
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

1

A Survey of Fast-Recovery Mechanisms
in Packet-Switched Networks

Marco Chiesa1 Andrzej Kamisiński2,∗ Jacek Rak3 Gábor Rétvári4 Stefan Schmid5
1 KTH Royal Institute of Technology, Sweden 2 AGH University of Science and Technology, Kraków, Poland

3 Gdańsk University of Technology, Poland 4 MTA–BME Information Systems Research Group, Hungary
5 Faculty of Computer Science, University of Vienna, Austria

Abstract—In order to meet their stringent dependability re-
quirements, most modern packet-switched communication net-
works support fast-recovery mechanisms in the data plane.
While reactions to failures in the data plane can be significantly
faster compared to control plane mechanisms, implementing
fast recovery in the data plane is challenging, and has recently
received much attention in the literature. This survey presents
a systematic, tutorial-like overview of packet-based fast-recovery
mechanisms in the data plane, focusing on concepts but struc-
tured around different networking technologies, from traditional
link-layer and IP-based mechanisms, over BGP and MPLS to
emerging software-defined networks and programmable data
planes. We examine the evolution of fast-recovery standards and
mechanisms over time, and identify and discuss the fundamental
principles and algorithms underlying different mechanisms. We
then present a taxonomy of the state of the art, summarize
the main lessons learned, and propose a few concrete future
directions.

Index Terms—Fast Reroute, Network Resilience, Data Plane

I. INTRODUCTION

Packet-switched communication networks (datacenter net-
works, enterprise networks, the Internet, etc.) have become
a critical backbone of our digital society. Today, many ap-
plications, e.g., related to health, business, science, or social
networking, require always-on network connectivity and hence
critically depend on the availability and performance of the
communication infrastructure. Over the last years, several
network issues were reported that led to major Internet outages
in Asia [1], resulted in huge losses in revenues [2], affected
thousands of airline passengers [3], or even disrupted the
emergency network [4]. Many applications already suffer from
small delays: A 2017 Akamai study shows that every 100
millisecond delay in website load time can lead to a significant
drop in sales [5], and voice communication has a tolerable
delay of less than 150 ms; for games it is often less than
80 ms [6].

In order to meet their stringent dependability requirements,
communication networks need to be able to deal with failures
which are becoming more likely with increasing network
scale [7]. Today, link failures are by far the most frequent
failures in a network [8], [9], and handling failures is a fun-
damental task of any routing scheme.

This paper focuses on packet-switched networks, where
resilience to failures on the network layer can either be

∗ Corresponding author: Andrzej Kamisiński, andrzejk@agh.edu.pl

implemented in the so-called control plane or in thee so-
called the data plane. In a nutshell, the control plane relies on
global network information and is responsible for determining
the paths along which packets are sent; the data plane is
responsible for the logic of an individual switch, and in
particular, the functions related to forwarding packets/frames
from one interface to another, based on control plane logic.
This separation of concerns enables a simple and fast data
plane processing. Historically, resilience to network failures
was implemented in the control plane: ensuring connectivity
was considered the responsibility of the control plane while
the data plane was responsible for forwarding packets at line-
speed. Widely deployed routing schemes like OSPF [10] and
IS-IS [11], hence include control plane mechanisms which
leverage global message exchanges and computation to de-
termine how to recover from link failures.

However, the slow reaction times of control plane mech-
anisms is becoming increasingly unacceptable [12]–[14]. In-
deed, many studies have shown that control plane-based re-
silience can noticeably impact performance [7], also because
of the high path re-computation time [15]. In basic solutions
where the network can recover from failure only after the
control plane has computed a new set of paths and installed
the associated state in all routers, the disparity in timescales
between packet forwarding in the data plane (which can be
less than a microsecond) and control plane convergence (which
can be as high as hundreds of milliseconds) can lead to long
outages [16]. While recent centralized routing solutions based
on Software-Defined Networks (SDNs) [17]–[19], where all
routing computation is performed by a controller which then
pushes the results to the affected routers, are faster, there is
still an inevitable delay of at least the round trip time between
the routers and the controller.

Motivated by these performance issues, we currently witness
a trend to reconsider the traditional separation of concerns
between the control plane and the data plane of a network.
In particular, given that the data plane typically operates at
timescales several orders of magnitude shorter than the control
plane [16], [20], moving the responsibility for connectivity to
the data plane where failure recovery can in principle occur
at the speed of packet forwarding is attractive.

Indeed, most modern networks support different kinds of
fast-reroute (FRR) mechanisms which leverage pre-computed
alternative paths at any node towards any destination. When
a node locally detects a failed link or port, it can autonomously

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

2

per-neighbor per-tunnel per-tree

L2 IP BGP MPLS SDN/P4

shortest
path

input
port

link
reversal

waypoint
routing

arbitrary
labels

redundant
trees

covering
trees

graph exploration

Fig. 1: A simplified classification of fast-recovery concepts
and their mechanisms, as they appear on the different network
layers.

remove the corresponding entries from the forwarding table
and continue using the remaining next hops for forwarding
packets: a fast local reaction [21]. In FRR, the control plane
is hence just responsible for pre-computing the failover paths;
when a failure occurs, the data plane utilizes this additional
state to forward packets. For example, many data centers use
Equal Cost MultiPath (ECMP) [22] (a data plane algorithm
that provides automatic failover to another shortest path),
WAN networks leverage IP Fast Reroute [23]–[25] or MPLS
Fast Reroute [26] to deal with failures on the data plane, SDNs
provide FRR functionality in terms of OpenFlow fast-failover
groups [27], and BGP relies on BGP-PIC [28] for quickly
rerouting flows, to just name a few.

Implementing FRR mechanisms, however, is challenging
and requires careful configuration, as the failover behavior
needs to be pre-defined, before the actual failures are known.
Additional challenges are introduced due to the limited func-
tionality in the data plane as well as the stringent latency
requirements which do not allow for sophisticated reactions.
Configuring FRR is particularly tricky under multiple and
correlated failures [29]–[33]. FRR mechanisms in the data
plane are hence often seen as a “first line of defense” and
lack guarantees: they support a fast but perhaps suboptimal
reaction (due to the limited information about the actual
failure scenario). In a second phase, the control plane may re-
establish the routes more effectively, meeting advanced traffic
engineering criteria.

A. Our Contributions

Motivated by trend of moving resilience mechanisms in
packet-switched networks to the data plane to speed up re-
action times, this paper provides a structured survey of fast-
recovery mechanisms. Our primary goal is to familiarize the
reader with selected concepts, in a tutorial-like manner, which
together form a representative set of fast-recovery methods

in the data plane. Indeed, as we will see, different approaches
have different advantages and disadvantages, and a conceptual
understanding is hence useful when reasoning about which
technology to deploy. The topic is timely, not only because of
the increasing dependability requirements on communication
networks and the resulting need to move the responsibility for
connectivity to data plane mechanisms, but also due to the
emergence of programmable data planes which introduce new
functionality in the data plane, allowing to implement different
approaches. We believe that this provides an opportunity for
a structured survey.

To provide a systematic understanding, we structure our
discussion around the underlying technologies (e.g., Ethernet,
MPLS, IP, SDN) as well as the related use cases (e.g.,
failure scenarios, inter-domain routing, intra-domain routing,
data centers) and technological constraints. We then highlight
algorithmic aspects (e.g., complexity) and performance issues
(e.g., the total time needed to complete the recovery process).
Throughout the paper, we provide clear explanations of the
related technical terms and operation principles and use illus-
trations based on simple examples.

Specifically, we show that, in some dimensions, existing
approaches can differ significantly. For example, timing re-
quirements on recovery on Layer-2 (tens of microseconds)
are orders-of-magnitude different than on the IP layer (tens of
milliseconds), which are in turn orders-of-magnitude different
than on BGP (seconds). But also technological constraints can
differ significantly, and what works in SDN may not work in IP
or BGP; further constraints arise in terms of hardware support.
Nevertheless this survey will also highlight the numerous
connections that exist between the different approaches and
layers, and how concepts influenced each other.

Fig. 1 shows an example of some major concepts used
for fast recovery on the different network layers. On a high
level, ensuring that a destination can be reached even under
multiple failures can be seen as some kind of graph exploration
problem. We observe that existing solutions in the literature
can roughly be classified into three categories, depending on
whether the local exploration strategy is defined per-neighbor,
per-tunnel or per-tree. For each of these categories, different
algorithmic concepts are used, which re-appear on the different
networking layers, sometimes in different flavors.

In summary, this paper is the first to overview fast-recovery
mechanisms in the data plane from the perspective of a com-
prehensive set of available technologies mentioned above as
well as a broad range of characteristics, including:

– the underlying general concepts (e.g., loop-free al-
ternate next-hop, input interface-aware routing, addi-
tional/extended FIBs and other data structures, encapsula-
tion/tunneling, redundant spanning trees, failure coverage
analysis and improvement);

– improvements to other solutions, including the motiva-
tion for the selected changes and the illustration of the
evolution of ideas;

– the selected algorithmic aspects, performance;
– the maximum number of simultaneous failures handled

by the scheme;
– mode of operation (i.e., distributed, centralized);

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

3

– signaling aspects (whether the use of packet
header/dedicated control messages for signaling is
needed, or no signaling is required);

– reliance on existing routing protocols;
– technological constraints;
– deployment considerations including the required modi-

fications in the data/control plane, gradual deployment,
possible difficulties;

– the use cases presented by the proposers of schemes
and the related assumptions/requirements (time scale,
convergence, or investigated failure models).

B. Scope, Novelty, and Target Audience

This paper is motivated by the rising importance and
popularity of fast-recovery mechanisms, as well as the emer-
gence of software-defined and programmable networks, which
enable innovative FRR approaches. Our focus is hence on
data plane mechanisms, and in particular, packet-based fast-
recovery mechanisms, and we do not discuss control plane
mechanisms nor the orthogonal issue of how to detect failures
in the first place. We concentrate on the most common case,
the case of simple best-effort unicast packet communication,
and we barely touch on issues related to multicast, QoS, and
traffic engineering.Our focus is on wired networks and, due
to the special requirements, we leave the discussion of fast
recovery in wireless networks for a future survey. Furthermore,
given the focus on concepts and the tutorial-style nature of this
article, we do not aim to provide a complete survey of the
research literature, which is beyond the scope of this paper.

With our focus on packet-switched networks we hence
explicitly do not consider recovery in, e.g., optical networks
for which there exists much equipment for performing pro-
tection. Furthermore, there already are many good surveys
on reliable routing in specific communication technologies,
such as Ethernet [34], IP [23], [25], [35], [36] (and more
recently [23], [25]), MPLS [37], [38], BGP [39], or SDN [40].
However, to the best of our knowledge, this is the first
complete and up-to-date survey on the timely topic of fast-
recovery mechanisms in packet-switched networks. We believe
that only such an overarching approach can highlight the
conceptual similarities and differences, and hence help choose
the best approach for a specific context, which is particularly
relevant for emerging networks. Indeed, our goal is not to
provide a comprehensive survey of the literature. Rather, in
order to provide an understanding of the underlying key
concepts, our paper focuses on the fundamental mechanisms
across a spectrum of different technologies and layers.

Our paper hence targets students, researchers, experts, and
decision-makers in the networking industry as well as inter-
ested laymen.

C. Organization

The organization of this paper adopts the traditional
protocol-layer-based view of packet-switched communication
networks. As mentioned above, the perspective in this paper
is motivated by emerging technologies such as SDNs and pro-
grammable data planes which bring together and unify specific

Fig. 2: Organization of the paper.

layers and technologies. For this, however, we first need an
understanding of the technologies on the individual layers.
Therefore, after Section II, which provides a through overview
of the fundamental concepts related to network resilience, in
each section we review the most important ideas, methods, and
standards related to the different layers in the Internet protocol
stack in a bottom-up order (see Fig. 2). Whenever a protocol
layer spans multiple operational domains, the organization
follows the traditional edge/access/core separation principle.
Inside each section then, the review takes a strict chronological
order, encompassing more than 25 years of developments in
data-plane fast-recovery methods.

We start with the link-layer (in Section III) which is an
intrinsic and crucial part of the packet-switched protocol stack
and our first line of defense when it comes to failures, and
mostly used in local and metro area networks. Interestingly, to
the best of our knowledge, despite the topic’s importance, the
link-layer FRR has not been surveyed yet. Then, Section IV
reviews fast recovery for MPLS, operating as the “Layer 2.5”
in the Internet protocol stack, deployed in access networks and,
increasingly, in provider core networks. Section V presents IP
Fast ReRoute, the umbrella network-layer fast-recovery frame-
work designed for a single operator domain (or Autonomous
System), and then Section VI discusses the selected fast-
recovery solutions designed for wide-area networks and, in
particular, the Internet core. The separation emphasizes the
fundamental differences between the cases when we are in
full control of the network (the intra-domain case, Section V)
and when we are not (Section VI). Next, we review the
methods that do not fit into the traditional layer-based view:
Section VII discusses the fast-recovery mechanisms proposed
for the emerging Software-Defined Networking paradigm,
while Section VIII summarizes generic, technology-agnostic
solutions.

Finally, we cast the existing fast-recovery proposals in
a common framework and discuss some crucial related con-
cepts. In particular, in Section IX we give a comprehensive
family of taxonomies to classify fast-recovery schemes along
several dimensions, including data-plane requirements, opera-
tion mode, and resiliency guarantees. In Section X we briefly

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

4

TABLE I: Classes of Service defined by ITU-T

Class of Service Description of applications IPTD IPDV IPLR IPER

Class 0 Real-time, jitter–sensitive, highly interactive (e.g., VoIP, video teleconference) 100 ms 50 ms 1 x 10−3 1 x 10−4

Class 1 Real-time, jitter–sensitive, interactive (e.g., VoIP, video teleconference) 400 ms 50 ms 1 x 10−3 1 x 10−4

Class 2 Transaction data, highly interactive (e.g., signaling) 100 ms undefined 1 x 10−3 1 x 10−4

Class 3 Transaction data, interactive 400 ms undefined 1 x 10−3 1 x 10−4

Class 4 Tolerating low loss (e.g., short transactions, bulk data, video streaming) 1 s undefined 1 x 10−3 1 x 10−4

Class 5 Typical applications of IP networks undefined undefined undefined undefined

discuss some critical issues regarding the interaction of the
control-plane and the data-plane schemes during and after
a recovery. Last, in Section XI we conclude the paper and
identify the most compelling open issues for future research.

II. FUNDAMENTAL CONCEPTS

The undoubtedly large amount of data transmitted by com-
munication networks makes the need to assure their fault-
tolerance one of the fundamental design issues. Among a va-
riety of reasons for single and multiple outage scenarios
of network nodes or links, failures of single physical links
are dominant events in wide-area networks [41]. They are
mostly a result of random activities such as a cable cut
by a digger. According to [42], [43], there is one failure
every 12 months related to each 450 km of links, while the
average repair time of a failed element is 12 hours. According
to recent statistics, the frequency of multiple failures (i.e.,
simultaneous failures of multiple nods and links) — especially
those occurring in a correlated manner, e.g., as a result of
malicious human activities, or forces of Nature (tornadoes,
hurricanes, earthquakes, etc.) — is raising [44], [45]. This
in turn makes it challenging to assure high availability of
network services, since routing protocols typically used in IP
networks (such as Border Gateway Protocol — BGP [46] or
Open Shortest Path First – OSPF [10]) are characterized by
a slow process of a post-failure routing convergence which
can even take tens of seconds [42], [47].

The behavior of conventional routing protocols can thus be
acceptable only for delay-tolerant applications, provided that
the failures are indeed not frequent. However, for a wide range
of applications with stringent QoS requirements highlighted in
[48], [49] and summarized in Table I, such a slow convergence
is unacceptable. In particular, concerning the set of four
intrinsic parameters (i.e., related to network performance)
of Quality of Service — QoS [48], [50], [51] defined for
IP networks as: the maximum IP Packet Transfer Delay —
IPTD, IP Delay Variation — IPDV, IP packet Loss Ratio
— IPLR and IP packet Error Ratio — IPER (see ITU-T
recommendations Y.1540 and Y.1541 in [52], [53]). As shown
in Table I, for applications belonging to the first four Classes
of Service — CoS, (i.e., classes 0–3), the considered the values
of transmission delay undoubtedly impacted after a failure
should not be higher than 100–400 ms. Similarly, the values
of delay variation for classes 0–1 should be at most 50 ms,
which during the network recovery phase is even around two-
three orders of magnitude less than what the conventional IP
routing protocols can offer.

It is important to note that the majority of failure events in
IP networks is transient [47], [54], [55] and, therefore, may
lead to a lack of routing convergence during a significant time.
Mechanisms of fast recovery of flows are thus crucial to assure
network resilience, i.e., the ability to provide and maintain an
acceptable level of service in the presence of various faults
and challenges to normal operation [56]–[60].

To explain the fundamental concepts of network resilience
to assure fast recovery of the affected flows, in Section II-A,
we first present the set of relevant disciplines of network
resilience followed by definitions of resilience measures. In
particular, the group of characteristics analyzed in Section II-A
is essential for evaluation of fast recovery which we define
in this paper as the ability of a network to recover from
failures according to the time-constrained recovery plan to
meet the QoS-related requirements of applications. Next, Sec-
tion II-B provides a detailed taxonomy of network resilience
mechanisms based on the utilization of the alternate paths
with a particular focus on service recovery time. Finally, in
Section II-C, information on the steps of the network recovery
procedure is given.

A. Disciplines and Measures

As discussed in [56], resilience disciplines can be broadly
divided into two categories: challenge tolerance comprising
the design approaches to assure the continuity of service and
trustworthiness focusing on the measurable characteristics of
network resilience shown in Fig. 3.

Resilience disciplines

Survivability
random failures

Challenge tolerance

Traffic tolerance

legitimate flash crowd

Disruption tolerance

delay, mobility,

Dependability
reliability

Security

Performability

AAA (auditability,

QoS measures

Trustworthiness

single or multiple

targetted failures

DDoS attack

connectivity, energy

maintainability

safety

availability

integrity

authorisability, authenticity)

confidentiality

nonrepudiability

Fig. 3: Classification of network resilience disciplines based
on [56].

Following [56], challenge tolerance includes disciplines
addressing the network design issues to provide service conti-

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

5

nuity in the presence of challenges. Among them, survivability
denotes the capability of a system to fulfil its mission in
the presence of threats, including natural disasters and at-
tacks. Traffic tolerance refers to the ability to tolerate the
unpredictable traffic. It may be a remarkable challenge in
a multiple-failure scenario implied, e.g., by a disaster (such as
a tsunami after an earthquake [61], [62]), or in other situations
including, e.g., DoS attacks where the traffic volume is raised
unexpectedly far over the expected peak value for the normal
operational state [45]. Disruption tolerance focuses on the
aspects of connectivity among network components primarily
in the context of nodes mobility, energy/power challenges, or
weak/episodic channel connectivity [63].

Trustworthiness, in turn, comprises the measurable charac-
teristics of the resilience of communication systems to evaluate
the assurance that the system will perform as expected [64]. It
includes three disciplines, namely: dependability, security and
performability. Dependability is meant to quantify the level of
service reliance. It includes:

– reliability R(t) being a measure of service continuity (i.e.,
probablity that a system remains operable in a given (0, t)
time period,

– availability A(t) defined as the probability that a system
is operable at time t.
Its particular version is the steady-state availability de-
fined as a fraction of a system lifetime during which the
system is accessible, as given in Eq. 1.

A =
MTTF

MTTF +MTTR
(1)

where:
MTTF denotes the mean time to failure,
MTTR is the mean time to repair.

– maintainability being the predisposition of a system to
updates/evolution,

– safety being a measure of system dependability under
failures,

– integrity denoting protection against improper alterations
of a system.

Security denotes the ability of a system to protect itself from
unauthorized activities. It is characterized by both joint prop-
erties with dependability (i.e., by availability, and integrity) as
well as individual features including authorisability, auditabil-
ity, confidentiality, and nonrepudiability [65]. Performability
provides measures of system performance concerning the
Quality of Service requirements defined in terms of trans-
mission delay, delay variation (jitter), throughput/goodput, and
packet delivery ratio [56].

As the impact of resilience on the Quality of Service is
evident, a concept of Quality of Resilience (QoR) has been
introduced in [66] to refer to service resilience characteristics.
In contrast to QoS characteristics being relatively short-term,
the majority of attributes of resilience relating to service
continuity, downtime, or availability are long-term by nature
[66]. Indeed, most of resilience metrics proposed by Inter-
national Telecommunication Union–Telecommunication Stan-
dardization Sector (ITU-T) summarized in [66] and shown in

Table II can only be measured in the long term based on end-
to-end evaluations. It is also worth noting that, unlike many
QoS measures, QoR characteristics cannot be perceived by
users in a direct way, for whom it is not possible to distinguish
between a network element failure and network congestion
when noticing the increased transmission delay/packet losses.

Despite the existence of a number of resilience measures, in
practice only two of them are widely used, i.e., the mean time
to recovery (MTTR) and the steady-state availability defined
by Eq. 1, which is also impacted by the recovery time (MTTR
factor) [66]. Therefore, in the following part of this section
presenting the taxonomy of recovery schemes and recovery
procedure, a particular focus in these parts is on the recovery
time issues.

B. Taxonomy of Recovery Methods

The need for fast rerouting has its roots in an undoubtedly
slow process of post-failure routing convergence of contempo-
rary schemes such as BGP or OSPF which can even take tens
of seconds. The key objective is to reduce the convergence
time to the level of less than several tens of milliseconds [35].
In this context, IP network resilience is often associated with
the path-oriented Multiprotocol Label Switching (MPLS)-
based recovery schemes. IP-MPLS Recovery mechanisms aim
to redirect the traffic served by the affected working paths onto
the respective alternate (backup) routes [66].

A common observation is that differentiated resilience re-
quirements characterize different traffic flows. Therefore, to
prevent the excessive use of network resources, it is reasonable
to decide on the application of specific recovery schemes on
a per-flow basis [67]. In particular, this would mean that only
those flows requiring a certain level of service availability
in a post-failure period need to be provided with a recovery
mechanism.

Following [58], [68], recovery methods can be classified
based on several criteria, the most important ones including
the backup path setup method, the scope of the recovery
procedure, the usage of recovery resources, the domain of
recovery operations, or the layer of recovery operations shown
in Fig. 4.

Concerning the backup path set up method, the alternate
paths can be either configured in advance (pre-computed)
at the time of setting up the primary path (known as pre-
planned (protection) switching scheme, or established dy-
namically after detection of a failure (referred to as the
restoration/rerouting concept) [67], [69]. Preplanned protec-
tion provides faster recovery of the affected flows as alter-
nate paths are pre-established before the failure. However,
a disadvantage is its high cost due to the increased level of
resource consumption for backup paths set up well before
the failure and often used only for a relatively short post-
failure period. Restoration methods in practice are considered
as a default solution for current IP networks [66]. They are
remarkably more capacity-efficient but do not provide 100%
of restorability, as the appropriate network resources are not
committed before a failure and may not be available for the
alternate paths after a failure. Another disadvantage of the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

6

TABLE II: Selected ITU-T Resilience Metrics

ID Area Metric

E.800 General Instantneous (un)availability – probability for a network element of being in an up (down) state at a given time
E.802 (e.g., Internet Mean time between failures (MTBF) – mean time between two consecutive failures of a repaired element
E.820 access) Mean time between interruptions (MTBI) – mean time between the end of one interruption and start of the next one
E.850 Mean time to failure (MTTF) – mean value of time since the last change of state from down to up until the next failure
E.855 Mean time to recovery (MTTR) – mean value of time when a network element is in down state due to a failure
E.860 Mean up time / mean down time (MUT/MDT) – mean value of time when a network element is in up/down state
E.862 Reliability function R(t) – probability for a network element of bein in up state in (0, t) interval
E.880 Retainability – probability that a service will continue to be provided

Y.1540 IP IP packet loss ratio (IPLR) – the total number of lost packets divided by the total number of transmitted packets
Y.1541 Service availabiliy – a share of the total service time classified as available using the threshold on IPLR
Y.1542 IP service (un)availability (PIU/PIA) – part of time of (un)available IP service based on IP service (un)availability function

Y.1561 MPLS Packet loss ratio (PLR) – similar to IPLR
Severe loss block (SLB) – an event at the ingress node for a block of packets with packet loss ratio above the upper bound
Recovery time – time for recovery operations based on the number of successive time intervals of SLB outcomes
Service availability, PIU, PIA – defined in a similar way as in Y.1540 but in the context of SLBs

Y.1562 Higher layer Service availability – similar to Y.1540 but related to the transfer delay and service success ratio
protocols

Dedicated Shared

Global LocalSegment

One layer Multiple layers

Uncoordinated Coordinated

Bottom-up IntegratedTop-down

Single Multiple

Preplanned Reactive

Backup path Scope of

Usage of Domain of recovery

Layer of

setup method recovery procedure

recovery resources operations

recovery operations

domain domains

recovery recovery

Fig. 4: Classification of recovery methods.

restoration schemes is their lower time-efficiency, as recovery
procedure in their case also involves the phase of a backup
path calculation.

Protection switching approaches based on preplanned pro-
tection are reasonable for IP flows requiring service recovery
time below 100 ms [67]. For flows with restoration time
between 100 ms and 1 s, it is appropriate to apply a restoration
scheme such as MPLS restoration [70]. In the context of the
other flows able to tolerate the recovery switching time over
1 s, a conventional Layer 3 rerouting is commonly used. Flows
with no resilience requirements are usually not recovered, and
their resources are freed (i.e., preempted) to enable recovery
of other flows with resilience requirements [67].

Concerning the scope of a backup path [69], [71], recovery
schemes can be divided into:

– global schemes where a single backup path protects
the entire working path (Fig. 5a). Global schemes are
commonly associated with reservation of resources before
a failure (i.e., resources pre-reserved and alternate paths
pre-established). Such backup paths can be used either
after failure only (the so-called 1:1 path protection) or
in parallel with the working path to carry the traffic
in a normal state (1+1 protection model). Under path
protection, switching the traffic onto a backup path is
done at the ingress-egress pair of nodes (i.e., the end
nodes of a path) as shown in Fig. 5a,

– local schemes (with backup paths being either set up in
advance or dynamically after a failure) enabling short
detours over the failed link of the affected path (Fig. 5b)
or over two consecutive links in the case of a failure of
a node (Fig. 5c),

– segment schemes with backup paths protecting certain
segments of backup paths (Fig. 5d).

A general observation is that with a decrease of the scope of
backup path protection (i.e., from global toward local protec-
tion schemes), the time of service restoration decreases. It can
be explained by the fact that for local protection schemes the
redirection of the affected flows onto the backup paths is done
closer to the failure as well as because backup paths under
local protection are remarkably shorter than the respective ones
for global protection. Therefore, recovery schemes based on
local detours (especially local protection methods involving
pre-reservation of backup path resources) are often referred to
in the literature as Fast-Reroute concepts [71].

However, fast switching of flows onto backup paths for
local protection schemes is achieved at the increased ratio of
network redundancy (denoting the capacity needed to establish
backup paths) when compared to global protection schemes.
It can be justified by the fact that the total length of backup

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

7

working path backup paths

R2

(a) (b)

(c) (d)

R4 R7 R10 R13

R1 R5 R8 R11 R15

R3 R6 R9 R12 R14

R2 R4 R7 R10 R13

R1 R5 R8 R11 R15

R3 R6 R9 R12 R14

R2 R4 R7 R10 R13

R1 R5 R8 R11 R15

R3 R6 R9 R12 R14

R2 R4 R7 R10 R13

R1 R5 R8 R11 R15

R3 R6 R9 R12 R14

Fig. 5: Scope of the backup path: (a) path protection, (b) local
protection against a link failure, (c) local protection against
a node failure, (d) segment protection.

paths protecting a given primary path for local protection is
greater than the length of a backup path assuring the end-to-
end protection in the global protection scheme. Local recovery
schemes are therefore seen as fast but often more expensive
(in the case of local protection) than the respective global
schemes, which are, in turn, more capacity-efficient, easier
to optimize, but slower concerning recovery time [66].

Network resources (capacity of links) reserved for backup
paths can be either dedicated (i.e., reserved for those backup
paths exclusively), or shared among a set of backup paths. To
provide the network resources for backup paths after a failure,
sharing the link capacity by a set of backup paths is possible if
these backup paths protect mutually disjoint parts of working
paths (i.e., to guarantee that after a failure, there would be
a need to activate at most one of these backup paths) [58]. The
use of dedicated backup paths may result in faster recovery,
as dedicated backup paths can be fully pre-configured before
a failure. However, it is undoubtedly expensive, as backup
paths often require even more network resources than the
corresponding working paths (by default, they are longer than
the parts of working paths they protect). Another observation
is that a classification of backup resource reservation schemes
into dedicated and shared is characteristic strictly to protection
methods [42]. Major schemes of reactive recovery, in turn,
involve reservation of just dedicated resources for the alternate
paths (as these paths are merely the only ones operating after
a failure).

Fig. 6 presents relations among the recovery methods for
IP networks discussed in this section concerning the time of
recovery.

For networks divided into multiple domains (each domain
often managed by a different owner), recovery actions are
performed in these domains separately. In single-domain net-
works, one recovery scheme can be, in turn, applied in an
end-to-end manner for all flows.

Architectures of communication networks are inherently
multilayer meaning that one transmission technology such as
Optical Transport Network (OTN) using optical (Wavelength
Division Multiplexing – WDM) links serves as a carrier for an-

faster slower

Use of recovery Dedicated Shared

Backup path Preplanned Reactive

Scope of
Local GlobalSegment

faster slower

faster slower

(resources pre-reserved) (restoration / rerouting)

recovery procedure

resources

setup method

Fig. 6: Relations among the recovery methods for IP networks
concerning the recovery time.

other transfer architecture such as, e.g., IP network [42], [72].
Failures seen by the upper layer can thus happen originally
at the lower layer(s) making network recovery a challenging
issue [47]. It is also worth noting that any failure in the lower
layer, if not handled on time by the lower layer, may manifest
itself as a simultaneous failure of a number of elements in the
upper layer [67]. Available techniques of multi-layer recovery
are classified based on the sequence of recovery operations
as either bottom-up, top-down, or integrated. As a detailed
analysis of multi-layer recovery schemes is outside the scope
of this paper, the reader is referred to [73] for more details.

C. Recovery Procedure

As explained in [66], [68], [70], [71] there are seven
consecutive phases of recovery of the affected IP flows in
a period between the occurrence of a failure and the physical
repair of a failed network element shown in Fig. 7. They
include fault detection, fault localization, hold-off period, fault
notification, recovery switching, restoration completion, and
normalization.

The objective of the fault detection phase is to notice the
failure in the network (time T1 in Fig. 7). A failure can
be detected either by a management or a transport (data)
plane [42], [74], e.g., at the level of optical paths forming
the IP virtual links or in the IP network.

Concerning the management plane, failures can be iden-
tified by network elements close to the faulty item using
the Loss of Clock, Loss of Modulation, Loss of Signal, or
degradation of signal quality (e.g., increased signal-to-noise
ratio – SNR) [68]. For instance, failure detection in optical
networks makes use of information on the optical power or
the temperature at the transmitter, or the input optical power
at the receiver, power distribution of carriers over the full band-
width/channel wavelength, or crosstalks [75]. Other hardware
components which can generate alarms in optical networks
include optical regenerators/reshapers/retimers – 3Rs (e.g.,
when it is not possible for them to lock to the incoming signal)
or switches when they cannot establish a new connection [76].

In the data plane, a fault can be detected by observing a de-
graded quality in the context of an increased Bit Error Ratio –
BER, e.g., by CRC computation (Ethernet), TCP/IP checksum
verification [75], and by noticing the increased values of the
end-to-end quality parameters such as lower throughput or

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

8

Fault occurred

Fault detected

Fault detection

Fault localized

T
Fault localization

Hold-off

Beginning

Recovery

Full restoration

Notification

Recovery operation
(switching) time

Restoration

time

(synchronization, verification)

(network node/link)

Normalization

Normalization

2

T1

T3

T4

T5

T6

T7

of notification

Beginning
of recovery

of traffic

finalized

time

time

time

time

completion time

time

finalized

N
o
 t
ra

n
s
m

is
s
io

n
S

o
m

e
 f

lo
w

s
 s

w
it
c
h

e
d

o
n

to
 b

a
c
k
u

p
 p

a
th

s
T

ra
n

s
m

is
s
io

n
 v

ia
 b

a
c
k
u

p
 p

a
th

s

Use of
working
paths
only

Use of
working
paths
only

Fig. 7: Restoration time components based on [66], [68], [70],
[71].

increased data transmission delay [42]. In multilayer networks,
the upper-layer algorithms referring to failure detection in IP
and overlay networks can be broadly classified into active and
passive schemes [77]. In the active schemes, periodic keep-
alive messages are exchanged between neighbouring nodes.
In this case, fast detection of failures comes at the price
of an increased amount of control overhead. One of the
related examples is Bidirectional Forwarding Detection (BFD)
mechanism [78]. On the other hand, passive schemes only
make use of data packet delivery to confirm correct operation
of nodes and links (however, if data packets are not sent
frequently enough, passive methods are hardly useful). The
status of a given node can then be determined by other nodes
either independently, or collaboratively [79].

It is worth noting that, failure detection in multilayer
networks is often one of the most redundant tasks, as it is
commonly performed at multiple layers [76].

Fault localization (represented by time T2 in Fig. 7) means
identification of the faulty element (point of failure) necessary
to determine the network element at which the transmis-
sion should be suspended [42], [68]. Precise localization of
a faulty element as well as identification of the element type
(node/link) is crucial especially in the context of local repair

methods, where redirection of the affected flows is performed
just around the failed node/link.

In general, fault localization is considered as one of the
most difficult tasks. It is commonly based on the observations
of symptoms which can help to infer a precise location of a
failure in the network. As presented in [74], fault localization
techniques can be broadly classified into passive and active
methods. Techniques of passive monitoring wait passively
until the respective alarms are received from the monitoring
agents installed on the network elements to report the failures.
Passive schemes can be further classified into AI-based (using
the artificial intelligence expert systems and a knowledge
database), model-based (describing the system behaviour as
a mathematical model), and graph-theoretic schemes (using
graphical models of fault propagation). Techniques of active
monitoring, in turn, utilize probing stations to generate special
packets called probes (using, for instance, ping or traceroute)
to monitor the network state actively [74].

In any layered structure, where the IP layer is typically
considered as the uppermost one (as in the IP-over-WDM
architecture [58], [73]), there is a need to decide on the
sequence of layers to perform the recovery operations. In
general, recovery operations at the lower (e.g., WDM) layer
are executed at coarser granularity (due to the aggregation of
IP flows onto optical lightpaths), which reduces the number
of recovery operations. Also, if WDM recovery operations are
performed fast enough, they can be entirely transparent to the
IP layer. Only those failures that cannot be recovered in the
WDM layer (e.g., failures of IP routers) need to be handled
in the IP layer. Therefore, in the context of the bottom-up
sequence of recovery actions, the hold-off period (time T3 in
Fig. 7) is used to postpone the recovery operations in the IP
layer (e.g., related to failures of the IP layer nodes) until the
respective recovery operations are performed first by the lower
(WDM) layer [73].

The objective of fault notification initiated by a node neigh-
bouring to the faulty element is to inform the intermediate
nodes along the primary path about a failure and the end
nodes of the protected segment of the working path (referred
to as ingress and egress nodes in the case of global/segment
schemes) to trigger the activation of the backup path. It is
essential to notice that fault notification time (T4 in Fig. 7) can
be neglected for local repair schemes such as link protection.
For example, as illustrated in Fig. 5c), the node detecting the
failure (i.e., the ingress node of the affected part of a working
path) is the one to redirect the affected flow.

During recovery operation (switching) interval (time T5 in
Fig. 7), reconfiguration of switching at network nodes takes
place to redirect the affected flows onto the respective alternate
paths. This stage is more time-consuming for restoration
schemes than for protection strategies, as it also includes
calculation and installation of the alternate path [71].

The recovery procedure is completed after the verification
and synchronization phase (given by time T6 in Fig. 7) when
the alternate path is verified and synchronized, as well as after
the traffic is next propagated via the alternate route and reaches
the end node of the backup path [42], [71].

After the traffic is switched onto backup paths, the process

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

9

of manual repair of failed network nodes/links by the person-
nel is initiated. In practice may take at least several hours [42].
The objective of this normalization phase (T7 in Fig. 7) is to
restore the original network characteristics from the period
before the failure. In particular, normalization also includes
the need to update the communication paths, as the recovery
paths used after a failure are non-optimal in the physically
repaired network (these paths are commonly longer and use
more network resources than the respective working paths do
before a failure). Therefore, the normalization phase is also to
revert the traffic onto the original set of communication paths
utilized before the failure.

An important conclusion following from this subsection
and the previous one is that fast recovery of the affected
flows (especially essential for real-time services with stringent
requirements on availability and reliability such as Voice-over-
IP [54], [80]) is possible by the application of local protection
schemes. These methods involve short backup paths installed
before the failure and eliminate the need to send the end-to-end
notifications along the working path [71]. Therefore, proactive
IP fast-reroute schemes investigated in the remaining part of
this paper are based on the local protection concept.

III. LINK-LAYER FAST RECOVERY

We start our protocol-layer-based considerations with the
link layer, which plays an important role for the recovery of
packet-switched networks and typically serves as a first line of
defense when failures occur in local and metro area networks.
In particular, in this section we analyze the characteristics of
fast recovery mechanisms proposed for Ethernet – the major
Layer-2 technology.

Resilient routing in Ethernet networks is challenging. On
the one hand, fast-recovery mechanisms are necessary to
minimize message losses and increased transmission delay
due to one or more failures. However, this is challenging in
Ethernet, as frames do not include a Time-to-Live (TTL)-like
field known from the network-layer IPv4 protocol, and even
transient forwarding loops can cause significant problems. The
first major solution designed to avoid forwarding loops while
providing basic restoration capabilities in Ethernet networks
was the IEEE 802.1D Spanning Tree Protocol (STP) in-
troduced in [81]. The main idea behind STP is to establish
a single spanning tree across the network to assure that there is
a unique path between any two nodes. However, despite being
simple and easy to scale, it has not been designed to provide
fast failure recovery. As mentioned in [82], its disadvantage
is in a remarkably slow convergence time of even up to
50 s [83], which is not acceptable for many applications and
gets magnified in networks consisting of hundreds of switches.

Based on the scope of recovery, we can distinguish between
global recovery schemes to protect any node/link except for
the source/destination node of a demand, and local recovery
approaches [84] to protect against a failure of the incident
node/link, minimizing the time necessary for recovery. The
global recovery is initiated by the source/destination node,
while local recovery is triggered by the immediate upstream
node of the failed network element.

Three major IEEE Ethernet spanning tree protocols are the
Spanning Tree Protocol (STP), Rapid Spanning Tree Protocol
(RSTP) [81], [85], and Multiple Spanning Trees Protocol
(MSTP) [84], [86]. Among them, STP is considered to be
the first spanning tree protocol for Ethernet with resilience
functionality, which, upon a failure, triggers the spanning-
tree reconstruction procedure. However, when using STP, the
problem is that links which do not belong to the spanning
tree cannot be used to forward traffic, which may lead to
increased resource utilization and local link congestions in
other areas of the network. Since the introduction of STP,
several mechanisms have been proposed to solve this issue (see
the related evolution timeline shown in Fig. 8). We discuss the
selected representative examples in the following sections. For
a discussion of different solutions related to optical networks,
the reader is referred to [58], [68], [73].

A. Solutions Based on a Single Spanning Tree

The motivation for the introduction of the Rapid Span-
ning Tree Protocol (RSTP, IEEE 802.1D [81], [85]) was a
reduction of a negative impact of a long convergence time of
a single spanning tree on Ethernet network performance. It
operates in a distributed fashion and relies on the proposal-
agreement handshaking algorithm to provide synchronization
of the state by switches. RSTP also introduces the concept of
specific Port Roles related to recovery processes. In particular,
as shown in Fig. 9, the Alternate Port and Backup Port roles
are assigned to such ports of a bridge which can be used to
provide connectivity in the event of failure of other network
components [85].

Concerning the advantages of RSTP, it not only prevents for-
warding loops but also enables transmission on the redundant
links in the physical network topology. Due to the popularity of
this protocol, it was evaluated by many research groups also in
real test networks. For instance, in [94] it was evaluated in the
context of access and metro Ethernet networks by investigating
the failure detection time and additional delays introduced by
hardware. The results reported in [94] confirm that RSTP can
converge within milliseconds.

Another mechanism aimed at a reduction of the reconfigu-
ration time of STP is proposed in [92]. The main idea behind
this scheme is to avoid using conventional timeouts to inform
about the local completion of a tree formation phase. Instead,
the approach uses the additional explicit termination messages
which are sent backwards from nodes to their parent nodes
in the newly formed tree. Therefore, the scheme is able to
converge in a shorter time (the evaluation results presented
in [92] show that the tree recovery time can be remarkably
reduced even to less than 50 ms for a moderate-size network).

Another way to provide fast recovery of the affected traffic
is to reuse the parts of the spanning tree not affected by
a failure of a given link, and replace the failed link of the
tree with a different link originally not belonging to that tree,
as shown in Fig. 10.

This idea was utilized, e.g., in [95], where a distributed
mechanism was proposed based on the following three steps:
• Failure detection: detecting a failure in the physical layer;

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

10

[Year]

• Fast Recovery from Link Failures in Ethernet Networks [87]
(extended in 2014 [88])

• IEEE Std 802.1D-1990: Local and Metropolitan Area Networks:
Media Access Control (MAC) Bridges [89]1990

1998

1999

2001

2003

2004

2007

2008

2009

2011

2013

2015

2016

• IEEE Std 802.1D-1998: Local Area Network MAC (Media Ac-
cess Control) Bridges [90]

• IEEE Std 802.1Q-1998: Local and Metropolitan Area Networks:
Virtual Bridged Local Area Networks [91]

• Automatic Fault Detection and Recovery in Real Time Switched
Ethernet Networks [92]

• IEEE Std 802.1w-2001: Part 3: Media Access Control (MAC)
Bridges: Amendment 2 - Rapid Reconfiguration (superseded by
IEEE Std 802.1D-2004) [85]

• IEEE Std 802.1Q-2003: Local and Metropolitan Area Networks:
Virtual Bridged Local Area Networks [86]

• IEEE Std 802.1D-2004: Local and Metropolitan Area Networks:
Media Access Control (MAC) Bridges [81]

• Viking: A Multi-Spanning-Tree Ethernet Architecture for
Metropolitan Area and Cluster Networks [93]

• Performance of Rapid Spanning Tree Protocol in Access and
Metro Networks [94]

• Single Link Switching Mechanism for Fast Recovery in Tree-
based Recovery Schemes [95]

• Ethernet Ultra Fast Switching: A Tree-based Local Recovery
Scheme [84] (extended in 2010 [96])

• Local Restoration with Multiple Spanning Trees in Metro Ether-
net [82] (extended in 2011 [97])

• Fast Spanning Tree Reconnection for Resilient Metro Ethernet
Networks [98]

• Recover-Forwarding Method in Link Failure with Pre-established
Recovery Table for Wide Area Ethernet [99]

• Handling Double-Link Failures in Metro Ethernet Networks using
Fast Spanning Tree Reconnection [100]

• Performance Analysis of Shortest Path Bridging Control Proto-
cols [101]

• IEEE Std 802.1Q-2011: Local and metropolitan area networks–
Media Access Control (MAC) Bridges and Virtual Bridged Local
Area Networks [102]

• Local Restoration with Multiple Spanning Trees in Metro Ether-
net Networks [97]

• Partial Spatial Protection for Differentiated Reliability in FSTR-
based Metro Ethernet Networks [103]

• Taking an AXE to L2 Spanning Trees [104]

• IEEE Std 802.1Qca-2015: Bridges and Bridged Networks -
Amendment 24: Path Control and Reservation [105]

• Improving Carrier Ethernet Recovery Time Using a Fast Reroute
Mechanism [106]

• The Deforestation of L2 [107]

2006
• IEEE Std 802.1Q-2005: Local and Metropolitan Area

Networks—Virtual Bridged Local Area Networks [108]

2012
• IEEE Std 802.1Q-2012: Local and metropolitan area networks–

Media Access Control (MAC) Bridges and Virtual Bridges [109]

2014
• IEEE Std 802.1Q-2014: Local and metropolitan area networks–

Bridges and Bridged Networks [110]

2018
• IEEE Std 802.1Q-2018: Local and Metropolitan Area Network–

Bridges and Bridged Networks [111]

Fig. 8: Timeline of the selected documents and fast-recovery
solutions operating at the link layer (entries marked in gray
provide the general context).

Spanning Tree
Root Port

Backup Port
Alternate

Port

L2 Frame
1R

4R
6R

5R3R

2R

Fig. 9: Illustration of the example configuration of a spanning
tree for RSTP rooted at node R5: An incoming frame is
forwarded by R1 by default in the direction of the root node
(R5 here) via the respective Root Port outgoing from R1

towards R3. In the case of a failure of the primary link R1–R3,
the frame can be forwarded along a duplicate link via the
Backup Port. However if both direct links between R1 and
R3 are not available (e.g., due to their failure), the frame can
be forwarded via the Alternate Port towards node R2.

Fig. 10: Illustration of a self-protected spanning tree (thick
black lines) and the new tree returned by the single link
switching mechanism after a single link failure (the newly
attached link is marked in orange).

• Failure propagation: broadcasting failure information in
a “failure information propagation frame” which is as-
signed the highest priority;

• Reconfiguration.
The solution proposed in [95] not only avoids constructing

and maintaining multiple spanning trees to protect against
single link failures in two-connected networks, but it also
creates new opportunities in terms of load balancing. Besides,
it detects failures much faster than STP and RSTP, achieving
recovery time values less than 50 ms, which is often faster
than the other methods (see, e.g., Viking [93] described in
Section III-B relying on a slower mechanism based on SNMP
traps).

Another example of a spanning tree re-configuration strat-
egy, called Fast Spanning Tree Reconnection (FSTR), is de-
scribed in [98]. This distributed mechanism relies on an Integer
Linear Program (ILP). It is executed offline to determine the
best set of links that can be attached to the spanning tree to
reconnect it after any single link failure. Whenever the failure
occurs, switches incident to the failed link send notification
messages containing the identifier of the failed link to the
preconfigured switches which can activate one of the available

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

11

reconnecting links.
The related advantage is that only the directly affected

switches and the intermediate switches need to update their
tables, while the other devices do not have to. In this case, the
recovery time consists mainly of the switch reconfiguration
delay. The drawback is, however, that the existing Ethernet
switches need to be modified to support the proposed solution.
In particular, each compatible switch is required to maintain
the following tables:
• Failure notification table: contains the MAC addresses of

the switch interfaces where to send notification messages;
• Alternate output port table: includes the output port

selected based on the identifier of the failed link (the
table is computed offline).

After successful reconfiguration of switches, traffic for-
warded via the failed link is instantly redirected, and the
backward learning procedure is avoided. This mechanism also
considers backup capacity guarantees.

As switches may not be aware of other failed links immedi-
ately, an improved distributed mechanism capable of dealing
with double-link failures in Metro Ethernet Networks was
proposed in [100]. The underlying concept remains similar
to the authors’ previous work from [98]. However, the main
difference is that the reconnect links are selected in [100] in
a way that loops are naturally avoided for double failures (even
though each failure is handled independently).

The proposed ILP formulation includes an extension to
determine the best set of reconnect-links that can reconnect
each affected spanning tree while minimizing the backup
capacity reserved in the network and satisfying the preferred
protection grade for each connection. The new solution still
deals with any single failure successfully. However, only
partial protection can be provided for double failures.

The last concept we describe in this section is based on the
idea of partial spatial protection (PSP) together with a mixed
integer linear programming (MILP) is proposed in [103] as
an extension of the two schemes ([98] and [100]) described
above. In particular, as not all flows require full protection
(against a failure of any possible link on a way), the extension
described in [103] is to update the FSTR concept in a way to
protect flows against a failure of a link from a specific subset
of links only (to satisfy a given protection grade required by
a demand).

B. Solutions Based on Multiple Spanning Trees

The Multiple Spanning Tree Protocol (MSTP) protocol is
based on RSTP and it supports multiple spanning trees [81],
[86], [111]. The main idea behind MSTP is to partition
the network into multiple regions and calculate independent
Multiple Spanning Tree Instances (MSTIs) within each of the
regions based on the parameters conveyed in Bridge Protocol
Data Unit (BPDU) messages which are exchanged between
the involved network bridges.

The MSTIs are assigned unique Virtual LAN (VLAN)
identifiers within the region so that frames with a given VLAN
identifier are forwarded consistently by all bridges within
that region. The consistent assignment is achieved based on

MST Configuration Identifiers included in BPDUs that are
transmitted and received by adjacent bridges in the same
region. Such a mechanism is critical for a correct forward-
ing of frames within the region, as otherwise, some frames
might be duplicated or even not delivered to the destination
LANs. Note that no LAN can belong to two or more regions
simultaneously.

Similarly to RSTP, MSTP defines a set of Port Roles
which includes the Alternate Port and Backup Port roles,
assigned to such ports of a bridge. They can be used to
provide connectivity in the event of failure of other network
components, or when other bridges, bridge ports, or LANs
are removed from the network. In particular, an Alternate Port
provides an alternate path to the one offered by the Root
Port, in the direction of the Root Bridge. A Backup Port,
however, can be used whenever the existing path offered by
a Designated Port towards the leaves of the spanning tree
becomes unavailable [111].

Initially, Alternate and Backup Ports are quickly transitioned
to the Discarding Port state to avoid data loops. In the case of
bridge or LAN failure, the fastest local recovery is possible
when the Root Port can be substituted for the Alternate Port.

The related advantage is that as long as the Root Port Path
Cost is equal for both ports, bridges located further from the
Root Bridge will not see a network topology change [111].
However, in the other case, MSTP reconfigures the topology
based on the spanning tree priority vectors, behaving like
a distance-vector protocol. Note that during the reconfiguration
phase, old information related to the prior Root Bridge may
still circulate in the network until it ages out. For details related
to the operation principles of MSTP, the reader is referred
to [111].

A similar approach, which is also the main underly-
ing concept of several other mechanisms, was proposed in
Viking [93]. It was designed for a wide range of networking
technologies, such as Local-Area Networks, Storage-Area Net-
works, Metropolitan-Area Networks, and Cluster networks, to
provide fast recovery, high throughput, and load balancing over
the entire network. The difference between Viking and MSTP
is that Viking is based on multiple spanning trees covering the
same network topology instead of covering particular disjoint
segments of the network.

Viking relies on the VLAN technology widely supported
in enterprise-grade Ethernet switches to control how packets
are forwarded towards their destinations. In Viking, each
packet carries a VLAN identifier associated with one of the
available spanning trees. Based on that identifier, downstream
switches forward the packet along the path in the correspond-
ing spanning tree, as shown in Fig. 11. While relying on
existing failure detection mechanisms implemented in modern
network switches, Viking assumes that all end hosts run a local
instance of the Viking Node Controller responsible for load
measurements and VLAN selection. Whenever a link or node
becomes unavailable, the centralized Viking Manager instructs
the Viking Node Controllers using the affected VLANs to
change the VLAN identifier carried in subsequent packets,
effectively redirecting the related flows onto the precomputed
alternative paths.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

12

Physical Topology

Spanning Tree 2

Spanning Tree 1V
LA

N
 2

01

V
L
A

N
 202

VLAN ID

ETHERNET

FRAME

1R

1R

1R

2R

2R

2R

3R

3R

3R

4R

4R

4R

5R

5R

5R

6R

6R

6R

Fig. 11: Illustration of the spanning-tree switching process
based on the VLAN identifier stored in each forwarded Eth-
ernet frame.

Compared to the Ethernet architecture relying on a single
spanning tree, the advantages of Viking include higher ag-
gregate network throughput and the overall fault tolerance.
Such an improvement is possible by reducing the downtime
to sub-second values and preserving the existing higher-layer
connections [93]. It operates in a semi-distributed way1 and
requires the SNMP protocol for internal signalling. The proto-
type developed by the authors relies on the Per-VLAN Span-
ning Tree (PVST) implementation by Cisco. As no firmware
modifications are necessary, Viking can be deployed on many
off-the-shelf Ethernet switches [93].

A distributed recovery scheme for a single-link failure
scenario, which involves the “a priori” configuration of the
alternative trees and the use of VLAN IDs to switch the traffic
onto the alternative tree after a failure, was presented in [82].
In this scheme, the idea is to perform restoration locally by
a node upstream to the failed element.

Two mechanisms of recovery are proposed, namely
connection-based and repair-based recovery. In connection-
based recovery, packets are assigned the backup VLAN ID
based on the source node, destination node, and the primary
VLAN ID. It means that traffic from different connections can
be switched at a given node onto different backup spanning
trees. At the same time, in the destination-based approach,
packets are assigned the backup VLAN ID only based on
the primary VLAN ID and the destination node. As a result,
flows destined at a given node from different connections are
switched at a given node onto the same backup spanning tree.

The latter approach is less complicated and involves
a shorter computation time. However, as presented in the
evaluation section of the paper, it is less capacity-efficient
than the former scheme which determines the transmission
paths based on a broader set of input parameters. To avoid
forwarding loops, switching the traffic between spanning trees

1Note that the authors planned to design and evaluate a fully distributed
version in their second prototype.

is allowed only once, and controlled by setting one bit in the
Class of Service (CoS) field as the recovery bit2.

Another local protection scheme called EFUS based on the
idea of multiple trees and the use of VLANs is presented
in [84], [96]. Compared to the approach from [82], its ad-
vantage is the ability to provide recovery also in the case of
failure of a single node if only the network topology is at
least 2-connected. It is possible by the utilization of a pair
of spanning trees for each network node, and by switching
the flow onto the respective protection tree by the immediate
upstream node onto the alternate spanning tree.

C. Solutions Based on Recovery Tables

In [99], a method to reduce service recovery time after
a single link failure is proposed that is not based on spanning
trees but uses the concept of recovery tables storing the
alternate next-hop information for each entry in the conven-
tional forwarding table. As proposed in [99], entries in the
recovery table form the respective detours calculated based on
information on the shortest paths maintained in the control
plane provided by a routing protocol such as OSPF.

The scheme utilizes the concept of VLANs and changes the
uppermost bit of the VLAN ID from 0 to 1 when redirecting
the traffic based on the recovery forwarding table. Also, to
avoid loops, it discards the packet if trying to redirect an
already redirected one. However, the use of the uppermost
bit of the VLAN ID for recovery indication limits the number
of VLANs which can be established.

A resilience scheme for a spanning tree which is based
on the idea of preconfigured protection paths, and tunnelling
was introduced in [106]. To provide fast recovery after a link
failure, protection paths are established before the occurrence
of the failure using protection cycles (p-cycles originally
proposed in [112] for ring-based networks in 1998) defined
for each link in the spanning tree. After a failure, the node
detecting the failure proceeds with the encapsulation of pack-
ets and forwarding them via the respective protection cycle to
detour the failed link.

The advantage of this approach is a fast recovery of the
affected flows being a major feature of the original p-cycles
concept as well as resource efficiency (as p-cycles can provide
protection not only for primary paths traversing the p-cycle but
also those paths “straddling” the p-cycle).

D. Solutions Based on Message Flooding and Deduplication

As the performance of the link layer had already been
identified as a growing problem, the AXE scheme was pro-
posed in [104], [107] as a solution that not only retains
the plug-and-play behaviour of the Ethernet but also ensures
near-instantaneous recovery from failures and supports gen-
eral network topologies. What distinguishes this fast-recovery
mechanism from the widely-used Ethernet is that all network
links can be used to forward packets, instead of using only
a subset of links forming a spanning tree.

2The CoS field is included in Ethernet frames under 802.1Q VLAN
tagging [86]

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

13

In particular, AXE is based on the flood-and-learn ap-
proach and employs an AXE packet header containing the
following four additional fields: the learnable flag L, the
flooded flag F, a hopcount HC, and a nonce used by the
deduplication algorithm. At the same time, AXE takes an
orthogonal approach to the traditional flood-and-learn Layer-2
mechanisms such as STP in that it does not rely on any control
plane at the link layer to compute the spanning tree. Instead,
when an AXE node does not know how to reach a destination,
it encodes a hop count in the packet header, sets the learnable
flag in the packet header, and floods the packet throughout the
entire network. While receiving multiple copies of the flooded
packet, each node learns only the shortest path towards the
destination. To this end, since flooding may reduce bandwidth
resources, each node maintains a packet deduplication filter
implemented as a cache, which avoids flooding packets in
cycles — a catastrophic event in a network.

An advantage of AXE is undoubtedly also its compatibility
with existing failure detection techniques, such as BFD and
different hardware-based mechanisms. According to [104],
even while using relatively small filters, AXE can scale to
large Layer-2 topologies and can quickly react to failures by
avoiding the STP-related computations.

E. Summary

In this section, we highlighted the mechanisms introduced
in the literature to recover from failures of network elements
at the link-layer level. Particular focus was on presenting
the design characteristics contributing to the reduction of the
recovery time. In this context, we first discussed the aspects
of the conventional IEEE 802.1D Spanning Tree Protocol
(STP), and in particular its remarkably slow convergence time
measured even in terms of several tens of seconds. Next,
we analyzed the representative schemes aimed at shortening
the time of recovery grouped by us into four categories:
(a) solutions based on a single spanning tree, (b) schemes
utilizing multiple spanning trees, (c) techniques using the
recovery tables, and (d) strategies based on message flooding
and deduplication. In particular, schemes utilizing a single
spanning tree such as, e.g., IEEE 802.1D Rapid Spanning
Tree Protocol (RSTP) were found to require significantly less
time to complete the recovery procedure of a spanning tree
after a failure. By sending, e.g., explicit termination messages
instead of using timeouts (as in [92]), or by executing the
offline an Integer Linear Program to determine the best set
of links for any single link failure scenario in advance ([98]),
the recovery of a spanning tree could be completed by those
methods only within several tens of milliseconds.

We then discussed the schemes utilizing multiple spanning
trees, which can result in the partitioning of a network into
subareas with one spanning tree installed in each such region
and identified by a given VLAN ID (see, e.g. [111]). Such
schemes were also shown in the respective literature to reduce
the time of the recovery phase to sub-second values.

Schemes based on recovery tables (e.g., [99]) were next
shown to be an essential alternative to tree-based techniques
able to recover quickly from failures due to the pre-planned

calculation of the alternate next-hops stored in recovery tables
at each network node.

Finally, techniques based on message flooding and dedupli-
cation such as, e.g., AXE ([107]) relied on utilizing all network
links (as opposed to schemes using only links belonging to
spanning trees) to forward packets, as well as to recover
quickly from failures.

Despite a broad set of link-layer fast-recovery mechanisms
introduced in the literature, their limited implementation in
practice remains an open issue. Indeed, apart from the stan-
dard solutions such as IEEE RSTP or MSTP, it is still rare
to find the other fast-recovery mechanisms implemented in
commercially available switches. Also, as link-layer recovery
mechanisms were primarily designed for scenarios of single
(link/node) failures, another open issue refers to their ability
to recover from simultaneous failures of multiple network
elements (i.e., due to an attack or another disaster-induced
event).

IV. MPLS FAST RECOVERY

The architecture of Multiprotocol Label Switching (MPLS),
introduced in [116], relies on Label Switching Routers (LSRs)
capable of forwarding packets along Label Switched Paths
(LSPs) based on additional labels carried in a packet header.
Each of the MPLS labels assigns the packet to the corre-
sponding Forwarding Equivalence Class (FEC) that defines
a group of IP packets to be forwarded by one or more LSRs
in a consistent manner. To be able to distribute information
about the assignment of labels to the corresponding FECs
among the LSRs in an automated way, a label distribution
protocol may be deployed in the network. One of the available
implementations is the Label Distribution Protocol (LDP)
defined in [122].

As failures of network components are inevitable [139],
LSPs might be disrupted from time to time. In that context,
recovery strategies based on on-demand restoration (see Sec-
tion II-B for the related discussion) may not always be an
acceptable solution in terms of the recovery time scale, and
thus, they are beyond the scope of this section. Instead, in
the following parts of the section, we present and discuss
different designs of fast-recovery mechanisms proposed for
MPLS networks, focusing on those that redirect traffic to pre-
established dedicated or shared backup LSPs quickly based
on locally-available information. Additionally, the evaluation
results are also reported for the selected solutions deployed in
real test network environments, to provide valuable context re-
lated to their expected performance. Interested readers looking
for structured information covering general terminology and
schemes related to both protection and restoration techniques
in the broader context of MPLS and Generalized MPLS
(GMPLS) networks are referred to [73], [120], [121], [127].

A. MPLS Fast-Reroute Extensions

As MPLS had many advantages and was recognized to
be a promising solution, it was soon extended to support
additional much-needed functionalities, such as traffic engi-
neering [117] (further developed in the inter-domain context

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

14

[Year]

• Fast ReRoute Model for Different Backup Schemes in MPLS
Network [113]

• RFC 2702: Requirements for Traffic Engineering Over
MPLS [114]

• A Method for Setting an Alternative Label Switched Paths to
Handle Fast Reroute (the first IETF draft; the last draft expired
November 2000 [115])

1999

2001

2002

2005

2006

2007

2008

2010

2011

2013

2014

2017

2018

• RFC 3031: Multiprotocol Label Switching Architecture [116]
• RSVP-TE: Extensions to RSVP for LSP Tunnels [117]
• Dynamic Routing of Locally Restorable Bandwidth Guaranteed

Tunnels using Aggregated Link Usage Information [118]
• Fast Rerouting Mechanism for a Protected Label Switched

Path [119]

• Fast Reroute Extensions to RSVP-TE for LSP Tunnels (the first
IETF draft)

• Multiprotocol Label Switching (MPLS) Traffic Engineering Man-
agement Information Base for Fast Reroute (the first IETF draft)

• RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tun-
nels [26]

• RFC 4427: Recovery (Protection and Restoration) Terminology
for Generalized Multi-Protocol Label Switching (GMPLS) [120]

• RFC 4428: Analysis of Generalized Multi-Protocol Label Switch-
ing (GMPLS)-based Recovery Mechanisms (including Protection
and Restoration) [121]

• RFC 5036: LDP Specification [122]

• RFC 5151: Inter-Domain MPLS and GMPLS Traffic Engineering
– Resource Reservation Protocol-Traffic Engineering (RSVP-TE)
Extensions [123]

• Efficient Distributed Bandwidth Management for MPLS Fast
Reroute [124] (based on earlier work published in 2005)

• R3: Resilient Routing Reconfiguration [125]
• Investigation of Fast Reroute Mechanisms in an Optical Testbed

Environment [126]

• RFC 6372: MPLS Transport Profile (MPLSTP) Survivability
Framework [127]

• Restoration Measurements on an IP/MPLS Backbone: The Effect
of Fast Reroute on Link Failure [128]

• RFC 6445: Multiprotocol Label Switching (MPLS) Traffic Engi-
neering Management Information Base for Fast Reroute [129]

• RFC 6981: A Framework for IP and MPLS Fast Reroute Using
Not-Via Addresses [130]

• Fast Reroute Based Network Resiliency Experimental Investiga-
tions [131]

• Design Schemes for MPLS Fast ReRoute [132]

• RFC 8271: Updates to the Resource Reservation Protocol for Fast
Reroute of Traffic Engineering GMPLS Label Switched Paths
(LSPs) [133]

• Fast ReRoute Scalable Solution with Protection Schemes of
Network Elements [134]

• Polynomial-Time What-If Analysis for Prefix-Manipulating
MPLS Networks [135]

• P-Rex: Fast Verification of MPLS Networks with Multiple Link
Failures [136]

• Linear Optimization Model of MPLS Traffic Engineering Fast
ReRoute for Link, Node, and Bandwidth Protection [137]

• RFC 8679: MPLS Egress Protection Framework [138]2019

Fig. 12: Timeline of the selected documents and solutions
related to MPLS Fast Reroute (entries marked in gray provide
the general context related to the evolution of MPLS).

Fig. 13: Illustration of the two basic local protection methods
defined in [26]: (a) One-to-one backup and (b) Facility backup.
In the first figure, the thick black path leading from R1 to R5
represents the primary LSP, the thick blue path leading from
R1 to R3 via R6 — the backup LSP protecting node R1, and
the thick dashed red path — the backup LSP protecting node
R2. In the second figure, the thick solid black path and the
blue dotted path represent the primary LSPs, while the thick
red path leading from R2 to R4 via R7 is the shared backup
LSP which protects both primary LSPs if node R3 or links
between R2-R4 fail.

in [123]) and Fast-Reroute mechanisms to protect LSP tun-
nels [26].
The Fast-Reroute mechanisms in MPLS enabled the local
repair of LSP tunnels within 10s of milliseconds based on the
pre-established backup LSP tunnels. To meet this requirement,
the following two local protection methods were defined (see
Fig. 13 for the illustration of the underlying concepts):
• One-to-one backup: one backup LSP is established for

each protected LSP in such a way that it intersects the
primary path at one of the downstream nodes;

• Facility backup: one backup LSP is established to protect
a set of primary LSPs in such a way that it intersects each
of the primary paths at one of its downstream nodes.

In both cases, whenever a failure is detected by an LSR and
the corresponding backup LSP is available, the LSR being the
Point of Local Repair (PLR) performs a fast local failover,
redirecting subsequent traffic to the preferred backup LSP.
Based on the MPLS label stack carried in the message header,
downstream LSRs will be able to recognize that incoming
messages follow an alternative path, and they will forward
the messages accordingly.

The two protection methods have one strong advantage:
they are conceptually simple and can be deployed selectively
where needed, together or alone, taking into account specific
reliability requirements. Additionally, each of them is suitable
for protection of links and nodes in the event of network
failure. On the negative side, once deployed, they may not
guarantee full failure coverage, even for single link failures.
The Resource Reservation Protocol — Traffic Engineer-
ing (RSVP-TE) Fast-Reroute procedures, originally defined
in [26] to support the two methods discussed above, de-
scribe the necessary signaling mechanisms using the related
RSVP objects that together enable fast-recovery capabilities

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

15

in RSVP-TE MPLS networks. The primary specification has
recently been updated in [133] to support Packet Switch
Capable GMPLS LSPs. In particular, new signaling procedures
and a new BYPASS_ASSIGNMENT subobject in the RSVP
RECORD_ROUTE object are defined, to coordinate the assign-
ment of bidirectional bypass tunnels which protect common
facilities in both directions along the corresponding co-routed
bidirectional LSPs.

The proposed modifications have several advantages. First,
bidirectional traffic can be redirected onto bypass tunnels in
such a way that the resulting data paths are co-routed in
both directions. Second, the proposed fast-reroute strategy may
either be used with GMPLS in-band signaling or with GMPLS
out-of-band signaling, offering greater flexibility during the
potential deployment. Finally, it is also possible to avoid the
RSVP soft-state timeout in the control plane which would
typically occur after one of the downstream nodes stopped
receiving the RESV messages associated with the protected
LSP from the upstream PLR — for example, as a result of
unidirectional link failures. For more detailed technical infor-
mation about the related RSVP-TE extensions and objects, the
reader is referred to [26], [133].
Protection of egress links and egress nodes. While the local-
repair-based MPLS Fast-Reroute mechanisms discussed above
mainly focus on transit link/node protection, the MPLS Egress
Protection Framework recently introduced in [138] describes
fast-recovery mechanisms designed to protect egress links
and egress nodes in MPLS networks relying on downstream-
assigned service labels. In principle, the proposed solution
relies on bypass tunnels pre-established by the PLR to one or
more predefined nodes called protectors. A protector may ei-
ther be physically co-located with or decoupled from a backup
egress node, and in the case of failure of the egress node, the
protector is expected to forward the service packets rerouted at
the PLR through the bypass tunnel towards the backup egress
node. It is assumed that multiple egress nodes are available in
the MPLS domain, and that for each protected tunnel, one
router is designated to be the protector. Further, to enable
fast recovery, the necessary bypass forwarding state needs to
be pre-installed in the data plane. Each of the protectors is
also expected to perform context label switching and context
IP forwarding for rerouted MPLS and IP service packets,
respectively.

One strong advantage of the proposed framework is that it
supports networks with co-existing tunnels and services of dif-
ferent types. It may also complement existing global recovery
schemes as well as control-plane reconvergence mechanisms.
On the negative side, the current specification does not support
services using upstream-assigned service labels.
Fast ReRoute using Not-via Addresses (Not-via) is a con-
cept based on a single-level encapsulation and forwarding
of packets to specifically reserved IP addresses which are
also advertised by the IGP. In this way, it is possible to
protect unicast, multicast, and LDP traffic against failure of
a link, a router, and a shared-risk group. Note that we already
provide a detailed discussion of this mechanism in the context
of IP networks in Section V-B. Interested readers may also
study [130] where the general approach to using Not-Via Fast-

Reroute in MPLS networks is discussed.

B. Methods Based on Optimization

An important subgroup of MPLS Fast-Reroute solutions
relies on mathematical optimization to improve the overall
performance with respect to different factors, such as: resource
utilization, coverage of failure scenarios, and scalability. We
summarize the selected approaches below.
Distributed bandwidth management and backup path
selection. To be able to perform the failover from the primary
LSP to a precomputed backup LSP in a given failure scenario,
the network requires additional resources, such as available
bandwidth on network links along the related LSPs. On the
other hand, the resources that remain reserved specifically for
the purpose of the possible recovery cannot be assigned to
other primary LSPs, and thus should be minimized. However,
they can be shared by two or more backup LSPs, as long as
the corresponding primary LSPs do not fail simultaneously.
An illustration of this approach in the context of distributed
bandwidth management mechanisms supporting MPLS Fast
Reroute is provided in [124]. In principle, the authors focus
on the one-to-one protection method and single link or node
failures. First, to collect the necessary information about the
reserved and available bandwidth as well as the administrative
link weights, traffic engineering extensions to the selected link-
state routing protocol might be used3. Then, the primary LSPs
are computed using the constrained SPF algorithm based on
the administrative weights as well as the available bandwidth
on the involved unidirectional links. To be able to reserve
the necessary amount of resources on network links while
a new primary LSP is created, the RSVP-TE extensions are
used, which involves the exchange of the PATH and RESV
signaling messages between the source and destination nodes.
In particular, the RESV message is sent from the destination
to the source. Whenever it is received by an intermediate node
along the primary LSP, the node executes the constrained SPF
algorithm to find a suitable local backup LSP towards the
destination, excluding the downstream link belonging to the
primary LSP. Subsequently, once the backup LSP has been
selected by the intermediate node, the PATH message is sent
along the backup path to establish the LSP and reserve the
required amount of shared restoration bandwidth. Meanwhile,
each of the downstream nodes maintains a local array for
each unidirectional link starting at that node, to keep track of
the required restoration capacity on the related unidirectional
link in different failure scenarios. The PATH message allows
the downstream nodes to update the current values in the
respective local arrays based on the following information
included in the message:
• the immediate downstream link on the primary path;
• the immediate downstream node on the primary path;
• the requested bandwidth of the primary LSP.

Once the local arrays have been updated accordingly, the new
estimated values of the available and reserved bandwidth on
the involved unidirectional links will be disseminated to the

3Note that OSPF and IS-IS are example link-state protocols that have been
extended accordingly.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

16

other nodes by the extended link-state routing protocol in
use. As soon as the primary LSP is no longer needed, the
PATHTEAR signaling message can be sent along the primary
LSP to tear the LSP down. Note that each intermediate node
will also need to send the PATHTEAR message along the
local backup LSPs established earlier, to release the reserved
network resources properly. In this specific case, as the local
arrays must be updated accordingly, it is proposed that the
PATHTEAR message include additional information about
immediate downstream link and node belonging to the primary
LSP. As an additional improvement, the authors present and
discuss a way to optimize the backup path selection procedure,
aiming at reducing the overall required restoration bandwidth.
Although the additional information required by the proposed
optimized backup path selection algorithm is distributed be-
tween adjacent routers using three new signaling messages
(TELL, ASK, and REPLY), the authors suggest that some
information be embedded in the existing PATH and RESV
messages. In such a case, only one new signaling message
would need to be introduced in real deployments. One strong
advantage of the proposed solutions is that they do not rely
on centralized mechanisms. On the negative side, the involved
LSRs would need to support the required signaling extensions.
Resilient Routing Reconfiguration (R3) is a concept pro-
posed to address the long-standing shortcomings of the ear-
lier fast-recovery techniques with respect to insufficient per-
formance predictability and missing protection mechanisms
against possible network congestion, especially in multi-failure
scenarios [125]. R3 is based on the following two main steps:

1) Offline precomputation: find a suitable routing scheme
and protection (rerouting) scheme for a given traffic
matrix, to minimize the maximum link utilization over
the entire network;

2) Online reconfiguration: in the case of failure, reroute
traffic via alternative paths and adjust the routing and
protection schemes to exclude the failed link from the
set of candidate links in the event of subsequent failures.

The first step is not time critical and relies on linear pro-
gramming duality to convert the related primary optimization
problem with an infinite number of constraints into a sim-
pler form containing a polynomial number of constraints4.
Although the corresponding model contains O(|V |4) variables
and O(|V |4) constraints, where V denotes the set of nodes
in the network graph, the authors emphasize that this is
much lower than for the other existing approaches focused
on oblivious routing [141], [142].

In the second step, it is important that the rerouting decision
be made as soon as possible, to avoid packet losses and
increased delay. Thus, the related operations are designed not
to be computationally intensive. Additionally, the routing and
protection schemes at all involved routers may be updated after
the upstream PLR has started rerouting packets via the selected
detour, without affecting the recovery process.

One strong advantage of R3 is that it can deal with both mul-
tiple link failures and traffic variability. Additionally, beyond
performing extensive simulations, the authors have also imple-

4Interested readers may learn the basics of optimization theory from [140].

mented and evaluated R3 in a real testbed, which confirmed
its effectiveness. On the negative side, the implementation
prepared by the authors relies on a centralized precomputation
of the protection routing scheme. At the same time, the offline
precomputation task does not have a direct influence on the
duration of the recovery phase.
Primary and backup path computation is a typical problem
in the context of MPLS Fast Reroute. Beyond the solutions
presented above, it was also discussed in [113], [132] where
the authors proposed the corresponding non-linear integer
programming models related to link, node, or path protection
schemes. To reduce the expected computational complexity,
subsequent efforts were made to prepare the linear variants of
the related optimization problems which also take into account
the available resources on network links [134], [137].

C. Fast Verification of MPLS Networks

Testing and debugging data plane configurations is generally
considered a difficult manual task, yet, a correct configuration
of the data plane is mission critical to provide the required
properties in terms of policy compliance and performance.
Reasoning about the data plane behavior subject to failures
is particularly challenging, as it seemingly introduces a com-
binatorial problem: it seems unavoidable that one has to test
each possible failure scenario individually, and simulate the
resulting rerouting, in order to verify that the network behaves
correctly under all failure scenarios.

Interestingly, this intuition is wrong: it has recently been
shown that in the context of MPLS networks, it is possible to
conduct what-if analyses in polynomial time. In [135], an ap-
proach is presented to collect and transform MPLS forwarding
and failover tables into a prefix rewriting system formalism, to
which automata-theoretical algorithms can be applied to test
a wide range of properties, related to reachability (e.g., can
A always reach B, even if there are up to 3 link failures?)
or network policy (e.g., is it ensured that traffic from A to
B traverses a firewall along the way?).

The fast verification is enabled by the nature how labels
are organized and manipulated in the MPLS packet header:
the labels are organized in a stack, and operations limited to
push, pop, and swap. This makes it possible to describe the
system as a push-down automaton. In [136] a tool called P-Rex
is presented which realizes the theoretical concepts in [135].
AalWiNes [143] extends P-Rex in that it relies on weighted
automata, allowing to verify quantitative properties as well
(besides being faster).

To the best of our knowledge, no polynomial-time solutions
exist for conducting what-if analyses in polynomial time for
other types of networks which rely on more complex rules,
e.g., [144], [145].

D. Other Approaches

Beyond the groups of solutions summarized in the sections
above, each of them sharing a common design feature, there
are also other fast-recovery concepts related to MPLS which
are based on interesting ideas, and thus are also worth men-
tioning. We discuss the selected proposals in this section.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

17

Fig. 14: Illustration of the underlying idea of the improved
protection methods described in [119], [146].

Aggregated link usage information. The idea of sharing
some backup resources in the network by multiple backup
bandwidth-guaranteed LSPs has already been considered
in [118] where the authors discuss the trade-off between com-
plete knowledge of the routing scheme at the time of a path
setup event and partial knowledge based on the aggregated
link utilization information. Maintenance of non-aggregated
per-path information may cause potential scalability issues and
requires more storage and processing resources. On the other
hand, the solution proposed by the authors relies on such
information as fraction of bandwidth used on each link by
the active LSPs and separately by all backup LSPs. Based on
that, the proposed routing algorithms are able to determine
the candidate backup paths for local recovery to protect single
link or node failures.
Using backward LSPs. A fast-recovery method based on
diverting traffic back towards the upstream LSR and selecting
one of the predefined alternative LSPs was proposed in [115]
and improved further in [119], [146]. The underlying idea of
the related fast-recovery strategy is illustrated in Fig. 14.

Once a failure is detected by one of the LSRs on the primary
LSP, packets are sent along the backward LSP towards the
upstream LSR. The upstream LSR recognizes the backward
flow, marks the last packet sent along the broken LSP using
one bit of the Exp field of the MPLS label stack (note
that no overhead is introduced at this point), and stores the
subsequent packets received from the upstream LSR in a local
buffer to avoid packet reordering. As soon as the previously
marked packet is received again from the downstream LSR,
all related packets stored in the buffer are forwarded to the
upstream LSR. Eventually, the source LSR of the protected
LSP redirects packets onto the predefined alternative LSP.

While the original method already allowed for a significant
reduction of the overall path computation complexity and
signaling requirements5, the improved method was designed
to eliminate packet reordering which was one of the disadvan-
tages of the earlier proposals. The average delay during the
restoration period has also been improved. It is worth noting
that this recovery strategy may be used to achieve one-to-one
and many-to-one protection faster as well as to avoid network
congestion, allowing for better QoS control and reduced packet
losses [119], [146]. More importantly, by introducing relatively
small packet buffers at LSRs to be able to store copies of
the limited number of forwarded packets, it is possible to

5In addition, note that the computations related to primary and alternative
paths may be performed at a single switch, to avoid possible issues resulting
from distributed computation.

eliminate packet losses entirely and thus improve the observed
TCP performance during the failover considerably [146]. At
the same time, the proposed two improved approaches do not
specify any particular method for the effective selection of
alternative LSPs — an important factor having significant in-
fluence on the QoS and the observed path stretch. Interestingly,
the authors of [115] already anticipated the potential problems
in the context of delay-sensitive network services and outlined
the concept of restoration shortcuts as one of the possible ways
to counteract the expected increase of transmission delay as
a result of the failover. In particular, while using a restoration
shortcut, traffic is rerouted over an alternative shortcut LSP
established between the LSR on the primary path (upstream
of the failed link) and the destination of the primary LSP,
potentially merging into the other existing backup LSPs.
Leveraging the multipath transmission. Resilience in MPLS
networks can also be provided by multipath structures being
a type of protection-switching mechanisms. One of the repre-
sentative schemes of this kind is the self-protecting multipath
(SPM) concept proposed for MPLS networks in [147].

multipaths

R1

R2 R4 R7 R10 R13

R3 R6 R9 R12 R14

R5 R8 R11

R15

Fig. 15: Example configuration of a multipath.

As presented in Fig. 15, for a given end-to-end demand d,
in the normal operation mode, SPM uses all pre-established
paths for data transmission. The multipath structure should in-
clude paths being mutually node-disjoint, to ensure protection
against a failure of a single node/link as well as to simplify the
procedure to establish the multipath. Load balancing among
several paths of the multipath is also helpful while dealing with
failures. In the case of any failure affecting a given path in the
multipath structure, traffic is redistributed across all the other
working paths. Therefore, for a multipath consisting of k paths,
SPM needs k+1 different traffic distribution functions: one for
operation in the failure-free scenario, and the next k functions
to cover the failure of any of the k paths.

The evaluation presented in [147] shows that the approach is
very efficient in protecting against failures of single nodes and
links, as it requires only about 20% of additional transmission
capacity for this purpose.

One of the variants of SPM has been presented in [148],
with the extension to introduce the traffic distribution function
specific to the failed network element along the path, instead
of the former traffic distribution function defined in the context
of a given path.

The SPM concept has been enhanced in [149] with the
proposal of a linear program (LP) to optimize the SPM
load balancing function to maximize the amount of traffic
transported with resilience requirements for legacy networks

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

18

(i.e., already deployed networks). The objective is achieved
by solving the corresponding problem of minimization of the
maximum link utilization in any protected failure scenario.

E. Experimental Evaluation

Some of the existing solutions have been evaluated in
real test network environments. As the corresponding results
may provide a valuable context with respect to the expected
performance, we summarize below the selected reports related
to fast-recovery mechanisms.

The first paper discussed in this section presents the compar-
ison of the following two mechanisms with respect to packet
losses and duration of the failover phase [126]:
• MPLS Traffic Engineering (TE) Fast Reroute [26], [114],

[129];
• IP Fast Reroute Framework [150].
The evaluation scenarios assumed single link failures and

protection based on either predefined backup paths using
MPLS TE Fast-Reroute tunnels or IP Fast-Reroute Loop-
Free Alternates (for a detailed discussion of IP Fast-Reroute
solutions, the reader is referred to Section V). The results pre-
sented by the authors suggest that with increasing number of
rerouted LSPs in MPLS networks, the failover time increases
exponentially (even beyond 50 ms) and packet losses are also
higher. In the case of the investigated IP network, increasing
the number of IP prefixes also causes a non-linear increase of
the failover time, while traffic losses remain almost unchanged.

In contrary to the experiments reported in [126], the sec-
ond analyzed paper presents the results from a large and
geographically-distributed production backbone network in
which every major routing node consisted of several core,
aggregation, and edge routers [128]. The observed parameters
included TTL changes, packet losses, packet reordering, and
one-way delay changes. The experiments were performed
over a 14-month period and the two considered restoration
methods (OSPF reconvergence and MPLS-TE Fast Reroute)
were analyzed during seven consecutive months each. The
evaluation results have shown that the MPLS-TE Fast-Reroute
mechanism reduces packet losses and packet reordering during
link failure events significantly, also suppressing the possible
micro-loops.

The third considered paper compares the effectiveness of
MPLS-TE Fast Reroute and IP OSPF Fast Reroute based on
Loop-Free Alternates in terms of packet losses and network
convergence time, for different numbers of LSPs and IP
prefixes [131]. Both mechanisms were configured in a WDM
test network. The reported results confirm that with increasing
number of rerouted LSPs in MPLS networks, the convergence
time increases significantly and the observed packet losses are
also higher. Again, in the case of the investigated IP network,
increasing number of IP prefixes caused a non-linear increase
of the convergence time, while traffic losses remained almost
unchanged.

Fast-recovery mechanisms designed for MPLS have been
shown to improve network operation and performance in dif-
ferent failure scenarios. At the same time, there are still some
related open challenges. In particular, fast restoration relying

on backup LSPs requires that additional LSPs be configured
and established in advance and in an effective way, taking into
account the trade-off between the coverage of failure scenarios,
the available network resources, expected traffic demands, key
performance indicators from the perspective of users, and the
overall complexity of the system. Moreover, considering the
variety of failure detection and mitigation mechanisms running
concurrently on different layers of networked systems, another
challenge is how to avoid packet losses and possible packet
reordering during the failover.

V. INTRA-DOMAIN NETWORK-LAYER FAST RECOVERY

In this and the next sections, we review the representative
schemes for fast recovery that operate at the network layer
(Layer 3) of the Internet protocol stack. In particular, this
section is dedicated to the intra-domain setting, while the next
section will discuss the solutions that work across Autonomous
Systems (inter-domain). Since the prevailing network-layer
protocol today is the Internet Protocol suite, namely the two
versions IPv4 and IPv6, most of the fast recovery schemes
we discuss here are specifically designed for IP (IP Fast
ReRoute, see below). However, the main ideas will be reusable
in any network layer that provides connectionless, unreliable
datagram service [151].

In the context of a single provider network, the aim of
the operator is to achieve the highest possible level of failure
resilience and the lowest service recovery time. As outlined in
Section II, in general this is attained by preplanned protection
schemes (with backup paths established before the failure),
providing detours over small parts of working paths (i.e.,
local detours) with backup capacity reserved in advance to
ensure an undisrupted flow of traffic after a failure (dedicated
protection). For standard IP networking, however, it is not
common to see these objectives fulfilled jointly due to the
connectionless nature of the IP network layer that does not
allow packets to be “pinned” to a preplanned detour after a
failure. Therefore, IP Fast-Reroute (IPFRR) mechanisms need
to tediously work around the limitations of the underlying
network layer, and typically rely on shared detours and provide
“best-effort” protection only. In other words, in IP failure
recovery, usually there is no guarantee that the necessary
capacity and network resources remain available along the
backup paths after a failure event (see, e.g., [152], [153]).

Below, we review the most important intra-domain fast IP
recovery schemes following a rough chronological order and
we provide a simple taxonomy for classifying the schemes.
We note, however, that our coverage of IP Fast ReRoute and
related concepts is intentionally incomprehensive. In particu-
lar, we deliberately ignore control-plane driven IP restoration
schemes (which tend to be slower) and we concentrate on very
fast data-plane driven shared, preplanned, local protection
schemes exclusively (recall Fig. 6), which either work on top
of the unmodified connectionless destination-based unicast IP
data plane service and a distributed intra-domain IP control-
plane protocol or require only minimal extensions to the bare-
bone IP specification [154]–[156]. For fast IP restoration, see
[15], [157], [158], for pointers on IP multicast fast recovery

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

19

Fig. 16: A taxonomy of the most important general concepts in IP Fast ReRoute.

see, e.g., [159]; and for schemes that do not fit into this
pure IP data-plane “ideal”, like O2 routing [160], Failure-
carrying Packets (FCP) [161], Protection routing [152], [153],
or KeepForwarding [162], see Section VII. We largely ignore
the intricate issues related to IP fault detection and fault
localization, noting that IP recovery usually relies on (from
the slowest to the fastest technique) control plane heartbeats,
Bidirectional Forwarding Detection, and link-layer notifica-
tion, see Section II-C. For further detail on IPFRR refer to
[23], [24], for the algorithmic aspects see [163]–[167], and
for a comprehensive evaluation and comparison of different
IPFRR techniques see [35], [168]. For a taxonomy of the most
important concepts in IPFRR, see Fig. 16, and a timeline of
related research and standards, see Fig. 17.

A. The IP Fast ReRoute Framework

When a link or node failure occurs in a routed IP network,
there is inevitably a period of disruption to the delivery of traf-
fic until the network re-converges on the new topology. Packets
for destinations that were previously reached by traversing
the failed component may be dropped or may suffer looping
[169]–[171]. Recovery from such failures may take multiple
seconds, or even minutes in certain cases, due to the distributed
nature of the IP control plane and the complex interactions
between intra-domain Interior Gateway Protocols (IGPs) and
inter-domain exterior gateway protocols [15], [157], [158].
Many Internet applications (multimedia, VPN) have not been
designed to tolerate such long disruptions.

In this section, we review the IP Fast ReRoute framework
(IPFRR [150]), a mechanism to provide fast data-plane-driven
failure mitigation in an intra-domain unicast setting. The first
specification for IPFRR was drafted in 2004, reaching the
status of an Informational RFC to 2010 [150].

Reports suggest that roughly 70% of outages in operational
IP backbones are local, affecting only a single link and only
a single Autonomous System (AS) at a time, and transient,
lasting only a couple of seconds; think of, e.g., a flapping
interface or a router in a quick reboot cycle [139], [158], [172].
The main premise of IPFRR is that for such transient local
failures, it is an overkill to execute two full AS-wide IGP re-
convergence processes just to eventually return to the original
configuration, since IGPs are usually too slow for operational
purposes [15], [157], [158].

The main goal of IPFRR is (1) to handle short-term dis-
ruptions efficiently and (2) remain fully compatible with the
IP control plane and data plane, allowing for the incremental

2000 • Fast IGP convergence, IETF draft [157]

2004 • Failure Insensitive Routing [173]
• IP Fast ReRoute Framework: first IETF draft

2005 • Resilient Routing Layers [174]

2006
• U-turn Alternates & Not-via Addresses: IETF drafts
• Multiple Routing Configurations [175]

2007 • IP Fast Reroute with Failure Inferencing [176]

2010
• RFC 5714: IP Fast ReRoute Framework [150]
• RFC 5715: Loop-Free Convergence [169]

2013
• RFC 6981: Not-Via Addresses [130]
• Virtual Routing Overlays [177]

2015 • RFC 7490: Remote Loop-Free Alternates [178]

2016
• RFC-7812: IPFRR using Maximally Redundant Trees (MRT-

FRR) [155]

2019 • Shortest Redundant Trees [179]

[Year]

Fig. 17: Timeline of selected documents and solutions related
to IP Fast Reroute.

deployment with no flagship date. The framework rests on
two main design principles: local rerouting and precomputed
detours (recall the general taxonomy in Section II-B). Local
rerouting means that only routers directly adjacent to a failure
are aware of it, which eliminates the most time-consuming
steps of IGP-based restoration, the global flooding of failure
information. Additionally, IPFRR mechanisms are proactive in
that detours are computed, and installed in the data plane, be-
fore a failure occurs. Thus, when a failure eventually shows up,
the affected routers can switch to an alternate path instantly,
letting the IGP to converge in the background.

The IPFRR framework distinguishes local repair paths
(ECMP and LFA, see Section V-B), the cases when a router
has an immediate IP-level neighbor with a path that is still
functional after the failure, and multi-hop repair paths, when-
ever the closest router with a functional repair path is multiple
IP links away and, therefore, is not available directly via a local
interface (rLFA).

B. Shortest-path Fast Reroute

Most intra-domain IP routing protocols, like OSPF (Open
Shortest Path First [10]) or IS-IS (Intermediate System-to-
Intermediate System [11]), rely on a flooding mechanism to

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

20

distribute network topology information across the routers
inside an AS and a shortest-path-first algorithm, i.e., Dijsktra’s
algorithm [32], to calculate the best route, and the primary
next-hop router(s) along these routes, to be loaded into the
data plane. The idea in all LFA-extensions discussed in this
section is to leverage the IGP link-state database, readily
available and synchronized across all routers, to compute not
only a primary next-hop to each destination, but also to obtain
one or more secondary next-hops as well that can be used
as bypass whenever the failure of the primary next-hop is
detected. As such, shortest-path-based IPFRR is generally easy
to implement and incrementally deploy in an operational net-
work. This, however, comes at the price of a major limitation:
namely, as the bypass paths themselves must also be (at least
partially) shortest paths, a proper shortest bypass path may
not always be available in a given topology for a particular
failure case. Correspondingly, in general it is very difficult to
achieve 100% protection against all possible failure cases with
shortest-path-based IPFRR methods.
Loop-free Alternates (LFA) is the basic specification for
the IP Fast-ReRoute framework to provide single-hop repair
paths. In LFA, the emphasis is on simplicity and deployability,
instead of full coverage against all transient failures [32],
[180]. Drafted in the IETF Routing Working Group in 2004,
LFA reached Standards Track RFC status in 2008 (two years
before the actual IPFRR framework specification was finalized
[150], see Fig. 17).

As mentioned above, the idea in LFA is to exploit the
information readily available in the IGP link-state database
to compute secondary next-hops, or “alternates” as per [32],
that can be used as a bypass whenever the failure of the
primary next-hop is detected. Computing these secondary
next-hops must occur in a “loop-free” manner so that the
bypass neighbour, which, recall, will not be explicitly notified
about the failure event, will not loop the packets back to
the originating router. LFA uses some basic graph-theory
and simple conditions based on the shortest-path distances
calculated by the IGP to ensure that the calculated alternate
routes are indeed loop-free.

The conditions based on which routers can choose “safe”
alternate next-hops are as follows. Given router s, destination
prefix/router d, let e be a shortest-path next-hop of s towards d
(there can be more than one next-hop, see below). In addition,
let dist(i, j) denote the shortest-path distance between router
i and j. Then, from s to d with respect to the next-hop e,
a neighbour n 6= e of s is

– a link-protecting LFA if

dist(n, d) < dist(n, s) + dist(s, d) , (2)

– a node-protecting LFA if, in addition to (2),

dist(n, d) < dist(n, e) + dist(e, d) , (3)

– a downstream neighbour LFA if

dist(n, d) < dist(s, d) , (4)

– and an ECMP alternate if

dist(s, n) + dist(n, d) = dist(s, d) . (5)

R1
R2

R3

R4

R5 R6

1

2

3

2

4

7 2

Fig. 18: Illustration of Loop-free Alternates and ECMP al-
ternates with link costs as marked on the edges. For source
router R1 towards destination router R6, both R2 and R3 are
ECMP next-hops (marked by orange arrows in the figure),
each one providing a node-protecting ECMP LFA with respect
to the case if the other one fails, and router R4 is a link-
and node-protecting LFA protecting against the (potentially
simultaneous) failure of R2 and/or R3 (the backup route is
marked by a dashed red arrow in the figure).

The definitions follow each other in the order of “strength”
and generality: for instance, an ECMP alternate is always
a downstream neighbour, and a node-protecting LFA is also
link-protecting. For the exact relations among different LFA
types, see [32], [180], and for an illustration of the main
concepts in LFA, refer to Fig. 18. In general, a “stronger”
notion of LFA alternate next-hop should always be preferred
over a “weaker” one whenever multiple choices are available.
An algorithm to choose the best option in such cases is
specified in [32].

The main advantages of LFA are that it is simple to imple-
ment and fully-compatible with the deployed IP infrastructure.
Correspondingly, LFA is readily available in most major router
products [181]–[183]. Nevertheless, LFA comes with a number
of distinct disadvantages as well. First, it needs an additional
run of Dijkstra’s algorithm from the perspective of each LFA
candidate neighbour to obtain the shortest path distances,
causing the extra control CPU load. Second, LFA does not
guarantee full failure coverage: depending on the topology and
link costs LFA can protect about 80% of single link failures
and 40–50% of node failures in general. Correspondingly,
various optimization methods are available in the literature
to improve failure-case coverage in operational networks
[184]–[189]. Third, LFA is prone to forming transient “micro-
loops” during recovery, caused by certain routers still using the
“normal” routes while others already switching to the recovery
routes [32], [190], and possibly “LFA loops” as well that may
show up after all routers have switched. For instance, using
a link-protecting LFA to protect a node failure may generate an
LFA loop that will persist until the IGP finishes full reconver-
gence in the background [32], [191], [192]. In general, there
is a trade-off between loop-avoidance and failure-coverage.
For example, using only the strong notion of a downstream
neighbour (cf. Eq. (4)) as an LFA eliminates both micro- and
persistent LFA loops, but the failure case coverage attained
this way may be poor in certain provider networks [180].
U-turn Alternates is an extension to the basic LFA specifica-
tion providing multi-hop repair paths, on top of the local-repair

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

21

mechanism implemented by LFA, in order to improve the
failure case coverage [193]. The U-turn alternates specification
never reached RFC status.

The main observation in the U-turn alternates specification
is that the only way for a router to remain without an LFA
is if it is itself one of the default next-hops of each of
its neighbours. Then, a U-turn alternate is a neighbour that
has a further neighbour (at most two hops away) that still
has a functional path to the destination after the failure.
Consequently, that “next-next-hop” neighbour of the U-turn
alternate can be used as a bypass whenever the primary next-
hop fails and no LFA is available. Unfortunately, this requires
some external mechanism to prevent the U-turn alternate to
loop the packet back to the originating router (which would
be the “default” behaviour). See Fig. 19 for an illustration.

Technically, for router s, destination prefix/router d, a
neighbour n of s is a U-turn alternate next-hop from s to
d if (1) s is the primary next-hop from n to d and (2) n
has a node-protecting loop-free LFA to d by (3). In such
cases, s can send a packet to n, which, detecting that a packet
was received from its primary next-hop (this can be detected
by, e.g., Reverse Path Filters [194]), can send it along its
node-protecting LFA. Alternatively, a packet sent to a U-turn
alternate can be explicitly marked to signal that it should not
be looped back to the originating router.

The U-turn alternates specification is relatively simple to
implement. On the other hand, it needs RPF, per-packet
signalling, tunnelling, or interface-specific forwarding (see
below) to indicate that packet is travelling to a U-turn al-
ternate, plus an additional run of Dijkstra’s algorithm from
each neighbour of every U-turn candidate. Still, depending
on the topology U-turn alternates cannot guarantee full failure
coverage, not even for single link failures. To account for non-
complete coverage, [195] presents an extension where multiple
U-turns may come one after the other. This provides 100%
protection at the cost of worsening the issues related to the
signalling of U-turns.
Remote Loop-free Alternates (rLFA) is another extension of
the basic LFA specification to extend the scope to multi-hop
repair paths [166], [167], [178], [196]. Again, the intention is
to improve LFA failure case coverage.

The most important observation that underlies rLFA is that
any remote router may serve as an alternate, provided that (1)
the remote router has a functional path to the destination after
a failure, (2) the shortest path from the originating router to the
alternate does not traverse the failed component, and (3) the
originating router has some way to tunnel packets from itself
to the alternate. In such cases, whenever a router needs to find
a bypass to divert traffic away from a failed primary next-hop,
it can encapsulate these packets to tunnel the diverted traffic
to the remote loop-free alternate (using, e.g., IP-IP, GRE, or
MPLS), so that the router at the tunnel endpoint will pop the
tunnel header from the packets and use its default next-hop
to reach the destination. See Fig. 19 for a sketch of the main
ideas in rLFA.

In order to check whether a remote router is a valid rLFA
candidate, the shortest path segment from the originating
router to the rLFA and from the rLFA to the destination router

both must avoid the failed component. The second condition
is compatible with the LFA loop-free condition, whereas the
first condition is needed because the encapsulated packets,
travelling from the originating router to the rLFA, will also
follow the shortest path and, as such, may also be affected by
the failure.

Formally, for router s, destination router/prefix d, and
next-hop e from s to d, some n ∈ V (not necessarily an
immediate neighbor of s) is a link-protecting remote loop-free
alternate (rLFA) if the below two conditions hold:

dist(s, n) < dist(s, e) + dist(e, n) and (6)
dist(n, d) < dist(n, s) + dist(s, d) . (7)

The node-protecting case can be defined similarly [166].
The pros of rLFA are that it remains largely compatible

with IP and it is also straight-forward to implement on top of
MPLS/LDP and segment routing [197].

On the negative side, rLFA may cause extra control CPU
load as it needs each router to execute a shortest-path com-
putation from potentially each other router, and extra data-
plane burden by routers having to maintain possibly a huge
number of tunnels to reach each rLFA. Crucially, rLFA may
still not provide full protection, not even in the unit-cost case.
Papers [166], [167] provide analytical and algorithmic tools to
characterize rLFA coverage in general topologies. To address
the inadequacy of the failure case coverage, the originating
router may use directed forwarding to instruct the rLFA to
send a packet through a specific neighbour. This modification
guarantees full coverage for single-link failures [196], [198].
Interestingly, this use case served as one of the precursors
for the development of segment routing [197] and the main
motivation to develop a family of LFA extensions that provide
complete failure case coverage in the context of this emerging
segment routing framework [199]. We note that the rLFA
specification largely replaced U-turn alternates.
IP Fast ReRoute using Not-via Addresses (Not-via) is
a specification for fast IP failure protection that addresses the
limitations of LFA and rLFA. Drafted in 2005, the specification
reached RFC status in 2013 [130] but major vendor adoption
and large-scale deployments did not ensue.

The main drawback of rLFA is that even if a suitable remote
LFA candidate is available after a failure the originating router
may not have a way to send bypass packets there, since all its
shortest paths to rLFA candidates may converge along a single,
possibly failed, next-hop. Not-via overcomes this problem by
tunnelling/encapsulating packets through a special “not-via” IP
address that explicitly identifies the network component that
the repair must avoid. Hence, each router can pre-compute
backup paths covering each individual failure case, by taking
a modified graph from which the failed component was
explicitly removed and then re-computing the shortest paths in
this modified graph. In operation, any router along the detour,
receiving a packet destined to a not-via address, immediately
(1) knows that this packet is currently travelling on a detour
and therefore the default routing table next-hop should not be
applied, and (2) identifies the failed component associated with
the not-via address and switches to the pre-computed backup

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

22

R1 R2

R3

R4

R5 R6

1

2

10

22

10

3 4

Fig. 19: Illustration of U-turn Alternates and Remote Loop-
free Alternates with link costs as marked on the edges. Source
router R1 has router R4 as its default shortest-path next-
hop towards router R6 (marked by an orange array in the
figure) and there is no available LFA candidate neighbour that
would provide protection against the failure of the link R1–
R4 (marked by a red cross), or the next-hop router R4 itself.
However, router R5 is both a U-turn alternate and a Remote
Loop-free Alternate in this case: note that both R2 and R3 are
possible U-turn alternate next-hops that can pass the packet to
R5, but in the case of rLFA the bypass path will be provided
along the shortest R1–R5 route exclusively (i.e., by router R2),
yielding the new path R1–R2–R5–R6 (marked by dashed red
arrays).

shortest path. See Fig.20 for an demonstration of the main
concepts in Not-via.

Suppose that router s detects that its primary next-hop e
towards router/prefix d has failed. In such cases, s encapsulates
the packet in a new tunnel header and into the outer IP header
it sets the destination address as a not-via address. The not-via
address is an ordinary IP address that was administratively
configured, and advertised into the IGP to mean “an address
of router d that is reachable not via node e”. In order to
cut down the length of the bypass paths, in the original
not-via specification the destination of the repair path is not
immediately d but rather the “next-next-hop” of s to d (i.e., the
next-hop of e to d). This behaviour has been questioned several
times since then [200]–[202]. Routers in the IGP domain will
advertise not-via addresses alongside the standard IP prefixes
and store a next-hop in the forwarding table for each “x not-
via y” address by (1) temporarily removing component y from
the topology and (2) calculating the shortest path to x in the
modified topology. As long as a failure does not partition the
network, this mechanism ensures that each single component
failure can be protected.

Notably, Not-via was the first viable IPFRR specification
to guarantee full failure coverage against single-component
failures. Yet, it remains fully compatible with the IP data
plane (but not with the control plane, see below), requiring
no expensive modification to IP router hardware. Unfortu-
nately, the resource footprint may still be substantial. First, it
requires maintaining additional not-via addresses, introducing
significant management issues (no standard exists as to how
to associate a not-via address with a concrete router/failure
case), control-plane burden (possibly thousands of not-via
addresses must be advertised across the IGP [203] and each
potential failure case requires an additional run of Dijkstra’s

algorithm, and data-plane load (not-via addresses appear in the
IP forwarding table, which already contains possibly hundreds
of thousands of routes). In addition, tunnelling schemes,
like rLFA and Not-via [130], [178], [204], [205] may raise
unexpected and hard-to-debug packet loss or latency when the
size of the encapsulated packets exceeds the MTU (Maximum
Transfer Unit), causing a packet drop (when the “Don’t
fragment” bit is set) or a costly and timely fragmentation/
reassembly process at the tunnel endpoints (in IPv4).

The Not-via specification sparked significant follow-up
work. [206] introduces aggregation and prioritization tech-
niques to reduce the computational costs of Not-via and the
forwarding table size. The paper also proposes an algorithm
(rNotVia) that allows a router to efficiently determine whether
it is on the protection path of a not-via address and cuts
down unnecessary calculations. Lightweight Not-via [200],
[201] aims to break down the management burden, decrease
the computational complexity, and reduce the number of not-
via addresses needed, based on the concept of (maximally)
redundant trees [202], [207]. This modification allows to cover
multiple failure scenarios using a single not-via address, which
reduces the number of necessary not-via addresses to 2 per
router. The question whether the combined use of LFA and
Not-via results in operational benefits is asked in [203]; the
answer is generally negative.
Failure Insensitive Routing (FIR) using interface-specific
forwarding is an IPFRR proposal originating from the
academia, which gained significant following in the research
community [173]. This is the first, and possibly the most
elegant, IPFRR method proposed (the original paper appeared
as early as 2003, predating even the first IPFRR draft, see
Fig. 17), providing full protection against single link failures.
Later versions and extensions address various shortcomings
of FIR, e.g., provide protection against node failures ([176],
[208]–[212], see below). Currently, we know of no off-the-
shelf router products that implement FIR.

FIR is similar to Not-via in the sense that routers along a de-
tour can identify the failed component. However, instead of us-
ing Not-via addresses that explicitly communicate the identity
of the failure, in FIR routers rather infer it autonomously from
packets’ flight: when a packet arrives through an “unusual”
interface, through which it would never arrive under normal
operation, the set of potential links whose failure could lead
to this event can be inferred. Using this inferred information,
routers can divert packets to a new next-hop that avoids the
failed links. This provides full failure case coverage, at the cost
of the modification of the default IP data plane: forwarding
decisions in FIR are made not only based on the destination
address in a packet, but are also specific to the ingress interface
the packet was received on. See Fig. 20 for a sample topology
demonstrating interface-specific routing.

The Failure Insensitive Routing (FIR) [173] scheme re-
volves around two basic concepts: key links, used to identify
the potential failure cases that could lead to a router receiving
a packet on a particular interface, and interface-specific for-
warding tables, which assign a next-hop to each destination
router/prefix separately for each ingress interface. Formally,
given router s, destination d, and next-hop e from s to d,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

23

Fig. 20: Illustration of Not-via Addresses and the Failure
Insensitive Routing with link costs as marked on the edges.
Not-via: when link R2–R5 fails (marked by a red cross in the
figure) along the shortest R1–R6 path (marked by an orange
arrow), R2 will tunnel packets destined to R6 to the address
“R6 not via R5”. The packet will travel along the shortest
R2–R6 path with the default next-hop R5 removed from the
topology (marked by a dashed dark red arrow) immediately to
the next-next-hop (i.e., R6). FIR: when link R2–R5 fails, R2
recomputes its routing table but will suppress the notification
for the rest of the routers. Rather, it sends the packet back to
R1, which, having received it “out-of-order” from R2, infers
that link R2–R5 and/or R5–R6 has failed and hence forwards
it via R4 to the destination.

the key links at s with respect to d for the interface e-s are
exactly the links along the s → d shortest path except s-e.
The interface specific forwarding table with respect to this
interface is obtained simply by removing the key links from
the topology and running Dijkstra’s algorithm from s. As long
as the topology is 2-connected, removing the key links will
not partition the network and full failure coverage is attained.

Once computed, a router will install the per-interface for-
warding tables into the data plane and, in normal operation,
use standard shortest-path routing to forward packets. To deal
with remote failures, the router does not need to react as
the interface-specific routes are specific enough to handle all
detours, while for local failures it recomputes its shortest paths
but suppresses the IGP failure notification procedure from this
point in line with the requirements of the IPFRR framework.

In a nutshell, in FIR a router detects that a packet is on
a detour from that it is received from its primary next-hop.
In this regard, FIR resembles U-turn alternates but it is much
more generic than that (works for alternates more than two-
hops away). As we have seen, it also generalizes Not-via in
that it does not need additional not-via addresses to identify
the failure, it can infer this information.

FIR is remarkably elegant, simple, and fully distributed,
and it also provides full failure case coverage, including
node failures (see below). On the negative side, interface-
specific forwarding is still not available in the standard IP
data plane: while most 3rd generation routers store a sep-
arate forwarding table at each line card, management and
monitoring APIs to these per-interface forwarding tables have
never been standardized. In addition, FIR may create persistent
loops when more than one link simultaneously fail. To address
these issues, [213] extends FIR to handle node failures, [176],
[209] generalizes this method to asymmetric link costs and

inter-AS links, [210] provides a version that is guaranteed to
be loop-free at the cost of increasing forwarding path lengths
somewhat, while [208], [211], [214] present further modifi-
cations to the backup next-hop selection procedure based on
interface-specific forwarding to handle, among others, double
link failures. For more recent improvements to IPFRR, see
[195].

C. Overlay-based Reroute

Achieving full failure case coverage in IPFRR and adhering
to IP’s default connectionless destination-based hop-by-hop
routing paradigm at the same time seems a complex problem.
Each shortest-path-based IPFRR method we described above
suffers from one or more significant shortcomings due to this
fundamental contradiction, in terms of failure case coverage
or deployability (or both).

The IPFRR methods based on the fault isolation technique
described below offer a way out of this problem: they imple-
ment certain overlay networks on top of the physical topology
so that for every possible local failure there will be at least one
overlay unaffected by the failure that can be used as a backup.
Here, an IP overlay may be any virtual IP network layer
provisioned on top of the physical IP infrastructure using e.g.,
multi-topology routing or virtual routing or forwarding (VRF)
instances. Of course, this may break IP compatibility, as some
way to force bypass traffic into the proper overlay is needed:
most proposals use some additional bits in the IP header (e.g.,
in the ToS field), but tunnels, not-via addresses, and multi-
topology routing could also be reused for this purpose. This
allows bypass paths to no longer be strictly shortest, which
lend more degrees of freedom to assign detours for different
failure cases and leads to higher failure case coverage.

Below, we summarize the most important fault-isolation
techniques proposed so far, with the emphasis on the method-
ology to obtain the overlay topologies themselves. In the
taxonomy of Section II-B, the fault-isolation-based IPFRR
mechanisms discussed below (not to confuse with fault de-
tection and fault localization, see Section II-C) belong to the
class of preplanned, shared or dedicated, global protection
schemes.
General Resilient Overlays is a class of IPFRR methods that
use different, non-shortest-path-based algorithmic techniques
to compute the backup overlays. These methods will be
called “general” to stress that the backup can be an arbitrary
topology, differentiating this class from the subsequent class
where the backups will be strictly limited to tree topologies.

The authors in [215] trace back general fault isolation to
FRoots, which considered the problem in the context of high-
performance routing [216]. The idea in that paper, and in
essentially all extensions [174], [175], [177], [215], [217]–
[221], is the same: find a set of overlay topologies so that
each router will have at least one overlay it can use as
a backup whenever its primary next-hop fails. The difficulty in
this problem is to consider arbitrary, possibly highly irregular
network topologies and/or link costs [216], and to minimize
the number of the resultant overlays to cut down control,
management, and data-plane burden.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

24

Key to all IPFRR methods described in this class is the
notion of failure isolation and backup overlays. We say that a
topology (e.g., an overlay) isolates a failure when the topology,
and the routes provisioned on top of the topology, have
the property that there is a certain set of source-destination
pairs (the “covered pairs”) and failure cases (the “isolated
failures”) so that if we inject a packet into the topology at
a covered source towards a covered destination, the packet will
avoid the isolated failure and flow undisrupted to the required
destination. The set of backup overlays then forms a family
of overlay topologies, with the property that for any pair of
a source and a destination router and any failure there is at
least one backup overlay that isolates the failure and covers the
source-destination pair. Then, if the source selects the proper
backup overlay for the given failure case(s) and destination
node and it has a way to “pin” the packet into that overlay,
then it is ensured that the packet will reach the destination
node avoiding the failure(s).

Provided that a way exists to pin packets into an overlay,
this family of IPFRR mechanisms does not require major
modification to the IP control plane and data plane and hence
is readily deployable, although not in an incremental way.
Also, fault isolation may yield 100% failure case coverage,
even for multi-failures [218]. On the other hand, depending
on the network topology and link costs the number of backup
topologies may be large (in the order of dozens), raising a
substantial management issue. This is especially troublesome
when the task is to protect against multiple failures [219]. Ad-
ditionally, pinning packets to the overlay may not be simple, as
the IP header space is a valuable yet scarce resource and using
some bits for tagging the backup overlay may interfere with
other uses of these bits (e.g., tagging in the ToS field clashes
with the use of the same field in DiffServ). Also, some non-
standard technique is needed by routers to inject packets into
the correct overlay (but see VRO below). Finally, finding the
fewest possible backup overlays is usually a computationally
intractable problem, which calls for approximations that may
deteriorate efficiency.

Starting from FRoots [216], there are many realizations of
the basic general fault-isolation technique. Below, we survey
the most representative ones. The earliest proposal (following
FRoots) seems to be Resilient Routing Layers [174], where the
backup overlays are obtained by explicitly removing certain
links from the overlay topologies. If the overlays are such that
each link is isolated by at least one overlay, then full protection
against single-link failures can be attained. Multiple Routing
Configurations (MRC) and the related line of works [175],
[215], [217], [218] took another approach: instead of effec-
tively removing links from the overlays they reach isolation
by setting link costs separately in each overlay so that shortest
paths will avoid a certain set of links, effectively isolating these
failure cases. This method is easy to adopt for link-, node-, and
multiple-failure protection scenarios [218]. Perhaps the most
viable implementation avenue was outlined in [222] (but see
also [219], [223]): the use of multi-topology routing. Multi-
topology routing is a feature that is to become available in
IGPs [224] to maintain multiple independent overlay routing
topologies on top of the default shortest paths, with each

topology using an independent set of link costs. One routing
topology is devoted to support IP forwarding under normal
networking conditions, and when a next-hop of some router
becomes unavailable it simply deviates all traffic that would
have been sent via that next-hope to another interface, over
an alternative routing topology. With a clever optimization of
the link costs per topology, full failure case protection against
link and node failures can be achieved [219], [222], [223]. The
Independent Directed Acyclic Graphs proposal [220] uses a set
of DAGs for similar purposes.

Most recently, Virtual Routing Overlays (VRO [177], [221])
solves two problems inherent in failure isolation, namely,
the lack of standards for injecting packets into overlays and
for pinning a packet into the an overlay until it reaches
the destination. VRO uses LFA and virtual routers for this
purpose: it provisions multiple virtual routers on top of each
physical router, each instance with its own set of local link
costs, so that whenever a packet encounters a failure it will
automatically fall back to a virtual router that is provisioned
as an LFA and will flow within the virtual overlay until it
reaches the destination. The authors in [221] are able to show
that per each physical router at most 4 virtual router instances
in the worst case, and at most 2 instances in the average case,
suffice to reach 100% failure case coverage.
Independent/redundant trees are a class of IPFRR methods
based on the fault isolation technique that restrict the backup
overlays to be trees [154]–[156], [207], [225]–[228].

The idea of searching for backups in the form of simple
tree topologies traces back to redundant trees, red-blue trees,
and ST-numberings [202], [207]. Consider the example of
redundant trees, for instance: here, [207] shows a polynomial
time algorithm to find a pair of mutually link-disjoint directed
trees towards any node (the “red” and the “blue” tree) and
claims that such pair of paths can be found in each 2-connected
graph. Adopting this idea to IPFRR is then straightforward:
whenever the primary next-hop is on the red tree and this
next-hop fails then we pin packets to the blue tree (and vice
versa): the art is then to implement this scheme given the
limitations of the IP data plane [201]. Independent trees, in
contrast, are generally undirected, serving as a backup to
potentially multiple destination nodes [227], but in general
they may be more difficult to compute [229].

Tree topologies have the property that there is at most one
path between any pair of nodes in the tree. Searching the
backup overlay in the form of a tree therefore solves several
issues in one turn: it prunes the search space significantly,
yielding that in most cases the backup trees can be found
in polynomial time (recall, the general question is usually
NP-complete) and makes routing on top of the overlay trivial.
The price is, of course, an increased number of backup over-
lays needed to be provisioned: while the number of general
overlays grows very slowly with the number of routers (close
to logarithmically, at least by experience [215]), redundant
trees are per-node and hence the number of overlays scales
linearly with the number or routers in general [154].

The pros are that independent trees are easy to calculate,
can be generalized for multiple failures, and forwarding along
the tree-shaped overlay is trivial. On the negative side, we

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

25

may still need to pin packets to the correct overlay some way,
which may cause compatibility issues. Furthermore, circular
dependencies between backup trees may make it difficult to
find the correct backup in case of multiple failures [202].

Thanks to the simplicity of this approach, there are many
versions, extensions, and even standards that use independent/
redundant trees for IPFRR [154], [155], [179], [200]–[202],
[225]–[228]. The underlying mathematical notions, revolving
around red-blue trees, ST-numberings, and independent trees,
and the conditions under which they exist, are generally well-
understood [179], [202], [229]. Proposals then differ based
on whether they use directed (redundant) trees or independent
(undirected) trees, and the different ways they implement the
resultant overlays.

The earliest proposal to use redundant trees for IPFRR
is Lightweight Not-via [200], [201], whereby packets are
pinned into the proper (red or blue) overlay tree using not-
via addresses. After multiple modifications, this proposal,
and the related concept of maximally redundant trees for
non-2-connected topologies, reached RFC status and became
the MRT-FRR standard [154], [155], [225]. Recently, [179]
proposes various heuristics to cut down the length of the
resultant paths and [230] compares the performance of MRT-
FRR to that of not-via addresses. Similar ideas exist to reach
the same goals using undirected independent trees for handling
multi-failures [212], [226]–[228].

D. Summary

In this section, we reviewed the most important ideas, pro-
posals, and standards for providing fast network-layer failure
recovery in the intra-domain setting. We reviewed IPFRR,
the umbrella framework for fast local IP-layer protection, in
Section V-A. Then, we discussed the prevalent schemes in
this context, namely, the methods that reuse the IGP’s link
state database maintained and shortest-path routing for failure
recovery (Section V-B) and the schemes that revolve around
virtual overlay networks on top of the default forwarding
topology for this purpose (Section V-C).

In general, fast IP failure recovery in the intra-domain
unicast setting is a well-understood problem area, with several
well-established standards [32], [130], [150], [154], [155],
[169], [178], [190], [225], inter-operable implementations in
off-the-shelf routers [181]–[183], [231], operational experi-
ence [180], [203], and extensive research literature [173], [184]
available. Open problems remain, however: even after several
iterations it is still not entirely clear how to reliably avoid
intermittent micro-loops without slowing down re-convergence
[190] and provide the required quality of service even during
routing transients [152], [153].

Finally, we note that the vast address space that becomes
available with the deployment of IPv6 opens up completely
new possibilities for IP fast recovery. A prominent example
is the emerging segment-routing framework[197], a variant of
source routing where an explicit route can be encoded into
packets as a sequence of smaller path chunk called segments.
Apart from the new perspectives on network programming and
traffic engineering, the standardization of the IPv6 Segment

[Year]

2000

2004

2005

2007

2013

2015

2017

2019

• Delayed Internet routing convergence [233]

• Locating Internet Routing Instabilities [234]

• Achieving sub-50 milliseconds recovery upon BGP peering link
failures [15]

• Limiting Path Exploration in BGP [235]

• R-BGP: Staying Connected In a Connected World [236]

• LOUP: The Principles and Practice of Intra-Domain Route Dis-
semination [237]

• BGP Prefix Independent Convergence [28]

• SWIFT: Predictive Fast Reroute [238]

• Blink: Fast Connectivity Recovery Entirely in the Data Plane
[239]

Fig. 21: Timeline of the selected documents and solutions
related to inter-domain network-layer fast recovery (entries
marked in gray provide the general context).

Routing Header [232] enables new fast-recovery schemes to
attain complete failure recovery on top of a pure IPv6 data
plane; see, e.g., [199].

VI. INTER-DOMAIN NETWORK-LAYER FAST RECOVERY

Realizing FRR in the inter-domain routing, i.e., across
network domains administered by independent entities, entails
solving an additional set of challenges compared to intra-
domain FRR. The Border Gateway Protocol (BGP) is today’s
de-facto inter-domain routing protocol that dictates how net-
work organizations, henceforth referred to as Autonomous Sys-
tems (ASes), must exchange routing information in the Internet
to establish connectivity. Intuitively, since networks do not
have control and/or visibility into other network domains, the
proposed FRR techniques often achieve much lower resiliency
to failures than intra-domain mechanisms. Moreover, inter-
domain FRR often requires some sort of coordination among
network domains in order to guarantee connectivity, which has
been an obstacle for most of the proposed schemes, preventing
them from being standardized. In this section, we discuss
challenges around the problem of realizing FRR in the wider
Internet (i.e., in BGP) and we describe different approaches
proposed to tackle this problem. We present a timeline with
a selection of work on the topic in Fig. 21, starting from the
initial work in the early 2000s exposing the problem of slow
BGP convergence, and then covering the sequence of work on
improvements for the detection of failures and fast restoration
of connectivity in the Internet.

A. Background on BGP Route Computation

BGP is a per-destination policy-based path-vector routing
protocol. The owner of an IP prefix π configures its BGP
routers to announce a route destined to π to (a subset of)
its neighbors according to its routing policies. A BGP route
contains the destination IP prefix destination, the sequence
of traversed ASes (i.e., the AS_PATH) and some additional

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

26

information that is not relevant for this section. When an
AS receives a new BGP route, it extracts the destination IP
prefix destination π and checks whether the currently selected
route is worse than the new one based on its routing ranking
policies. In this case, it updates its new best route towards π
and announces it to (a subset of) its neighbors according to its
routing policies. In the case of link/node failure, reconvergence
is triggered by the node adjacent to the failure, which either
selects an alternative best route towards the destination or
withdraws the existing route by informing its neighbors.

B. Challenges

Realizing Internet-wide FRR requires taking into consider-
ation three unique aspects of the inter-domain routing setting.
First, the Internet is not administered by a single organi-
zation, but it rather consists of thousands of independent
interconnected network organizations with possibly conflicting
goals. Second, BGP convergence is significantly slower than
intra-domain routing protocols (i.e., on the order of min-
utes compared to hundreds of milliseconds/seconds for intra-
domain protocols) [233], [238]–[242]. Finally, Internet routing
protocols must guarantee connectivity towards hundreds of
thousands of destination IP prefixes. There are four main
consequences related to the design of FRR mechanisms that
we can draw from the above considerations. First, failures of
inter-domain links can lead to long and severe disruptions,
as the BGP control-plane may take minutes to reconverge.
FRR at the inter-domain level is therefore critical for restoring
Internet traffic. As the number of prefixes can be on the order
of tens of thousands, being able to update the forwarding tables
quickly is of paramount importance. For example, the reported
results of previous measurements indicate that it can take
several seconds to update tens of thousands of prefixes [238].
Second, one cannot assume that all ASes will deploy FRR
mechanisms. This makes clean-slate FRR approaches very
difficult to realize in practice. Third, a network operator has
no visibility of the entire Internet network. Some ASes may
end up (mistakenly or on purpose) detouring their traffic away
from their announced BGP routes without communicating
this information to their BGP neighbors [243]. Fourth, BGP
does not carry any root-cause analysis information within its
messages (i.e., no explicit link failure notification is available),
since all networks must jointly agree on the format of BGP
messages, making it hard to be modified. Fifth, inter-domain
routing messages are disseminated throughout a domain on
top of intra-domain routing protocols. Such an overlay makes
the prompt restoration of inter-domain connectivity even more
complex [237].

Given the above challenges, we first describe two critical
problems concerning the support for FRR on the Internet that
go beyond the computation of backup routes: detection of
possible remote failures and quick updates of the forwarding
planes. We then discuss a set of improvements to BGP that
would allow network operators to precompute backup Internet
BGP routes.

C. Detection of Local and Remote Failures

Detecting failures in the inter-domain routing entails solving
different challenges than in intra-domain routing. First, to
implement FRR in BGP, beyond detecting local failures, an
AS needs to detect and localize remote Internet failures,
as i) downstream ASes may not perform any FRR and ii)
BGP is slow at recomputing a new route, thus leading to
traffic disruptions lasting even several minutes. Failures of
adjacent peering links between two ASes can be detected using
traditional techniques (e.g., BFD [78]) and are not discussed
here. Detection of remote link failures can be performed both
at the control plane and at the data plane, and we discuss these
two different approaches in the following parts of this section.

Detection at the control-plane level. At the control-plane
level, a variety of techniques to detect and localize network
failures using BGP data have been proposed. Some techniques
require coordination from a geographically-distributed set of
trusted vantage points, e.g., PoiRoot [234], [244], [245]. They
are typically general enough to detect a variety of anomalies,
including link failures and routing instabilities, and root-cause
analysis. On the other side of the design space, we have
techniques that do not require any coordination among ASes
and simply attempt to infer remote link failures from the
received bursts of BGP messages describing the route changes/
withdrawals at one single location. We discuss more in details
these types of detection mechanisms as the detection can be
performed locally at the specific node/network that reroutes
traffic.

We focus on the SWIFT system [238] and how it detects
remote failures on the Internet. SWIFT performs the root-
cause analysis on a sudden burst of BGP updates using
a simple intuition: it checks whether a certain peering link has
suddenly disappeared from the AS_PATH of a certain number
of BGP announcement messages received close to each other.
Internally, SWIFT relies on a metric called Fit Score and infers
the failed link as the one maximizing its value. Consider the
example shown in Fig. 22 and Fig. 23 inspired by the original
paper, where we have seven AS nodes numbered from 1 to
7. AS 3, AS 5, and AS 7 originate ten thousand distinct IP
prefixes each, marked in orange, green, and blue, respectively.
The converged state of BGP is shown in Fig. 22 (orange, green,
and blue arrows represent the BGP paths associated with the
corresponding IP prefixes). We assume that AS 2 does not
announce any green route towards AS 5 to its neighbor AS 3.
Let us now consider AS 1 which is sending traffic towards
AS 7 along path (1 3 5 7). When link (3, 5) fails (see the post-
convergence state in Fig. 23), AS 1 starts receiving a sequence
of at least twenty thousand updates for all the routes towards
AS 5 and AS 7 that traverse link (3, 5). AS 1 therefore
infers that one of the peering links from among (1, 3), (3, 5),
and (5, 7) must have failed. To determine which link is down,
AS 1 waits a little bit to see which paths are initially being
modified by BGP. Since AS 1 does not see any path change
for the IP prefixes destined to AS 3, it quickly infers that
link (1, 3) remains fully operational. Moreover, since AS 1
will soon receive a new route from AS 3 towards AS 7 via

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

27

10k

10k

10k

2 6

4

1 3 5

7

Fig. 22: An illustration of SWIFT: the pre-failure state.

10k

10k

10k

6

5

7

2

4

1 3

Fig. 23: An illustration of SWIFT: the post-failure state.

link (5, 7), it infers that the failed link must be (3, 5)6. After
identifying this link, SWIFT quickly reconfigures all the routes
traversing link (3, 5), so that they follow a backup route (see
the following subsection). We note that the inference algorithm
used in SWIFT is more sophisticated than the simplified
version that we have just presented here. In particular, for each
link l at time t, SWIFT computes the value of the Fit Score
metric which tracks i) the number of prefixes whose paths
traverse link l and have been withdrawn at time t, divided
by the total number of withdrawal messages received until t,
and ii) the number of prefixes whose paths traverse link l and
have been withdrawn at time t, divided by the total number of
prefixes whose paths included link l at time t. Based on the
Fit Score metric, SWIFT is able to infer the status of a remote
link.

One definite advantage of fast-recovery mechanisms infer-
ring the status of the network from control-plane messages is
that they significantly speed up the recovery upon a failure. At
the same time, one of the main disadvantages is that tuning the
parameters of these mechanisms for each and every network
is often difficult. In particular, general and comprehensively-
validated guidelines are still missing. Moreover, deployment
of SWIFT-like mechanisms in independent network domains
may lead to severe transient forwarding loops due to the
uncoordinated nature of SWIFT in situations when multiple
failures arise7. Finally, control-plane approaches are inherently
limited by the slow reconvergence of BGP.
Detection at the data-plane level. At the data-plane level,
detection of remote failures can be performed by i) mon-

6Note that the link failure inference algorithm implemented in SWIFT runs
on a per-BGP-session basis and it does not combine BGP updates received
from different sessions.

7Note that SWIFT has some guaranteed properties — see the original paper
for a detailed discussion [238].

itoring explicit application performance-related information
(e.g., similarly to Google Espresso [246]), ii) sending active
probes (similarly to BFD) [245] to verify the route followed
by a packet and to check whether the route is valid, or iii)
passively inspecting the transported traffic to detect if a subset
of the flows are retransmitting a non-negligible number of
packets, as described in the Blink system [239]. In particular,
Blink uses properties of the TCP implementation/TCP stack
which retransmits a non-ACK’ed packet exactly after 200 ms.8

One advantage of data-plane approaches is the speed of
the failure detection process, as traffic travels order of magni-
tudes faster than control-plane messages. However, one clear
disadvantage is that identifying the location of a failure is
a much harder problem, which requires active probing (e.g.,
traceroutes) and cannot be inferred solely from data traffic.

D. Updating the Forwarding Tables

Single link failures between two ASes may affect hundreds
of thousand of destination IP prefixes. Updating the forwarding
plane to reroute all these prefixes is therefore a critical opera-
tion to achieve fast restoration. For example, assuming 100 µs
to update a forwarding entry [247], it takes roughly 10 seconds
to update a forwarding table containing 100 thousand prefixes.

Consider the example shown in Fig. 24a in which we depict
the forwarding table of a BGP router located in AS 1. The
router has installed forwarding rules for the ten thousand IP
prefixes originated by AS 3 (the first 10K prefixes), AS 5
(the second 10K prefixes), and AS 7 (the third 10K prefixes).
For the sake of simplicity, we denote BGP next hops using
AS identifiers, e.g., the BGP next hops of AS 1 are AS 2,
AS 3, or AS 4.

When a packet must be forwarded from AS 1, a lookup is
performed to extract the next hop towards which the packet
is forwarded. This data-plane design clearly has the benefit
of achieving low packet processing time (one lookup) and
low memory occupancy (one entry per prefix) and has long
been used as the reference data-plane architecture by the main
router vendors such as Cisco [248], [249] in the early 2000s.
Yet, this approach is problematic upon peering link failures/
flapping. When the link (1, 3) fails, the router must rewrite the
first, third, and fourth 10K thousand forwarding entries in its
table to steer traffic away from AS 3. We assume that traffic
destined to AS 3 will be rerouted through AS 4 while the
remaining traffic destined to AS 5 and AS 7 will be rerouted
through AS 2. Rewriting 30K entries is an operation that takes
non-negligible time and during which traffic will be dropped.
The update time in this case grows linearly in the number of
prefixes.

This problem is less severe in intra-domain routing where
the number of destinations is on the order of few hundred.9

Solutions to speed-up the update of the forwarding tables
upon a failure have been proposed and we divide them into

8Common value used in most implementations on Linux systems.
9Hierarchical intra-domain routing is a common solution to scale both the

routing computation and the time needed to update the forwarding state. In
contrast, the only hierarchical optimization in BGP is the aggregation of the IP
addresses to compute BGP routes and the usage of Longest-Prefix-Matching
techniques to forward packets at the data-plane level.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

28

table T0

ip_dst AS_next_hop
IP1 3 → 4
... ...

IP10K 3 → 4
IP10K+1 3→ 2

... ...
IP20K 3 → 2

IP20K+1 3 → 2
... ...

IP30K 3 → 2

(a)

table T0

ip_dst virtual_nh
IP1 V NH1

... ...
IP10K V NH1

IP10K+1 V NH2

... ...
IP20K V NH2

IP20K+1 V NH2

... ...
IP30K V NH2

→
table T1

virtual_nh AS_next_hop
V NH1 3 → 4
V NH2 3 → 2

(b)

Fig. 24: Fast data-plane convergence: (a) classical data-plane architecture and (b) the equivalent simplified BGP-PIC data-plane
architecture. We indicate updates of single forwarding entries with arrows depicted inside the field of the forwarding entry.

those targeting failures of adjacent (local) AS-to-AS links and
remote ones.

BGP-PIC [28], [247]. We now discuss a technique to speed
up data-plane updates due to an adjacent inter-domain link
failure. In the case of a local peering link failure, one can
associate in the data plane a Virtual Next Hop (VNH) with
each destination IP prefix, and the VNH with the actual BGP
next hop. This VNH simply acts as an indirection between
the IP destination and the real next hop. Two IP prefixes are
associated with the same VNH if and only if they share the
same primary and backup AS next hops. Intuitively, one can
update many prefixes associated with the same VNH by simply
updating the assignment of the VNH to the real AS next hop.
This technique has been presented in 2005 [247] and has been
incorporated in Cisco devices with the name BGP PIC [28]
years later.

We describe the BGP-PIC mechanism through an example.
Consider the example shown in Fig. 24b. For each prefix, the
control plane at AS 1 computes both the best and backup
BGP best routes (and BGP next hops). It then groups IP
prefixes that have the same forwarding primary and backup
routes in Virtual NextHops (VNHs). In our example, we
have just two VNHs: VNH1 which contains prefixes P1, . . . ,
P10K whose primary route is through AS 3 and backup route
through AS 4, VNH2 which contains prefixes P10K+1, . . . ,
P30K whose primary route is through AS 3 and backup route
through AS 2. When a packet must be forwarded at AS 1,
the first lookup determines the VNH of the packet, while the
second lookup determines the actual BGP next hop.

The main benefit of this approach is that the time needed to
update the forwarding table upon the failure of link (1, 3) is
greatly reduced. In fact, as soon as AS 1 learns that link (1, 3)
is down, it simply updates the next-hop of VNH1 to AS 4 and
it updates the next-hop of VNH2 to AS 2: two single updates
of the forwarding table. In the worse case, in a large network
with N BGP border routers, this approach may require n− 1
data-plane updates, which may be performed in roughly 1 ms
when n = 100. One remaining problem with BGP-PIC is that
it only works for adjacent link failures and cannot be easily
generalized to remote link failures.

SWIFT [238]. In the case of a remote link failure, one can
generalize the above approach, i.e., create a different VNH
for each different AS_PATH. Upon identification of a failure,

the control plane can update the VNH mapping based on
the computed backup information and only update the VNH
traversing the failed link. The number of forwarding table
modifications is linear in the number of VNH traversing the
failed links, possibly a large number. A different approach
has been presented in SWIFT, whose remote failure detection
mechanism has already been discussed in Section VI-C. We
present a simplified description below, focusing only on the
essential insights related to SWIFT.

The control plane associates a backup AS next hop with
each destination IP prefix and an inter-AS link traversed on the
way towards the destination. The alternative next hop can be
quickly activated upon detection of a remote link failure using
a carefully designed packet processing pipeline like the one
described in the SWIFT system [238] and summarized below.
We describe the SWIFT data-plane with an example. Fig. 25
shows the forwarding table based on the example from Fig. 22.
The SWIFT forwarding pipeline consists of two tables, T0 and
T1, arranged in a sequence. Table T0 maps each IP address to
a sequence of actions that fetch information about the traversed
ASes as well as the primary and backup links for the associated
IP address. In the example, we only protect against failures
of the (local) first AS link and the (remote) second AS link.
One can protect against a larger number of links by adding
more remote links. For each link, we store the backup AS
next hop. The first table attaches all the backup options to
the packet header. For instance, a packet destined to IP10K+1

will have AS 2 as a backup if link (1, 3) or link (3, 5) fails.
Table T1 is used to determine the correct next-hop AS by
verifying whether an entry exists in T1 that matches any of the
backup information attached to the packet. More specifically,
when a link fails, the control plane installs two entries in Table
T1, both matching the failed link and instructing the device
to forward the packet to the corresponding backup AS. For
instance, if link (3, 5) fails, the control plane will install two
rules that match all packets traversing link (3, 5) at either the
first or the second hop, so that the matching packets can be
forwarded towards the corresponding backup AS next hop.
The implementation of the action in Table T1 depends on the
expressiveness of the data plane. For instance, in OpenFlow,
one needs to add rules matching each possible backup next
hop to the forwarding action towards that backup next hop.
In P4, however, this action could be expressed in a simpler
way by extracting the backup next hop from the metadata and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

29

table T0

ip_dst prm_nh link1 1st_bkp link2 2nd_bkp
IP1 3 (1, 3) 4 n.a. n.a.
...

IP10K 3 (1, 3) 4 n.a. n.a.
IP10K+1 3 (1, 3) 2 (3, 5) 2

...
IP20K 3 (1, 3) 2 (3, 5) 2

IP20K+1 3 (1, 3) 2 (3, 5) 2
...

IP30K 3 (1, 3) 2 (3, 5) 2

→
table T1

link1 link2 action
(3, 5) ∗ fwd to 1st_bkp
∗ (3, 5) fwd to 2nd_bkp
∗ ∗ fwd to prm_nh

Fig. 25: Simplified SWIFT data-plane forwarding table at AS 1.

finding the egress port based on this next hop.
One advantage of SWIFT is that it requires few updates

to the forwarding table to detour the forwarded traffic to
a different next hop. More specifically, the number of updates
to the forwarding table is linear in the length of the longest
path that a network operator wants to protect, e.g., two updates
to protect the first and second AS links for all the IP prefixes.
At the same time, updating the backup information may still
require a large number of updates (these updates do not affect
the forwarded traffic, though), thus increasing the overhead
on the operating system of the switch. Another limitation of
SWIFT is that it only provides a fast-reroute alternative for
single-link failures assuming there exists an already available
BGP route that is not traversing the failed link. Computing
BGP routes that are robust to any link failure is beyond the
scope of SWIFT and will be discussed in the next section.

E. Fast-Reroute Mechanisms
BGP is a per-destination routing protocol and, as such,

comes with limitations similar to IP FRR techniques discussed
in Sect. V. Specifically, for some network topologies, it is
impossible to find per-destination FRR mechanisms that are
robust to even single link failures. Consider the forwarding
state shown in Fig. 26 where the green solid arrows represent
the forwarding before link (3, 5) fails while the red dashed
arrows represent the forwarding at AS 1 and AS 3 after the
link has failed. Note that we assume AS 2 does not announce
any route towards AS 3. This means that, if the link between
AS 3 and AS 5 fails, AS 3 is left with no safe neighbor to
whom it could forward its traffic (a forwarding loop would be
created otherwise by forwarding traffic back to AS 1).

Inter-domain FRR mechanisms, such as Blink [239],
SWIFT [238], and Google Espresso [246], simply reroute
traffic along any of the available BGP routes. While these
mechanisms cannot guarantee robustness to even single link
failures, these approaches are legacy-compatible with BGP
and, at the same time, provide some minimal degree of
robustness. We now discuss the BGP-based FRR mechanism
called R-BGP [236] for handling single link failures over the
internet without the need to wait for BGP reconvergence.

R-BGP is an enhancement of BGP that allows ASes to
compute backup paths between ASes in a distributed man-
ner. In R-BGP, ASes announce one additional backup route
towards their downstream neighbors, which, in turn, can use
this backup route in the event of a downstream failure. One
key idea of R-BGP is to limit the amount of extra messages
that are needed to be exchanged over BGP by leveraging the

10k

6

5

7

2

4

1 3

announce
failover

through AS 2

Fig. 26: R-BGP: AS 1 advertises a backup route to AS 3,
offering to transit its backup traffic to AS 5 through AS 2.

unique properties of how BGP routes propagates through the
Internet according to customer-peer-provider relationships.

We describe R-BGP through an example. Consider the
example in Fig. 26. AS 1 now advertises a backup route
to AS 3, offering to transit its backup traffic through AS 2
for all the prefixes announced from AS 5. When link (3, 5)
fails, AS 3 simply sends all its traffic to AS 1, which in
turn detects from the fact that the traffic is received from
an “outgoing” direction that the traffic should be forwarded
along the backup path. It therefore immediately sends traffic
to AS 2.

The above mechanism, described in detail in the original
paper, guarantees connectivity for any single link/node failure
at the inter-domain level. The authors of the paper describe
a sequence of optimizations to reduce the amount of additional
information piggy-backed on BGP and how to handle spurious
withdraw messages (see Section X for more information). The
authors also note that special care during the BGP reconver-
gence process must be taken into account by incorporating
information about the root-cause of a failure into BGP. The
main disadvantage of R-BGP is therefore that it requires
modifications to the BGP protocol that must be adopted by
a large number of networks, a cumbersome operation in
practice. Finding ways to enhance R-BGP to handle multiple
link failures and make it incrementally deployable are natural
future research questions that have remained open.

F. Summary

In this section, we reviewed the most prominent techniques
to deal with failures at the Internet level. We first discussed
the main differences in dealing with inter-domain fast reroute
compared to intra-domain: (1) the lack of control and visi-
bility into the entire Internet topology and (2) the large-scale

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

30

amount of destination IP prefixes to be handled. We therefore
discussed the main approaches to quickly detect failures at the
inter-domain levels by inferring such failures from both BGP-
based control-plane signals as well as TCP-based data-plane
ones [238], [239]. We then discussed techniques to quickly
update the forwarding plane when thousands of forwarding
rules have to be modified in response to a link failure. Such
techniques either rely on (1) what we referred as“indirection”
tables for mapping virtual identifiers to a specific forwarding
actions [28], [247] or (2) labeling destination IP prefixes with
their explicit path and matching that path with the failed link
to compute the backup next-hop [238]. We concluded the
section by discussing the currently available yet simple FRR
mechanisms in BGP, i.e., reroute on any alternative existing
path, as well as mechanisms that require modifications to
BGP but achieves guaranteed resiliency for every single link
failure [236].

Many open research problems still require to be addressed:
despite decades of academic and industrial efforts in improving
the resiliency of BGP, the current status-quo is still quite
alarming. Substantial efforts must be targeted to the problem of
detecting failures at the inter-domain level as both Swift [238]
and Blink [239] suffer from false positives and false negatives.
Moreover, data-plane approaches such as Blink are highly
dependent on the specific configuration of RTO timeouts,
which makes it both inaccurate when different congestion
control mechanisms will be deployed, but also vulnerable to
malicious attacks. Finally, supporting backup paths in BGP
seems to be a non-trivial challenge because of the inherent
needs to preserve legacy-compatibility, privacy, and the sheer
size of routing information currently exchanged on the Internet
to glue almost hundreds of thousands of networks and almost
one million IP prefixes.

VII. FAST RECOVERY IN PROGRAMMABLE NETWORKS

In this section, we discuss advanced fast-rerouting mech-
anisms as they are enabled by emerging programmable net-
works. We first provide some motivations for leveraging
programmable network approaches with the goal of improving
network robustness. We then discuss the two main generations
of programmable specifications , i.e., OpenFlow and the most
recent P4. Beyond discussing the existing body of work,
we show through a practical example how the additional
programmability of the P4 language provides unparallel op-
portunities for improving fast reroute mechanisms.

A. Motivation and Background

A simpler and faster failure handling was one of the
reasons behind Google’s move to Software-Defined Networks
(SDNs) [250]. In an SDN, the control over the network devices
(e.g., OpenFlow switches) is outsourced and consolidated
to a logically-centralized controller. This decoupling of the
control plane from the data plane allows to evolve and innovate
the former one independently of the constraints and lifecycles
of the latter one.

However, it also introduces new challenges. If a link failure
occurs, it needs not only be detected but also communicated

to a controller which then reconfigures affected paths. This
indirection does not only introduce delays, but if based on
in-band signaling, the network elements and the controller
may even be disconnected due to the failure. For example,
controller reaction times on the order of 100 ms have been
measured in [251]: the restoration time also depends on the
number of flows to be restored, path lengths, traffic bursts
in the control network, and may take even longer for larger
networks.

Failover in the data plane is hence an even more attractive
alternative in the context of SDNs. Local fast-reroute allows
an SDN switch (or “point of local repair”) to locally detect
a failure and deviate affected traffic so that it eventually
reaches its destination. In the following, we first discuss
solutions based on OpenFlow [18], the de-facto standard of
SDN. Subsequently, we discuss solutions for programmable
dataplanes, such as P4.

B. Recovery Concepts in OpenFlow

OpenFlow supports basic primitives to implement fast
failover functions. In particular, OpenFlow 1.1.0 provided
a fast-failover action which was not available before: it incor-
porates a fast failover mechanism based on so-called groups
allowing to define more complex operations on packets that
cannot be defined within a flow alone [252]. And in particular,
to predefine resilient and in-band failover routes which activate
upon a topological change. Before the introduction of such
FRR primitives, researchers relied on ad-hoc non-standardized
extensions to OpenFlow, e.g., flow priorities, timers, automatic
deletion of rules forwarding on failed interfaces, to implement
FRR primitives [253].

Fig. 27 illustrates the OpenFlow model and its FRR mech-
anism: a controller (e.g., Floodlight) can populate the for-
warding tables of the different switches from a logically
centralized perspective. To support fast-failover to alternative
links without control plane interaction, OpenFlow uses group
tables: the controller can pre-define groups of the type fast-
failover (FF in the figure, the group table of s1 is shown).
a group contains separate lists of actions, referred to as buckets.
The fast-failover group is used to detect and overcome port
failures: each bucket has a watch port and/or watch group
to watch the status of the indicated port/group. The bucket
will not be used if the element is down. That is, a bucket in
use will not be changed unless the liveness of the currently
used bucket’s watch port/group is updated. In this case, the
group will quickly select the next bucket in the bucket list
with a watch port/group that is up. The failover time here
hence depends on the time to find a watch port/group that is
up.

In principle, most of the FRR mechanisms discussed earlier
in this paper, e.g., for MPLS or IP networks, could be ported
to SDN. However, without additional considerations, this
approach could lead to an unnecessarily large number of flow
table entries or to suboptimal protection only [262]. The first is
problematic, as the flow table size of OpenFlow switches are
often small so that only a few additional forwarding entries
can be accommodated for protection purposes. The second

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

31

h1 h2s1

s2a

s2b

s3
w

Group on s1

ID=1

Counters

Bucket

Controller

Type=FFID=1

Output:wWatchPort=w

ID=1Bucket Output:yWatchPort=y

x

y z

Fig. 27: Illustration of OpenFlow group table: fast-failover (ff)
group table for s1.

[Year]

• OpenFlow: Enabling Innovation in Campus Networks [18]2008

• RFC 5880: Bidirectional Forwarding Detection (BFD) [78]2010

• OpenFlow Switch Specification 1.1.0 (Fast-Failover
Groups) [252]2011

• Scalable fault management for OpenFlow [254]2012

• Ensuring connectivity via data plane mechanisms [16]
• Slickflow: Resilient source routing in data center networks un-

locked by OpenFlow [255]
• Plinko: Building Provably Resilient Forwarding Tables [256]

2013

• P4: Programming Protocol-independent Packet Processors [257]
• Provable Data Plane Connectivity with Local Fast Failover:

Introducing Openflow Graph Algorithms [258]
• Fast Recovery in Software-Defined Networks [259]

2014

• A purpose-built global network: Google’s move to SDN [250]
• Loop-Free Alternates with Loop Detection for Fast Reroute in

Software-Defined Carrier and Data Center Networks [192]
• SPIDER: Fault resilient SDN pipeline with recovery delay guar-

antees [260]
• Scalable Multi-Failure Fast Failover via Forwarding Table Com-

pression [261]
• The Deforestation of L2 [107]

2016

• Efficient Data Plane Protection for SDN [262]
• Supporting Emerging Applications With Low-Latency Failover in

P4 [263]
2018

Fig. 28: Timeline of the selected documents and Fast-
Reroute solutions related to Software-Defined Networks (en-
tries marked in gray provide additional context related to the
evolution of OpenFlow).

is not acceptable for SDN, because unprotected flows remain
disconnected or FRR-caused loops persist until the controller
comes to rescue.

Several solutions based on OpenFlow have been proposed
in the literature so far, e.g., based on ideas from LFA [192],
[264] or MPLS [254], by encoding primary and backup paths
in the packet header [255], or by extending to OpenFlow’s
fast failover action based on additional state in the OpenFlow
pipeline: for example, SPIDER [260] leverages packet labels
to carry reroute and connectivity information. An alternative
OpenFlow switch design which relies on logical group ports
and which aims to support connectivity monitoring, has been
proposed by Kempf et al. [254] in the context of MPLS
networks. So far, however, the introduced logical group ports

d d

dd

d

1
2

3

1

1

1

2 2

2

3

3

3

d

cur: 1,0,0,0,0
par: 0,0,0,0,0

a

b

c

e

cur: 2,0,0,0,0
par: 0,0,0,0,0

cur: 2,2,0,0,0
par: 0,1,0,0,0

cur: 2,2,1,0,0
par: 0,1,2,0,0

cur: 2,2,1,0,0
par: 3,1,2,0,0

cur: 2,3,1,0,1
par: 3,1,2,0,2

1 2

3
a

b

b

a

e

c

1
2

3

1
2

3

1

2 31 2

3

1
2 3

Fig. 29: Depth-first search example.

remain unstandardized and are hence not part of shipped
OpenFlow switches.

A fundamental question regarding any fast-recovery mech-
anism concerns the achievable degree of resilience, and in
particular, whether it is always possible to find a route under
failures as long as the underlying network is physically con-
nected. For an OpenFlow network, and in a scenario where
packet headers can be used to carry information, Borokhovich
et al. [258] have studied this problem by relying on “graph
exploration” FRR mechanisms as explained more in details in
the following.
Graph-exploration FRR. Borokhovich et al. [258] showed
that such a “perfect resilience” can indeed be implemented. In
this approach, the packet carries a counter for each switch, al-
lowing the packet to explore different paths during its traversal
through the network. The traversal of the graph can actually be
performed in a variety of ways including Depth-First Search
(DFS) and Breath-First Search (BFS). This is reminiscent
of the Failure-carrying Packets (FCP) [161] approach, used
for convergence-free routing (for a detailed discussion of this
technique, see Section VIII).

As a case study, we give a detailed example for a DFS
traversal. Consider the network shown in Fig. 29 with 5 nodes
a, b, c, d, and e, where node d is the destination node and a
is the sender of a packet. The DFS mechanism requires to
compute an ordering of all the ports at each switch as shown
in the top-left network of Fig. 29. The ordering is used to
drive the DFS exploration by trying each outgoing port in the
given order until the destination is reached. The first port in the
ordering is the default port that is used to send packets in the
absence of failures and the set of first ports form a tree rooted
at the destination node. The DFS approach requires to store
a non-negligible amount of information in the packets header.
Namely, each packet header contains the currently explored
neighbor at a node (called cur) and the parent (called par)
from which a packet has been first received, which are shown
below each network in Fig. 29. Initially, all the current and
parent nodes are not initialized, i.e., set to zero. When a node
must send a packet, it follows the port ordering starting from
the cur index of that node. A node always skips a port in the
ordering if the port has failed or it is the parent port. When

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

32

a node has tried all the ports, it sends the packet back to the
parent node. This way of forwarding packets is reminiscent
of a DFS traversal, which first explores the children nodes
and only then it performs backtracking to the parent node. In
Fig.29, node a initializes cur to 1, which however maps to
a failed port. It therefore increments cur by 1, i.e., it forwards
the packet to the next port in the ordering, which is node b
(top-center network in the figure). When node b receives the
packet, it remembers that node a is the parent by setting port 1
as the parent. It then increases cur from 0 to 1, which however
is exactly the parent port so it skips it. The next port leads to
node c, which in turn sets node b (port 2) as the parent port
and forwards the packet on port 1 back to node a - a potential
forwarding loop! When node a receives the packet, it first sets
node c (port 3) as the parent node. It then retrieves from the
packet header the last explored port at node a, cur[’a’]=2,
and increments it to 3, which however is now leading to its
parent node so it skips it. Node a increments again by 1 in
the circular ordering, which leads again to the failed port.
Node a therefore increments again the current counter and
forwards the packet again to node b (bottom-center network
in the figure). Node b retrieves from the packet header the
last explored port, cur[’b’]=2, and increments it by 1 to
3. This port now leads to node e, which can use its first port
to reach the destination.

One disadvantage of the DFS technique (but also for
the other graph-exploration techniques) is the packet header
overhead, where the packet must remember the state of the
currently explored node and parent node for each node in
the network. We will see in the next subsection how more
programmable paradigms allow to dramatically reduce this
overhead without sacrificing the level of resilience achievable
by FRR techniques.

We now conclude the OpenFlow subsection by briefly
discussing some additional challenges in detecting failures and
devising languages for building robust network configurations
in OpenFlow. Van Adrichem et al. [259] argued that one of the
key limitations of achieving a high availability and fast failure
detection (below 50 ms) in OpenFlow implementations is that
these networks often rely on Ethernet, which in turn relies on
relatively infrequent heartbeats. A faster alternative is to use
BFD [78], in addition to combining primary and backup paths
configured by a central OpenFlow controller.

Another open challenge concerns the design of program-
ming languages for writing fault-tolerant network programs
for software-defined networks. The seminal proposal in this
context is FatTire [265], a language which is based a new
programming construct that allows developers to specify the
set of paths that packets may take through the network as well
as the degree of fault tolerance required. FatTire’s compiler
targets the OpenFlow fast-failover mechanism and facilitates
simple reasoning about network programs even in the presence
of failures.

C. Recovery Concepts in Programmable Data Planes

Lately, programmable data planes [257] emerged which
further enrich the capabilities of networks by allowing to

deploy customized packet processing algorithms. While sev-
eral interesting use cases are currently discussed, e.g., related
to monitoring or traffic load-balancing, still little is known
today about how to implement FRR mechanisms in such
systems. In particular, the P4 programming language [257],
one of the emerging languages for programming the data plane
forwarding behaviour, does not provide built-in support for
FRR.
Data-driven connectivity (DDC). A seminal approach, ahead
of its time, is DDC (for Data-Driven Connectivity) by Liu
et al. [16], which is motivated by the desire to move the
responsibility for connectivity to the data plane. DDC achieve
perfect resilience, i.e., packets are forwarded to the correct
destination as long as a path exists, similarly to the graph
exploration mechanism described for OpenFlow forwarding.
It however requires minimal amount of memory to be utilized
on the switches. This memory however has to be transactional
at the per-packet level, i.e. when a packet modifies the con-
tent of the memory, the subsequent packet already sees the
modification. Transactional memories are today deployed on
high-speed programmable switches such as Tofino [266].

At a high level, DDC is influenced by the well-known link-
reversal algorithm introduced by Gafni and Bertsekas [267],
and aims at building a Directed Acyclic Graph (DAG) for
each destination. When failures occur, the DAG is recomputed
using information gathered from the data-plane packets. DDC
hence leaves the network functions that require global knowl-
edge (such as optimizing routes, detecting disconnections, and
distributing load) to be handled by the control plane, and
moves connectivity maintenance, which has simple yet crucial
semantics, to the data plane.

Concretely, forwarding-connectivity is maintained via sim-
ple changes in forwarding state predicated only on the desti-
nation address and incoming port of an arriving packet, i.e.,
DDC is a dynamic FRR mechanism that needs to modify
the forwarding function at the speed of the data-plane. The
required state and its corresponding modifications are simple
enough to be amenable to data-plane implementations with
revised hardware. To implement its service, a DDC node stores
three bits of information for each destination and update these
based on the incoming packets towards that destination.

We give an example of the DDC link-reversal algorithm in
Fig. 30. We consider the same network used for the graph-
exploration FRR technique explained in Fig. 29 consisting
of five nodes. We highlight with blue arrows the directed
acyclic routing graph towards the top-left destination node
d. When the link connecting the bottom-left node a to the
destination fails, DDC triggers the link-reversal algorithm: if
all the link directions are incoming, the direction of all the
links are reversed and a packet is sent on any of these outgoing
links. The bottom left node adjancent to the failure is the first
node to reverse its link directions and forward the packet to
its neighbor b. Consequently, now b has all its links in the
“incoming” direction. It therefore reverses their directions and
forwards the packet to node c. Node c also has all its links in
the incoming direction so it reverses the link directions and
forwards the packet back to node a - a potential loop. Node a
reverses again all its incoming links and chooses b to forward

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

33

d d

ddd

d

a

b

c

e

a

b

c

e

a

b

c

e

a

b

c

e

a

b

c

e

a

b

c

e

Fig. 30: DDC example.

its packet. Node b now does not have to reverse its links since
the link towards node e is already in the outgoing direction.
This breaks the potential forwarding loop as the packet is now
forwarded to node e and consequently to its destination d. At
this point, a new directed acyclic graph spanning all the nodes
have been recomputed.

Compared to graph-exploration approaches, DDC achieves
identical levels of resiliency, i.e., guaranteed connectivity for
any number of failures as long as a physical path exists,
but does not incur the exorbitant packet overheads of graph-
exploration techniques. DDC only requires to store at each
node, for each destination and each port, the current direction
of the link plus (1 bit) plus two additional auxiliary bits that
are used to synchronize the direction of the link between two
nodes in case of multiple link reversal operations.

DDC also describes how to implement some optimizations
on the number of reversed links during the reconvergence
process so as to speed up reconvergence. In the absence of
failures & congestion and assuming an immediate detection
of the failure, none of the packets towards a destination get
dropped as long as a physical path exists.

Another approach to design recovery mechanisms in pro-
grammable data planes, is to draw from the insights on link
layer mechanisms such as AXE [104], [107] (see the related
discussion in Section III) which was designed to improve the
performance of recovery in Ethernet-based networks. AXE
takes a similar approach to DDC by moving the responsibility
of maintaining connectivity at the data-plane level.

Programmable data planes can also be used to imple-
ment fast-recovery concepts proposed in the context of SDN,
but requiring additional features currently not available on
OpenFlow switch hardware. For example, Plinko [256], [261]
requires testing the status of a port in a TCAM match rule,
and assuming this feature, achieve a “perfect resiliency”: the
only reason packets of any flow in a Plinko network will be
dropped are congestion, packet corruption, and a partitioning
of the network topology. Plinko takes a simple exhaustive
approach: in the case of a failure, the switch local to the
failure replaces the old route of a packet with a backup route,
effectively bouncing the packet around in the network until
it either reaches the destination or is dropped because no
path exists. When implemented naively, this approach does
not scale; however, Plinko can compress multiple forwarding

rules into a single TCAM entry, which renders the approach
more efficient, allowing Plinko to scale up to ten thousand
hosts.

As first recovery concepts for programmable data planes
are emerging, researchers also started investigating general
primitives to support an efficient recovery. For example,
Chiesa et al. [263], [268] suggested an FRR primitive which
requires just one lookup in a TCAM, and hence outperforms
naive implementations as it avoids packet recirculation. This
can improve latency and throughput, and, if deployed as
a “primitive”, can be used together with many existing FRR
mechanisms (which is also demonstrated, e.g., for [269]),
allowing them to benefit from avoiding packet recirculation.

D. Summary and Discussion

This section provided an overview of the fast-recovery
mechanisms provided by programmable networks, and in par-
ticular, in OpenFlow and programmable data planes. We have
discussed the basic principles underlying these mechanisms,
such as group tables, and how the traditional fast failover
approaches discussed in the earlier sections can be imple-
mented as well in programmable networks, also pointing out
limitations. For example, without additional considerations,
a direct implementation of the approaches known from MPLS
or IP networks may result in a large number of flow table
entries and a suboptimal protection in SDNs; at the same time,
programmable data planes enable unprecedented opportunities
for more efficient recovery mechanisms, also in terms of
latency and throughput.

Fast recovery in programmable networks is the most recent
application domain considered in this tutorial, and potentially
the most powerful one, given the flexibilities provided in pro-
grammable networks. It is hence also likely the domain which
still poses the most open research questions. In particular,
we only have a very limited understanding of the algorithmic
problems underlying the implementation of a highly resilient
and efficient failover in programmable networks, e.g., how
many failures can be tolerated and how short the resulting
failover rules can be kept, e.g., depending on whether and
how packet headers can be changed. These algorithmic prob-
lems are further complicated by the specific technology and
data structures that are used to implement recovery in pro-
grammable networks, e.g., related to recirculation overheads.
Another important issue concerns the development of intuitive
high-level concepts for the network programming language
itself.

VIII. TECHNOLOGY-AGNOSTIC
FAST-RECOVERY METHODS

There exists a number of interesting FRR mechanisms
which do not exactly fit any of the specific layers and
technologies discussed above.

A. Motivation and Background

In this section, we introduce the reader to some selected
solutions which are based on fundamental techniques one

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

34

should be familiar with. These solutions have sometimes been
proposed in specific contexts and layers discussed above, but
require non-trivial additional features, which motivates us to
study them here. Some of the recovery concepts discussed
below are also fundamental and proposed independently from
a specific technology. We believe that these concepts are hence
also particularly interesting when planning the next generation
of reliable communication technologies, providing additional
features for fast recovery.

B. General Recovery Concepts

1) Rerouting Along Arborescences: In order to achieve
a very high degree of resilience, several previous works [163]–
[165], [228] introduced an algorithmic approach based on
the idea of covering the network with arc-disjoint directed
arborescences rooted at the destination. Network decomposi-
tions into arc-disjoint arborescences can be computed in poly-
nomial time, and enable a simple forwarding scheme: when
encountering a link failure along one arborescence, a packet
can simply follow an alternative arborescence. This approach
comes in different flavors, such as deterministic [165] and
randomized [164], or without [164] and with [165] packet
header rewriting. In general, the approach requires input port
matching to distinguish on which arborescence a packet is
being routed. This however is practical, since many routers
maintain a routing table at each line card of the interface for
look-up efficiency. In the most simple case, a network can be
decomposed into arc-disjoint Hamilton cycles. For example,
Fig. 31 shows an example for the case of 2-dimensional
torus graphs. In this case, the solution is known to achieve
the maximum robustness: a network of degree k can tolerate
up to k − 1 failures, without losing connectivity. A more
general example is given in Fig. 32: here, arborescences
rooted at the destination can be of higher degree. While
such decompositions always exist, the challenge introduced
in the general setting regards the order in which alternative
arborescences are tried during failover. Interestingly, today, it
is still an open question whether the maximum robustness can
be achieved in the general case as well. However, Chiesa et
al. showed in [163] that generally, the approach can tolerate
at least half of the maximally possible link failures. They also
showed that a resilience to k− 1 link failures can be tolerated
using 3 bits in the packets header or creating r − 1 < k
copies of a packet, where r is the number of failed links
hit by a packet. While these arborescence-based approaches
provide a high resilience, one disadvantage of the approach is
that it can lead to long failover paths (consider again the torus
example in Fig. 31), introducing latency and load. The latter
has been addressed in a line of work by Pignolet et al. [270],
[271], e.g., relying on combinatorial designs or postprocessing
of the arborescences [212], [272], [273].

2) Techniques Beyond Arborescences: The use of spanning
trees, directed acyclic graphs, or arborescences for resilient
routing, may come with the limitation that they only se-
lect links from such subgraphs. An interesting more general
approach is Keep Forwarding (KF) [162]. KF is based on
a “Partial Structural Network (PSN)”: the idea is to utilize all

Fig. 31: Decomposition of a 2-dimensional torus into arc-
disjoint Hamilton cycles.

d

Fig. 32: Decomposition of a general graph into arc-disjoint
arborescences.

links and only determine link directions for a subset of links to
improve resilience (somehow similar to DDC [16] which we
discussed in Section VII-C). As such, KF can handle multiple
failures with only small path stretch, and does not require
packet labeling or state recording. To achieve these properties,
KF needs to be “input-port aware”: forwarding depends not
only on the destination but also on the input port. The authors
also derive a Graph Imperfectness Theorem, showing that for
an arbitrary graph if any component of it is “imperfect”,
there will be no static rule-based routing guaranteeing the
“perfect” resilience, even if the graph remains connected after
failures. Nevertheless, the authors show in experiments that
KF provides a high resilience.

A higher resilience can be achieved by methods which
exploit header rewriting, such as Failure-Carrying Packets
(FCP) [161]: in FCP, packets can autonomously discover
a working path without requiring completely up-to-date state
in routers. FCP takes advantage of the fact that typically
a network topology does not undergo arbitrary changes, but
there is a well-defined set of “potential links” that does not

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

35

change very often: while the set of the potential links that
are actually functioning at any particular time can fluctu-
ate, e.g. depending on link failures and repairs, the set of
potential links is governed by much slower processes (i.e.,
decommissioning a link, installing a link, negotiating a peering
relationship). Thus, one can use fairly standard techniques
to give all routers a consistent view of the potential set of
links, which is called the Network Map. Motivated by this
observation, FCP adopts a link-state approach in that every
router has a consistent network map. Since all routers have
the same network map, packets only need to carry information
about which of these links have failed at the current instant.
This “failure-carrying packets approach” ensures that when
a packet arrives at a router, that router knows about any
relevant failures on the packet’s previous path, and can hence
determine the shortest remaining path to the destination (which
may also be precomputed in the data plane). This eliminates
the need for the routing protocol to immediately propagate
failure information to all routers, yet allows packets to be
routed around failed links in a consistent loop-free manner.
There is also a Source-Routing FCP variant that provides
similar properties even if the network maps are inconsistent,
at the expense of additional overhead in packet headers. More
concretely, in the source-routing variant, like in the basic FCP,
a node adds the failed link to the packet header, but replaces
the source route in the header with a newly computed route,
if any exists, to the destination.

There exist several additional interesting technology-
agnostic approaches. To just give one more example: An
elegant solution to provide a certain degree of resilience is
described in the O2 (“out-degree 2”) paper [160]: in order to
reduce the outage time compared to traditional IP networks,
O2 provides each node with at least two disjoint next hops
towards any given destination, allowing each node to locally
and quickly re-distribute the traffic to the remaining next
hop(s) if a route fails. The resulting paths are loop-free but
may increase link loads slightly, due to increased path lengths.

3) Topological Support for Fast Recovery: Fast rerouting
can also be supported at the network topology level, which
introduces an interesting additional dimension to the fast-
recovery space. Likely, a more redundant topology can tol-
erate more link failures; however, while this is obvious for
centralized routing algorithms, it is not necessarily clear how
to exploit redundancy in local fast rerouting algorithms. An
interesting approach in this context is F10 [269]: a novel
network topology reminiscent of traditional fat trees, with
better fault recovery properties. In particular, by a clever re-
wiring, F10 topologies support the design of failover protocols
which can reestablish connectivity and load balancing more
generally and quickly.

C. Summary and Discussion

We discussed several fast-recovery methods which are in-
dependent of technologies, from failure-carrying packets over
arborescence-based approaches (which do not require packet
header modifications), to the design of alternative topologies
which explicitly account for the fast failover performance.

[Year]

• Improving the resilience in IP network [160]2003

• FCP: Achieving Convergence-free Routing Using Failure-
carrying Packets [161]2007

• KF: Keep Forwarding: Towards k-link failure resilient rou-
ting [162]2014

• On the resiliency of static forwarding tables [163]2017

• Bonsai: Efficient fast failover routing using small arbores-
cences [272]2019

Fig. 33: Timeline of the selected documents and solutions
related to technology-agnostic fast-recovery methods.

There are several interesting open research issues. In partic-
ular, the question of how much information needs to be carried
in packets to achieve certain resilience guarantees remains
an open problem. For example, it is not clear whether the
capability of input port matching is sufficient to guarantee
connectivity in a k-connected graph under up to k−1 failures,
using arborescence-based approaches or in general. Another
interesting open problem regards the design of network topolo-
gies for efficient fast rerouting beyond fat-trees.

IX. CLASSIFICATION SUMMARY

Given our understanding of the various recovery concepts
which are used by the different technologies and which are
often reoccurring on the different layers, we now take a step
back and identify and classify the principles underlying the
specific approaches discussed above.

A most simple form of fast recovery that we have already
encountered multiple times is based on static failover routing:
the forwarding behavior is statically pre-defined, e.g., using
conditional per-node failover rules which only apply in case
of failures, and cannot be changed during the failover. For ex-
ample, it is not possible to implement link reversal algorithms
(e.g., [267]), as they require dynamic routing at the nodes.

Considering that a variety of parameters may influence the
decision about the preferred alternative output interface,
fast-recovery mechanisms can come in different flavors (see
the overall classification shown in Fig. 34), for example:
• Beyond destination address matching: Can forwarding

depend on packet header fields other than the destination
address? Solutions based solely on the destination address
such as [275] are attractive, as they may require less
forwarding rules. More general solutions which, e.g., also
depend on the source address [270] as well as the source
and destination port numbers used by transport-layer
protocols [125], [239], may enable a more fine-grained
traffic engineering scheme and thus reduce network load
during the failover.

• With or without input network interface matching: Can
the forwarding action to be applied to a packet depend
on the incoming link on which it arrived? Input inter-
face matching can improve the resilience and quality of
fast rerouting (in particular, by detecting and avoiding

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

36

Data Plane

Match Action

Input Network Interface
[20], [162]–[165], [173], [176], [209],
[212], [228], [236], [272], [273]

Source Address
[125], [239], [270], [271]
Destination Address
[28], [32], [81], [85], [86], [92], [95],
[98]–[100], [103], [106], [107], [125],
[152]–[155], [161]–[165], [173], [176]–
[178], [193], [196], [200], [201], [209],
[221], [225], [228], [236], [238], [239],
[247]

Stack-label
[26], [28], [115], [118], [119], [124],
[125], [127], [130], [146], [161], [236],
[247], [254]

VLAN ID
[82], [84], [86], [93], [96], [97]

On Packets On the Forwarding Pipeline

None
[16], [32], [81], [85], [98]–[100], [103], [152],
[153], [162]–[165], [177], [193], [212], [221],
[236], [256], [270]–[274]

Rewrite Header

[26], [28], [82], [84], [86], [92], [93], [95]–[97],
[99], [106], [107], [115], [118], [119], [124],
[125], [127], [130], [130], [146], [154], [155],
[161], [163], [165], [178], [196], [200], [201],
[203], [215], [219], [225], [228], [238], [247],
[255], [260]

Duplicate Packet
[146], [163], [165]
Probabilistic Forwarding
[164]

None

[16], [26], [81], [82], [84]–[86],
[92], [93], [95]–[98], [100], [103],
[106], [107], [115], [118], [124],
[125], [127], [130], [162], [164],
[192], [236], [254]–[256], [258],
[270]–[274]

Rewrite Register
[239]
Rewrite Action
[28], [99], [119], [146], [161],
[247], [267]

Source Port
[125], [239]
Destination Port
[125], [239]

Register

Ad-hoc Field (P4)
[256], [258], [260], [261]

[16], [104], [107], [163]

Fig. 34: Classification of the presented fast-recovery mechanisms with respect to the match-action operations performed in the
data plane.

forwarding loops) [212], [276], but may render the for-
warding logic more complex.

• Stack-label matching: Can messages be forwarded based
on the label currently occupying the top position in
a stack embedded in the message header? Stack-
label matching enables flexible forwarding along pre-
established paths in the network, without performing
additional routing table lookups based on the values of the
primary fields describing the source and the destination
of the message [26], [116], [117]. Subsequent detours
may be initiated simply by pushing a different label on
the stack when necessary. At the same time, stack-label
matching requires that the involved devices support the
related extensions as well as a label distribution protocol
maintaining consistency of the mapping between labels
and the corresponding paths.

• VLAN identifier matching: Can the forwarding decision
depend on the VLAN identifier stored in the message
header? Unless the limited range of allowed values is
likely to become an issue in specific deployments (es-
pecially those involving legacy network devices), VLAN
identifiers might be used for fast-recovery purposes as
a convenient signaling channel leveraging the widely-
supported network standard. Whenever a failure is en-
countered, the local Ethernet switch would typically set
the VLAN identifier to a different value associated with

one of the alternative spanning trees and then it would
forward the message along the selected tree. Downstream
switches would forward the message along the same tree
until the destination is reached, or until another failed link
is detected on the intended path towards the destination.
Note that this method may not be used together with the
typical VLAN functionality, as it would allow messages
assigned to one VLAN to leak into a different VLAN,
bypassing the security policy defined on routers.

• Register/Ad-hoc field matching: Can programmable net-
work devices make forwarding decisions based on addi-
tional sources of information, for example, values stored
in hardware registers or in ad-hoc fields associated with
the processed packets? Considering an increasing range
of potential applications involving programmable network
devices as well as substantial efforts supporting the
development of future self-driving networks, forwarding
decisions may also be influenced by external factors
represented by the current values of internal registers
and ad-hoc fields. Consequently, the flexibility offered by
the underlying systems may lead to a better integration
with specific environments and to the development of
unique fast-recovery solutions. The related advantage is
that custom-designed packet processing pipelines may be
evaluated and deployed much faster and potentially at
a lower cost, compared to the equivalent proprietary off-

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

37

Operation Mode

Distributed Centralized Control Plane

[16], [20], [26], [28], [32], [81], [82], [85], [86], [92], [93], [97], [106],
[107], [115], [118], [119], [124], [127], [146], [154], [155], [161]–
[164], [164], [164], [165], [173], [176], [178], [193], [196], [200],
[201], [209], [212], [225], [228], [236], [239], [247], [254], [254]–
[256], [258], [260], [263], [268], [270]–[274]

[84], [95], [96], [98], [100], [103],
[125], [130], [136], [144], [152],
[153], [215], [219], [238], [265]

Fig. 35: Classification of the presented fast-recovery mechanisms with respect to their operation mode.

the-shelf solutions. At the same time, new designs will
remain constrained by the limitations of programmable
devices and by increasing performance requirements.
A good example illustrating the trade-off between the
resource utilization and performance (in terms of latency
and throughput) has been presented in [268].

Based on the specific subset of parameters which are used
by an algorithm to determine the preferred alternative output
network interface, the corresponding actions may also be
triggered if necessary, both in the context of packets as well as
the entire forwarding pipelines maintained by network devices
(see the corresponding branch in Fig. 34), for example:

• Packet-header rewriting: Can nodes rewrite packet head-
ers depending on failed links, e.g., to store information
about the failures encountered by a packet along its
route? Packet-header rewriting is known to simplify the
design of highly resilient fast-recovery algorithms [165],
[258]. A well-known example are fast-reroute mecha-
nisms based on failure-carrying packets [161]. Rewriting
may also be performed on other objects, such as the
internal registers used by programmable devices.

• Action rewriting: Can nodes rewrite the intended action
assigned to subsequent matching messages, based on the
detected signs of failure? To reduce the negative conse-
quences (such as forwarding loops) further, or to optimize
the resource utilization in the network, programmable
devices may change the preferred action performed on
the matching messages. However, an important related
concern is preserving network stability following the
failure.

Existing mechanisms also differ in terms of their objectives,
such as:

• Connectivity: The most basic and most studied objective
is to preserve connectivity. Ideally, a fast-recovery mecha-
nism should always find a route to the destination, as long
as the network remains physically connected. Especially
the design of mechanisms without header rewriting has
received much attention [20], [165], [228], [256], [274],
[275], [277].

• Load: Another important objective is to avoid network
congestion during and after failover, see e.g., [270], [278].

Additionally, they may also differ in terms of their operation
mode, defined here as either distributed or centralized opera-
tion (see Fig. 35):

• Distributed operation: The majority of the solutions
discussed in this paper have been designed to operate
in a distributed fashion. The key advantage of this ap-
proach is that network devices can collect the necessary
information, develop their internal state, and prepare for
future failures without relying on the other devices in
the network. At the same time, the recovery decisions
may not always be optimal in the case of multiple failed
elements, as the involved devices do not coordinate their
response with each other.

• Centralized operation: Centralized fast-recovery ap-
proaches are still expected to be able to make local deci-
sions without significant delay. However, in this scenario,
forwarding devices usually depend on a central unit with
respect to other key tasks, such as precomputation of
the preferred (if necessary, optimal) network-wide recov-
ery strategy taking into account additional performance-
critical factors (e.g., network load). As the centralized
unit may need to collect the necessary information from
the entire network or domain, process it, and then update
the fast-recovery rules on forwarding devices, it may
quickly become the bottleneck. Further, as the centralized
unit and its connections may also fail or be subject to
targeted attacks, the capability of the network to respond
effectively to subsequent failures might become severely
limited in such cases, unless additional measures are
deployed to counteract this issue.

Deployment of fast-recovery solutions is always associated
with implementation- and operation-related overheads (see
Fig. 36), for example:

• Precomputations: The internal knowledge of the pre-
ferred recovery actions often results from precomputa-
tions which may be performed either locally or by an
external unit (in the case of the centralized operation
mode). It needs to be emphasized that this process is
initiated during the normal network operation period and
in most cases should have completed by the time of the
next failure event. Consequently, at the time of failure, the
involved forwarding devices can redirect messages almost
instantly. The related cost depends on the algorithmic
complexity of the design, ranging from polynomial-time
solutions to NP-hard problems.

• Memory requirements: To be able to perform the failover
within milliseconds, forwarding devices need to de-
velop and maintain internal state information that will

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

38

Overheads

SignalingMemory Requirements Path StretchPrecomputations

Small or None
[20], [26], [28], [81], [82],
[85], [92], [93], [97]–[100],
[103], [106], [107], [118],
[124], [130], [164], [177],
[200], [201], [212], [221],
[236], [247], [256], [258],
[272], [273]

No Guarantees
[20], [32], [84], [86], [95],
[96], [115], [119], [125],
[146], [154], [155], [161]–
[164], [164], [165], [173],
[176], [178], [193], [196],
[209], [225], [228], [256],
[258]

Control Messages

[26], [81], [82], [84]–[86],
[92], [93], [95]–[98], [100],
[103], [118], [124], [127],
[130], [154], [155], [225]

Polynomial

[26], [28], [32], [81],
[82], [84]–[86], [92],
[93], [95]–[97], [99],
[106], [107], [118],
[124], [125], [127],
[130], [130], [154],
[155], [162]–[165],
[173], [176], [178],
[193], [196], [200],
[201], [203], [209],
[225], [228], [238],
[247]

NP-Complete/Hard

[98], [100], [103],
[152], [153], [177],
[215], [219], [221]

Message Header
[26], [32], [99], [106],
[107], [115], [118], [119],
[124], [125], [127], [130],
[130], [146], [152]–[155],
[161], [163]–[165], [173],
[176]–[178], [193], [196],
[200], [201], [203], [209],
[215], [219], [221], [225],
[228]

Constant or Linearly Increasing

[20], [26], [28], [32], [81],
[82], [85], [86], [92], [93],
[97]–[100], [103], [106],
[107], [115], [118], [119],
[127], [130], [146], [154],
[155], [161]–[164], [164],
[165], [173], [176], [178],
[193], [196], [200], [201],
[209], [225], [228], [236],
[238], [247], [256], [258]

Substantial
[84], [95], [96], [124],
[125], [130], [203], [239]

Undefined
[20], [115], [119],
[146], [164], [256],
[258]

Fig. 36: Classification of the presented fast-recovery mechanisms with respect to the implementation- and operation-related
overheads.

define the preferred alternative network interfaces in
different failure scenarios. In the context of modern
programmable switches relying on expensive Ternary
Content-Addressable Memory (TCAM) modules that are
able to perform wildcard matches, it is desired that only
the minimum required amount of information be stored
in such memory modules to preserve space. Depend-
ing on how particular fast-recovery solutions have been
designed, the memory-related overhead may either be
constant or be bound to some parameters of the network
such as number of destination prefixes.

• Signaling: Some fast-recovery designs rely on additional
signaling to carry important information between the in-
volved nodes. In particular, the selected bits of a message
header may be used to indicate the preferred path in
the network between the source and destination nodes.
Alternatively, if the expected modifications of the mes-
sage header would disrupt the operation of other network
protocols and mechanisms such as VLANs, dedicated
control messages may be exchanged by forwarding de-
vices rather than a common protocol. Depending on
the specific method in use, the related cost may result
from the data overhead or from the additional operation
limitations.

• Incurred path stretch: Many existing fast-recovery solu-
tions cannot deal with simultaneous failures of multiple
network elements effectively. Even those having such
a capability may still be unable to forward messages
around the failed components along the shortest possible

paths. Consequently, they may not provide any guarantees
regarding the observed path length (or stretch). However,
the recent advancements in static fast-recovery mecha-
nisms relying on modified arborescence-based network
decompositions provide one of the possible solutions to
this issue [212], [272].

Finally, the effectiveness of existing fast-recovery mecha-
nisms in terms of the maximum offered resilience capabilities
is also diverse (see Fig. 37):
• Single failures: Early fast-recovery solutions, especially

those operating in the link layer, have been designed to
respond to single link or node failures. On one hand,
simultaneous failures of two or more network elements
are less likely to happen than a failure of a single
component [139], which means that being able to restore
connectivity just in the case of single failures already
covers the most frequent scenario. At the same time,
in large networks involving numerous different devices
and subsystems undergoing regular maintenance activi-
ties, such events are not uncommon and single-failure-
recovery strategies may not always be successful, leading
to increased packet losses, disruptive delay, and even per-
sistent or transient forwarding loops. Indeed, according
to [139], scheduled maintenance activities alone may have
caused 20% of all observed failures in an operational IP
backbone network, while almost 30% of all unplanned
failures affected multiple links at a time. In this context,
it needs to be emphasized that both the resilience require-
ments as well as the overall complexity of networked

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

39

Resilience

Double Link FailuresSingle Failures Multiple Link Failures

Link Only
[82], [95], [97], [98], [103],
[106], [107], [167], [173],
[176], [195], [196], [209],
[210], [236]
Link or Node

[32], [84], [93], [96], [118],
[124], [130], [154], [155],
[166], [176]–[179], [193],
[199]–[201], [203], [209],
[215], [219], [221], [225]

[99], [100], [218],
[219], [226], [227]

[16], [20], [26], [81], [85],
[86], [92], [115], [119],
[125], [127], [146], [161],
[163]–[165], [212], [228],
[256], [258], [270]–[272],
[272], [273], [273], [274]

Fig. 37: Classification of the presented fast-recovery mechanisms with respect to the maximum number of failures they were
designed to deal with. Note that under some specific circumstances, fast-recovery mechanisms designed to handle single failures
might still be able to deal with multiple failures effectively (for example, when the failed components are located in different
regions of a well-connected network).

systems have been constantly increasing over time.
• Double link failures: To extend the fast-recovery capabil-

ities of computer and communication networks beyond
the single-failure scenario, improved designs were devel-
oped that were able to deal with double link failures.
Considering the evolution of fast-recovery strategies, this
was an intermediate step towards more general strategies
handling simultaneous failures of multiple network com-
ponents.

• Multiple link failures: Dealing with multiple link failures
effectively depends not only on the design of a recovery
mechanism, but also on the physical network topology.
One of the key related parameters coming from graph
theory is the edge connectivity of the network topology,
further referred to as k. In particular, if up to k − 1
links in a given k-connected network suddenly become
unavailable, the remaining links can still be used to reach
any destination in the network10. An example group of the
related recent solutions is focused on static fast-reroute
mechanisms. The underlying algorithmic techniques
include:

– Arborescence-based network decompositions: By de-
composing the network into a set of arc-disjoint
arborescences which are rooted at the destina-
tion [275], [276] (such a decomposition can be
computed in polynomial time), a high degree of
resilience can be achieved: when encountering a link
failure along one arborescence, a packet can simply
follow an alternative arborescence.

– Combinatorial block designs: Pignolet et al. [270],
[278] observed and exploited a connection of fast
rerouting problems to combinatorial block designs:
static resilient routing boils down a subfield in dis-

10Note that this condition is only related to graph connectivity, while in real
networked environments, several additional factors need to be considered as
well, such as traffic characteristics, the load of particular network components,
and the relevant traffic engineering policies.

tributed computing which does not allow for com-
munication.

Ideally, a static fast rerouting algorithm ensures connec-
tivity whenever the underlying physical network is con-
nected. Feigenbaum et al. [20] showed that without packet
header rewriting, such an ideal static resilience cannot be
achieved. A weaker notion of resilience was introduced
by Chiesa et al. [275], [276]: the authors showed that
there exist randomized static rerouting algorithms which
tolerate k − 1 link failures if the underlying network is
k-edge connected, even without header rewriting. At the
same time, a fundamental open problem is whether for
any k-connected graph, one can find deterministic failover
routing functions that are robust to any k − 1 failures.

X. DISCUSSION

While our main focus is on data plane fast-recovery mech-
anisms, we point out that additional challenges may arise
from the interaction between the control plane and the data
plane during recovery. In particular, data plane mechanisms
are often seen as a “first line of defense”: a way to react
quickly, but possibly suboptimally, to failures. For instance,
a fast-recovery path may allow to bypass a failed network
component instantaneously but, by directing additional traffic
to links that in normal circumstances would not have to
cope with that traffic, it may cause unexpected congestion
and packet loss. Further service disruptions may occur due
routing transients, like short-lived forwarding loops (so called
microloops) and routing blackholes, caused by the inconsistent
timing of updating the data-plane configuration at different
routers. Worse yet, such phenomena may spread to remote
parts of the network, harming flows that would not have been
affected by the failure otherwise.

Routing transients lead to minor performance degradation
as long as they are short-lived, lasting not much longer than
the full restoration completion time (recall the recovery pro-
cedure timeline in Fig. 7, Section II) and disappearing before

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

40

the network would enter the normalization phase. Typical
examples are a router reboot event due to a software bug
or a flapping interface going through an up-down-up cycle;
these events usually last only a couple of milliseconds or
seconds at the worst. If the failure proves long-lived so that the
normalization phase is initiated (recall again Fig. 7, Section II),
then in the second stage the control plane must reconverge to
a new static route allocation that is optimized for the changed
network configuration, with the failed component permanently
removed from the topology. Finally, another transient phase
takes place after the normalization process terminates and the
failed component comes back online.

In order to avoid performance degradation during routing
transients, there is a need to carefully orchestrate the way
the control plane interacts with the data plane, as we discuss
next. First, in Section X-A we sketch several schemes from
the literature to schedule dataplane updates across a network
domain to avoid routing transients. Then, in Section X-B we
survey proposals for traffic-engineering the recovery paths in
order to eliminate transient congestion.

A. Reconvergence and Transient Loops

Different approaches in the literature deal with the inter-
action between data-plane fast reroute and the control-plane
reconvergence process in different ways. We discuss some
examples in the context of intra-domain and inter-domain
routing, and programmable networks.

It is perhaps the context of shortest-path-based distributed
intra-domain routing where routing transients manifest their
adverse effect most visibly. This is on the one hand due
to the inherent distributed nature of IGPs, where there is
minimal or no central oversight on when and how data-plane
updates are performed, and on the other hand because of the
fundamental properties of shortest-path routing that allow for
two routers, e.g., one aware of a failure and another one
that is not, to appoint each other as the next-hop towards
a particular IP destination prefix (leading to a microloop) or
failing to synchronize at a consistent forwarding path (leading
to a transient or permanent blackhole).

For an in-depth covering on the timing aspects of link-
state IGP reconvergence after a network topology change, the
reader is referred to [15]. The paper also proposes the use
of incremental SPF algorithms and FIB updates to make the
process faster. Note that the IGP convergence time can be
improved even further by careful tuning, as long as it does not
affect the stability of the network considerably [15], [279].

As it turns out, IGP tuning alone is not sufficient to
completely eliminate all IGP routing transients. A cornerstone
contribution to reach this end is made in [280]. The paper
proposes a mechanism to control OSPF administrative link
weights for adding links to, or removing links from, the
network, by progressively changing the shortest-path link
weight metric on certain “key” links, ensuring that in each
step the topology change occurs in a loop-free manner. Note
that this mechanism needs a central entity to plan and drive the
process; hence, it is best used for a non-urgent (management
action) link or node shutdowns and metric changes.

The Ordered FIB update (oFIB) proposal, reaching the In-
formational RFC status in 2013, brings this work further [281].
The idea is to sequence the FIB updates by each router com-
puting a rank that defines the time at which it can safely update
its FIB. This approach can be used to administratively add or
remove links (similarly to [280]), when there is sufficient time
to pace out FIB updates, but it is also useful in conjunction
with a fast-reroute mechanism when a link or node failure
persists and the task is to re-converge the transient routes
created by FRR to the static IGP shortest-path routes.

Due to the specifics of BGP, inter-domain fast IP recov-
ery requires different techniques. During BGP reconvergence,
BGP withdrawals may be sent from any AS adjacent to a link
failure to all its neighbors. These neighbors may, in response
to these withdrawals, stop forwarding traffic via said ASes
and, consequently, drop traffic. This is undesirable especially
in the case when there still exists a fast-recovery path that
does not traverse the failed link. R-BGP, an FRR extension to
BGP, uses two simple ideas to avoid this [236]. First, a node
withdraws a route to a neighboring AS only when it is sure it
will not offer it a “valley-free” route in the post-convergence
state. Second, an AS keeps forwarding traffic on a withdrawn
route until it either receives a new BGP route that does not
traverse the failed link or it understands it will not receive
a valid BGP route in the post-convergence state. We refer the
reader to the original paper [236] for the details.

In the context of software-defined networks, different tech-
niques are required for a smooth control-plane–data-plane
interaction during FRR. Even if the control plane is centralized
(as it is the case in the standard SDN setup) the data plane is
not, and therefore it is essential for the former to carefully
orchestrate the update of the latter. This is a surprisingly
complex problem that has received much attention in the
research community lately; below we only sketch a couple
of examples from the SDN literature and we refer the reader
to the recent survey [282] for an in-depth coverage. For
instance, in DDC (see Section VII-C, [16]), fast data-plane
re-convergence at any possible transient stage is carefully
reconciled with the SDN centralized control plane in a way as
to eliminate microloops during the transition. An orthogonal
approach is taken in [283], where the data-plane-based FRR
mechanism is used to obtain additional failure information for
the SDN control plane for better failover planning [239].

Control-plane–data-plane interaction becomes even more
problematic when distributed and a centralized control planes
coexist in the same network, each modifying the FIBs of the
same set of network switches without synchronizing. Recently,
Vissicchio et al. [284] developed a general theory that charac-
terizes the kinds of routing and forwarding anomalies that may
occur if the two (or more) control planes act independently
from each other.

B. Traffic Engineering and Fast Reconvergence

As discussed above, careful preparation is needed during
the transients after a failure event to avoid that certain links,
or entire network regions, become overwhelmed with traffic
bypassing the failure and preclude cascading failures due to the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

41

resultant congestion. Accomplishing this traffic optimization
task requires a concerted effort on the part of the data plane
and the control plane, so that the recovery paths fulfill the
traffic engineering goals even under failures. There is a breadth
of standards, operational best practices, and research proposals
to reach this goal; below we give a non-exhaustive overview
of some of the most typical approaches; for more detail, refer
to the original papers and the related surveys [282].

A significant number of fast-recovery mechanisms do not
natively support fine-grained traffic engineering during recov-
ery. In these cases, recovery occurs on a best-effort basis,
merely hoping that the failover paths will be “good enough” in
that there is enough over-provisioned spare capacity available
in the network to avoid congestion during fast recovery. This
approach is adopted most often for data-plane technologies
that otherwise provide very little in the way of optimizing
forwarding paths, like L2 protocols (e.g., AXE [104], [107],
see Section III), intra-domain IP fast reroute (e.g., the original
LFA proposal [32], see Section V) or inter-domain IP routing
where BGP does not provide fine-grained mechanisms for
optimizing AS-AS paths (e.g., [236], see Section VI).

The second approach is to compute recovery paths on-
demand, in a way to ensure that the recovery paths will have
enough capacity to handle failover traffic. This approach is
used for data-plane technologies where the control plane can
surgically optimize the forwarding and recovery paths with
respect to arbitrary traffic engineering goals. In this case,
the selected TE designs could be implemented on top of the
default fast-recovery scheme, overriding the decision made by
the underlying fast-recovery mechanism based on additional
TE metrics (provided that multiple backup network interfaces
are available). In the context of MPLS FRR (see Section IV),
the functional capabilities for reconciling traffic engineering
policies in FRR have been defined in [114]. The related
resilience attributes may either be limited to indicate just
which recovery procedure should be applied to failed traffic
trunks (basic resilience attribute) or they can also specify
detailed actions that should be taken in the case of failure
(extended resilience attribute). In particular, the extended re-
silience attribute may define a set of backup paths as well as
the rules which control the relative preference of each path.
To be able to impose traffic engineering policies, MPLS relies
on close interaction with routing. Further extensions to MPLS
provide a way to define label-switched tunnels that can be
automatically routed away from failed network components,
congested links, and bottlenecks [117], and the additional
extensions proposed in [26] introduce the capability of MPLS
to establish backup LSP tunnels in advance; see e.g., [137]
for a linear TE-aware optimization model for link, node, and
bandwidth protection in the context of MPLS.

The third approach encompasses a broad set of models,
methodologies and algorithms for the co-design of the default,
failure-free forwarding paths and the failover paths. In intra-
domain shortest-path-based IP routing any non-trivial change
in the IGP link weights applied to bypass a failed network
component will necessarily reroute some, or even all, traffic
instances that would otherwise not be affected by the fail-
ure [280], [281]. To prevent such cascading service disrup-

tions, [285, Section 4] presents a set of local search algorithms
to co-design the default IGP weights and the failover IGP
weights so that the number of necessary weight changes,
and hence the number of traffic instances being rerouted, is
minimal. They show that in many cases as few as 3 weight
changes is enough to attain “good enough” performance.
In networks where a centralized control plane is available,
protection routing [152], [153] provides several optimal and
heuristic algorithms for traffic engineering failover paths, and
R3 [125] shows an elegant extension of oblivious routing,
converting “traffic uncertainty” to “topology uncertainty due
to an unexpected failure case” to reach the same goal; refer
to Section V and Section IV for a detailed overview.

The general observation is that survivability and perfor-
mance are fundamentally at odds [152], [153], by the need
to stack valuable transmission capacity to accommodate by-
pass paths that could otherwise be used to increase failure-
free throughput. As it turns out, however, simple algorithmic
techniques can generally find good trade-offs to reconcile these
two conflicting requisites, but to achieve this a careful control-
plane–data-plane co-design approach is necessary.

XI. LESSONS LEARNED AND FUTURE DIRECTIONS

This survey covers a rich body of literature of fast data-
plane recovery mechanisms for packet-switched networks,
ranging from traditional layer-2 network technologies up to
today’s programmable network protocols and paradigms. In
this section, we aim at summarizing the main lessons learned
in the design of fast-recovery mechanisms across the different
technology layers and draw a few concrete future directions.

The reaction time highly depends on the operational layer.
Layer-2 networks require fast failover operations that operate
at smaller time granularities than what one would require at the
Internet level. As discussed in Section VI, today’s convergence
of the inter-domain BGP routing protocol is in the order of
tens of seconds or even minutes. In contrast, intra-domain IP
or Layer-2 networks require failover mechanisms to operate
in the sub 50ms time scale for today’s needs. At the core of
the difference is the inherent difficulty to orchestrate a failover
recovery in the Internet where control is distributed, visibility
is limited, technologies heterogenous, and interests among
domains not necessarily aligning. Within singly administered
domains, optimized algorithms and mechanisms can instead
be devised to achieve faster reaction time.

The forwarding protocols affect the deployable techniques.
When looking at a single domain, one critical aspect to take
into account is the forwarding properties of the protocols used
to move traffic within a network. Consider an Ethernet Layer-
2 network and an IP network. In the first case, the lack of
a Time-To-Live field in the packet headers require Layer-2
failover techniques to avoid generating any possible transient
forwarding loops, as these would inevitably congest and break
the network, especially if any packet is flooded. In the case
of IP networks, transient forwarding loops are detrimental
for performance. They do not necessarily break the network,
however, as routers eventually drop packets forwarded in
a loop.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

42

Hardware support and programmability are crucial. Fast
failover mechanisms have evolved dramatically across over
the last four decades. Adapting to the emerging technologies,
more advanced fast failover mechanisms have been designed.
Traditional Layer-2 Ethernet networks relied on spanning tree
protocols with low congerence due to the need to avoid
transient loops. Rapid spanning tree protocols mitigate some
of these convergence issues but require support from the un-
derlying devices. The ultimate decision on which fast failover
mechanisms should be deployed in a network often boils down
to understanding the heterogeneity of the network devices
in terms of both vendors and switch/router generations. For
instance, we note that while most of the major vendors support
today IP LFA and remote LFA, a variety of them may not
support them or only support software implementations [286]
As for OpenFlow devices, it is only from the OpenFlow
1.3 or above specification that fast-reroute groups have been
optionally introduced and deployed by the different vendors.
Recently, more programmable network devices, such as P4
switches, have made the deployment of different types of
FRR mechanisms easier by decoupling the specific forwarding
capabilities of a network device from the FRR mechanisms
supported by it. Today’s network programmers can compile
different types of FRR mechanisms onto P4 switches (e.g.,
DDC [287]) and adapt the algorithms to their needs without
the need to wait for patches from the network vendors and/or
chip manufactures.

Legacy-compatibility eases deployment of new FRR. Op-
erators wish to improve the resilience of a network to failures
without replacing all the network devices but rather upgrading
just a few of their devices. Local fast-reroute techniques such
as LFA are a good example of such incrementally deployable
technologies where critical routers could be upgraded to sup-
port LFA during a network deployment transition. Today, we
observe that Segment Routing (SR) technologies offer similar
advantages when deployed with IPv6. Since FRR policies are
encoded in the general IPv6 segment options, operators do not
need to upgrade routers in their network that do not need to
interpret these segments, lowering any barrier for deployment.

Enhanced communication models are poorly supported
in FRR. The vast majority of fast-recovery mechanisms in
the literature address the basic setting: single-layer, unicast
communication. This is not surprising: handling a failure is
simplest when the information to be learned, and the actions
to be performed, during recovery is constrained into a single
transmission technology layer, and concerns point-to-point
communication only. However, communication networks are
inherently multi-layer, in that one transmission technology,
such as Optical Transport Network, serves as a carrier for
another transmission protocol such as IP [42]. In this setting,
it becomes notoriously difficult to identify the exact layer in
the stack where a failure occurs [47] and fix the “owner”,
i.e., the layer that should handle it. While several inter-layer
cooperative fast-recovery designs are already available (e.g.,
bottom-up, top-down, and integrated strategies, see [73]), the
general setting is for further research. Similarly, although the
unicast setting is excessively addressed in the literature and

initial designs are available for fast multicast recovery as well,
like an 1+1 [288] and an 1:1 protection scheme [289] for BIER
(Bit Index Explicit Replication, [290]), fast recovery for the
general multicast, anycast, and geocast communication mode
remains a challenging open problem for now.

The future of fast-recovery mechanisms. Programmable
networks offer great opportunities in terms of being able to
design, deploy, and experiment with different fast-recovery
data-plane mechanisms in a network. Given the emerging
flexibilities of software-defined networks, one may wonder
whether there are some methods which are preferable over
others. In general, we can conclude that there is no free
lunch. For example, there can be trade-offs between resilience
and efficiency: in scenarios where it is sufficient to provide
resilience against one failure, it may be preferable to choose
simple solutions, as state-of-the-art mechanisms for many
failures can lead to long routes, even under a small number of
failures (e.g., approaches based on arborescences). We have
also seen that the ability to change the header depending on
the failures can greatly improve resilience: it may be possible
to achieve a perfect resilience, i.e., to stay connected as long
as the underlying network is connected; this is known to
be impossible without header rewriting. An example where
a “technology detail” can make a big difference regards
the ability to match the input port: destination-based-only
routing is often less powerful (e.g., if headers are immutable)
than routing which can also depend on the source, and if
additionally the input port can be matched, the resilience may
be improved even further.

At the same time, while the general transition to pro-
grammable networks may result in several related benefits,
future fast-recovery solutions could also be designed in such
a way that makes their deployment in legacy and mixed
network environments possible and effective, both in terms
of the reliability guarantees and the overall cost. Otherwise,
the related support in commercial off-the-shelf network equip-
ment might be limited to none, which was among the main
shortcomings of many designs proposed to date.

ACKNOWLEDGMENTS

This article is based on work from COST Action CA15127
(“Resilient communication services protecting end-user appli-
cations from disaster-based failures” — RECODIS), supported
by COST (European Cooperation in Science and Technology);
http://www.cost.eu. This research is partially supported by
the Vienna Science and Technology Fund (WWTF) project,
Fast and Quantitative What-if Analysis for Dependable Com-
munication Networks (WHATIF, ICT19-045, 2020-2024), as
well as by the KTH Digital Futures center and by Eric-
sson Research, Hungary. G.R. and S.S. are supported by
the Austrian-Hungarian Joint Research Project FWF-30668/
OTKA-135606. G.R. is also with the Budapest University of
Technology and Economics and the MTA–BME Momentum
Network Softwarization Research Group.

The authors would like to thank Thomas Holterbach, James
Kempf, Michael Menth, Daniel Merling, Ankit Singla, and
Laurent Vanbever for their insightful comments received on
the paper draft.

www.cost.eu
www.cost.eu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

43

REFERENCES

[1] R. Chirgwin, “Google routing blunder sent Japan’s Internet dark on
Friday,” in https://www.theregister.co.uk/2017/08/27/google_routing_
blunder_sent_japans_internet_dark/ , 2017.

[2] D. Tweney, “5-minute outage costs Google $545,000
in revenue,” in http://venturebeat.com/2013/08/16/
3-minute-outage-costs-google-545000-in-revenue/ , 2013.

[3] G. Corfield, “British Airways’ latest total inability to sup-
port upwardness of planes caused by Amadeus system out-
age,” in https://www.theregister.co.uk/2018/07/19/amadeus_british_
airways_outage_load_sheet/ , 2018.

[4] C. Gibbs, “ATT’s 911 outage result of mistakes made by
ATT, FCC’s Pai says,” in https://www.fiercewireless.com/wireless/
at-t-s-911-outage-result-mistakes-made-by-at-t-fcc-s-pai-says, 2017.

[5] J. Young and T. Barth, “Web performance analytics show even 100-
millisecond delays can impact customer engagement and online rev-
enue,” Akamai Online Retail Performance Report, 2017.

[6] J. Saldan, “Delay limits for real-time services,” IETF Drafft, 2016.
[7] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures

in data centers: Measurement, analysis, and implications,” ACM SIG-
COMM Computer Communication Review, vol. 41, no. 4, pp. 350–361,
2011.

[8] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”
IEEE/ACM Transactions on Networking, no. 5, pp. 515–528, 1998.

[9] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to
alleviate link overload as observed on an IP backbone,” in Proc. IEEE
INFOCOM, vol. 1. IEEE, 2003, pp. 406–416.

[10] J. Moy, “OSPF version 2,” Internet Requests for Comments,
RFC Editor, RFC 2328, Apr 1998. [Online]. Available: https:
//tools.ietf.org/html/rfc2328

[11] ISO, “Intermediate System-to-Intermediate System (IS-IS) routing pro-
tocol,” ISO/IEC 10589, 2002.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp.
63–74, 2011.

[13] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
TCP (D2TCP),” ACM SIGCOMM Computer Communication Review,
vol. 42, no. 4, pp. 115–126, 2012.

[14] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
Reducing the flow completion time tail in datacenter networks,” in
Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tion. ACM, 2012, pp. 139–150.

[15] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving
sub-second IGP convergence in large IP networks,” SIGCOMM
Comput. Commun. Rev., vol. 35, no. 3, pp. 35–44, Jul. 2005. [Online].
Available: https://doi.org/10.1145/1070873.1070877

[16] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,
“Ensuring connectivity via data plane mechanisms,” in Presented as
part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). Lombard, IL: USENIX, 2013,
pp. 113–126. [Online]. Available: https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/liu_junda

[17] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach
to network control and management,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 5, pp. 41–54, Oct. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1096536.1096541

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[19] H. Yan, D. A. Maltz, T. E. Ng, H. Gogineni, H. Zhang, and Z. Cai,
“Tesseract: A 4D network control plane,” in NSDI, vol. 7, 2007, pp.
27–27.

[20] J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and
A. Singla, “Brief announcement: On the resilience of routing tables,” in
Proceedings of the 2012 ACM Symposium on Principles of Distributed
Computing, 2012, pp. 237–238.

[21] D. Stamatelakis and W. D. Grover, “IP layer restoration and network
planning based on virtual protection cycles,” IEEE Journal on Selected
Areas in Communications, vol. 18, no. 10, pp. 1938–1949, 2000.

[22] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “FlowBender:
Flow-level adaptive routing for improved latency and throughput in
datacenter networks,” in Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies,
ser. CoNEXT ’14. New York, NY, USA: ACM, 2014, pp. 149–160.
[Online]. Available: http://doi.acm.org/10.1145/2674005.2674985

[23] J. Papan, P. Segeč, M. Moravcik, M. Kontsek, L. Mikus, and
J. Uramova, “Overview of IP Fast Reroute solutions,” in 2018 16th
International Conference on Emerging eLearning Technologies and
Applications (ICETA), Nov 2018, pp. 417–424.

[24] A. Jarry, “Fast reroute paths algorithms,” Telecommunication Systems,
vol. 52, no. 2, pp. 881–888, 2013.

[25] A. Kamisiński, “Evolution of IP fast-reroute strategies,” in 2018 10th
International Workshop on Resilient Networks Design and Modeling
(RNDM), Aug 2018, pp. 1–6.

[26] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE
for LSP tunnels,” Internet Requests for Comments, RFC Editor, RFC
4090, May 2005. [Online]. Available: https://tools.ietf.org/html/rfc4090

[27] Switch Specification 1.3.1, “OpenFlow,” in https://bit.ly/2VjOO77,
2013.

[28] Cisco, “Configuring BGP PIC edge and core
for IP and MPLS,” Oct. 2017. [Online]. Avail-
able: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/
configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html

[29] D. Xu, Y. Xiong, C. Qiao, and G. Li, “Failure protection in layered
networks with shared risk link groups,” IEEE Network, vol. 18, no. 3,
pp. 36–41, 2004.

[30] P. Sebos, J. Yates, G. Hjalmtysson, and A. Greenberg, “Auto-discovery
of shared risk link groups,” in Proc. Optical Fiber Communication
Conference and Exhibit (OFC), vol. 3, 2001.

[31] M. Menth, M. Duelli, R. Martin, and J. Milbrandt, “Resilience analysis
of packet-switched communication networks,” IEEE/ACM Transactions
on Networking, vol. 17, no. 6, pp. 1950–1963, 2009.

[32] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-
free alternates,” Internet Requests for Comments, RFC Editor, RFC
5286, Sep 2008. [Online]. Available: https://tools.ietf.org/html/rfc5286

[33] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “IP fast rerouting
for multi-link failures,” in Proc. IEEE INFOCOM, 2014.

[34] M. Golash, “Reliability in Ethernet networks: A survey of various
approaches,” Bell Labs Technical Journal, vol. 11, no. 3, pp. 161–171,
2006.

[35] M. Gjoka, V. Ram, and X. Yang, “Evaluation of IP fast reroute
proposals,” in 2007 2nd International Conference on Communication
Systems Software and Middleware, Jan 2007, pp. 1–8.

[36] J. Papán, P. Segeč, and P. Palúch, “Analysis of existing IP fast reroute
mechanisms,” in 2015 International Conference on Information and
Digital Technologies, July 2015, pp. 291–297.

[37] A. Raj and O. C. Ibe, “A survey of IP and Multiprotocol Label
Switching fast reroute schemes,” Computer Networks, vol. 51, no. 8,
pp. 1882–1907, 2007.

[38] L. Jorge and T. Gomes, “Survey of recovery schemes in MPLS
networks,” in 2006 International Conference on Dependability of
Computer Systems. IEEE, 2006, pp. 110–118.

[39] R. B. da Silva and E. S. Mota, “A survey on approaches to reduce
BGP interdomain routing convergence delay on the Internet,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2949–2984,
2017.

[40] A. S. da Silva, P. Smith, A. Mauthe, and A. Schaeffer-Filho, “Re-
silience support in software-defined networking: A survey,” Computer
Networks, vol. 92, pp. 189–207, 2015.

[41] M. F. Habib, M. Tornatore, F. Dikbiyik, and B. Mukherjee, “Disaster
survivability in optical communication networks,” Computer Commu-
nications, vol. 36, no. 6, pp. 630–644, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366413000224

[42] P. Cholda and A. Jajszczyk, “Recovery and its quality in multilayer
networks,” Journal of Lightwave Technology, vol. 28, no. 4, pp. 372–
389, 2010.

[43] S. D. Maesschalck., D. Colle., I. Lievens., M. Pickavet., P. Demeester.,
C. Mauz., M. Jaeger., R. Inkret., B. Mikac., and J. Derkacz, “Pan-
european optical transport networks: An availability-based compari-
son,” Photonic Network Communications, vol. 5, no. 3, pp. 203–225,
2003.

[44] J. Rak, D. Hutchison, E. Calle, T. Gomes, M. Gunkel, P. Smith,
J. Tapolcai, S. Verbrugge, and L. Wosinska, “RECODIS: Resilient
communication services protecting end-user applications from disaster-
based failures,” in 2016 18th International Conference on Transparent
Optical Networks (ICTON), 2016, pp. 1–4.

https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
http://venturebeat.com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/
http://venturebeat.com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/
https://www.theregister.co.uk/2018/07/19/amadeus_british_airways_outage_load_sheet/
https://www.theregister.co.uk/2018/07/19/amadeus_british_airways_outage_load_sheet/
https://www.fiercewireless.com/ wireless/at-t-s-911-outage-result-mistakes-made-by-at-t-fcc-s-pai-says
https://www.fiercewireless.com/ wireless/at-t-s-911-outage-result-mistakes-made-by-at-t-fcc-s-pai-says
https://tools.ietf.org/html/rfc2328
https://tools.ietf.org/html/rfc2328
https://doi.org/10.1145/1070873.1070877
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
http://doi.acm.org/10.1145/1096536.1096541
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/2674005.2674985
https://tools.ietf.org/html/rfc4090
https://bit.ly/2VjOO77
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
https://tools.ietf.org/html/rfc5286
http://www.sciencedirect.com/science/article/pii/S0140366413000224

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

44

[45] J. Rak and D. Hutchison, Guide to Disaster-Resilient Communication
Networks. Cham, Switzerland: Springer, 2020.

[46] Y. Rekhter, S. Hares, and T. Li, “A Border Gateway Protocol 4
(BGP-4),” Internet Requests for Comments, RFC Editor, RFC 4271,
Jan 2006. [Online]. Available: https://tools.ietf.org/html/rfc4271

[47] S. Rai, B. Mukherjee, and O. Deshpande, “IP resilience within an
autonomous system: current approaches, challenges, and future direc-
tions,” IEEE Communications Magazine, vol. 43, no. 10, pp. 142–149,
2005.

[48] R. Stankiewicz, P. Cholda, and A. Jajszczyk, “QoX: What is it really?”
IEEE Communications Magazine, vol. 49, no. 4, pp. 148–158, 2011.

[49] “ITU-T Recommendation Y.1566: Quality of Service mapping and
interconnection between Ethernet, Internet protocol and multiprotocol
label switching networks,” International Telecommunication Union,
2012.

[50] W. C. Hardy, “QoS” Measurement and Evaluation of Telecommunica-
tions Quality of Service. John Wiley & Sons, 2001.

[51] J. Gozdecki, A. Jajszczyk, and R. Stankiewicz, “Quality of Service
terminology in IP networks,” IEEE Communications Magazine, vol. 41,
no. 3, pp. 153–159, 2003.

[52] “ITU-T Recommendation Y.1540: Internet protocol data communica-
tion service – IP packet transfer and availability performance parame-
ters,” International Telecommunication Union, 2019.

[53] “ITU-T Recommendation Y.1541: Network performance objectives for
IP-based services,” International Telecommunication Union, 2011.

[54] A. F. Hansen, T. Čičic, and S. Gjessing, “Alternative schemes for
proactive IP recovery,” in 2006 2nd Conference on Next Generation
Internet Design and Engineering, 2006. NGI ’06., 2006, pp. 1–8.

[55] S. Kini, S. Ramasubramanian, A. Kvalbein, and A. F. Hansen, “Fast
recovery from dual-link or single-node failures in IP networks using
tunneling,” IEEE/ACM Transactions on Networking, vol. 18, no. 6, pp.
1988–1999, 2010.

[56] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P.
Rohrer, M. Schöller, and P. Smith, “Resilience and survivability
in communication networks: Strategies, principles, and survey of
disciplines,” Computer Networks, vol. 54, no. 8, pp. 1245–1265, 2010.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1389128610000824

[57] J. P. G. Sterbenz, E. K. Cetinkaya, M. A. Hameed, A. Jabbar, S. Qian,
and J. P. Rohrer, “Evaluation of network resilience, survivability, and
disruption tolerance: Analysis, topology generation, simulation, and
experimentation,” Telecommunication Systems, vol. 52, no. 2, pp. 705–
736, 2013.

[58] J. Rak, Resilient Routing in Communication Networks, 1st ed., ser.
Computer Communications and Networks. Springer Publishing Com-
pany, Incorporated, 2015.

[59] A. Mauthe, D. Hutchison, E. K. Çetinkaya, I. Ganchev, J. Rak, J. P. G.
Sterbenz, M. Gunkel, P. Smith, and T. Gomes, “Disaster-resilient
communication networks: Principles and best practices,” in 2016 8th
International Workshop on Resilient Networks Design and Modeling
(RNDM), Halmstad, Sweden, Sep. 13-15 2016, pp. 1–10.

[60] S. Dobson, D. Hutchison, A. Mauthe, A. Schaeffer-Filho, P. Smith,
and J. P. G. Sterbenz, “Self-organization and resilience for networked
systems: Design principles and open research issues,” Proceedings of
the IEEE, vol. 107, no. 4, pp. 819–834, 2019.

[61] T. Gomes, J. Tapolcai, C. Esposito, D. Hutchison, F. Kuipers, J. Rak,
A. de Sousa, A. Iossifides, R. Travanca, J. André, L. Jorge, L. Martins,
P. Ortiz Ugalde, A. Pašić, D. Pezaros, S. Jouet, S. Secci, and M. Tor-
natore, “A survey of strategies for communication networks to protect
against large-scale natural disasters,” in 2016 8th International Work-
shop on Resilient Networks Design and Modeling (RNDM), Halmstad,
Sweden, Sep. 13-15 2016, pp. 11–22.

[62] A. Pašić, R. Girão-Silva, F. Mogyorósi, B. Vass, T. Gomes, P. Babarczi,
P. Revisnyei, J. Tapolcai, and J. Rak, “eFRADIR: An Enhanced
FRAmework for DIsaster Resilience,” IEEE Access, vol. 9, pp. 13 125–
13 148, 2021.

[63] M. J. Khabbaz, C. M. Assi, and W. F. Fawaz, “Disruption-tolerant
networking: A comprehensive survey on recent developments and
persisting challenges,” IEEE Communications Surveys & Tutorials,
vol. 14, no. 2, pp. 607–640, 2012.

[64] A. Avizienis, J.-C. Laprie, and B. Randell, “Dependability and its
threats: A taxonomy,” in Building the Information Society, J. R., Ed.
IFIP International Federation for Information Processing, Springer,
2004, vol. 156, pp. 91–120.

[65] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE

Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, 2004.

[66] P. Cholda, J. Tapolcai, T. Cinkler, K. Wajda, and A. Jajszczyk, “Quality
of resilience as a network reliability characterization tool,” IEEE
Network, vol. 23, no. 2, pp. 11–19, 2009.

[67] A. Autenrieth and A. Kirstadter, “Engineering end-to-end IP resilience
using resilience-differentiated QoS,” IEEE Communications Magazine,
vol. 40, no. 1, pp. 50–57, 2002.

[68] P. Cholda, A. Mykkeltveit, B. E. Helvik, O. J. Wittner, and A. Ja-
jszczyk, “A survey of resilience differentiation frameworks in commu-
nication networks,” IEEE Communications Surveys & Tutorials, vol. 9,
no. 4, pp. 32–55, 2007.

[69] C. Huang, V. Sharma, K. Owens, and S. Makam, “Building reliable
MPLS networks using a path protection mechanism,” IEEE Communi-
cations Magazine, vol. 40, no. 3, pp. 156–162, 2002.

[70] F. A. Hellstrand and V. Sharma, “Framework for Multi-Protocol
Label Switching (MPLS)-based Recovery,” Internet Requests for
Comments, RFC Editor, RFC 3469, Feb 2003. [Online]. Available:
https://tools.ietf.org/html/rfc3469

[71] A. Autenrieth, “Recovery time analysis of differentiated resilience
in MPLS,” in Fourth International Workshop on Design of Reliable
Communication Networks, 2003. (DRCN 2003). Proceedings., 2003,
pp. 333–340.

[72] G. Ellinas, D. Papadimitriou, J. Rak, D. Staessens, J. P. G. Sterbenz, and
K. Walkowiak, “Practical issues for the implementation of survivability
and recovery techniques in optical networks,” Optical Switching and
Networking, vol. 14, pp. 179–193, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1573427714000368

[73] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery:
Protection and Restoration of Optical, SONET-SDH, IP, and MPLS.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004.

[74] A. Dusia and A. S. Sethi, “Recent advances in fault localization
in computer networks,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 4, pp. 3030–3051, 2016.

[75] “G.975: Forward error correction for submarine systems,” International
Telecommunication Union, 2000.

[76] C. Mas-Machuca and P. Thiran, “An efficient algorithm for locating
soft and hard failures in WDM networks,” IEEE Journal on Selected
Areas in Communications, vol. 18, no. 10, pp. 1900–1911, 2000.

[77] S. Q. Zhuang, D. Geels, I. Stoica, and R. H. Katz, “On failure
detection algorithms in overlay networks,” in Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies., vol. 3, 2005, pp. 2112–2123.

[78] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),”
Internet Requests for Comments, RFC Editor, RFC 5880, Jun 2010.
[Online]. Available: https://tools.ietf.org/html/rfc5880

[79] R. Steinert and D. Gillblad, “Towards distributed and adaptive detection
and localisation of network faults,” in 2010 Sixth Advanced Interna-
tional Conference on Telecommunications, 2010, pp. 384–389.

[80] R. Cohen and G. Nakibly, “Maximizing restorable throughput in MPLS
networks,” IEEE/ACM Transactions on Networking, vol. 18, no. 2, pp.
568–581, 2010.

[81] IEEE Computer Society, “IEEE standard for local and metropolitan
area networks: Media Access Control (MAC) bridges,” IEEE Std
802.1D-2004 (Revision of IEEE Std 802.1D-1998), pp. 1–281, June
2004, https://standards.ieee.org/standard/802_1D-2004.html.

[82] J. Qiu, M. Gurusamy, K. C. Chua, and Y. Liu, “Local restoration
with multiple spanning trees in metro Ethernet,” in 2008 International
Conference on Optical Network Design and Modeling, 2008, pp. 1–6.

[83] K. Elmeleegy, A. L. Cox, and T. S. E. Ng, “On count-to-infinity
induced forwarding loops in Ethernet networks,” in Proceedings IEEE
INFOCOM 2006. 25TH IEEE International Conference on Computer
Communications, April 2006, pp. 1–13.

[84] L. Su, W. Chen, H. Su, Z. Xiao, D. Jin, and L. Zeng, “Ethernet ultra
fast switching: A tree-based local recovery scheme,” in 2008 11th IEEE
Singapore International Conference on Communication Systems, 2008,
pp. 314–318.

[85] IEEE Computer Society, “Part 3: Media Access Control (MAC)
bridges: Amendment 2 – Rapid reconfiguration,” IEEE Std 802.1w-
2001 (Amendment to IEEE Std 802.1d and 802.1t), pp. 1–116, July
2001, https://standards.ieee.org/standard/802_1w-2001.html.

[86] ——, “IEEE standards for local and metropolitan area networks: Vir-
tual bridged local area networks,” IEEE Std 802.1Q-2003 (Incorporates
IEEE Std 802.1Q-1998, IEEE Std 802.1u-2001, IEEE Std 802.1v-2001,
and IEEE Std 802.1s-2002), pp. 1–322, May 2003.

[87] A. Gopalan and S. Ramasubramanian, “Fast recovery from link failures
in Ethernet networks,” in 2013 9th International Conference on the

https://tools.ietf.org/html/rfc4271
http://www.sciencedirect.com/science/article/pii/S1389128610000824
http://www.sciencedirect.com/science/article/pii/S1389128610000824
https://tools.ietf.org/html/rfc3469
https://www.sciencedirect.com/science/article/pii/S1573427714000368
https://tools.ietf.org/html/rfc5880
https://standards.ieee.org/standard/802_1D-2004.html
https://standards.ieee.org/standard/802_1w-2001.html

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

45

Design of Reliable Communication Networks (DRCN), 2013, pp. 1–
10.

[88] ——, “Fast recovery from link failures in Ethernet networks,” IEEE
Transactions on Reliability, vol. 63, no. 2, pp. 412–426, 2014.

[89] IEEE Computer Society, “IEEE standard for local and metropoli-
tan area networks: Media access control (MAC) bridges,” IEEE Std
802.1D-1990, pp. 1–176, Mar 1991.

[90] ——, “IEEE standard for local area network MAC (Media Access
Control) bridges,” ANSI/IEEE Std 802.1D, 1998 Edition, pp. 1–373,
Dec 1998.

[91] ——, “IEEE standards for local and metropolitan area networks:
Virtual bridged local area networks,” IEEE Std 802.1Q-1998, pp. 1–
214, Mar 1999.

[92] S. Varadarajan and T. Chiueh, “Automatic fault detection and recovery
in real time switched Ethernet networks,” in IEEE INFOCOM ’99.
Conference on Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No.99CH36320), vol. 1, 1999, pp.
161–169.

[93] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh, “Viking: a multi-
spanning-tree Ethernet architecture for metropolitan area and cluster
networks,” in IEEE INFOCOM 2004, vol. 4, 2004, pp. 2283–2294.

[94] R. Pallos, J. Farkas, I. Moldovan, and C. Lukovszki, “Performance of
rapid spanning tree protocol in access and metro networks,” in 2007
Second International Conference on Access Networks & Workshops,
2007, pp. 1–8.

[95] D. Jin, W. Chen, Z. Xiao, and L. Zeng, “Single link switching
mechanism for fast recovery in tree-based recovery schemes,” in 2008
International Conference on Telecommunications, 2008, pp. 1–5.

[96] D. Jin, Y. Li, W. Chen, L. Su, and L. Zeng, “Ethernet ultra-fast
switching: a tree-based local recovery scheme,” IET Communications,
vol. 4, no. 4, pp. 410–418, 2010.

[97] J. Qiu, M. Gurusamy, K. C. Chua, and Y. Liu, “Local restoration
with multiple spanning trees in metro Ethernet networks,” IEEE/ACM
Transactions on Networking, vol. 19, no. 2, pp. 602–614, 2011.

[98] J. Qiu, Y. Liu, G. Mohan, and K. C. Chua, “Fast spanning tree
reconnection for resilient metro Ethernet networks,” in 2009 IEEE
International Conference on Communications, 2009, pp. 1–5.

[99] M. Terasawa, M. Nishida, S. Shimizu, Y. Arakawa, S. Okamoto, and
N. Yamanaka, “Recover-forwarding method in link failure with pre-
established recovery table for wide area Ethernet,” in 2009 IEEE
International Conference on Communications, 2009, pp. 1–5.

[100] J. Qiu, G. Mohan, K. C. Chua, and Y. Liu, “Handling double-link
failures in metro Ethernet networks using fast spanning tree reconnec-
tion,” in GLOBECOM 2009 – 2009 IEEE Global Telecommunications
Conference, 2009, pp. 1–6.

[101] J. Farkas and Z. Arato, “Performance analysis of shortest path bridging
control protocols,” in GLOBECOM 2009 – 2009 IEEE Global Telecom-
munications Conference, 2009, pp. 1–6.

[102] IEEE Computer Society, “IEEE standard for local and metropolitan
area networks – Media Access Control (MAC) bridges and virtual
bridged local area networks,” IEEE Std 802.1Q-2011 (Revision of IEEE
Std 802.1Q-2005), pp. 1–1365, Aug 2011.

[103] D. M. Shan, C. K. Chiang, G. Mohan, and J. Qiu, “Partial spatial
protection for differentiated reliability in FSTR-based metro Ethernet
networks,” in 2011 IEEE Global Telecommunications Conference –
GLOBECOM 2011, 2011, pp. 1–5.

[104] J. McCauley, A. Sheng, E. J. Jackson, B. Raghavan, S. Ratnasamy, and
S. Shenker, “Taking an AXE to L2 spanning trees,” in Proceedings of
the 14th ACM Workshop on Hot Topics in Networks, ser. HotNets-XIV.
New York, NY, USA: Association for Computing Machinery, 2015.
[Online]. Available: https://doi.org/10.1145/2834050.2834097

[105] IEEE Computer Society, “IEEE standard for local and metropolitan
area networks – Bridges and bridged networks – Amendment 24:
Path control and reservation,” IEEE Std 802.1Qca-2015 (Amendment
to IEEE Std 802.1Q-2014 as amended by IEEE Std 802.1Qcd-2015
and IEEE Std 802.1Q-2014/Cor 1-2015), pp. 1–120, Mar 2016.

[106] M. Santos and J. Grégoire, “Improving carrier Ethernet recovery time
using a fast reroute mechanism,” in 2016 23rd International Conference
on Telecommunications (ICT), 2016, pp. 1–7.

[107] J. McCauley, M. Zhao, E. J. Jackson, B. Raghavan, S. Ratnasamy,
and S. Shenker, “The deforestation of L2,” in Proceedings of the
2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York,
NY, USA: Association for Computing Machinery, 2016, pp. 497–510.
[Online]. Available: https://doi.org/10.1145/2934872.2934877

[108] IEEE Computer Society, “IEEE standard for local and metropolitan
area networks – Virtual bridged local area networks,” IEEE Std 802.1Q-
2005 (Incorporates IEEE Std 802.1Q1998, IEEE Std 802.1u-2001,
IEEE Std 802.1v-2001, and IEEE Std 802.1s-2002), pp. 1–300, May
2006.

[109] ——, “IEEE standard for local and metropolitan area networks –
Media Access Control (MAC) bridges and virtual bridges [edition],”
IEEE Std 802.1Q-2012 (Incorporating IEEE Std 802.1Q-2011, IEEE
Std 802.1Qbe-2011, IEEE Std 802.1Qbc-2011,IEEE Std 802.1Qbb-
2011, IEEE Std 802.1Qaz-2011, IEEE Std 802.1Qbf-2011, IEEE Std
802.1Qbg-2012, IEEE Std 802.1aq-2012, IEEE Std 802.1Q-2012), pp.
1–1782, Dec 2012.

[110] ——, “IEEE standard for local and metropolitan area networks –
Bridges and bridged networks,” IEEE Std 802.1Q-2014 (Revision of
IEEE Std 802.1Q-2011), pp. 1–1832, Dec 2014.

[111] ——, “IEEE standard for local and metropolitan area network –
Bridges and bridged networks,” IEEE Std 802.1Q-2018 (Revision of
IEEE Std 802.1Q-2014), pp. 1–1993, July 2018.

[112] W. Grover and D. Stamatelakis, “Cycle-oriented distributed precon-
figuration: Ring-like speed with mesh-like capacity for self-planning
network restoration,” in 1998 IEEE International Conference on Com-
munications ICC’98, 1998.

[113] O. Lemeshko and K. Arous, “Fast ReRoute model for different backup
schemes in MPLS-network,” in 2014 First International Scientific-
Practical Conference Problems of Infocommunications Science and
Technology, 2014, pp. 39–41.

[114] J. McManus, J. Malcolm, M. D. O’Dell, D. O. Awduche, and
J. Agogbua, “Requirements for traffic engineering over MPLS,”
Internet Requests for Comments, RFC Editor, RFC 2702, Sep 1999.
[Online]. Available: https://tools.ietf.org/html/rfc2702

[115] D. L. Haskin and R. Krishnan, “A method for setting an
alternative label switched paths to handle fast reroute,” Internet
Engineering Task Force, Internet-Draft draft-haskin-mpls-fast-reroute-
05, Nov. 2000, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-haskin-mpls-fast-reroute-05

[116] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label
Switching architecture,” Internet Requests for Comments, RFC Editor,
RFC 3031, Jan 2001. [Online]. Available: https://tools.ietf.org/html/
rfc3031

[117] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP tunnels,” Internet Requests
for Comments, RFC Editor, RFC 3209, Dec 2001. [Online]. Available:
https://tools.ietf.org/html/rfc3209

[118] M. Kodialam and T. V. Lakshman, “Dynamic routing of locally
restorable bandwidth guaranteed tunnels using aggregated link usage
information,” in Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat. No.01CH37213),
vol. 1, 2001, pp. 376–385.

[119] L. Hundessa and J. D. Pascual, “Fast rerouting mechanism for a pro-
tected label switched path,” in Proceedings Tenth International Confer-
ence on Computer Communications and Networks (Cat. No.01EX495),
2001, pp. 527–530.

[120] E. Mannie and D. Papadimitriou, “Recovery (protection
and restoration) terminology for Generalized Multi-Protocol
Label Switching (GMPLS),” Internet Requests for Comments,
RFC Editor, RFC 4427, Mar 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4427

[121] D. Papadimitriou and E. Mannie, “Analysis of Generalized Multi-
Protocol Label Switching (GMPLS)-based recovery mechanisms
(including protection and restoration),” Internet Requests for
Comments, RFC Editor, RFC 4428, Mar 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4428

[122] L. Andersson, I. Minei, and B. Thomas, “LDP specification,” Internet
Requests for Comments, RFC Editor, RFC 5036, Oct 2007. [Online].
Available: https://tools.ietf.org/html/rfc5036

[123] J. V. A. Farrel, A. Ayyangar, “Inter-Domain MPLS and GMPLS Traffic
Engineering – Resource Reservation Protocol-Traffic Engineering
(RSVP-TE) Extensions,” Internet Requests for Comments, RFC
Editor, RFC 5151, Feb 2008. [Online]. Available: https://tools.ietf.org/
html/rfc5151

[124] D. Wang and G. Li, “Efficient distributed bandwidth management for
MPLS fast reroute,” IEEE/ACM Transactions on Networking, vol. 16,
no. 2, pp. 486–495, 2008.

[125] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu,
and Y. R. Yang, “R3: Resilient routing reconfiguration,” SIGCOMM

https://doi.org/10.1145/2834050.2834097
https://doi.org/10.1145/2934872.2934877
https://tools.ietf.org/html/rfc2702
https://datatracker.ietf.org/doc/html/draft-haskin-mpls-fast-reroute-05
https://datatracker.ietf.org/doc/html/draft-haskin-mpls-fast-reroute-05
https://tools.ietf.org/html/rfc3031
https://tools.ietf.org/html/rfc3031
https://tools.ietf.org/html/rfc3209
https://tools.ietf.org/html/rfc4427
https://tools.ietf.org/html/rfc4428
https://tools.ietf.org/html/rfc5036
https://tools.ietf.org/html/rfc5151
https://tools.ietf.org/html/rfc5151

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

46

Comput. Commun. Rev., vol. 40, no. 4, pp. 291–302, Aug. 2010.
[Online]. Available: https://doi.org/10.1145/1851275.1851218

[126] A. Hassan, M. Bazama, T. Saad, and H. T. Mouftah, “Investigation
of fast reroute mechanisms in an optical testbed environment,” in
7th International Symposium on High-capacity Optical Networks and
Enabling Technologies, 2010, pp. 247–251.

[127] N. Sprecher and A. Farrel, “MPLS Transport Profile (MPLSTP)
survivability framework,” Internet Requests for Comments, RFC
Editor, RFC 6372, Sep 2011. [Online]. Available: https://tools.ietf.org/
html/rfc6372

[128] G. Ramachandran, L. Ciavattone, and A. Morton, “Restoration mea-
surements on an IP/MPLS backbone: The effect of Fast Reroute on
link failure,” in 2011 IEEE Nineteenth IEEE International Workshop
on Quality of Service, 2011, pp. 1–6.

[129] K. Koushik, R. Cetin, and T. Nadeau, “Multiprotocol label switching
(MPLS) traffic engineering management information base for fast
reroute,” Internet Requests for Comments, RFC Editor, RFC 6445,
Nov 2011. [Online]. Available: https://tools.ietf.org/html/rfc6445

[130] S. Bryant, S. Previdi, and M. Shand, “A Framework for IP and
MPLS fast reroute using Not-Via addresses,” Internet Requests for
Comments, RFC Editor, RFC 6981, Aug 2013. [Online]. Available:
https://tools.ietf.org/html/rfc6981

[131] T. Benhcine, H. Elbiaze, and K. Idoudi, “Fast reroute-based network
resiliency experimental investigations,” in 2013 15th International
Conference on Transparent Optical Networks (ICTON), 2013, pp. 1–4.

[132] O. Lemeshko, A. Romanyuk, and H. Kozlova, “Design schemes for
MPLS fast reroute,” in 2013 12th International Conference on the
Experience of Designing and Application of CAD Systems in Micro-
electronics (CADSM), 2013, pp. 202–203.

[133] M. Taillon, T. Saad, R. Gandhi, Z. Ali, and M. Bhatia, “Updates
to the resource reservation protocol for fast reroute of traffic
engineering GMPLS Label Switched Paths (LSPs),” Internet Requests
for Comments, RFC Editor, RFC 8271, Oct 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8271

[134] O. S. Yeremenko, O. V. Lemeshko, and N. Tariki, “Fast ReRoute
scalable solution with protection schemes of network elements,” in
2017 IEEE First Ukraine Conference on Electrical and Computer
Engineering (UKRCON), 2017, pp. 783–788.

[135] S. Schmid and J. Srba, “Polynomial-time what-if analysis for prefix-
manipulating MPLS networks,” in IEEE INFOCOM 2018 – IEEE
Conference on Computer Communications, 2018, pp. 1799–1807.

[136] J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba,
and M. T. Thorgersen, “P-Rex: Fast verification of MPLS networks
with multiple link failures,” in Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’18. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 217–227. [Online]. Available:
https://doi.org/10.1145/3281411.3281432

[137] O. Lemeshko and O. Yeremenko, “Linear optimization model of
MPLS traffic engineering Fast ReRoute for link, node, and bandwidth
protection,” in 2018 14th International Conference on Advanced Trends
in Radioelecrtronics, Telecommunications and Computer Engineering
(TCSET), 2018, pp. 1009–1013.

[138] Y. Shen, J. M. Jeganathan, B. Decraene, H. Gredler, C. Michel, and
H. Chen, “MPLS egress protection framework,” Internet Requests for
Comments, RFC Editor, RFC 8679, Dec 2019. [Online]. Available:
https://tools.ietf.org/html/rfc8679

[139] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, Y. Gan-
jali, and C. Diot, “Characterization of failures in an operational IP
backbone network,” IEEE/ACM Transactions on Networking, vol. 16,
no. 4, pp. 749–762, 2008.

[140] J. S. Arora, Introduction to Optimum Design, 4th ed. Boston:
Academic Press, 2017.

[141] D. Applegate and E. Cohen, “Making intra-domain routing
robust to changing and uncertain traffic demands: Understanding
fundamental tradeoffs,” in Proceedings of the 2003 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications, ser. SIGCOMM’03. New York,
NY, USA: ACM, 2003, pp. 313–324. [Online]. Available:
http://doi.acm.org/10.1145/863955.863991

[142] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“COPE: Traffic engineering in dynamic networks,” in Proceedings
of the 2006 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, ser. SIGCOMM ’06.
New York, NY, USA: ACM, 2006, pp. 99–110. [Online]. Available:
http://doi.acm.org/10.1145/1159913.1159926

[143] P. G. Jensen, M. Konggaard, D. Kristiansen, S. Schmid, B. C. Schrenk,
and J. Srba, “AalWiNes: A fast and quantitative what-if analysis tool
for MPLS networks,” in Proc. 16th ACM International Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2020.

[144] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” ACM SIGPLAN Notices, vol. 49, no. 1, pp. 113–126, 2014.

[145] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12), 2012, pp. 113–126.

[146] L. Hundessa and J. Domingo-Pascual, “Reliable and fast rerouting
mechanism for a protected label switched path,” in Global Telecom-
munications Conference, 2002. GLOBECOM ’02. IEEE, vol. 2, Nov
2002, pp. 1608–1612.

[147] M. Menth, A. Reifert, and J. Milbrandt, “Self-protecting multipaths –
A simple and resource-efficient protection switching mechanism for
MPLS networks,” in NETWORKING 2004. Lecture Notes in Computer
Science, vol. 3042, 2004.

[148] M. Menth, R. Martin, and U. Sporlein, “Failure-specific self-protecting
multipaths – increased capacity savings or overengineering?” in 2007
6th International Workshop on Design and Reliable Communication
Networks, 2007, pp. 1–7.

[149] ——, “Optimization of the self-protecting multipath for deployment in
legacy networks,” in 2007 IEEE International Conference on Commu-
nications, 2007, pp. 421–427.

[150] M. Shand and S. Bryant, “IP fast reroute framework,” Internet
Requests for Comments, RFC Editor, RFC 5714, Jan 2010. [Online].
Available: https://tools.ietf.org/html/rfc5714

[151] R. Callon, “TCP and UDP with bigger addresses (TUBA), a simple
proposal for Internet addressing and routing,” Internet Requests for
Comments, RFC Editor, RFC 1347, Jun 1992. [Online]. Available:
https://tools.ietf.org/html/rfc1347

[152] K. W. Kwong, L. Gao, R. Guerin, and Z. L. Zhang, “On the feasibility
and efficacy of protection routing in IP networks,” in 2010 Proceedings
IEEE INFOCOM, March 2010, pp. 1–9.

[153] ——, “On the feasibility and efficacy of protection routing in IP
networks,” IEEE/ACM Transactions on Networking, vol. 19, no. 5, pp.
1543–1556, Oct 2011.

[154] G. Enyedi, A. Csaszar, A. Atlas, C. Bowers, and A. Gopalan,
“An algorithm for computing IP/LDP fast reroute using maximally
redundant trees (MRT-FRR),” IETF, RFC 7811, Jun. 2016. [Online].
Available: http://tools.ietf.org/rfc/rfc7811

[155] A. Atlas, C. Bowers, and G. Enyedi, “An architecture for IP/LDP
fast reroute using maximally redundant trees (MRT-FRR),” Internet
Requests for Comments, RFC Editor, RFC 7812, Jun 2016. [Online].
Available: https://tools.ietf.org/html/rfc7812

[156] T. Čičic, A. F. Hansen, and O. K. Apeland, “Redundant trees for fast
IP recovery,” in Broadnets, 2007, pp. 152–159.

[157] C. Alaettinoglu and V. Jacobson, “Towards milli-second
IGP convergence,” Internet Engineering Task Force, Internet-
Draft draft-alaettinoglu-isis-convergence-00, Nov. 2000, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-alaettinoglu-isis-convergence-00

[158] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb, “A
case study of OSPF behavior in a large enterprise network,” in Proc.
ACM IMW, 2002.

[159] J. Papan, P. Segec, and P. Paluch, “Utilization of PIM-DM in IP
fast reroute,” in 2014 IEEE 12th IEEE International Conference on
Emerging eLearning Technologies and Applications (ICETA), Dec
2014, pp. 373–378.

[160] G. Schollmeier, J. Charzinski, A. Kirstadter, C. Reichert, K. J. Schrodi,
Y. Glickman, and C. Winkler, “Improving the resilience in IP net-
works,” in Workshop on High Performance Switching and Routing,
2003, HPSR., Jun. 2003, pp. 91–96.

[161] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,
S. Shenker, and I. Stoica, “Achieving convergence-free routing using
failure-carrying packets,” in Proceedings of the 2007 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications, ser. SIGCOMM ’07. New York,
NY, USA: ACM, 2007, pp. 241–252. [Online]. Available: http:
//doi.acm.org/10.1145/1282380.1282408

[162] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep Forwarding:
Towards k-link failure resilient routing,” in IEEE INFOCOM 2014 –
IEEE Conference on Computer Communications, Apr. 2014, pp. 1617–
1625.

https://doi.org/10.1145/1851275.1851218
https://tools.ietf.org/html/rfc6372
https://tools.ietf.org/html/rfc6372
https://tools.ietf.org/html/rfc6445
https://tools.ietf.org/html/rfc6981
https://tools.ietf.org/html/rfc8271
https://doi.org/10.1145/3281411.3281432
https://tools.ietf.org/html/rfc8679
http://doi.acm.org/10.1145/863955.863991
http://doi.acm.org/10.1145/1159913.1159926
https://tools.ietf.org/html/rfc5714
https://tools.ietf.org/html/rfc1347
http://tools.ietf.org/rfc/rfc7811
https://tools.ietf.org/html/rfc7812
https://datatracker.ietf.org/doc/html/draft-alaettinoglu-isis-convergence-00
https://datatracker.ietf.org/doc/html/draft-alaettinoglu-isis-convergence-00
http://doi.acm.org/10.1145/1282380.1282408
http://doi.acm.org/10.1145/1282380.1282408

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

47

[163] M. Chiesa, I. Nikolaevskiy, S. Mitrović, A. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp.
1133–1146, 2017.

[164] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Shapira, and S. Shenker, “On the resiliency of randomized routing
against multiple edge failures,” in 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 55, 2016, pp.
134:1–134:15.

[165] M. Chiesa, I. Nikolaevskiy, S. Mitrović, A. Panda, A. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “The quest for resilient (static) forwarding
tables,” in IEEE INFOCOM 2016 – The 35th Annual IEEE Interna-
tional Conference on Computer Communications, April 2016, pp. 1–9.

[166] L. Csikor and G. Rétvári, “IP fast reroute with Remote Loop-Free
Alternates: The unit link cost case,” in 2012 IV International Congress
on Ultra Modern Telecommunications and Control Systems, Oct 2012,
pp. 663–669.

[167] ——, “On providing fast protection with Remote Loop-Free Alter-
nates,” Telecommunication Systems, vol. 60, no. 4, pp. 485–502, Dec
2015. [Online]. Available: https://doi.org/10.1007/s11235-015-0006-9

[168] P. Francois and O. Bonaventure, “An evaluation of IP-based fast reroute
techniques,” in Proceedings of the 2005 ACM International Conference
on emerging Networking EXperiments and Technologies. ACM, 2005,
pp. 244–245.

[169] M. Shand and S. Bryant, “A framework for loop-free convergence,”
Internet Requests for Comments, RFC Editor, RFC 5715, Jan. 2010.
[Online]. Available: https://tools.ietf.org/html/rfc5715

[170] R. Teixeira and J. Rexford, “Managing routing disruptions in Internet
service provider networks,” Comm. Mag., vol. 44, no. 3, pp.
160–165, Mar. 2006. [Online]. Available: http://dx.doi.org/10.1109/
MCOM.2006.1607880

[171] F. Clad, P. Merindol, J.-J. Pansiot, P. Francois, and O. Bonaventure,
“Graceful convergence in link-state IP networks: A lightweight algo-
rithm ensuring minimal operational impact,” Networking, IEEE/ACM
Transactions on, vol. 22, no. 1, pp. 300–312, 2014.

[172] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, Chen-Nee Chuah,
and C. Diot, “Characterization of failures in an IP backbone,” in IEEE
INFOCOM 2004, vol. 4, 2004, pp. 2307–2317.

[173] S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang, “Failure insensitive
routing for ensuring service availability,” in Quality of Service —
IWQoS 2003, K. Jeffay, I. Stoica, and K. Wehrle, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 287–304.

[174] A. Kvalbein, A. F. Hansen, T. Čičic, S. Gjessing, and O. Lysne, “Fast
recovery from link failures using resilient routing layers,” in 10th IEEE
Symposium on Computers and Communications (ISCC’05), June 2005,
pp. 554–560.

[175] A. Kvalbein, A. F. Hansen, T. Čičic, S. Gjessing, and O. Lysne, “Fast
IP network recovery using multiple routing configurations,” in Proceed-
ings IEEE INFOCOM 2006. 25TH IEEE International Conference on
Computer Communications, April 2006, pp. 1–11.

[176] J. Wang and S. Nelakuditi, “IP Fast Reroute with failure
inferencing,” in Proceedings of the 2007 SIGCOMM Workshop
on Internet Network Management, ser. INM ’07. New York,
NY, USA: ACM, 2007, pp. 268–273. [Online]. Available: http:
//doi.acm.org/10.1145/1321753.1321764

[177] J. Tapolcai and G. Rétvári, “Router virtualization for improving IP-
level resilience,” in 2013 Proceedings IEEE INFOCOM, April 2013,
pp. 935–943.

[178] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So, “Remote
Loop-Free Alternate (LFA) Fast Reroute (FRR),” Internet Requests for
Comments, RFC Editor, RFC 7490, Apr 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7490

[179] J. Tapolcai, G. Rétvári, P. Babarczi, and E. R. Bérczi-Kovács, “Scalable
and efficient multipath routing via redundant trees,” IEEE Journal on
Selected Areas in Communications, pp. 1–1, 2019.

[180] C. Filsfils, P. Francois, M. Shand, B. Decraene, J. Uttaro,
N. Leymann, and M. Horneffer, “Loop-Free Alternate (LFA)
applicability in service provider (SP) networks,” Internet Requests for
Comments, RFC Editor, RFC 6571, Jun 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6571

[181] Cisco Systems, “Cisco IOS XR routing configuration guide for the
Cisco CRS router, Release 4.2,” 2012.

[182] Hewlett-Packard, “HP 6600 router series: QuickSpecs,” 2008, avail-
able online: http://h18000.www1.hp.com/products/quickspecs/13811_
na/13811_na.PDF.

[183] Juniper Networks, “JUNOS 12.3 Routing protocols configuration
guide,” 2012.

[184] G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, “IP fast ReRoute:
Loop Free Alternates revisited,” in INFOCOM, 2011 Proceedings
IEEE, April 2011, pp. 2948–2956.

[185] D. Hock, M. Hartmann, C. Schwartz, and M. Menth, “Effectiveness
of link cost optimization for IP rerouting and IP fast reroute,” in
Measurement, Modelling, and Evaluation of Computing Systems and
Dependability and Fault Tolerance, B. Müller-Clostermann, K. Echtle,
and E. P. Rathgeb, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010, pp. 78–90.

[186] L. Csikor, M. Nagy, and G. Rétvári, “Network optimization techniques
for improving fast IP-level resilience with Loop-Free Alternates,”
Infocommunications Journal, vol. 3, no. 4, pp. 2–10, December 2011.
[Online]. Available: http://eprints.gla.ac.uk/131074/

[187] L. Csikor, J. Tapolcai, and G. Rétvári, “Optimizing IGP link
costs for improving IP-level resilience with Loop-Free Alternates,”
Computer Communications, vol. 36, no. 6, pp. 645–655, 2013,
reliable Network-based Services. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0140366412003167

[188] M. Nagy, J. Tapolcai, and G. Rétvári, “Optimization methods
for improving IP-level fast protection for local shared risk
groups with Loop-Free Alternates,” Telecommunication Systems,
vol. 56, no. 1, pp. 103–119, May 2014. [Online]. Available:
https://doi.org/10.1007/s11235-013-9822-y

[189] M. Hartmann, D. Hock, and M. Menth, “Routing optimization for IP
networks with Loop-Free Alternates,” Computer Networks, vol. 95, pp.
35–50, 2016.

[190] S. Litkowski, B. Decraene, C. Filsfils, and P. Francois, “Micro-loop
prevention by introducing a local convergence delay,” Internet
Requests for Comments, RFC Editor, RFC 8333, Mar 2018. [Online].
Available: https://tools.ietf.org/html/rfc8333

[191] G. Enyedi, G. Rétvári, and T. Cinkler, “A novel loop-free IP fast reroute
algorithm,” in Dependable and Adaptable Networks and Services,
A. Pras and M. van Sinderen, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 111–119.

[192] W. Braun and M. Menth, “Loop-Free Alternates with loop
detection for fast reroute in software-defined carrier and data
center networks,” Journal of Network and Systems Management,
vol. 24, no. 3, pp. 470–490, Jul 2016. [Online]. Available:
https://doi.org/10.1007/s10922-016-9369-9

[193] A. Atlas, “U-turn Alternates for IP/LDP Fast-Reroute,”
Network Working Group, Internet-Draft, IETF, Internet-
Draft, Feb 2006. [Online]. Available: https://tools.ietf.org/pdf/
draft-atlas-ip-local-protect-uturn-03.pdf

[194] F. Baker and P. Savola, “Ingress filtering for multihomed networks,”
Internet Requests for Comments, RFC Editor, RFC 3704, Mar 2004.
[Online]. Available: https://tools.ietf.org/html/rfc3704

[195] B. Zhang, J. Wu, and J. Bi, “RPFP: IP Fast ReRoute with providing
complete protection and without using tunnels,” in 2013 IEEE/ACM
21st International Symposium on Quality of Service (IWQoS), June
2013, pp. 1–10.

[196] P. Francois, “Improving the convergence of IP routing protocols,” Ph.D.
Thesis, biblio.info.ucl.ac.be/2007/457147.pdf, 2007.

[197] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski,
and R. Shakir, “Segment routing architecture,” Internet Requests for
Comments, RFC Editor, RFC 8402, Jul 2018. [Online]. Available:
https://tools.ietf.org/html/rfc8402

[198] S. Bryant, C. Filsfils, S. Previdi, and M. Shand, “IP Fast Reroute
using tunnels,” Network Working Group, Internet-Draft, IETF,
Internet-Draft, Nov 2007. [Online]. Available: https://tools.ietf.org/pdf/
draft-bryant-ipfrr-tunnels-03.pdf

[199] S. Litkowski et al., “Topology independent fast reroute
using segment routing,” Internet Engineering Task Force,
Internet-Draft draft-ietf-rtgwg-segment-routing-ti-lfa-03, Mar. 2020,
work in Progress. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-rtgwg-segment-routing-ti-lfa-03

[200] G. Enyedi, G. Rétvári, P. Szilágyi, and A. Császár, “IP Fast
ReRoute: Lightweight Not-Via,” in NETWORKING 2009, L. Fratta,
H. Schulzrinne, Y. Takahashi, and O. Spaniol, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 157–168.

[201] G. Enyedi, P. Szilágyi, G. Rétvári, and A. Császár, “IP Fast ReRoute:
Lightweight Not-Via without additional addresses,” in INFOCOM
2009, IEEE, April 2009, pp. 2771–2775.

[202] G. Enyedi, “Novel algorithms for IP fast reroute,” Ph.D. Thesis, 2011.
[203] M. Menth, M. Hartmann, R. Martin, T. Čičić, and A. Kvalbein,

“Loop-Free Alternates and Not-Via Addresses: A proper combination

https://doi.org/10.1007/s11235-015-0006-9
https://tools.ietf.org/html/rfc5715
http://dx.doi.org/10.1109/MCOM.2006.1607880
http://dx.doi.org/10.1109/MCOM.2006.1607880
http://doi.acm.org/10.1145/1321753.1321764
http://doi.acm.org/10.1145/1321753.1321764
https://tools.ietf.org/html/rfc7490
https://tools.ietf.org/html/rfc6571
http://h18000.www1.hp.com/products/quickspecs/13811_na/13811_na.PDF
http://h18000.www1.hp.com/products/quickspecs/13811_na/13811_na.PDF
http://eprints.gla.ac.uk/131074/
http://www.sciencedirect.com/science/article/pii/S0140366412003167
http://www.sciencedirect.com/science/article/pii/S0140366412003167
https://doi.org/10.1007/s11235-013-9822-y
https://tools.ietf.org/html/rfc8333
https://doi.org/10.1007/s10922-016-9369-9
https://tools.ietf.org/pdf/draft-atlas-ip-local-protect-uturn-03.pdf
https://tools.ietf.org/pdf/draft-atlas-ip-local-protect-uturn-03.pdf
https://tools.ietf.org/html/rfc3704
biblio.info.ucl.ac.be/2007/457147.pdf
https://tools.ietf.org/html/rfc8402
https://tools.ietf.org/pdf/draft-bryant-ipfrr-tunnels-03.pdf
https://tools.ietf.org/pdf/draft-bryant-ipfrr-tunnels-03.pdf
https://tools.ietf.org/html/draft-ietf-rtgwg-segment-routing-ti-lfa-03
https://tools.ietf.org/html/draft-ietf-rtgwg-segment-routing-ti-lfa-03

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

48

for IP fast reroute?” Computer Networks, vol. 54, no. 8, pp.
1300–1315, 2010. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1389128609003491

[204] J. Papán, P. Segeč, and P. Palúch, “Tunnels in IP fast reroute,” in The
10th International Conference on Digital Technologies 2014, July 2014,
pp. 270–274.

[205] M. Xu, Q. Li, L. Pan, Q. Li, and D. Wang, “Minimum
protection cost tree: A tunnel-based IP fast reroute scheme,”
Computer Communications, vol. 35, no. 17, pp. 2082–2092, 2012.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0140366412002137

[206] A. Li, P. Francois, and X. Yang, “On improving the efficiency
and manageability of NotVia,” in Proceedings of the 2007
ACM CoNEXT Conference, ser. CoNEXT ’07. New York, NY,
USA: ACM, 2007, pp. 26:1–26:12. [Online]. Available: http:
//doi.acm.org/10.1145/1364654.1364688

[207] M. Medard, S. G. Finn, R. A. Barry, and R. G. Gallager, “Redundant
trees for preplanned recovery in arbitrary vertex-redundant or edge-
redundant graphs,” IEEE/ACM Transactions on Networking, vol. 7,
no. 5, pp. 641–652, Oct 1999.

[208] K. Xi and H. Chao, “ESCAP: Efficient scan for alternate paths to
achieve IP fast rerouting,” in Global Telecommunications Conference,
2007. GLOBECOM ’07. IEEE, Nov 2007, pp. 1860–1865.

[209] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah, “Fast local
rerouting for handling transient link failures,” IEEE/ACM Transactions
on Networking, vol. 15, no. 2, pp. 359–372, April 2007.

[210] G. Enyedi and G. Rétvári, “A loop-free interface-based fast reroute
technique,” in 2008 Next Generation Internet Networks, April 2008,
pp. 39–44.

[211] S. Antonakopoulos, Y. Bejerano, and P. Koppol, “A simple IP fast
reroute scheme for full coverage,” in 2012 IEEE 13th International
Conference on High Performance Switching and Routing, June 2012,
pp. 15–22.

[212] K.-T. Foerster, Y.-A. Pignolet, S. Schmid, and G. Tredan, “Local
fast failover routing with low stretch,” SIGCOMM Comput. Commun.
Rev., vol. 48, no. 1, pp. 35–41, Apr. 2018. [Online]. Available:
https://doi.org/10.1145/3211852.3211858

[213] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah,
“Failure inferencing based fast rerouting for handling transient link and
node failures,” in INFOCOM 2005. 24th Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings IEEE,
vol. 4, March 2005, pp. 2859–2863.

[214] K. Xi and H. Chao, “IP fast rerouting for single-link/node failure
recovery,” in Fourth International Conference on Broadband Communi-
cations, Networks and Systems, 2007. BROADNETS 2007., Sept 2007,
pp. 142–151.

[215] A. Kvalbein, A. F. Hansen, T. Čičic, S. Gjessing, and O. Lysne, “Mul-
tiple routing configurations for fast IP network recovery,” IEEE/ACM
Transactions on Networking, vol. 17, no. 2, pp. 473–486, April 2009.

[216] I. Theiss and O. Lysne, “FROOTS – Fault handling in up*/down*
routed networks with multiple roots,” in High Performance Computing
– HiPC 2003, T. M. Pinkston and V. K. Prasanna, Eds., 2003, pp.
106–117.

[217] D. Imahama, Y. Fukushima, and T. Yokohira, “A reroute method using
multiple routing configurations for fast IP network recovery,” in 2013
19th Asia-Pacific Conference on Communications (APCC), Aug 2013,
pp. 433–438.

[218] T. A. Kumar and M. H. M. K. Prasad, “Enhanced multiple
routing configurations for fast IP network recovery from multiple
failures,” CoRR, vol. abs/1212.0311, 2012. [Online]. Available:
http://arxiv.org/abs/1212.0311

[219] T. Čičic, A. F. Hansen, A. Kvalbein, M. Hartmann, R. Martin,
M. Menth, S. Gjessing, and O. Lysne, “Relaxed multiple routing
configurations: IP fast reroute for single and correlated failures,” IEEE
Transactions on Network and Service Management, vol. 6, no. 1, pp.
1–14, March 2009.

[220] S. Cho, T. Elhourani, and S. Ramasubramanian, “Independent directed
acyclic graphs for resilient multipath routing,” IEEE/ACM Transactions
on Networking, vol. 20, no. 1, pp. 153–162, Feb 2012.

[221] M. Nagy, J. Tapolcai, and G. Rétvári, “Node virtualization for IP level
resilience,” IEEE/ACM Transactions on Networking, vol. 26, no. 3, pp.
1250–1263, June 2018.

[222] M. Menth and R. Martin, “Network resilience through multi-topology
routing,” in DRCN 2005 – Proceedings of 5th International Workshop
on Design of Reliable Communication Networks, 2005., 2005, pp. 271–
277.

[223] T. Čičic, A. F. Hansen, A. Kvalbein, M. Hartman, R. Martin, and
M. Menth, “Relaxed multiple routing configurations for IP fast reroute,”
in NOMS 2008 – 2008 IEEE Network Operations and Management
Symposium, 2008, pp. 457–464.

[224] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault,
“Multi-topology (MT) routing in OSPF,” Internet Requests for
Comments, RFC Editor, RFC 4915, Jun 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4915

[225] A. Atlas, K. Tiruveedhula, C. Bowers, J. Tantsura, and I. Wijnands,
“LDP extensions to support maximally redundant trees,” IETF, RFC
8320, Feb. 2018. [Online]. Available: http://tools.ietf.org/rfc/rfc8320

[226] A. Gopalan and S. Ramasubramanian, “Multipath routing and dual
link failure recovery in IP networks using three link-independent
trees,” in 2011 Fifth IEEE International Conference on Advanced
Telecommunication Systems and Networks (ANTS), Dec 2011, pp. 1–6.

[227] ——, “IP fast rerouting and disjoint multipath routing with three edge-
independent spanning trees,” IEEE/ACM Transactions on Networking,
vol. 24, no. 3, pp. 1336–1349, 2016.

[228] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “IP fast rerout-
ing for multi-link failures,” IEEE/ACM Transactions on Networking,
vol. 24, no. 5, pp. 3014–3025, October 2016.

[229] E. Palmer, “On the spanning tree packing number of a graph: a survey,”
Discrete Mathematics, vol. 230, no. 1, pp. 13–21, 2001.

[230] M. Menth and W. Braun, “Performance comparison of not-via ad-
dresses and maximally redundant trees (MRTs),” in 2013 IFIP/IEEE
International Symposium on Integrated Network Management (IM
2013), 2013, pp. 218–225.

[231] Cisco Systems, “IP Routing: OSPF configuration guide, Cisco IOS
release 15.2s – OSPF IPv4 remote Loop-Free Alternate IP fast reroute,”
downloaded: Apr. 2012.

[232] C. Filsfils, D. Dukes, S. Previdi, J. Leddy, S. Matsushima, and
D. Voyer, “IPv6 segment routing header (SRH),” Internet Requests for
Comments, RFC Editor, RFC 8754, Mar 2020. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8754.html

[233] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed
Internet routing convergence,” in Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communication, ser. SIGCOMM ’00. New York, NY,
USA: Association for Computing Machinery, 2000, pp. 175–187.
[Online]. Available: https://doi.org/10.1145/347059.347428

[234] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs,
“Locating Internet routing instabilities,” in Proceedings of the 2004
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’04. New York,
NY, USA: Association for Computing Machinery, 2004, pp. 205–218.
[Online]. Available: https://doi.org/10.1145/1015467.1015491

[235] J. Chandrashekar, Z. Duan, Z. . Zhang, and J. Krasky, “Limiting
path exploration in BGP,” in Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies.,
vol. 4, 2005, pp. 2337–2348.

[236] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs, “R-BGP:
Staying connected in a connected world,” in Proceedings of the 4th
USENIX Conference on Networked Systems Design & Implementation,
ser. NSDI’07. USA: USENIX Association, 2007, p. 25.

[237] N. Gvozdiev, B. Karp, and M. Handley, “LOUP: The principles
and practice of intra-domain route dissemination,” in Proceedings
of the 10th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’13. USA: USENIX Association, 2013,
pp. 413–426.

[238] T. Holterbach, S. Vissicchio, A. Dainotti, and L. Vanbever,
“SWIFT: Predictive fast reroute,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17. New York, NY, USA: Association for
Computing Machinery, 2017, pp. 460–473. [Online]. Available:
https://doi.org/10.1145/3098822.3098856

[239] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in Proceedings of the 16th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’19. USA: USENIX
Association, 2019, pp. 161–176.

[240] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek,
“Measuring the effects of Internet path faults on reactive routing,”
SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, pp. 126–137, Jun.
2003. [Online]. Available: https://doi.org/10.1145/885651.781043

[241] T. G. Griffin and B. J. Premore, “An experimental analysis of BGP
convergence time,” in Proceedings Ninth International Conference on
Network Protocols. ICNP 2001, 2001, pp. 53–61.

http://www.sciencedirect.com/science/article/pii/S1389128609003491
http://www.sciencedirect.com/science/article/pii/S1389128609003491
http://www.sciencedirect.com/science/article/pii/S0140366412002137
http://www.sciencedirect.com/science/article/pii/S0140366412002137
http://doi.acm.org/10.1145/1364654.1364688
http://doi.acm.org/10.1145/1364654.1364688
https://doi.org/10.1145/3211852.3211858
http://arxiv.org/abs/1212.0311
https://tools.ietf.org/html/rfc4915
http://tools.ietf.org/rfc/rfc8320
https://www.rfc-editor.org/rfc/rfc8754.html
https://doi.org/10.1145/347059.347428
https://doi.org/10.1145/1015467.1015491
https://doi.org/10.1145/3098822.3098856
https://doi.org/10.1145/885651.781043

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

49

[242] Z. M. Mao, R. Bush, T. G. Griffin, and M. Roughan, “BGP beacons,”
in Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement, ser. IMC ’03. New York, NY, USA: Association
for Computing Machinery, 2003, pp. 1–14. [Online]. Available:
https://doi.org/10.1145/948205.948207

[243] T. G. Griffin and G. Wilfong, “On the correctness of IBGP
configuration,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,
pp. 17–29, Aug. 2002. [Online]. Available: https://doi.org/10.1145/
964725.633028

[244] M. Caesar, L. Subramanian, and R. H. Katz, “Towards localizing root
causes of BGP dynamics,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/CSD-03-1292, 2003. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/6364.html

[245] U. Javed, I. Cunha, D. Choffnes, E. Katz-Bassett, T. Anderson,
and A. Krishnamurthy, “PoiRoot: Investigating the root cause of
interdomain path changes,” in Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, ser. SIGCOMM ’13. New York,
NY, USA: Association for Computing Machinery, 2013, pp. 183–194.
[Online]. Available: https://doi.org/10.1145/2486001.2486036

[246] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice,
B. Rogan, A. Singh, B. Tanaka, M. Verma, P. Sood, M. Tariq,
M. Tierney, D. Trumic, V. Valancius, C. Ying, M. Kallahalla,
B. Koley, and A. Vahdat, “Taking the Edge off with Espresso:
Scale, reliability and programmability for global Internet peering,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 432–445. [Online].
Available: https://doi.org/10.1145/3098822.3098854

[247] O. Bonaventure, C. Filsfils, and P. Francois, “Achieving sub-50
milliseconds recovery upon BGP peering link failures,” IEEE/ACM
Trans. Netw., vol. 15, no. 5, pp. 1123–1135, Oct. 2007. [Online].
Available: http://dx.doi.org/10.1109/TNET.2007.906045

[248] M. Kopka, “IP routing fast convergence,” 2013, available online:
https://www.cisco.com/c/dam/global/cs_cz/assets/ciscoconnect/2013/
pdf/T-SP4-IP_Routing_Fast_Convergence-Miloslav_Kopka.pdf.

[249] C. Filsfils, “BGP convergence in much less than a second,” 2007,
available online: http://newnog.net/meetings/nanog40/presentations/
ClarenceFilsfils-BGP.pdf.

[250] A. Vahdat, D. Clark, and J. Rexford, “A purpose-built global network:
Google’s move to SDN: A discussion with Amin Vahdat, David Clark,
and Jennifer Rexford,” Queue, vol. 13, no. 8, pp. 100–125, Oct. 2015.
[Online]. Available: https://doi.org/10.1145/2838344.2856460

[251] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting carrier-grade recovery requirements,” Comput.
Commun., vol. 36, no. 6, pp. 656–665, Mar. 2013. [Online]. Available:
https://doi.org/10.1016/j.comcom.2012.09.011

[252] Open Networking Foundation, “OpenFlow switch specification,
Version 1.1.0 implemented (Wire protocol 0x02),” Open
Networking Foundation, ONF TS-002, Feb. 2011. [Online].
Available: https://www.opennetworking.org/wp-content/uploads/2014/
10/openflow-spec-v1.1.0.pdf

[253] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Cas-
toldi, “OpenFlow-based segment protection in Ethernet networks,”
IEEE/OSA Journal of Optical Communications and Networking, vol. 5,
no. 9, pp. 1066–1075, 2013.

[254] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P. Sköld-
ström, “Scalable fault management for OpenFlow,” in 2012 IEEE
International Conference on Communications (ICC), 2012, pp. 6606–
6610.

[255] R. M. Ramos, M. Martinello, and C. Esteve Rothenberg, “SlickFlow:
Resilient source routing in data center networks unlocked by Open-
Flow,” in 38th Annual IEEE Conference on Local Computer Networks,
2013, pp. 606–613.

[256] B. Stephens, A. L. Cox, and S. Rixner, “Plinko: Building provably
resilient forwarding tables,” in Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks, ser. HotNets-XII. New York,
NY, USA: Association for Computing Machinery, 2013. [Online].
Available: https://doi.org/10.1145/2535771.2535774

[257] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul.
2014. [Online]. Available: https://doi.org/10.1145/2656877.2656890

[258] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane
connectivity with local fast failover: Introducing OpenFlow graph
algorithms,” in Proceedings of the Third Workshop on Hot Topics

in Software Defined Networking, ser. HotSDN ’14. New York, NY,
USA: Association for Computing Machinery, 2014, pp. 121–126.
[Online]. Available: https://doi.org/10.1145/2620728.2620746

[259] N. L. M. Van Adrichem, B. J. Van Asten, and F. A. Kuipers,
“Fast recovery in software-defined networks,” in 2014 Third European
Workshop on Software Defined Networks, 2014, pp. 61–66.

[260] C. Cascone, L. Pollini, D. Sanvito, A. Capone, and B. Sansó, “SPIDER:
Fault resilient sdn pipeline with recovery delay guarantees,” in 2016
IEEE NetSoft Conference and Workshops (NetSoft), 2016, pp. 296–302.

[261] B. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast
failover via forwarding table compression,” in Proceedings of the
Symposium on SDN Research, ser. SOSR ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2890955.2890957

[262] D. Merling, W. Braun, and M. Menth, “Efficient data plane protection
for SDN,” in 2018 4th IEEE Conference on Network Softwarization
and Workshops (NetSoft), 2018, pp. 10–18.

[263] R. Sedar, M. Borokhovich, M. Chiesa, G. Antichi, and S. Schmid,
“Supporting emerging applications with low-latency failover in P4,”
in Proceedings of the 2018 Workshop on Networking for Emerging
Applications and Technologies, ser. NEAT ’18. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 52–57. [Online].
Available: https://doi.org/10.1145/3229574.3229580

[264] M. Menth, M. Schmidt, D. Reutter, R. Finze, S. Neuner, and
T. Kleefass, “Resilient integration of distributed high-performance
zones into the BelWue network using OpenFlow,” Comm. Mag.,
vol. 55, no. 4, pp. 94–99, Apr. 2017. [Online]. Available:
https://doi.org/10.1109/MCOM.2017.1600177

[265] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: Declarative
fault tolerance for software-defined networks,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: Association
for Computing Machinery, 2013, pp. 109–114. [Online]. Available:
https://doi.org/10.1145/2491185.2491187

[266] Barefoot, “Tofino: World’s fastest P4 programmable Ethernet switch
ASIC,” Sep. 2020. [Online]. Available: https://www.barefootnetworks.
com/products/brief-tofino/

[267] E. Gafni and D. Bertsekas, “Distributed algorithms for generating
loop-free routes in networks with frequently changing topology,” IEEE
Transactions on Communications, vol. 29, no. 1, pp. 11–18, 1981.

[268] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisiński,
G. Nikolaidis, and S. Schmid, “PURR: A primitive for reconfigurable
fast reroute: Hope for the best and program for the worst,” in
Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, ser. CoNEXT ’19. New
York, NY, USA: Association for Computing Machinery, 2019, pp.
1–14. [Online]. Available: https://doi.org/10.1145/3359989.3365410

[269] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A
fault-tolerant engineered network,” in Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’13. USA: USENIX Association, 2013, pp. 399–412.

[270] Y. Pignolet, S. Schmid, and G. Tredan, “Load-optimal local fast
rerouting for resilient networks,” in 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2017, pp. 345–356.

[271] M. Borokhovich, Y. Pignolet, S. Schmid, and G. Tredan, “Load-optimal
local fast rerouting for dense networks,” IEEE/ACM Transactions on
Networking, vol. 26, no. 6, pp. 2583–2597, 2018.

[272] K. Foerster, A. Kamisiński, Y. Pignolet, S. Schmid, and G. Tredan,
“Bonsai: Efficient fast failover routing using small arborescences,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2019, pp. 276–288.

[273] ——, “Improved fast rerouting using postprocessing,” in 2019 38th
Symposium on Reliable Distributed Systems (SRDS), 2019, pp. 173–
17 309.

[274] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot
with SDN local fast failover,” in Principles of Distributed Systems,
R. Baldoni, N. Nisse, and M. van Steen, Eds. Cham: Springer
International Publishing, 2013, pp. 68–82.

[275] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Shapira, and S. Shenker, “On the resiliency of randomized
routing against multiple edge failures,” in 43rd International
Colloquium on Automata, Languages, and Programming (ICALP
2016), ser. Leibniz International Proceedings in Informatics (LIPIcs),
I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and D. Sangiorgi,
Eds., vol. 55. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-

https://doi.org/10.1145/948205.948207
https://doi.org/10.1145/964725.633028
https://doi.org/10.1145/964725.633028
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/6364.html
https://doi.org/10.1145/2486001.2486036
https://doi.org/10.1145/3098822.3098854
http://dx.doi.org/10.1109/TNET.2007.906045
https://www.cisco.com/c/dam/global/cs_cz/assets/ciscoconnect/2013/pdf/T-SP4-IP_Routing_Fast_Convergence-Miloslav_Kopka.pdf
https://www.cisco.com/c/dam/global/cs_cz/assets/ciscoconnect/2013/pdf/T-SP4-IP_Routing_Fast_Convergence-Miloslav_Kopka.pdf
http://newnog.net/meetings/nanog40/presentations/ClarenceFilsfils-BGP.pdf
http://newnog.net/meetings/nanog40/presentations/ClarenceFilsfils-BGP.pdf
https://doi.org/10.1145/2838344.2856460
https://doi.org/10.1016/j.comcom.2012.09.011
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf
https://doi.org/10.1145/2535771.2535774
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2620728.2620746
https://doi.org/10.1145/2890955.2890957
https://doi.org/10.1145/3229574.3229580
https://doi.org/10.1109/MCOM.2017.1600177
https://doi.org/10.1145/2491185.2491187
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://doi.org/10.1145/3359989.3365410

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3063980, IEEE
Communications Surveys & Tutorials

50

Zentrum fuer Informatik, 2016, pp. 134:1–134:15. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2016/6269

[276] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1133–1146, Apr.
2017. [Online]. Available: https://doi.org/10.1109/TNET.2016.2619398

[277] M. Chiesa, I. Nikolaevskiy, A. Panda, A. V. Gurtov, M. Schapira,
and S. Shenker, “Exploring the limits of static failover routing,”
CoRR, vol. abs/1409.0034, 2014. [Online]. Available: http://arxiv.org/
abs/1409.0034

[278] K. Foerster, Y. Pignolet, S. Schmid, and G. Tredan, “CASA: Congestion
and stretch aware static fast rerouting,” in IEEE INFOCOM 2019 –
IEEE Conference on Computer Communications, 2019, pp. 469–477.

[279] H. Villför, “Operator experience from ISIS convergence tuning,”
2004, presented at the RIPE 47 meeting. [Online]. Available:
https://meetings.ripe.net/ripe-47/presentations/ripe47-routing-isis.pdf

[280] P. Francois, M. Shand, and O. Bonaventure, “Disruption free topology
reconfiguration in OSPF networks,” in IEEE INFOCOM 2007-26th
IEEE International Conference on Computer Communications. IEEE,
2007, pp. 89–97.

[281] M. Shand, S. Bryant, S. Previdi, C. Filsfils, P. Francois, and
O. Bonaventure, “Framework for loop-free convergence using the
ordered forwarding information base (oFIB) approach,” Internet
Requests for Comments, RFC Editor, RFC 6976, Jul 2013. [Online].
Available: https://tools.ietf.org/html/rfc6976

[282] K. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent
software-defined network updates,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1435–1461, 2019.

[283] M. Markovitch and S. Schmid, “SHEAR: A highly available and
flexible network architecture: Marrying distributed and logically cen-
tralized control planes,” in Proc. 23rd IEEE International Conference
on Network Protocols (ICNP), 2015.

[284] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, and L. Vanbever,
“On the co-existence of distributed and centralized routing control-
planes,” in 2015 IEEE Conference on Computer Communications
(INFOCOM). IEEE, 2015, pp. 469–477.

[285] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a
changing world,” IEEE Journal on Selected Areas in Communications,
vol. 20, no. 4, pp. 756–767, 2002.

[286] Cisco Systems, “Cisco ASR 901S series aggregation services
router software configuration guide,” 2020. [Online]. Avail-
able: https://www.cisco.com/c/en/us/td/docs/wireless/asr_901s/scg/b_
scg_for_asr901s/b_scg_for_asr901s_chapter_0100100.html

[287] J. Liu, B. Yan, S. Shenker, and M. Schapira, “Data-driven network
connectivity,” Proceedings of the 10th ACM Workshop on Hot Topics
in Networks, HotNets-10, 11 2011.

[288] W. Braun, M. Albert, T. Eckert, and M. Menth, “Performance com-
parison of resilience mechanisms for stateless multicast using BIER,”
in 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). IEEE, 2017, pp. 230–238.

[289] D. Merling, S. Lindner, and M. Menth, “Comparison of fast-reroute
mechanisms for BIER-based IP multicast,” Proc. International Con-
ference on Software Defined Systems, 2020.

[290] Z. Zhang and A. Baban, “Bit index explicit replication (BIER) for-
warding for network device components,” Jul. 11 2017, US Patent
9,705,784.

Marco Chiesa is an Assistant Professor at the
KTH Royal Institute of Technology, Sweden. He
received his Ph.D. degree in computer engineering
from Roma Tre University in 2014. His research
interests include Internet architectures and protocols,
including aspects of network design, optimization,
security, and privacy. He received the IEEE William
R. Bennett Prize in 2020, the IEEE ICNP Best Paper
Award in 2013, and the IETF Applied Network
Research Prize in 2012. He has been a distinguished
TPC member at IEEE Infocom in 2019 and 2020.

Andrzej Kamisiński is an Assistant Professor at
the AGH University of Science and Technology
in Kraków, Poland. He received his B.Sc., M.Sc.,
and Ph.D. degrees from the same University in
2012, 2013, and 2017, respectively. In 2015, Andrzej
Kamisiński joined the QUAM Lab at NTNU (Trond-
heim, Norway) where he worked with Prof. Bjarne
E. Helvik and with Telenor Research on depend-
ability of Software-Defined Networks. In summer
2018, he was a Visiting Research Fellow in the
Communication Technologies group led by Prof.

Stefan Schmid at the Faculty of Computer Science, University of Vienna,
Austria. Between 2018 and 2020, he was a member of the Management
Committee of the Resilient Communication Services Protecting End-User
Applications From Disaster-Based Failures European COST Action, and in
2020, a Research Associate in the Networked Systems Research Laboratory
at the School of Computing Science, University of Glasgow, Scotland. His
primary research interests span dependability and security of computer and
communication networks.

Jacek Rak (M’08, SM’13) is an Associate Pro-
fessor and the Head of Department of Computer
Communications at Gdańsk University of Technol-
ogy, Gdańsk, Poland. He received his MSc, PhD
and DSc (habilitation) degrees from the same uni-
versity in 2003, 2009, and 2016, accordingly. He
has authored over 100 publications, including the
book Resilient Routing in Communication Networks
(Springer, 2015). Between 2016 and 2020 he was
leading the COST CA15127 Action Resilient Com-
munication Services Protecting End-user Applica-

tions from Disaster-based Failures (RECODIS) involving over 170 members
from 31 countries. He has also served as a TPC member of numerous
conferences and journals. Recently, he has been the General Chair of ITS-T’17
and MMM-ACNS’17, the General Co-Chair of NETWORKS’16, the TPC
Chair of ONDM’17, and the TPC Co-chair of IFIP Networking’19. Prof. Rak
is the Member of the Editorial Board of Optical Switching and Networking,
Elsevier and the founder of the International Workshop on Resilient Networks
Design and Modeling (RNDM). His main research interests include the
resilience of communication networks and networked systems.

Gábor Rétvári received the M.Sc. and Ph.D. de-
grees in electrical engineering from the Budapest
University of Technology and Economics in 1999
and 2007. He is now a Senior Research Fellow at
the Department of Telecommunications and Media
Informatics. His research interests include all aspects
of network routing and switching, the programmable
data plane, and the networking applications of com-
putational geometry and information theory. He
maintains several open source scientific tools written
in Perl, C, and Haskell.

Stefan Schmid is a Professor at the Faculty of Com-
puter Science at the University of Vienna, Austria.
He received his MSc (2004) and PhD degrees (2008)
from ETH Zurich, Switzerland, was a postdoc at
TU Munich and the University of Paderborn (2009),
a senior research scientist at the Telekom Innova-
tions Laboratories (T-Labs, 2009–2015) in Berlin,
Germany, and an Associate Professor at Aalborg
University, Denmark (2015–2018). He is currently
leading the ERC Consolidator project AdjustNet and
the WWTF project WhatIf, among other.

http://drops.dagstuhl.de/opus/volltexte/2016/6269
https://doi.org/10.1109/TNET.2016.2619398
http://arxiv.org/abs/1409.0034
http://arxiv.org/abs/1409.0034
https://meetings.ripe.net/ripe-47/presentations/ripe47-routing-isis.pdf
https://tools.ietf.org/html/rfc6976
https://www.cisco.com/c/en/us/td/docs/wireless/asr_901s/scg/b_scg_for_asr901s/b_scg_for_asr901s_chapter_0100100.html
https://www.cisco.com/c/en/us/td/docs/wireless/asr_901s/scg/b_scg_for_asr901s/b_scg_for_asr901s_chapter_0100100.html

