or adjust-

ing a single edge (link) is equal to 1. Thus, 𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 (𝐺𝑖−1, 𝜎𝑖)
is the length of the route in 𝐺𝑖−1 and 𝑎𝑑 𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 (𝐺𝑖−1,𝐺𝑖)
is the number of edges that change between 𝐺𝑖−1 and 𝐺𝑖 (sin-

gle edge addition or deletion costs 1). In the MM, the routing

cost is defined as in the SM and the adjustment cost per request,

𝑎𝑑 𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 (𝐺𝑖−1,𝐺𝑖), is 𝑐𝜎𝑖 · 𝛼 , where 𝑐𝜎𝑖 is the number of

matchings that the SAN algorithm changed between 𝐺𝑖−1 and 𝐺𝑖

on 𝑖-th request and 𝛼 is the cost of changing a matching.

Optimality of SANalgorithms. Two desirable optimality prop-

erties of online SAN algorithms are static and dynamic optimal-

ity [3]. Let sumCost(static,𝐺, 𝜎) be the cost of the algorithm that

computes a fixed network topology that minimizes the cost of serv-

ing a given sequence of communication requests, when no adjust-

ments are allowed. A SAN algorithm A is called statically optimal

if for every sequence of requests 𝜎 and for every starting config-

uration 𝐺0, sumCost(A,𝐺0, 𝜎) = O(sumCost(static,𝐺𝑠𝑡𝑎𝑡𝑖𝑐 , 𝜎)),
where 𝐺𝑠𝑡𝑎𝑡𝑖𝑐 is the offline (optimal) static topology. Similarly,

a SAN algorithm A is called dynamically optimal if for every

sequence of requests 𝜎 and for every starting configuration 𝐺0,

sumCost(A,𝐺0, 𝜎) = O(sumCost(𝑂𝑃𝑇,𝐺0, 𝜎)), where 𝑂𝑃𝑇 is op-

timal online algorithm with perfect knowledge over 𝜎 .

2.1 Lazy Line Networks

We first expose our lazy topology adjustment method in line net-

work topologies. We start with single-source communication se-

quences (search requests). In the Standard Model (SM) we are

provided with a dynamically optimal Move-To-Front (MTF) algo-

rithm [9]. We note that in the Matching Model (MM) the “move-to-

front” operation costs 𝛼 . Thus, we amortize this cost increase by not

adjusting the network at each search request, but when a threshold

of routing cost has been reached. The following straightforward

optimization of the MTF algorithm for the MM gives an improved

theoretical bound:

• Maintain a counter for each node, being zero at initialization.

• On each request for a node, we increase the node’s counter

by one.

• If the counter becomes 𝛼 , we perform a move-to-front oper-

ation on this node (thus, the network adjustment cost will

be amortized over 𝛼 operations).

We refer to this algorithm as “Lazy Move-To-Front”. It is not sur-

prising that “Lazy MTF” is statically optimal in the MM: “Lazy MTF”

is exactly the deterministic version of the randomized COUNTER

algorithm in 𝑃𝑑 from [7, Section 3.3] which is shown to be constant

competitive (hence also statically optimal).

Theorem 1. The “Lazy Move-To-Front” algorithm is statically opti-

mal in the Matching Model if |𝜎 | ≥ 𝛼 · 𝑛 (𝑛+1)
2

.

2.2 Lazy Tree Networks

We now turn to apply our lazy topology reconfiguration method

in tree networks. Consider a self-adjusting algorithm 𝐴𝐿𝐺 over a

graph (which can be a search data structure or a network topol-

ogy) in the SM, which we want to adapt in the MM. We will

denote the adapted version of 𝐴𝐿𝐺 in MM by 𝐿𝑎𝑧𝑦𝐴𝐿𝐺 . If we

simply run 𝐴𝐿𝐺 in the MM (𝐿𝑎𝑧𝑦𝐴𝐿𝐺 = 𝐴𝐿𝐺), then we get that

𝑐𝑜𝑠𝑡𝑀𝑀 (𝐿𝑎𝑧𝑦𝐴𝐿𝐺,𝐺0, 𝜎) = 𝛼 ·𝑐𝑜𝑠𝑡𝑆𝑀 (𝐴𝐿𝐺,𝐺0, 𝜎), where𝐺0 is the

initial graph, 𝜎 is a sequence of (search or routing) requests, and

𝑐𝑜𝑠𝑡𝑋 (𝐴,𝐺0, 𝜎) is the cost of algorithm 𝐴 in model 𝑋 ∈ {𝑆𝑀,𝑀𝑀}
with initial topology 𝐺0 and sequence 𝜎 . To improve the factor of

𝛼 , we simply perform adjustments less often, by introducing our

lazy topology reconfiguration method.

We design 𝐿𝑎𝑧𝑦𝐴𝐿𝐺 , given𝐴𝐿𝐺 , as follows. Let us divide the list

of requests 𝜎 into epochs. During one epoch the graph maintained

by 𝐿𝑎𝑧𝑦𝐴𝐿𝐺 remains unmodified and the graph maintained by

ALG adjusts exactly as in the SM. An epoch continues until the

total cost of operations in 𝐿𝑎𝑧𝑦𝐴𝐿𝐺 exceeds 𝛼 . After that 𝐿𝑎𝑧𝑦𝐴𝐿𝐺

synchronizes (copies) its graph with the graph maintained by 𝐴𝐿𝐺 ,

resets the epoch cost counter to zero, and moves to a new epoch.

In SANs, 𝐿𝑎𝑧𝑦𝐴𝐿𝐺 adjusts the physical network topology, while

𝐴𝐿𝐺 is a local computation running at the network coordinator,

emulating the network. In our context, we are interested in the cost

of routing and network reconfiguration, thus local computations

as the ones done by the coordinator running ALG are ignored in

the cost calculation.

Weaim to calculate the ratio
sumCost𝑀𝑀 (𝐿𝑎𝑧𝑦𝐴𝐿𝐺,𝐺0,𝜎)

sumCost𝑀𝑀 (𝑠𝑡𝑎𝑡𝑂𝑃𝑇,𝐺𝑠𝑡𝑎𝑡𝑖𝑐 ,𝜎) , where
𝑠𝑡𝑎𝑡𝑂𝑃𝑇 is the statically optimal algorithm, i.e., the algorithm

that has perfect knowledge of 𝜎 , but can only compute a static

graph and perform no adjustments (the cost notation does not

require 𝐺0 in this case). This ratio measures how close 𝐿𝑎𝑧𝑦𝐴𝐿𝐺

is to static optimality; in case the ratio is a constant 𝐿𝑎𝑧𝑦𝐴𝐿𝐺 is

statically optimal. Let us multiply and divide this cost ratio by

sumCost𝑆𝑀 (𝐴𝐿𝐺,𝐺0, 𝜎). By that we obtain:

sumCost𝑀𝑀 (𝐿𝑎𝑧𝑦𝐴𝐿𝐺,𝐺0, 𝜎)
sumCost𝑆𝑀 (𝐴𝐿𝐺,𝐺0, 𝜎)

· sumCost𝑆𝑀 (𝐴𝐿𝐺,𝐺0, 𝜎)
sumCost𝑀𝑀 (𝑠𝑡𝑎𝑡𝑂𝑃𝑇,𝐺𝑠𝑡𝑎𝑡𝑖𝑐 , 𝜎)

We know that sumCost𝑀𝑀 (𝑠𝑡𝑎𝑡𝑂𝑃𝑇 , 𝜎) = sumCost𝑆𝑀 (𝑠𝑡𝑎𝑡𝑂𝑃𝑇 ,
𝐺𝑠𝑡𝑎𝑡𝑖𝑐 , 𝜎), since 𝑠𝑡𝑎𝑡𝑂𝑃𝑇 outputs a fixed graph. Also, if 𝐴𝐿𝐺 is

statically optimal in the SM, then
sumCost𝑆𝑀 (𝐴𝐿𝐺,𝐺0,𝜎)

sumCost𝑆𝑀 (𝑠𝑡𝑎𝑡𝑂𝑃𝑇,𝐺𝑠𝑡𝑎𝑡𝑖𝑐 ,𝜎) is

equal to some value 𝑐𝐴𝐿𝐺 . Thus,
sumCost𝑀𝑀 (𝐿𝑎𝑧𝑦𝐴𝐿𝐺,𝐺0,𝜎)

sumCost𝑆𝑀 (𝐴𝐿𝐺,𝐺0,𝜎) · 𝑐𝐴𝐿𝐺
is the resulting the cost ratio. As splay trees are statically optimal

[10], 𝑐𝑆𝑝𝑙𝑎𝑦𝑇𝑟𝑒𝑒 = O(1), but we are not aware of 𝑐SplayNet [8].

Let us split now the numerator and the denominator of the ratio

(without 𝑐𝐴𝐿𝐺) into epochs. Let 𝑖 be the index of an epoch and𝑚 be

the number of epochs. Suppose that 𝐺𝑖 is the graph right after the

𝑖-th epoch and 𝜎 (𝑖)
be the requests performed during 𝑖-th epoch. By

using the inequality
𝑎1+𝑎2+...+𝑎𝑚
𝑏1+𝑏2+...+𝑏𝑚 ≤ 𝑐 ·𝑏1+𝑐 ·𝑏2+...+𝑐 ·𝑏𝑚

𝑏1+𝑏2+...+𝑏𝑚 = 𝑐 , where

𝑐 = max

𝑖=1...𝑚

𝑎𝑖
𝑏𝑖
, we get that:

sumCost𝑀𝑀 (𝐿𝑎𝑧𝑦𝐴𝐿𝐺,𝐺0,𝜎)
sumCost𝑆𝑀 (𝐴𝐿𝐺,𝐺0,𝜎) =

𝑚∑
𝑖=1

sumCost𝑀𝑀 (𝐿𝑎𝑧𝑦𝐴𝐿𝐺,𝐺𝑖−1,𝜎 (𝑖))
𝑚∑
𝑖=1

sumCost𝑆𝑀 (𝐴𝐿𝐺,𝐺𝑖−1,𝜎 (𝑖))
≤

max

𝑖=1...𝑚

sumCost𝑀𝑀 (𝐿𝑎𝑧𝑦𝐴𝐿𝐺,𝐺𝑖−1,𝜎 (𝑖))
sumCost𝑆𝑀 (𝐴𝐿𝐺,𝐺𝑖−1,𝜎 (𝑖))

Thus, we focus on finding a lower bound for sumCost𝑆𝑀 (𝐴𝐿𝐺 ,
𝐺𝑖−1, 𝜎 (𝑖)) and an upper bound for sumCost𝑀𝑀 (𝐿𝑎𝑧𝑦𝐴𝐿𝐺,𝐺𝑖−1,
𝜎 (𝑖)) for each epoch. In the following, we consider and bound only

the ratios of the epochs, not the whole execution.

2.2.1 Search requests. We start with LazySplayTree, which is the

outcome of applying our lazy topology reconfiguration method

to the splay tree algorithm. LazySplayTree achieves a 𝑂 (min(
√
𝛼 ,

log𝑛))-ratio with respect to splay tree in the SM. If 𝛼 is regarded

as a constant, then LazySplayTree is statically optimal in the MM

and our analysis is tight.

Theorem 2. LazySplayTree is a 𝑂 (min(
√
𝛼, log𝑛))-statically op-

timal algorithm in the MM.

Theorem 3. The complexity bound of LazySplayTree is tight: a lazy

algorithm can achieve at most 𝑂 (min(
√
𝛼, log𝑛))-static optimality.

2.2.2 Routing requests. We show how to extend our methods to

the SplayNet algorithm [8] and obtain a SAN for the MM. The key

difference in our analysis is that we consider the distance of the

route between two nodes, instead of the depth from the root, as we

did in the previous section.

Theorem 4. For any starting tree 𝐺0 and any list of requests 𝜎 ,

it holds that sumCost(Lazy SplayNet, 𝐺0, 𝜎) = 𝑂 (min(
√
𝛼 , log𝑛) ·

sumCost(SplayNet, 𝐺0, 𝜎)).

Theorem 5. LazySplayNet cannot archive better complexity than

𝑂 (min(
√
𝛼, log𝑛))-static optimality.

2.3 Lazy ReNet

We now study LazyReNet in the Matching Model (MM), which is

the product of applying lazy topology adjustment to ReNet [4], As

in Section 2.2, we show that the LazyReNet complexity is asymp-

totically bounded by

√
𝛼 times the complexity of ReNet.

A ReNet is a union of ego, i.e., individual, views of each node.

The ego view of a node is a star centered at a node and connected

to recently communicated nodes, if they are less than the degree

bound Δ, or a splay tree including these nodes, otherwise. A ReNet

is a SAN with node degree bounded by Δ that we can define as𝐺𝑡 =

(𝑉 , 𝐸𝑐𝑜𝑜𝑟𝑑 ∪ 𝐸𝑡). The subgraph (𝑉 , 𝐸𝑐𝑜𝑜𝑟𝑑) is used for contacting

the network coordinator𝐶 and is static throughout the algorithm’s

execution (and has diameter 𝑐). The subgraph (𝑉 , 𝐸𝑡) is the dynamic

part of the network and is subject to change at any time 𝑡 .

Initially, 𝐸0 is empty. Upon a request 𝜎𝑡 = (𝑠𝑡 , 𝑑𝑡) if a route does
not exist, 𝑠𝑡 asks 𝐶 to add a route. If both 𝑠𝑡 and 𝑑𝑡 are small nodes,

i.e., if they have less than Δ edges, then𝐶 adds a direct edge between

𝑠𝑡 and 𝑑𝑡 . A node 𝑢 becomes large when its degree becomes equal

to Δ. In that instant, the coordinator deletes all direct links of 𝑢,

creates a splay-tree (ego-tree) including all of 𝑢’s former neighbors,

and connects𝑢 to the splay-tree root. Communication from𝑢 to any

node 𝑣 in the ego-tree of 𝑢 is done by following the route dictated

by binary search and it is followed by splaying 𝑣 to the root of the

ego-tree. If a small node 𝑣 is a part of an ego-tree, e.g., of 𝑢, when it

becomes large, we pick a small helper node, add it in both ego-trees

of 𝑢 and 𝑣 and use it as a relay when 𝑢 and 𝑣 communicate. If 𝐸𝑡
becomes full (e.g. when there are no small nodes to pick or when

|𝐸𝑡 | reaches a threshold), the coordinator deletes all nodes in 𝐸𝑡 .

Theorem 6. For every initial graph𝐺0 and communication sequence

𝜎 , sumCost(LazyReNet,𝐺0, 𝜎) = 𝑂 (
√
𝛼 · sumCost(ReNet, 𝐺0, 𝜎)).

REFERENCES

[1] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the com-

plexity of traffic traces and implications. Proceedings of the ACM on Measurement

and Analysis of Computing Systems 4, 1 (2020), 1–29.

[2] Chen Avin, Chen Griner, Iosif Salem, and Stefan Schmid. 2020. An Online

Matching Model for Self-Adjusting ToR-to-ToR Networks. CoRR abs/2006.11148

(2020). arXiv:2006.11148 https://arxiv.org/abs/2006.11148

[3] Chen Avin and Stefan Schmid. 2019. Toward demand-aware networking: A

theory for self-adjusting networks. ACM SIGCOMM Computer Communication

Review 48, 5 (2019), 31–40.

[4] Chen Avin and Stefan Schmid. 2021. ReNets: Statically-Optimal Demand-Aware

Networks. In 2nd Symposium on Algorithmic Principles of Computer Systems,

APOCS 2020, Virtual Conference, January 13, 2021, Michael Schapira (Ed.). SIAM,

25–39. https://doi.org/10.1137/1.9781611976489.3

[5] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-

han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,

Madeleine Glick, and Daniel Kilper. 2016. Projector: Agile reconfigurable data

center interconnect. In Proceedings of the 2016 ACM SIGCOMM Conference. 216–

229.

[6] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen,

Alex C. Snoeren, and George Porter. 2017. RotorNet: A Scalable, Low-complexity,

Optical Datacenter Network. In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication, SIGCOMM 2017, Los Angeles, CA, USA,

August 21-25, 2017. ACM, 267–280. https://doi.org/10.1145/3098822.3098838

[7] Nick Reingold, Jeffery Westbrook, and Daniel D Sleator. 1994. Randomized

competitive algorithms for the list update problem. Algorithmica 11, 1 (1994),

15–32.

[8] Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard

Haeupler, and Zvi Lotker. 2015. Splaynet: Towards locally self-adjusting networks.

IEEE/ACM Transactions on Networking 24, 3 (2015), 1421–1433.

[9] Daniel D Sleator and Robert E Tarjan. 1985. Amortized efficiency of list update

and paging rules. Commun. ACM 28, 2 (1985), 202–208.

[10] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-adjusting binary

search trees. Journal of the ACM (JACM) 32, 3 (1985), 652–686.

http://arxiv.org/abs/2006.11148
https://arxiv.org/abs/2006.11148
https://doi.org/10.1137/1.9781611976489.3
https://doi.org/10.1145/3098822.3098838

	Abstract
	Acknowledgments
	1 Introduction
	2 Lazy Bounded-Degree SANs
	2.1 Lazy Line Networks
	2.2 Lazy Tree Networks
	2.3 Lazy ReNet

	References

