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Programmable data plane technology enables the systematic reconfiguration of the low-level processing
steps applied to network packets and is a key driver in realizing the next generation of network services and
applications. This survey presents recent trends and issues in the design and implementation of programmable
network devices, focusing on prominent architectures, abstractions, algorithms, and applications proposed,
debated, and realized over the past years. We elaborate on the trends that led to the emergence of this
technology and highlight the most important pointers from the literature, casting different taxonomies for the
field and identifying avenues for future research.
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1 Introduction

Computer networks are the glue of modern technological infrastructures. They are deployed in
different environments, support a variety of use cases, and are subject to requirements ranging
from best effort to guaranteed performance. This wide-spread use and heterogeneity complicate the
design of network systems and their main building blocks (i.e., network devices) in particular. While
there is a pull towards specialization that allows network devices to be optimized for a particular
task, there is also tension to make network devices commodity and general to reduce engineering
cost. These opposite forces ultimately pushed the need (and definition) of programmable networking
equipment, allowing operators to change device functionality using a programming interface.
Programmability introduces a significant change in the relationship between device vendors

and network operators. A programmable device frees the operator from waiting for the traditional
networking equipment’s years-long release cycles, when rolling out new functionality. In fact, a
new feature can be quickly implemented and rolled out directly by the operator using the device’s
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programming interface. On the other hand, programmability frees device vendors from designing
equipment for a wide range of customer use cases; instead, they can invest engineering efforts into
optimizing a set of well-defined building blocks that can be used to implement custom logic.

This new generation of programmable devices is proving especially helpful to operators which
now must accommodate large-scale cloud computing, big data applications, massive machine
learning, and the 5G mobile standard. These applications force operators to adopt new ways to
architect communication networks, making software-defined networking (SDN), edge computing,
network function virtualization (NFV), and service chaining the norm rather than the exception.
Overall, this requires network devices like switches, middleboxes, and network interface cards
(NICs), to support continuously evolving and heterogeneous sets of protocols and functions, on
top of the already impressive set of features supported today, including tunneling, load balancing,
complex filtering, and enforcing Quality of Service (QoS) constraints.

Supporting such an extensive feature set at the required flexibility, dynamicity, performance, and
efficiency with traditional fixed function devices requires careful and expensive engineering efforts
by device vendors. Such efforts involve the tedious and costly design, manufacturing, testing, and
deployment of dedicated hardware components [126, 166], which introduce two main problems.
First, rolling out new functionality incurs significant cost and is slow. This pushes vendors to support
a given feature only when it becomes widely requested, impeding innovation. Second, implementing
every single network protocol in a device’s packet processing logic leads to inefficiencies, due to
wasting valuable memory space, CPU cycles, or silicon “real estate” for features that only a small
fraction of operators will ever use.

The introduction of programmable network devices addresses these issues, permitting the packet
processing functionality implemented by a device to be comprehensively reconfigured. Interest-
ingly, programmability is important both for software and hardware devices. On the one hand,
new software-based network switches, running on general-purpose CPUs, provide reconfigura-
bility through an extensive set of processing primitives out of which various pipelines can be
built using standard programming techniques [76, 124, 133, 147, 159]. Leveraging advances in I/O
frameworks [152, 158], these programmable software switches can achieve forwarding throughput
on the order of tens of Gbit/s on a single commodity server. On the other hand, more challeng-
ing workloads, in the range of hundreds of Gbit/s, are in the realm of programmable hardware
components and devices, like programmable NICs (SmartNICs) [35, 80, 199] and programmable
switches [36, 38]. Similar to software switches, programmable networking hardware also offers
various low-level primitives that can be systematically assembled into complex network functions
using a domain-specific language [22] or some dialect of a general purpose language [49, 168].
While programmable data plane technologies have already gained substantial popularity and

adoption, many questions around them remain unanswered. How do we adapt and use the elemental
packet processing primitives to support the broadest possible selection of network applications
at the highest possible performance? How do we expose the potentially very complex processing
logic to the operator for easy, secure, and verifiable configuration? How do we abstract, replicate,
and monitor ephemeral packet processing state embedded deeply into this logic? What are the
applications and use cases that benefit the most? Questions like these are currently among the
most actively debated ones in the networking community.
Following the footsteps of [96], in this paper we provide a survey on the current technology,

applications, trends, and open issues in programmable software and hardware network devices. We
discuss available architectures and abstractions together with employed designs, applications, and
algorithmic solutions. We imagine this paper to be useful for a broad audience: researchers aiming
at getting an overview of the field, students learning about this novel, exciting technology, and
practitioners interested in academic foundations or emerging applications in programmable data
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(a) Conceptual visualization of the difference
between network data plane and device data
plane in traditional network architectures
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Fig. 1. Traditional vs. SDN-based network architectures

planes. Finally, we provide an online reading list that will be continuously updated beyond the
writing of this paper [129]. Our focus is on the data plane and, in particular, on the reconfigurable
packet processing functionality inside the data plane responsible for enforcing forwarding decisions;
for comprehensive surveys on control plane designs and SDN, see [14, 52, 103, 139, 194, 200].

The remainder of the paper is organized as follows. In Section 2, we introduce the most important
aspects of programmable data planes. Then, we elaborate on architectures and platforms in Section 3,
before discussing abstractions and algorithms commonly leveraged in Sections 4 and 5. In Section 6,
we present applications and proposed systems built on top of this technology. Finally, we highlight
some of the most compelling open problems in the field in Section 7 before briefly summarizing
the work discussed in this paper through a taxonomy and concluding the paper in Section 8.

2 The Programmable Data Plane

Before diving deeper into this survey, we will now give a brief overview of the various developments
that led to the need for data plane programmability. We will also describe what the responsibilities
of the data plane are and what data plane programmability exactly means.

2.1 Control Plane – Data Plane Separation

Conventional network equipment, regardless of the implementation (e.g., pure software or special-
ized hardware) and function (e.g., a switch or an edge router), has its functionality logically split into
a device control plane and a device data plane. The device control plane is in charge of establishing
packet processing policies, such as where to forward a packet or how to rewrite its headers, and
managing the device, including checking its health and performing maintenance operations. In
turn, the device data plane is responsible solely for executing the packet processing policy set by
the device control plane, usually with very high performance requirements. The control planes
of the individual devices within a given network scope, such as an organizational domain or the
entire Internet, interact through a distributed routing protocol. As depicted in Figure 1a, through
this interaction they create the illusion of a single network-level control plane, executing a virtual
global packet forwarding policy in a distributed fashion.

With the introduction of the Software-defined Networking (SDN) paradigm [52, 200], the network
control plane has emerged as a separate entity, a logically centralized controller, with some of
the device control plane functions separated out and moved to this network-level functionality.
The network control plane is in charge of (i) maintaining an inventory of the devices in the data
plane, (ii) accepting high-level, network-wide policies (or intents) through a northbound controller
interface, (iii) compiling these high-level intents to per-device packet processing policies, and
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finally (iv) programming these policies into the individual devices through a southbound controller
interface. In this architecture, the individual switches do not need to implement the logic required
to maintain packet forwarding policies locally (e.g., they do not run routing protocols to build
routing tables); rather, they get these policies prefabricated from the network control plane. Here,
the controller-switch communication occurs through a standardized southbound API and protocol,
like OpenFlow [127], ForCES [193], P4Runtime [34], or the Open vSwitch Database Management
Protocol [145]. This architecture is depicted in Figure 1b. Note, however, that the device control
plane does not fully disappear in the SDN framework; rather, it remains in charge of terminating
control channel towards the remote network control plane and managing the device data plane.

2.2 Data Plane Functions

A device’s data plane processes network packets by performing a series of operations, including the
parsing of (a subset of) the packet, determining the sequence of processing operations that need to
be applied, and forwarding it based on the results of such operations. Packet processing entails the
following basic functional steps: parsing, classification, modification, deparsing, and forwarding. On
top of the basic functionality, most packet processing systems can provide additional services, such
as scheduling, filtering, metering, or traffic shaping.

Parsing is the process of locating protocol headers in the packet buffer and extracting the relevant
header fields into packet descriptors (metadata). These values are then used during classification in
order tomatch the packet with the corresponding forwarding policy, which describes the forwarding
or processing actions to be applied to the packet (e.g., which output port to use or whether to
drop the packet) and the required packet modification actions (e.g., rewriting a header field). The
modification step applies the actions retrieved during classification, and may also include the update
of some internal state (e.g., to increase a flow counter). Once all modifications are applied, packets
are re-generated from packet descriptors (deparsing), and finally in the forwarding step the packet
is sent to a port for transmission. This step may include the application of scheduling policies (e.g.,
to enforce network-level QoS policies), and traffic shaping to limit the amount of network resources
a flow/user may consume. The combination of classification and subsequent processing based on
matched rules is commonly referred to as match-action processing (see more in Section 4.1.2).
Generally, these steps happen in the reported order. Depending on the implementation and

desired functionality, however, processing steps may be repeated by sequencing multiple match-
action cycles after each other or by recirculating a packet to the beginning of the pipeline.

2.3 Data Plane Programmability

With the emergence and adoption of the SDN paradigm, device functionality has becomemuchmore
flexible and dynamic. As previously explained, in conventional network equipment the data plane
functionality is deeply ingrained into the device hardware and software, and hence generally cannot
be changed during the lifetime of the device. For software-based packet processing systems, major
vendor software updates are required to change data plane functionality. This fixed functionality
affects virtually all data plane operations. The format and semantics of the entries that can be
loaded into match-action tables are fixed; devices only understand a finite set of protocol headers
and fields. For example, an Ethernet switch does not process layer 3 fields and an antiquated router
will not support IPv6 or QuiC. The types of processing actions that can be applied and the order in
which these are enforced are set by the device vendor; typically, MAC processing is followed by an
IP lookup phase before enforcing ACLs and performing group processing. For example, this makes
it impossible to apply IP routing lookup on packets decapsulated from VXLAN tunnels. Finally,
queuing disciplines (e.g., FIFO or priority queuing only, without support for, e.g., BBR [28]) and the
type of monitoring information available from the data plane are predetermined.
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Fig. 2. Overview of hardware architectures programmable data plane systems are commonly built upon.

Through SDN and the emergence of increasingly more general hardware designs, today’s data
plane devices can be reconfigured from the network control plane, either partially or in full. This
development has motivated the introduction of the term programmable data plane, referring to
the new breadth of network devices that allow the basic packet processing functionality to be
dynamically and programmatically changed. In the context of this survey, we use the following
definition for the programmable data plane:

Data plane programmability refers to the capability of a network device to expose the low-level
packet processing logic to the control plane through a standardized API, to be systematically,
rapidly, and comprehensively reconfigured.

It is important to note that data plane programmability is not a binary property. Up to some degree,
configuring a conventional “fixed-function” device can be viewed as data plane programming. As the
exact boundaries between data plane configuration and programmability are still actively debated
in the community [8, 125], in the following discussion we embrace an inclusive interpretation of
the term and lay the emphasis on the comprehensiveness of the types of modifications a device
allows on the packet processing functionality. Correspondingly, we focus on the following aspects:

• new data plane architectures, abstractions, and algorithms that permit the data plane functional-
ity to be fully and comprehensively reconfigured, including the parsing of new packet header
fields, matching on dynamically defined header fields, and exposing new packet processing
primitives to the control plane, which together facilitate the deployment of even completely
new network protocols; and

• new applications that can be realized in the data plane through programmability, including
monitoring and telemetry, massive-scale data processing and machine learning, or even
complete key-value stores implemented fully inside the network devices with zero or minimal
intervention from the control plane.

3 Architectures

While data plane programmability was initially mostly targeted at switches (especially in data
centers), today a wider range of devices and functions allow for low-level programmability. Pro-
grammable data plane hardware or software is not only used for packet switching, but also increas-
ingly for general network processing andmiddleboxes (e.g., firewalls or load balancers) [45, 112, 121].
Additionally, programmable NICs enable data plane programmability at the edge of the network.
These devices can be realized on top of one or multiple of the several different architectures.

In hardware designs, data plane functionality may be implemented in an Application-specific
Integrated Circuit (ASIC) [36, 38], a Field-programmable Gate Array (FPGA) [54, 199], or a net-
work processor [35, 80]. These platforms generally offer high performance due to dedicated and
specialized hardware components, such as Ternary Content Addressable Memory chips (TCAM)
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for efficient packet matching. A software data plane device, on the other hand, is one where the
data plane executes the entire processing logic on a commodity CPU [71, 142, 147, 167] using
optimized algorithms and data structures [53, 100, 178]. Yet, the distinction between hardware and
software data planes is somewhat blurred. For instance, a hardware-based device may still invoke a
general-purpose CPU to run functions that are not supported natively in the underlying hardware
or do not require high performance. Similarly, modern software switches rely on the assistance of
domain-specific hardware capabilities for efficiency reasons, like Data Direct I/O (DDIO), Receive
Side Scaling (RSS), and increasingly SmartNIC offloads to run packet processing logic partially
or entirely in hardware. Next, we present an overview of the main design points in architectures
for programmable data plane systems together with their characteristics, use cases, and trade-offs
made. The high-level relationship between the different sections is depicted in Figure 2.

3.1 General-purpose Hardware

General-purpose hardware architectures and CPUs (like x86 or ARM) commonly used in com-
modity servers and deployed in data centers at massive scales support a wide range of packet
processing tasks. For example, efforts of telecom operators towards advancing the 5G cellular
network standards and network function virtualization [77, 92, 121, 140] rely on the capability
to perform high-performance packet processing with general-purpose servers [97, 142]. Modern
virtualized data centers usually have servers running the network access layer [102, 144], using a
software switch that connects virtual machines to the physical network [12, 133, 147, 182]. Driven
by these requirements, over the past years software-based packet processing has made significant
inroads in the traditionally hardware-dominated network appliance market [50, 68, 149] with
several established programmable software switch platforms for efficient network virtualization
(Open vSwitch [147], VPP [12], BESS [71], NetBricks [142], PacketShader [72], and ESwitch [133]),
user space I/O libraries (NetMap [158], DPDK [152], FD.io [153], and XDP with eBPF [74]), and
NFV platforms [93, 104, 180, 185].
At a high level, packet processing in a server is a simple process that includes copying the

packet’s data from a NIC buffer to the CPU, processing it for parsing and modification/update steps
before copying or moving the data again to another NIC buffer or to some virtual interface [112].
In practice, this process is significantly more cumbersome due to the complex architecture of
modern server hardware, whereby achieving high performance for networked applications requires
accounting for the architecture and characteristics of the underlying hardware [4].
To accelerate network packet input and output, several shortcuts in the path a packet takes

from the wire to the CPU both in software and at the hardware-level exist. In software, kernel-
bypass networking can be used to map the memory area used by NICs to write packets to or
read packets from directly into user space. This eliminates costly context switches and packet
copies vastly improving networking performance compared to standard sockets. Applications using
kernel-bypass frameworks, such as NetMap [158] or DPDK [152], however, cannot use any kernel
networking interfaces and must implement all packet processing functionality they may need (e.g.,
a TCP stack or routing tables). The Express Data Path in the Linux kernel (XDP) [74] alleviates this
problem by allowing packet processing applications to be implemented in a constrained execution
environment in the kernel while using some of the OS host networking stack. At the hardware-level,
modern NICs implement Data Direct I/O [37, 51] to copy a received packet descriptor directly into
the CPU L3 cache, bypassing the comparatively slow main memory.

Given the above hardware properties and constraints, software implementations apply a number
of techniques to efficiently use the available resources [4, 112, 147]. Packets are usually processed in
batches to amortize the cost of locks on contended resources across the processing pipeline and to
improve data locality [12]. Other typical techniques include adopting data structures that minimize
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memory usage to better fit in caches [157], aligning data to cache lines to avoid loading multiple
cache lines for few additional bytes [133], and distributing packets across different processors
keeping flow affinity to avoid cache synchronization issues [93, 180].
Apart from these general optimization techniques, a software implementation can use several

further optimization strategies to accelerate packet processing [112]. For instance, ClickOS [124],
FastClick [13] and BESS [71] implement a run-to-completion model, in which each packet is entirely
processed before processing a second packet on the same core, whereas NFVnice [104] uses standard
Linux kernel schedulers and backpressure to control the execution of packet processing functions.
In contrast, VPP [12] leverages pipelined processing, performing each single processing step on the
entire batch of packets, before starting the next processing step. Likewise, parsing, classification,
and modification/update steps can be intertwined as needed and desired by the programmer [13, 71].
Lazy parsing can be employed to avoid unnecessary and costly parsing operations (e.g., for packets
that are to be dropped early). All these different approaches are possible due to the flexibility of
general-purpose CPUs which do not mandate any specific processing model.

With the emergence of specialized accelerators for offloading packet processing and the resulting
hybrid designs, we might see fewer pure software implementations of network functions, especially
for switching and virtualization use cases. Yet, we believe that efficient software-based packet I/O
and processing will remain crucial for almost all network and cloud applications, and even become
more important for applications such as high-performance web servers, container frameworks,
or analytics engines. Finally, the flexibility and cost benefits of NFV approaches highlight the
continued importance of software packet processing.

3.2 Network Processors

Network processors, sometimes referred to as Network Processing Units (NPUs), are specialized
accelerators, usually employed both in switches and NICs. Unlike general-purpose hardware,
NPU architectures are specifically targeting network packet processing. Devices usually contain
several different functional hardware blocks. Some of these blocks are dedicated to network-specific
operations, such as packet load balancing, encryption, or table lookups. Some other hardware
resources are instead dedicated to programmable components that are generally used to implement
new network protocols and/or packet operations.

Given its availability for research and the support for recent data plane programming abstractions,
we will describe the architecture of a Netronome Network Function Processor (NFP) programmable
NIC as an example of a NPU [80]. Since network traffic is a mainly parallel workload, with packets
belonging to independent network flows, network processors are generally optimized to perform
parallel computations, with several processing cores. While the number of these cores could be
in the order of tens or hundreds, the per-core computing power is usually limited, thus most of
the performance benefits come from the ability to process many packets in parallel. The NFP
architecture contains 72 such cores (so called micro engines) that each allow for 8 concurrent
threads. Micro engines are directly co-located with fast SRAM banks of a few hundred KBs used to
host frequently accessed data required for the processing of each network packet. Additionally,
larger memories that host the forwarding tables and access control lists used by the networking
subsystem to decide how to forward (or drop) a network packet are shared by all micro engines. All
building blocks are interconnected via a high-speed switching fabric for low-latency communication
between cores. Packets enter and exit the system through arrays of specialized cores for packet
parsing, classification, and load balancing to the processing cores. The architecture supports
different interface capacities up to 2 × 40 Gbit/s Ethernet. A PCIe interface enables communication
to the system’s CPU via direct memory access (DMA).
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Fig. 3. The architecture of an RMT-like switching ASIC

Similar to general-purpose servers, network processors support a flexible programming model,
and do not mandate any particular order for the processing steps of a packet. Additionally, the
entire packet is generally available for processing as data can be stored at the different levels of
the processor’s memory hierarchy enabling advanced applications operating on packet payloads,
including, for example, deep packet inspection for intrusion detection.

3.3 Field-programmable Gate Arrays

FPGAs are semiconductor devices based on a matrix of interconnected, configurable logic blocks.
Contrary to ASICs, FPGAs can be programmed and reconfigured after manufacturing to imple-
ment custom logic and tasks. While custom ASIC designs generally offer the best performance,
modern FPGAs narrow this gap for many use cases due to increased clock speeds and memory
bandwidth [108]. High-level synthesis or specialized compilers allow programming FPGAs using
languages like C or P4 as opposed to more complex and cumbersome hardware description lan-
guages, such as Verilog [81, 189]. The balance of high performance together with programmability
make FPGAs not only interesting for prototyping, but also a powerful alternative to costly and rigid
ASIC designs for production environments [24, 107, 138]. In the context of networking, FPGAs are
primarily used on NICs to offload packet processing from servers with the goal of saving precious
CPU cycles [54].
The availability and comparatively low cost compared to programmable ASICs make FPGAs

particularly interesting for academia to prototype high-performance network data planes. NetFPGA,
for example, is a widely available open-source FPGA-accelerated NIC. The most recent version
(FPGA SUME) couples a Xilinx Virtex 7 FPGA with four 10Gb Ethernet ports [199]. A more recent
effort in this direction is Corundum [55], which provides an open source platform for implementing
a 100Gbps NIC on FPGA. Corundum is a collection of the basic NIC modules and building blocks
which are ready to be implemented on several commercial FPGA cards.

3.4 Application-specific Integrated Circuits

While in the early days of the ARPANET and the Internet, routing and packet processing were
performed in software [73], the rapid adoption and increasing scale of the Internet required more
efficient hardware-based designs to keep up with increasing packet rates. An ASIC is a chip
specialized and optimized for (in this case) high-performance packet processing, focusing on
implementing just the minimal set of operations required for this task. In fact, network devices
built using ASICs generally include a second general-purpose sub-system (e.g., based on CPUs) to
implement the device’s monitoring and control functions, as well as more complex and uncommon
packet processing functions that the ASIC does not support. Processing in ASICs is usually called the
fast path and, by contrast, the slow path is the processing done by the general-purpose sub-system.

A typical ASIC is implemented as a fixed pipeline of different processing steps that are performed
sequentially (e.g., L2 processing before L3 processing or MPLS lookup). Fast SRAM or TCAM banks
alongside the pipeline store forwarding rules (such as routing entries) accessed in the individual
lookup stages. Most high-performance switches and routers such as the Cisco ASR or Juniper MX

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2021.



The Programmable Data Plane: Abstractions, Architectures, Algorithms, and Applications 9

series devices still leverage fixed-function ASICs. While extremely efficient, these devices suffer
from long and costly development cycles, thus hindering flexibility and innovation.

As a result, more flexible and programmable switching chip architectures, such as Reconfigurable
Match-action Tables (RMT) [23], the Protocol-independent Switch Architecture (PISA) [30], and
implementations, such as Intel Flexpipe [36] or Intel Tofino [38] have been proposed. Programmable
data plane devices allow network operators to programmatically change the low-level data plane
functionality in order to support novel or custom protocols, implement custom forwarding or
scheduling logic, or enable new applications entirely in hardware.

These RISC-inspired programmable ASICs are organized as a pipeline of programmable match-
action stages. Before a packet enters the pipeline, a programmable parser dissects the packet
buffer into individual protocol headers. The match-action stages then consist of memory banks
implementing tables for matching extracted packet headers and Arithmetic Logical Units (ALUs) for
actions like modifying packet headers, performing simple calculations, or updating internal state.
Furthermore, the tables may have different matching capabilities depending on the way they are
implemented in hardware. For instance, exact matching tables can be implemented as hash tables in
SRAM, while wildcard matching tables are generally implemented using more expensive TCAM. At
the end of the pipeline, a deparser again serializes the individual (possibly altered) headers before
sending the packet out on an interface or passing it to a subsequent pipeline. In many switches
it is common to have at least two such pipelines: an ingress and an egress pipeline [30]. Figure 3
depicts the RMT reference design for programmable switches.

3.5 Hybrid Architectures

In addition to the platforms discussed above, new and interesting hybrid hardware-software
designs mix existing concepts with fresh ideas from distributed systems and multi-processor design.
While it is often believed that the performance of programmable network processors is lower than
integrated circuits, there exists literature questioning this assumption and exploring these overheads
empirically. In particular, Pongrácz et al. [149] show that the overhead of programmability can be
relatively low. In benchmarks, the authors find throughput of NPUs either similar or only 30-35%
lower at comparable power consumption compared to their non-programmable NIC counterparts.
Furthermore, the performance gap between programmable and hard-wired chips is not primarily
due to programmability itself but rather because programmable network processors are commonly
tuned for more complex use cases.
Past work on hybrid architectures also explores the opportunity to use Graphics Processing

Unit (GPU) acceleration. For many applications, such as network address translation or analytics,
packet processing workloads can be partitioned using a packet’s flow key (e.g., IP 5-tuple). This
makes packet processing a massively parallelizable workload, which could be in principle suitable
to be implemented in multi-threaded hardware like GPUs [72]. However, the advantages and
disadvantages of this strategy are actively debated in the systems community [63, 91]. Kalia et
al. [91] argue that for many applications the benefits arise less from the GPU hardware itself than
from the expression of the problem in a language such as CUDA or OpenCL that facilitates memory
latency hiding and vectorization through massive concurrency. The authors demonstrate that
when applying a similar style of optimizations to different algorithm implementations, a CPU-only
implementation is more resource-efficient than the version running on the GPU. An answer to the
issues raised by Kalia et al. was given by Go et al. [63]. Their work finds that with eight popular
algorithms widely used in network applications, (i) there are many compute-bound algorithms
that do benefit from the parallel computation capacity of GPUs, and (ii) the main performance
disadvantage of GPUs comes from the need to traverse the PCIe bus to move data from the main
memory to the GPU. Nonetheless, it should be noted that in [63] there are several use cases which
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require some encryption algorithm to be run on the packet data. Today, these workloads are better
handled with dedicated hardware provided both by CPUs and NICs, thereby reducing the potential
areas of applicability of GPU-based acceleration for packet processing.
Various applications are particularly suitable for hybrid hardware-software co-designs. One of

them is in the context of forwarding table optimization. In [17, 94], architectures are studied which
allow high-speed forwarding, even with large rule tables and fast updates, by combining the best of
hardware and software processing. Specifically, the CacheFlow system [94] caches the most popular
rules in a small TCAM and relies on software to handle the small amount of cache-miss traffic. The
authors observe that one cannot blindly apply existing cache-replacement algorithms because of
the dependencies between rules with overlapping patterns. Rather long dependency chains must
be broken to cache smaller groups of rules while preserving the semantics of the policy.
Another example for applications that commonly leverage hybrid hardware-software designs

are network telemetry and analytics systems. These systems must make difficult trade-offs between
performance and flexibility. While it is possible to run some basic analytics queries (e.g., using
sketches) entirely in the data plane at high packet rates, systems generally follow a hybrid ap-
proach where analytics tasks are partitioned between hardware and software to benefit from high
performance in hardware, as well as from programmability, concurrent measurement capabilities,
and runtime-configurable queries in software. Systems employing such a design are *Flow [177],
Sonata [69], and Marple [137]. We further elaborate on these systems in Section 6.1.
In conclusion, we witness a trend towards more specialization and, as a result, more hybrid

architectures. We elaborated on two areas where researchers have proposed hybrid designs in
the past; given the vast spectrum of flexibility and performance across the different platforms, we
believe there will be more hybrid approaches across almost all network systems in the future.

3.6 Programmable NICs

Orthogonal to the previously presented architectures, programmable NICs, a new platform for
programmable data planes, have attracted significant attention in the networking community.
These devices (often referred to as SmartNICs) are commonly built around NPUs and FPGAs. The
design and operation of programmable NICs involve a range of interesting aspects related to the
host-network communication interface and operating system integration they provide. SmartNICs
are consequently well-suited for offloading end-to-end mechanisms (e.g., congestion control) and
applications, such as key-value stores and virtualization.
Modern non-programmable NICs already implement various comparatively advanced features

in hardware, such as protocol offloading, multicore support, traffic control, and self-virtualization.
Programmable NICs go a step further by enabling custom packet processing and are programmable
in subsets of general-purpose languages [80] or specialized data plane programming abstractions,
such as P4 [22] or eBPF. In the following, we only focus on the architectural aspects of such
SmartNICs and defer applications leveraging these devices to Section 6.
Despite its promising characteristics, SmartNICs are still trailing in adoption due to various

challenges related to the development process of applications as well as ensuring efficiency of those
applications on this novel platform. The development abstractions are, in particular, a concern
for server applications that offload computation and data to a NIC accelerator. Floem [148] is a
set of programming abstractions for NIC-accelerated applications which simplify data placement
and caching, partitioning of code for parallelism, and communication strategies between program
components across devices. It also provides abstractions for logical and physical queues, global
per-packet state, remote caching, and interfacing with external application code.

Related to the development challenges, it remains unclear (especially in distributed applications)
how functionality should be offloaded in order to maximize overall efficiency and benefits. Toward
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answering this question, Liu et al. propose iPipe [115], a generic actor-based offloading framework
to run distributed applications on commodity SmartNICs. iPipe is built around a hybrid scheduler
that combines different scheduling policies to maximize device utilization.
An interesting distributed application and use case for SmartNICs is to run microservices on

SmartNIC-accelerated servers. By offloading suitable microservices to the SmartNIC’s low-power
processors, one can improve server energy-efficiency without latency loss. A system leveraging this
approach is E3 [117], which follows the design philosophies of the Azure Service Fabric microservice
platform, and extends key system components to a SmartNIC. E3 addresses challenges associated
with this architecture related to load balancing workloads, placing microservices on heterogeneous
hardware, and managing contention on shared SmartNIC resources.

Going forward, we believe SmartNICs will have a great impact across a wide range of traditionally
software-based applications and mechanisms, such as programmable congestion control, TCP/TLS
connection termination, or network virtualization. Offload to SmartNICs can introduce significant
cost savings in such scenarios by freeing up precious CPU cycles. We expect to see more host-based
services, such as firewalls, L7 gateways, or hypervisor-based load balancing being offloaded to
SmartNICs. Efficient host-based data plane programming and the capability to offload applications
transparently to SmartNICs will further accelerate this trend [26].
Takeaways — In this section we introduced the wide range of platforms and architectures upon
which programmable data plane systems are built. This range spans from highly programmable
but compartively slow general purpose CPUs to ASICs that expose a rigid programming model
with constrained resources but offer unparalleled performance. As alluded to in Section 3.5, we
expect to see more hybrid architectures. Depending on the constraints imposed by the workload,
carefully partitioning a system between various architectures has the potential to provide the best
of several worlds. Developing best practices and being able to partition workloads systematically or
even dynamically will be critical going forward. Furthermore, we expect to see this broad spectrum
of platforms to be also available in public cloud infrastructures. While all previously discussed
architectures are available and deployed by operators, low-level data plane programmability has
not yet been widely virtualized and exposed to cloud customers. We do, however, see trends in this
direction with, for example, Amazon Web Services (AWS) allowing for kernel-bypass technologies
on instances with their enhanced networking offering. AWS also offers VMs equipped with FPGAs
that are directly connected to the network.

4 Abstractions

The differences among data plane technologies are often reflected in the packet processing primitives
exposed to the control plane and language constructs that can be used to combine these primitives
to implement the required pipeline. Given this inherent architectural coupling, we next discuss
common abstractions used and exposed in programmable data plane systems. We start by discussing
programmable packet processing pipelines before diving deeper into abstractions for packet parsing
and scheduling. Finally, we review programming languages and compilers.

4.1 Programmable Packet Processing Pipelines

Flexible packet processing is the core capability of programmable data planes. Today’s packet
processing pipelines are generally built on top of two fundamental abstractions: the data flow graph
abstraction and the match-action pipeline abstraction.
4.1.1 Data flow graphs. Early designs for packet processing systems borrowed largely from generic
systems design [179] and machine learning [1], adopting the data flow graph abstraction to architect
programmable switches [101]. This model is also heavily used in stream processing frameworks
such as Apache Flink or Spark. A data flow graph describes processing logic as a graph, with nodes
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representing elemental computation stages and edges representing the way data moves from one
computation stage to another. A favorable property of this abstraction is its simplicity, allowing
the programmer to assemble a well-defined set of processing nodes into meaningful programs
using a familiar graph-oriented mental model. This way, computational primitives (nodes) are
developed only once and can then be freely reused as many times as needed to generate new
modular functionality creating a rapid development platform.

Perhaps the earliest programmable switch framework adopting the data flow graph abstraction
was the Click modular software router [101]. The unit of data moving through the Click graph is a
network packet on which nodes can perform simple packet processing operations, such as header
parsing, checksum computation and verification, field rewriting, or checking against ACLs. Some
nodes provide network protocol-specific functions, such as handling ARP requests and responses,
while others offer more general data flow control functions, such as load balancing, queueing, or
branching (selecting the next processing stage out of several alternatives).
ClickOS [124], FastClick [13], Vector Packet Processing (VPP) from the FD.io project [153], the

Berkeley Extensible Software Switch (BESS, [71]), and NetBricks [142] adopt a similar design,
with the difference that the fundamental data unit moving along the data flow graph is now a
vector of packets instead of a single packet. This development stems from the observation that
batch-processing amortizes I/O costs over multiple packets and that using built-in vector instruction
sets of modern CPUs results in more efficient software implementations [13, 72, 152]. In addition,
NetBricks introduces a new framework for the isolation of potentially untrusted packet processing
nodes, using novel language-level constructs and zero-cost compile-time abstractions [142].

The presence of user-defined functionality abstracted as data flow graph nodes gives great flexibil-
ity and extendibility [106, 124]. At the same time, this flexibility tends to make the resulting designs
piecemeal, and heterogeneity complicates high-level network-wide abstractions and encumbers
performance optimization [109, 110].

4.1.2 Match-action processing.The match-action abstraction describes data plane programs using
a sequence of lookup tables (flow tables) organized into a hierarchical structure [22, 127, 133,
147, 167]. A subset of the packet header fields is used to perform a table lookup to identify the
corresponding packet processing actions, which can then instruct the switch to rewrite packet
contents, encapsulate/decapsulate tunnel headers, drop or forward the packet, or defer packet
processing to subsequent flow tables. The programmer configures the packet processing behavior
through dynamically setting the content of the flow tables, by adding, removing, or modifying
individual entries with the associated matching rules and processing actions via a standardized API
[146]. This has the benefit of exposing reconfigurable data plane functionality to operators using
the familiar notion of flows described by matching rules defined over header fields, an abstraction
extensively used in firewalls and ACLs. Hierarchies of lookup tables, as also used by conventional
fixed-function router ASICs, are used to synthesize more complex L2/L3/L4 pipelines.
The match-action abstraction was popularized for programming switches by the OpenFlow

protocol [127], which borrowed greatly from Ethane [29]. OpenFlow in its first version allowed
the definition of only a single flow table using a rather limited set of header fields; the abstraction
was later extended to a pipeline of multiple flow tables defined over a large array of predefined
header fields. With the introduction of multi-table match-action pipelines in the OpenFlow v1.1
specification, the distinction between the data flow graph and the match-action abstractions has
become increasingly blurry [127]. As illustrated using an example in Figure 4, a hierarchical match-
action pipeline can easily be conceptualized as a special data flow graph with lookup tables as
processing nodes and “goto-table” instructions as the edges.
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Fig. 4. Simplified match-action table dependency graph for a basic router (inspired by Fig. 3 in [22]).

Currently Open vSwitch [147] remains the most popular OpenFlow software switch, using a
universal flow-caching based datapath for implementing the match-action pipeline. This design
was improved upon by ESwitch [133], which introduces data plane specialization and on-the-fly
template-based datapath compilation to achieve line-rate OpenFlow software switching. Despite
being widely adopted, OpenFlow is limited in matching arbitrary header fields. This sparked
research in flexible lookup tables with rich semantics, configurable control flow, and platform-
specific extensions.

Driven by the advances in switching ASIC technology, the Reconfigurable Match Tables (RMT)
abstraction [23] overcomes the main limitations in OpenFlow ASICs in two ways: by letting match-
action tables to be defined on arbitrary header fields, and extending the previously rather limited
set of packet processing actions available. While RMT allows for matching on arbitrary bit ranges
within a packet header and applying modifications to the packet headers in a programmable
manner, applications for this architecture are still constrained by the rigid sequential design of the
architecture. dRMT [32] relaxes some of these sequential processing constraints and provides a
more flexible architecture by separating memory banks for matching packets from processing stages.
This design allows using hardware resources more efficiently and, compared to RMT, increases the
set of programs mappable to line-rate hardware architectures. Lately, P4 [22] and the accompanying
hardware and software switch projects [36, 38, 167] have been met with increasing enthusiasm
from the side of device vendors, operators, and service providers [57].
4.2 Stateful Packet Processing

In the early days of the Internet, most stateful packet processing has taken place at the end hosts
(e.g., to terminate a TCP connection) while most packet forwarding and processing within the
network operated in a stateless manner (i.e., devices do not need to keep track of any state between
packets). Today, stateful network functions are commonplace and include firewalls, network address
translators, intrusion detection systems, load balancers, and network monitoring appliances [187].
With the emergence of high-performance packet processing capabilities in software, network func-
tions are routinely implemented in commodity servers, an approach referred to as network function
virtualization (NFV). More recently, programmable line rate switches allow for comprehensive
programmability. As a result, these devices are commonly used for tasks other than switching and
routing. We will discuss examples of new use cases and applications in Section 6.
4.2.1 Programming abstractions for stateful packet processing. Providing flexible and platform-
independent programming abstractions for stateful packet processing on programmable data plane
devices remains a major challenge today. Due to the complexities and constraints associated
with most platforms, stateful packet processing is often still implemented in SDN controllers,
significantly reducing overall network performance. Toward this problem, several works propose
abstractions around finite state machines (FSM) for simplified programming of stateful packet
processing pipelines. Data plane programs defined using the FSM abstraction can then be compiled
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for and offloaded to line rate hardware devices [15, 16, 136, 150]. Other more language-focused
approaches include Domino [174], which introduces the abstraction of packet transactions that
allows expressing stateful data plane algorithms in a C-like languagewithout having to definematch-
action tables or other architecture-related details. Hardware designers can specify their instruction
sets through small processing units called atoms that the Domino compiler configures based on
the application code. The work on Domino also provides a machine model for programmable
line-rate switches, called Banzai machine, that can be used as a target for Domino programs and
is available to the community. While Domino programs target a single switch, SNAP [9] allows
programmers to develop stateful networking programs on top of a “single switch” network-wide
abstraction. The SNAP compiler handles how to distribute, place, and optimize access to state arrays
across multiple hardware targets. Finally, SwingState [120] is a state management framework that
enables consistent state migration among programmable data planes by piggybacking state updates
to regular network packets. A static analyzer for the P4 language detects which state needs to be
migrated and augments the code for in-band state transfer accordingly.

While FSMs provide a naturally suited abstraction for stateful packet processing, realizing scalable
stateful packet processing systems based on programmable data plane systems is still challenging
and appears to be one factor hindering the adoption of programmable data plane technology. In
particular, realizing low-latency stateful applications in programmable ASICs is cumbersome due
to target-specific requirements and constrained memory and stateful ALU resources.

4.2.2 State management in virtualized network functions.NFV promises simplifying middlebox
deployment, improving elasticity and fault tolerance while reducing costs [104, 141, 181]. In practice,
however, it remains challenging to deliver on these promises due to the tight coupling of state and
processing in NFV environments. State either needs to be shared among NF instances or is kept
local for a certain subset of network flows. In either way, keeping network-wide state consistent
and thus the NF’s behavior correct in the face of dynamic scaling or failures is non-trivial.

There are several lines of work aiming at alleviating this problem. Generally, they can be classified
in approaches that (i) keep all state local to a NF and transfer state when required [141, 154, 165],
(ii) mix local and remote state [60, 155], and (iii) use centralized or distributed remote state [90, 191].
Relatable to SwingState [120] in this context is StateAlyzr [97], a static analysis framework for data
plane programs. Given network function code, it identifies state that would need to be migrated
and cloned to ensure state consistency in the face of traffic redistribution or failure. The authors
find that for many network functions, their system can reduce the amount of state that needs to be
migrated significantly compared to naive solutions.
Instead of continuously migrating state, we believe that the conceptually simple approaches

around state externalization enabled through novel extremely low-latency interconnects, advanced
caching, and failover strategies are promising. StatelessNF [90] is a prominent example of this
approach leveraging the RAMCloud key-value store and InfiniBand networking.

4.3 Programmable Parsers

Perhaps the most fundamental operation of every network device is to parse packet headers to
decide how packets should be processed. For example, a router uses the IP destination address
to decide where to send a packet next and a firewall compares several fields against an access
control list to decide whether to drop a packet. Packet parsing can be one of the main bottlenecks
in high speed networks because of the complexity of packet headers [62]. Packets have different
lengths and consist of several levels of headers prepended to the packet payload. At each step of
encapsulation, an identifier indicates the type of the next header or, eventually, the type of data
subsequent to the header leading to long sequential dependencies in the parsing process.
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Implementing low-latency parsers for high-speed networks is particularly challenging. In order
to minimize overheads, switches often employ a unified packet parser. Such parsers use an algorithm
that parses all supported packet header fields in a single pass. While this can improve performance,
it also increases complexity and could become a security issue, especially for virtual switches [183].
Programmability is another key requirement as header formats may change over time, for

instance due to new standards or the desire to support custom headers. Examples of more recent
header structures include PBB, VxLAN, NVGRE, STT, or OTV, among many more. In order to
support new or evolving protocols, a programmable parser can use a parse graph that is specified
at runtime (e.g., leveraging state tables implemented in RAM and/or TCAM [62]).

4.4 Programmable Schedulers

Exposing programmable interfaces for scheduling and queuing strategies is another core function-
ality in the context of programmable networks. Sivaraman et al. [175] present a solution which
allows known and future scheduling algorithms to be programmed into a switch without requiring
hardware redesign. The proposed design uses the property that scheduling algorithms make two
decisions: in which order and when to schedule packets. Additionally, the authors exploit the fact
that in many scheduling algorithms a definitive decision on these two questions can be made at an
early stage of processing: when a packet is enqueued. The resulting design uses a single abstraction:
the Push-In-First-Out queue (PIFO), a priority queue that maintains the scheduling order or time.
Another design for a programmable packet scheduler was presented by Mittal et al. [131]. The
authors show that while it is impossible to design a universal packet scheduling algorithm, the
classic Least Slack Time First (LSTF) scheduling algorithm provides a sufficient approximation and
can meet various network-wide objectives.
Implementing fair queuing mechanisms in high-speed switches is generally expensive since

complex flow classification, buffer allocation, and scheduling are required on a per-packet basis.
Motivated by the question of how to achieve fair bandwidth allocation across all flows traversing
a link, Sharma et al. [170] present a dequeuing scheduler, called Rotating Strict Priority, which
simulates an ideal round-robin scheme where each active flow transmits a single bit of data in every
round. This allows the transmission of packets from multiple queues in approximately sorted order.

The trend toward increasing link speeds and slowdown in the scaling of CPU speeds, leads to a
situation where packet scheduling in software results in lower precision and higher CPU utilization.
While this drawback can be overcome by offloading packet scheduling to hardware, doing so
compromises the flexibility benefits of software packet schedulers. Ideally, packet scheduling in
hardware should hence be programmable. Motivated by the insight that “in the era of hardware-
accelerated computing, one should identify and offload common abstractions and primitives, rather
than individual algorithms and protocols”, Shrivastav in [171] proposes a generalization of the
PIFO primitive used by state-of-the-art hardware packet schedulers: Push-In-Extract-Out (PIEO)
maintains an ordered list of elements, but allows dequeueing from arbitrary positions in the
list by supporting programmable predicate-based filtering when dequeuing. PIEO supports most
scheduling (work-conserving and non-work conserving) algorithms which can be abstracted as the
following scheduling policy: assign each element (packet/flow) an eligibility predicate and a rank.
Whenever the link is idle, among all elements whose predicates are true, schedule the one with the
smallest rank. The predicate determines when an element becomes eligible for scheduling, while
rank decides the order amongst the eligible elements. The hardware design of the PIEO scheduler,
also presented in [171], demonstrates the scalability of this approach.
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4.5 Programming Languages and Compilers

Over the last years, we have witnessed several promising efforts that go beyond low-level SDN
protocols, such as OpenFlow, ForCES, or NETCONF. New high-level data plane programming
languages allow to specify packet processing policies within a specific switch architecture in terms
of abstract, generic, and modular language constructs. These efforts are largely driven by the needs
of operators toward more complex SDN applications. Furthermore, the capabilities of modern, more
flexible and programmable line rate networking hardware has motivated language approaches to
specify the switch processing architecture (i.e., the layout of match-action tables and protocols
supported in the parsing stage). The conceptual differences between these two classes of language
abstractions found in programmable data plane systems today are depicted in Figure 5.
4.5.1 SDN policy definition. Languages for SDN programming generally differ in the amount of
visibility that should be provided in SDNs (see [41] for a discussion on this). A well known language
is Frenetic, a programming language for writing composable SDN applications using a set of high
level topology and packet-processing abstractions. Pyretic [56] improves on Frenetic by adding
support for sequential composition, more advanced topology abstractions, and an abstract packet
model that introduces virtual fields into packets. Modular applications can be written using the
static policy language NetCore [134, 135], which provides primitive actions, matching predicates,
and query policies. Maple [188] simplifies SDN programming (i) by allowing a programmer to use
a standard programming language to design an arbitrary, centralized algorithm, controlling the
behavior of the entire network, and (ii) by providing an abstraction where the programmer-defined,
centralized policy is applied to every packet entering a network.
Providing solid mathematical foundations to networking is one of the basic desires of SDNs.

NetKAT [7] is one of the major efforts towards this objective. NetKAT proposes primitives for
filtering, modifying, and transmitting packets, operators for combining programs in parallel and
in sequence, and a Kleene star operator for iteration. NetKAT comes with provable guarantees
that the language is sound and complete. In general, functional languages have become popular to
provide such higher levels of abstractions, also including languages such as PFQ-Lang [20], which
allows to exploit multi-queue NICs and multi-core architectures.
4.5.2 Low-level data plane definition.At the heart of today’s programmable data planes lies the
question of how to specify and reconfigure the low-level architecture and configuration of pro-
grammable switching chips (i.e., the layout and sequence of match-action tables, the protocols
understood by the protocol parser, and the actions supported) in an expressive and flexible manner.
An early and the most prominent language abstraction and compiler for specifying low-level

packet processing functionality within programmable data planes is P4 [22]. Motivated by the
limitations of existing SDN control protocols, such as OpenFlow, which only allow for a fixed set
of header fields and actions, P4 makes it possible to define packet processing pipelines together
with parsers and deparsers, match-action tables, and low-level operations that are applied to each
packet. This language abstraction allows for protocol-independent packet processing by matching
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on arbitrary bit ranges and applying user-defined actions. Such abstract P4 programs are compiled
for the specific underlying data plane target. The origins of P4 go back to work by Lavanya et
al. [89] who study how to map logical lookup tables to physical ones while meeting data and control
dependencies in the program. The authors also present algorithms to generate programs optimized
for latency, pipeline occupancy, or power consumption. The compiled data plane program is then
used to configure the underlying hardware or software target, and the P4-defined match-action
tables are populated at runtime via a control interface, such as P4Runtime [34].

P4 rapidly gained immense popularity in the research community and is used in countless projects.
Particularly, the wide range of supported targets from software switches to full reconfigurable
ASICs as well as strong industry adoption make P4 a key enabling technology for comprehensive
and flexible data plane programmability. For example, P4FPGA [189] is an open source compiler and
runtime for P4 programs on FPGAs. By combining high-level programming abstractions offered by
P4 with a flexible and powerful hardware target, P4FPGA allows developers to rapidly prototype and
deploy new data plane applications. A second work in this direction is P4→NetFPGA [79], which
integrates the function described with P4 in the NetFPGA processing pipeline. Other compilers
exist for different software switching architectures, SmartNICs, and reconfigurable ASICs.

Extended programmability in the data plane also opens avenues for introducing bugs or writing
insecure code. Ensuring correctness of programs is therefore also of high importance for data plane
programs. Network verification and program analysis approaches aim at alleviating these issues.
While widely in use in traditional network paradigms, network verification for fully programmable
data plane systems is still an area of ongoing research. To this end, Dumitrescu et.al. [48] propose a
new tool and algorithm, called netdiff, to check the equivalence of related P4 programs and FIB
updates in order to detect inconsistent behavior and bugs in data plane implementations. Also
with the goal of simplifying P4 development, better testing programs, and identifying bugs early,
Bai et al. propose NS-4 [10] a comprehensive simulation framework for P4-defined data planes. NS-4
integrates with the popular network simulator NS-3 and can efficiently simulate large multi-node
networks running data planes written in P4.
While P4-like language abstractions dominate the programmable packet processing landscape,

parts of the abstraction, in particular as required for stateful processing and scheduling, have
not yet found a definitive standard. It appears that a single abstraction cannot cover all of the
relevant aspects, and rather multiple pointed and specialized abstractions will emerge. While these
subdomains are still being actively researched, we see the composition of the different abstractions
as a major challenge for future research; the Protocol-Independent Switch Architecture (PISA) is a
solid starting point in this space.
Takeaways — As discussed in this section, given their underlying complexity, programmable data
plane systems are realized through a variety of abstractions. Some of them have been used in the
networking domain for decades (e.g., the data flow or match table abstraction), while newer, more
general, and often language-based abstractions for custom packet actions, stateful packet processing,
and programmable parsing are mostly motivated by new hardware capabilities. In particular, these
newer programming models are still rather inflexible and cumbersome. Going forward, akin to high-
level synthesis approaches, we expect to see more unified data plane programming abstractions at
higher levels that cover the full spectrum from P4-like programming for ASICs to eBPF or C-like
programming for CPUs. Similarly, it remains unanswered how different, independent data plane
programs should run alongside on the same hardware. This is required for modular composition of
network programs, and may eventually enable multi-tenant virtualization scenarios.
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5 Algorithms and Hardware Realizations

Data planes rely on various algorithms and data structures for packet processing, often to be
implemented in hardware. We will now discuss the most relevant work in this area.

5.1 Reconfigurable Match-Action Tables

Traditional OpenFlow hardware switch implementations allow packet processing on a fixed set of
fields only. Reconfigurable match tables, such as RMT [23], allow the programmer to match on and
modify all header fields (or arbitrary bit ranges) making the devices significantly more flexible and
capable. RMT, for example, is a RISC-inspired pipelined architecture for switching chips which
provides a minimal set of action primitives to specify how headers are processed in hardware. This
makes it possible to change the forwarding plane without requiring new hardware designs.
5.1.1 Exact matching tables. Large networks (such as those in data centers running millions of
VMs) require efficient algorithms and data structures for their Forwarding Information Bases
(FIB) to that scale to millions of entries on commodity switching chips. An attractive approach
to realize such memory-efficient and fast exact match FIB operations in software switches is to
employ highly concurrent hash tables. For example, solutions based on cuckoo hashing, such
as CuckooSwitch [198], have been able to process high packet rates across the PCI bus of the
underlying hardware while maintaining a forwarding table of one billion forwarding entries
5.1.2 Prefix matching tables. Programmable switches implementing match-action tables in hard-
ware generally need to support different types of operations and tables. Besides exact matches,
especially IP address lookups and prefix matching are frequent operations and have thus received
much attention in the research community. Given the heavily constrained resources on devices,
besides optimizing lookup time, it is important to improve memory efficiency of match-action table
representations in hardware. A natural solution to improve the memory efficiency of IP forwarding
tables is to employ FIB aggregation, by replacing the existing set of rules by an equivalent but
smaller representation. Such aggregations can either be performed statically (such as ORTC [47])
or dynamically (such as FIFA [118], SMALTA [186], or SAIL [195]). Rétvári et al. [157] explored the
application of compressed data structures to reduce FIB table sizes to an information-theoretical
optimum without sacrificing the efficiency of standard operations such as longest prefix match and
FIB update. An implementation of their approach in the Linux kernel (using a re-design of the IP
prefix tree) shows the feasibility and benefits of this approach.

Inspired by Zipf’s law, the empirical fact that certain rules are used much more frequently than
others, caching represents another optimization opportunity. For instance, it may be sufficient to
cache only a small fraction of the rules on the fast expensive hardware fast path; less frequently
used rules can then be moved to less expensive storage (e.g., to the DRAM of the route processor or
software-defined controller). Different FIB caching schemes use different algorithms that minimize
the number of updates needed to the cache [17, 18].
In the context of virtual routers used for flexible network services such as customer-specific

and policy-based routing, further challenges related to resource constraints arise. In particular,
supporting separate FIBs for each virtual router can lead to significant memory scaling problems.
Fu et al. [58] proposes using a shared data structure and a fast lookup algorithm that capitalizes on
the commonality of IP prefixes between virtual FIB instances.
5.1.3 Wildcard packet classification. Packet classification, the core mechanism that enables network-
ing services such as firewall packet filtering and traffic accounting, is typically either implemented
using ternary TCAMs or software. Both TCAM and software-based approaches usually entail
trade-offs between (memory) space and (lookup) time. Content-addressable memory (CAM) and
Ternary CAM (TCAM) chips are the most important components in programmable switch ASICs
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to perform packet classification on configurable header fields. Using dedicated circuitry, rules can
be matched in priority order and in only a single clock cycle. In particular, TCAMs classify packets
in constant time by comparing a packet with all classification rules of ternary encoding in parallel.
A major design challenge of large-capacity CAMs is to reduce power consumption associated

with the vast amount of parallel active circuitry without sacrificing speed or memory density,
and while supporting multidimensional lookup. Despite their high speed, TCAMs can also suffer
from a range expansion problem. When packet classification rules have fields specified as ranges,
converting such rules to TCAM-compatible rules may result in an explosion of the number of rules.
One approach to reduce TCAM power consumption for high-dimensional classification is to

employ pre-classifiers (e.g., considering just two fields such as the source and destination IP
addresses). The high dimensional problem can thereby use only a small portion of a TCAM for a
given packet. Ma et al. [122] show how to design a pre-classifier such that a packet matches at most
one entry in the pre-classifier, avoiding rule replication. SAX-PAC in turn exploits the observation
that most practical classifiers include many independent rules, allowing for matching in arbitrary
order and only considering a small subset of dimensions [100]. Furthermore, TCAM Razor [113]
strives to generate a semantically equivalent packet classifier that requires the least number of
TCAM entries. The negative space-time tradeoff, which seems inherent in the design of classifiers,
can sometimes be overcome allowing for range constraints, among others [100].

Perhaps the most prominent application of generic wildcard packet classifiers, the Open vSwitch
fast-path packet classifier [147] uses a combination of extensive multi-level hierarchical flow-
caching and the venerable Tuple Space Search scheme (TSS) [178]. TSS exploits the observation
that real rule databases typically use only a small number of distinct field lengths, therefore, by
mapping rules to tuples, even a simple linear search of the tuple space can provide significant
speedup over a naive linear search over the filters. In TSS, each tuple is maintained in a hash table
that can be searched in constant time. Though TSS is used extensively in practice, recently, it has
been shown that the linear search phase can be exploited in a malicious algorithmic complexity
attack to exhaust data plane resources and launch a denial of service attack [40].

5.2 Fast Table Updates

Match-action tables should not only support a fast lookup but also fast updates for inserting,
modifying, or deleting rules. Such updates can be accelerated by partitioning and optimizing the
TCAM. For example, Hermes [31] trades a nominal amount of TCAM space for assuring improved
performance. Also, a hybrid software-hardware switch, such as ShadowSwitch [19], can help lower
the flow table entry installation time. Since software tables can be updated very fast, table updates
should happen in software first before being propagated to TCAM to offload software forwarding
and achieve higher overall throughput. Lookups in software should only be performed in case there
are no entries matching a packet in hardware. Solutions such as ShadowSwitch further exploit the
fact that deleting TCAM entries is much faster than adding them, proposing translating adding
entries to a mix of adding in software tables and deleting from hardware tables.
Takeaways— In general, as the network data plane becomes increasingly programmable and includes
more and more embedded algorithms and data structures, research on efficient and dependable
approaches will remain active in coming years. Especially the network data plane within cloud
environments is immensely complex already today and maintains substantial embedded state;
ubiquitous virtualization may increase complexity even further in the future. Since cloud resources
also allow shared access and configuration from tenants, future research on reliable and available
algorithms and data structures for cloud data planes is crucial. We believe that the emergence of
new types of attacks, such as algorithmic complexity attacks, demand data plane algorithms to
provide hard real-time constraints on the amount of resources used for a specific task; the latter is
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especially important for resource-constrained devices. In addition to complexity, due to quickly
growing trafic rates, also scalability of these algorithms remains an important open problem.

6 Applications

The appearance of programmable data planes has started a trend toward moving certain general
information-processing functionality, formerly implemented either entirely in software or on
dedicated hardware appliances, directly into the network data plane. The ability to program network
devices suddenly changes a dumb pipe that only moves data into a complete, sophisticated data
processing pipeline that is able to transform data as it flows. Applications that have been offloaded
to the network in this manner include telemetry, massive-scale data processing, machine learning,
and even complete key-value stores. Network devices already sit in the data path and, as a result,
offloading additional functionality here minimizes the need for additional, potentially expensive,
data movement and reduces the end-to-end processing latency. In addition, many applications may
benefit from the new visibility into the network (e.g., queue occupancy levels) or from the energy
savings possible by running conventional compute tasks on low-power programmable NICs [116].
One may wonder which types of applications may benefit most from being offloaded into the

programmable data plane [162]. Is there an over-arching scheme that would help identify when to
consider the data plane implementation for a particular use case? Judging from recent examples, we
see that the typical applications are the ones that (i) process massive amounts of network-bound data
or have a strong networking component in some way (e.g., implement request-response patterns),
(ii) pose stringent latency and/or throughput requirements, and (iii) can be decomposed into a small set
of simple primitives that lend themselves readily to be implemented partially or entirely on top of
packet processing primitives exposed by programmable data plane devices.

Below, we highlight some of the well known examples for data plane offloading from the literature,
including virtual switching, in-network computation, telemetry, distributed consensus, resilient
and efficient forwarding, and load balancing.

6.1 Monitoring, Telemetry, and Measurement

Perhaps the most interesting applications for data plane offloading are related to network mea-
surement, telemetry, monitoring, and diagnosis. This is mostly because these applications share
traits that make them particularly suitable for data plane-based implementations: they operate at
massive traffic scale and under tight performance requirements. Most importantly, the data plane
has direct and low-latency access to monitoring application’s input data, that is, network packets
or measurements taken in the data plane. For decades, the state-of-the-art has required mirroring
monitored traffic to dedicated middleboxes, involving costly traffic duplication and software pro-
cessing; consequently, the efficiency gains with in-network data plane implementations can be
enormous. We therefore see programmable data planes as a game changer in this context, providing
deep insights into the network, even to end hosts, as we discuss in the following.
At the heart of many approaches lies the goal to improve the visibility into network behavior.

Jeyakumar et al. [84] present a solution which not only provides improved visibility to end hosts but
also allows to quickly introduce new data plane functionality, via a new Tiny Packet Program (TPP)
interface. Rooted in the work on Smart Packets [164] originally proposed for on-switch network
management and monitoring based on the Active Network paradigm [52], TPPs are embedded into
packets by end hosts and can actively query and manipulate internal network state. The approach
is based on the “division of labor” principle: switches forward and execute TPPs in-band at line
rate and end hosts perform flexible computation on the network state exposed by the TPPs. The
authors also present a number of use cases motivating in-band network telemetry. The general
framework for in-band network telemetry (INT) was later presented by Kim et al. in [98].
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As a step toward generalized measurement, one direction of work has looked at sketches as a
new data plane structure for network analytics. Sketches, which leverage probabilistic, sub-linear
data structures, are an efficient way to maintain summarizing statistics and metrics over large
input datasets [6]. OpenSketch [196] provides a library of such sketches while UnivMon [119]
introduces a universal streaming scheme, where a generic sketch in hardware preprocesses packet
records at high rates and software applications compute application-specific metrics. Recently,
SketchVisor [78] presented a comprehensive network measurement framework which augments
sketch-based measurement in the data plane with a fast path that is activated under high traffic
load to provide high-performance, local measurement with slight degradation in accuracy.

To make network monitoring systems more flexible, researchers have sought ways which allow
network operators to write network measurement queries directly and in a more expressive way,
instead of relying on a particular sketch. These queries can then be compiled to run on modern
programmable switches at line rate. Marple [137] identifies a set of fixed operators that can be
compiled to programmable hardware and used to compose a wide range of network monitoring
queries. This approach offers great performance for any analytics tasks that can fit entirely in
a programmable switch, but it also requires software offload once the device’s SRAM and ALU
resources are full. Sonata [69] improves on this hardware-restrictive model by more intelligently
dividing a query into parts that are executed on the switch and parts that are executed on a general-
purpose software stream processor. Motivated by the limited processing capabilities of software
stream processing systems, Sonata introduces a method of iterative refinement which can reduce
the amount of traffic sent to software. This iterative refinement, however, comes at the cost of
using significant SRAM and ALU resources on the switch. It also requires relaxing the temporal
and logical constraints of a query.

Further applications of in-network measurement are related to heavy hitter detection [151, 176],
traffic matrix estimation [64], and TCP performance measurements [61]. First, HashPipe [176]
realizes heavy-hitter detection entirely in the data plane. HashPipe implements a pipeline of hash
tables, which retain counters for heavy flows while evicting lighter flows over time. Second, Gong
et al. [64] show that by designing feasible traffic measurement rules (installed in TCAM entries
of SDN switches) and collecting the statistics of these rules, fine-grained estimates of the traffic
matrix are also possible. Finally, Dapper [61] allows for analyzing TCP performance problems in
real time right near the end-hosts, i.e., at the hypervisor, NIC, or top-of-rack switch. This makes it
possible for the operator to determine whether a particular connection is limited by the sender, the
network, or the receiver, and to intervene accordingly in a timely manner.

Finally, an orthogonal line of work identifies that programmable switches, while not suitable for
practical and ubiquitous offload of analytics tasks due to resource constraints, are useful for accel-
erating and enhancing telemetry systems. Instead of compiling entire queries to a programmable
switch, *Flow [177] places parts of the select and grouping logic that is common to all queries
into a hardware match-action pipeline. In *Flow, programmable line rate switches export a stream
of grouped packet vectors (GPVs) to software processors. A GPV contains a flow key (e.g., an IP
5-tuple) and a variable-length list of packet feature tuples (e.g., timestamps and sizes) from a
sequence of packets in that flow. GPVs are generated through a novel in-network key-value cache
that can be implemented as a sequence of match-action tables for programmable switches. The
authors expanded on the telemetry system with a customized, high-performance network analytics
platform [130].
Sketches and entirely switch-based approaches to monitoring and telemetry provide unprece-

dented performance for simple counters and basic queries. Besides requiring significant amounts of
scarce switch resources and imposing operational inflexibilities, these approaches lack the packet-
level granularity that modern fine-grained network analytics solutions require. We therefore see
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large potential in hybrid approaches leveraging both high-performance switch-based telemetry
together with flexible software-based analytics as proposed in Sonata [69] and *Flow [177]. Finding
the right balance between in-network and host processing, taking into account novel processing
platforms such as FPGAs, will remain a hot topic for years to come.

6.2 Virtual Switching

Virtual networking is heavily used in data centers and cloud computing infrastructure. At the heart
of cloud computing lie the ideas of resource sharing and multi-tenancy: independent instances (e.g.,
applications or tenants) can concurrently utilize the physical infrastructure including their compute,
storage, and management resources [102]. While physically integrated, network virtualization
enables logical isolation of resources for each tenant. Virtual switches are a core network component
in this architecture located in the virtualization layer of servers connecting tenants’ host-based
compute and storage resources among each other and to the rest of the network [82, 102, 144].
Using flow table-level isolation, the flow tables in the virtual switch are divided into per-tenant

logical data paths which are populated with sufficient flow table entries to link the tenants’ resources
into a common interconnected workspace [82, 102, 144]. Practically, this workspace is an overlay
network realized through a tunneling protocol, such as VXLAN.

Despite the widespread deployment of virtual networking [42, 54, 88], providing sufficient (logical
and performance) isolation remains a key challenge. Serious isolation problems with the Open
vSwitch [147] (OVS) have been reported in [184]: an adversary could not only break out of the VM
and attack all applications on the host, but could also manifest as a worm compromising an entire
data center. Other severe isolation vulnerabilities, also in OVS, enable cross-tenant denial-of-service
attacks [40]. Such attacks may exacerbate concerns over the security and adoption of public clouds.
Jin et al. [85] are the first to point out security weaknesses of co-locating virtual switches with the
hypervisor, proposing stronger isolation mechanisms. In response, MTS [182] proposes placing
per-tenant virtual switches in VMs for increased security isolation.

As an alternative to the host-based virtual switch model, implementing virtual networking can
also be offloaded to the NIC. While commodity NICs have basic support for switching among virtual
machines through SR-IOV and offloads of standard tunneling protocols used in this context, such
as VXLAN and NVGRE [65], programmability at the network edge is invaluable for implementing
custom virtualization solutions. While this is already possible in software on platforms like OVS,
having a similar level of programmability on NICs can significantly enhance scalability and lower
cost of virtualization in data centers. AccelNet [54] is an early example of employing such an
architecture, which we expect will become standard practice going forward.

6.3 In-network Computation

In-network computation is a promising way to address performance bottlenecks and scalability
limits of massive network-bound data processing in data centers as often performed in machine
learning and big data processing frameworks [1, 46]. Such analytics, graph processing, and learning
applications, to name a few, exhibit a few characteristic communication patterns that make them
suitable for (partial) implementations in the data plane. First, they usually substantially reduce and
aggregate the data during processing (e.g., take the sum of the inputs, or find the minimum). It is
therefore beneficial to apply these functions as early as possible to decrease the amount of network
traffic and reduce congestion. Second, they are usually characterized by simple arithmetic/logic
operations which make them suitable for massive parallelization and execution on programmable
hardware. Third, in many algorithms these operations are also commutative and associative imply-
ing that they can be applied separately and in arbitrary order on different portions of the input
data without affecting the correctness of the end result.
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Correspondingly, most big data applications follow the map-reduce pattern to achieve massive
horizontal scaling: large-scale computation instances are first partitioned across many edge servers
that do partial processing on smaller chunks before the results are again aggregated to obtain the
final result. Such many-to-few communication patterns (often referred to as incast) are, however,
poorly supported in data center deployments incurring significant performance issues.

The first attempt at departing from performing data aggregation at edge servers is Camdoop [39]
which supports on-path aggregation for map-reduce applications on top of a direct-connect data
center fabric where all traffic is forwarded between servers without switches.While this significantly
reduces network traffic and provides a performance increase, it requires a custom network topology
and is incompatible with common data center infrastructure. Netagg [123] was a proposal to avoid
the limitations of Camdoop by implementing on-path aggregation inside the network layer at
dedicated middleboxes. Netagg improves job completion times significantly across a wide range of
big data workloads and frameworks including ApacheHadoop. Later, SHArP [67] removed dedicated
“network accelerator” middleboxes from the in-network computation stack and presented a generic
programmable data plane hardware architecture for efficient data reduction, relying on scalable
in-network trees and pipelining to reduce latency for big data processing.
Toward the generalization of these approaches, Liu et al. lay the foundations of an in-network

computation framework by presenting a minimal set of abstractions they call IncBricks [116]:
an in-network caching fabric with basic computing primitives based on programmable network
devices. The authors in [169] furthermore ask the related general question of how to overcome
the limitations imposed by the usually scarce resources provided on programmable switches, like
limited state storage and limited types of operations, for in-network computation tasks. They
identify general building blocks that can be used to mask these limitations of programmable
switches using approximation techniques and then implement several approximate variants of
congestion control and load balancing protocols, such as XCP, RCP, and CONGA [5] that require
explicit support from the network.
Going even further, the most recent innovations in in-network computation are based on the

observation that the network itself may also be used as an accelerator for workloads that are (at first
sight) unrelated to networking or packet processing. In particular, machine learning and artificial
intelligence workloads have emerged as promising candidates to be (partially) implemented within
the network [161]. More specifically, programmable network devices may be a suitable engine for
implementing a CPU’s Artificial Neural Networks co-processor. N2Net [173] is an example of an
in-network neural network, based on commodity switching chips deployed in network switches
and routers. Another interesting application that can be implemented in the network is string
matching for accelerating information retrieval and language processing use cases. PPS [83] is
an in-network string matching implementation for programmable switches. The PPS compiler
translates a set of keywords to Deterministic Finite Automata (DFA) that can then be realized in
hardware as a sequence of match-action tables yielding significantly higher matching throughput
than comparable software implementations.
These and other advances in leveraging the network itself as a compute platform for a wide

variety of workloads demonstrates the versatility and potential of programmable data planes. It is
too early to tell which (not directly networking-related) workloads we will see being offloaded to
the network ubiquitously and which applications will remain more illustrative and experimental.
Nevertheless, given scalability limitations of general-purpose compute resources, we anticipate
architectures leveraging in-network computation to be transformative for many workloads.
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6.4 Distributed Consensus

Perhaps viewable as a special case of in-network computation, distributed consensus deserves
special discourse not only because of the substantial research treatment that it received over the past
years but also because it exhibits a special network requirement profile: while general in-network
computation is mostly throughput-bound, distributed consensus is much more latency-oriented,
often posing delay requirements on the order of a single server-to-server round-trip time (or even
less, see [86]). Distributed consensus describes the coordination among controllers or switches
in order to perform a computation jointly and reliably, even in the presence of network failures,
arbitrary communication delays, or Byzantine participants. Applications include leader selection,
clock synchronization, state replication, and general multi-write key-value stores.
NetPaxos [44] demonstrates the feasibility of implementing the venerable Paxos distributed

consensus protocol [105] in network devices, either using certain OpenFlow extensions or by
making some assumptions about how the network orders messages. Although neither of these
protocols can be fully implemented without changes to the underlying switch firmware, the authors
argue that such changes are feasible in existing hardware. Dang et al. [43] also show the performance
benefits achievable by offloading Paxos into the data plane and describe an implementation in P4.
In-band mechanisms in the data plane can also be used for synchronization and coordination

of other distributed systems components, such as SDN controllers. Schiff et al. [163] propose a
synchronization framework based on atomic transactions implemented on switches and show that
this approach allows realizing fundamental consensus primitives in the presence of failures.
In the context of data centers, NetChain [86] provides scale-free coordination within a single

server-to-server round trip time (RTT), or even less (half of an RTT!). This is achieved by allowing
programmable switches to store data and process queries entirely in the data plane, which eliminates
the query processing at coordination servers and cuts the end-to-end latency perceived by clients to
as little as the processing delay from their own software stack plus network delay. NetChain relies
on new protocols and algorithms guaranteeing strong consistency and switch failure handling.
Extending these principles to key-value stores, NetCache [87] implements a small key-value store
cache in a programmable hardware switch. The switch works as a cache at the data center’s rack-
level, handling requests directed to the rack’s servers. The implementation deals with consistency
problems and shows how to overcome the constraints of hardware to provide throughput and
latency improvements. SwitchKV [111] generalizes this idea by implementing a generic data
plane-based key-value query accelerator, with significant improvements in throughput and latency.
Programmable network switches act as fast key-value caches by keeping track of cached keys and
routing requests at line speed based on the query keys encoded in packet headers, so that the data
plane cache nodes absorb the hottest queries and, therefore, no individual key-value store backend
server is overloaded. Furthermore, specialized in-switch key-value stores for network measurement
collection and aggregation appear in *Flow [177], Marple [137], and IncBricks [116].

Perhaps an unlikely place to find distributed consensus protocols is in the programmable devices
themselves. Deep inside a typical programmable switch lies a rather complex distributed appliance,
with multiple match-action tables, parsers, queues, etc., closely cooperating to perform consistent
and fast packet processing. It turns out that consistently applying modifications to this pipeline
is a rather complex task, in sore need of strong consistency guarantees. BlueSwitch [70] has
presented a programmable network hardware design that supports a transactional packet-consistent
configuration mechanism: all packets traversing the data path will encounter either the old or
the new configuration, and never an inconsistent mix of the two. This will help avoid network
transients like blackholes and micro-loops that often plague today’s networks [66].
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6.5 Resilient, Robust, and Efficient Forwarding

Data planes operate at much faster pace than the typical control plane usually implemented in
software. This motivates moving functionality for maintaining connectivity under failures into the
switches. At the same time, offloading control planes is non-trivial.
The authors in [41] make the observation that typical SDN workloads impose significant com-

munication overheads due to frequent interaction between the control and data plane. Some of the
control plane functionality can, however, be efficiently offloaded from the controller to the switch
itself. In order to meet the needs of high-performance networks, the authors propose and evaluate
DevoFlow, a modification of the OpenFlow model which breaks the tight coupling between the SDN
control plane and the data plane in a way that maintains a useful amount of visibility for the former
without imposing unnecessary communication costs. For common SDN applications, DevoFlow
requires notably fewer flow table entries and results in reduced controller-switch communication
compared to a traditional OpenFlow realization. Molero et al. [132] take this idea further and make
a general case for offloading control plane protocols entirely to the data plane. Motivated by long
convergence times of traditional routing protocols, the authors show that modern programmable
switches are powerful enough to run many control plane tasks directly in hardware. As a proof of
concept, the authors implement a path vector protocol for programmable data planes in P4 which
rapidly converges in the case of link failure while fully respecting BGP-like routing policies.

The design of resilient data planes has been studied intensively in the literature. In order to provide
high availability, connectivity, and robustness, dependable networks must implement functionality
for in-band network traversals (e.g., to find failover paths in the presence link failures [21]). Here,
mechanisms based on dynamic state at the switches provide interesting advantages compared
to simple stateless mechanisms or mechanisms based on packet tagging. Liu et al. [114] propose
transferring responsibility for maintaining basic network connectivity entirely into the data plane,
which operates much faster than the control plane. Their approach to ensure connectivity via
data plane mechanisms relies on link reversal routing, adapted to handle operational concerns
like message loss or arbitrary delay from the original algorithm by Gafni and Bertsekas [59] (see
also [143]). Holterbach et.al. [75] provide an implementation for automatic data-driven fast reroute
entirely in the data plane. Their system, Blink, runs on programmable line-rate switches and detects
remote outages by analyzing TCP behavior directly within the switch. In case of failure, Blink
quickly restores connectivity and reroutes traffic without control plane involvement.

While offloading control plane functionality contradicts one of the core concepts of SDN, namely
reducing the complexity of the data plane by having simple forwarding functions, data plane
programmability enables flexibility to the operator in what functions are performed in the network
directly. This is opposed to and much more cost-effective than the traditional approach of making
network devices generally smarter by embedding complex functionality into the data plane by
default, which in turn increases overall complexity. We believe that finding the right balance
between control plane and data plane responsibilities will remain a hot topic for the years to come.
6.6 Load Balancing

Related to resilient routing, programmable data planes provide unprecedented flexibilities and
performance in how traffic can be dynamically load balanced across multiple forwarding paths,
workers, or backend servers. For instance, Hedera [3] can also be viewed as a load balancer.
The aim is to implement the “resource pooling” principle using horizontal scaling [190], making
a collection of independent resources behave like a single pooled resource in order to exploit
statistical multiplexing, load distribution, and improved failure resilience.
A well known example is HULA [95], a scalable load balancing solution using programmable

data planes. HULA is motivated by the shortcomings of ECMP routing as well as of existing
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congestion-aware load balancing techniques such as CONGA [5]. Due to limited switch memory,
these approaches can only maintain a subset of congestion-tracking state at the edge switches
and hence do not scale. HULA is flexible and scalable as each switch tracks congestion only for
the best path to a destination through a neighboring switch. Another example of a load balancing
application is SilkRoad [128], which leverages programmable ASICs to build faster load balancers.

Beyond multi-path load balancers, MBalancer [25] addresses the load balancing problem in the
context of key-value stores. In particular, distributed key-value stores often have to deal with highly
skewed key-popularity distributions, making it difficult to balance load across multiple backends.
MBalancer is a switch-based L7 load balancing scheme, which offloads requests from bottleneck
Memcached servers by identifying hot keys in the data plane, duplicating these hot keys to multiple
Memcached servers, and then adjusting the switches’ forwarding tables accordingly.
Takeaways — Throughout this section we have explored a multitude of applications leveraging
programmable data plane technology. We can observe that use cases which have been around for
some time, such as network monitoring or virtual switching, are becoming hot research topics again.
Data plane programmability opens avenues to realize these applications at scale and granularity
that was previously either impossible or prohibitively expensive. While (so far) the greatest benefits
appear for applications thatmainly revolve around networking tasks, we see an increasing number of
applications from other (albeit network-related) domains to benefit from data plane programmability,
including the Internet-of-Things [14, 77], security [172, 192], and wireless and mobile networks
[194]. More generalized in-network computation is still in its infancy and we expect to see more
research in the direction of offloading applications from various domains to programmable data
plane devices. Many of those applications mostly reside at the edge of the network and in the
end hosts. This is aligned with a general trend in the research community where programmable
data plane technology is increasingly employed at the host-network boundary [33]. In particular,
accelerators placed at end hosts, such as SmartNICs, are a promising platform for this direction.

7 Research Challenges

To sum up this survey and share our learnings, we provide a short discussion of major open issues
and research challenges we see in this space.

Improved Abstractions Which abstractions provide an optimal tradeoff between functionality,
performance, and API simplicity?
The art and science of programmable switch architectures revolve around abstractions. Ideally,

an abstraction should be simple enough to capture just the right amount of configurable data
plane functionality to admit efficient hardware and software implementations, but expressive
enough to allow higher layers to synthesize complex packet processing behavior. Moreover, such an
abstraction should be easily exposable to the control plane through a secure and efficient data plane
API [34, 127]. It should adequately handle global state embedded in the data plane and provide a
well-defined consistency model [191]. Also, it should admit analytic performance models [11, 133]
and automatic program transformations for performance optimization [133]. It should separate
static semantics from dynamic behavior [156]. And, last but not least, it should embrace a convenient
mental model that is familiar to network operators and programmers.

Efficient Reconfigurability How can we support more efficient yet consistent reconfigurability in
the data plane?
Alongside the move from the rigid programming model of OpenFlow to the more flexible P4

world, is the desire to expose every aspect of processing functionality a switch may perform to
be reconfigured for different and changing use cases in a flexible and efficient manner. This is
not limited to the way packet processing policies are represented in the data plane, including the
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method by which packets are associated with the respective processing actions to be executed on
them; it also extends to further critical packet processing operations, and the reconfigurability
thereof, ranging from programmable packet parsing [62] to universal scheduling and queuing
schemes [131, 175]. In particular, changing data plane behavior at runtime without disrupting
packet processing [177] remains an open problem.

Scalability How can we realize high-performance data planes, especially stateful ones?
The need to scale systems to handle massive workloads increasingly pushes designers to explore

more complex solutions that handle application state already in the data plane [87, 128, 169]. While
stateless packet processing approaches are rather solid at this point in time, stateful approaches are
still in their infancy and no clear winner has emerged yet. The complexity of a stateful abstraction
lays in the need to address state management problems (e.g., consistency) in a programmer-friendly
way while guaranteeing high performance. This is especially challenging as frequently reading
from and writing to memory, as it is continuously required in packet processing workloads, is still
one of the main sources of performance issues in modern computing systems [23].

Network Automation How can we design more self-adjusting networks that map high-level policies
to the underlying physical infrastructure and autonomously adapt to changing demands or failures?
A major current trend in networking concerns automation. Over the last years, the vision of

“self-driving” communication networks which adapt and optimize themselves towards their current
workload has emerged. Related to this trend is also the notion of “intent-based networking” which
describes the vision of designing and operating networks in terms of higher-level business policies,
and letting the network deal with low-level concerns in an automated, data-driven, agile, secure, and
verifiable way [27]. Recent progress in high-level network programming languages has delivered
important insights to realize the vision of intent-based networking in the form of efficient language
constructs and modular composition frameworks [56, 89, 99, 135, 188, 197]. Yet, how to best
expose data plane functionality to the operator offering the maximum programming freedom while
masking the underlying complexities efficiently remains unclear. Ideally, an “intent-based data plane
compiler” should actively attempt to find the data plane representation that would yield the highest
performance [133] with the minimal data plane footprint [113, 157], built on a firm theoretical
foundation for optimizing data plane programs and reasoning about performance [11, 133].

Verification, Monitoring, and Security How can we design efficient verification, monitoring, and
security frameworks which allow the operator to reliably reason about the correctness, performance,
and security of the data plane?

Data plane compilation, that is downward mapping from the intent layer to the data plane, is just
one side of the coin. In fact, highly related to the challenges associated with automatically adapting
the network to changing environments is the need to verify the correctness and desired effect of
a configuration change. To close the control loop, an upwards mapping is also necessary, which
would permit the control plane to monitor and verify the operations of the data plane. Indeed,
recent results indicate that the network should be architected from the ground up with verifiability
and security in mind [99, 172, 192], which may require the definition of new abstractions. Related
to verifying correctness, as programmability also opens up more ways to introduce vulnerabilities
and new attack surfaces, it is important to ensure that the data plane operates in a secure manner.
While significant work has been done on the security of SDNs in general, we believe that new,
extensively programmable data plane systems will require new security models and verification
objectives. For example, many such attack vectors are related to compilers; fuzzing is a promising
direction for uncovering such bugs [2, 160]. In general, given the mission-critical role the data
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Foundations
Architectures/Platforms

Software: OVS [147], BESS [71], VPP [153], PISCES [167], NetBricks [142]

Network Processors: Netronome NFP [80], Intel XScale [35]

FPGAs: NetFPGA [199], P4FPGA [189]

ASICs: Intel Tofino [38], Intel Flexpipe [36]

Abstractions/Building Blocks

Match-action: Ethane [29], OpenFlow [127], RMT [23], P4 [22], PISCES [167]

Data Flow: Click [101], VPP [153], BESS [71], NetBricks [142]

State: FAST [136], OpenState [15], NetBricks [142], Domino [174], SNAP [9], FlowBlaze [150]

Algorithms

Matching: CuckooSwitch [198], FIB Compression [157], Online FIB Aggr. [18]

Table Updates: Hermes [31], ShadowSwitch [19]

Scheduling: PPS [175], PIEO [171], Approx. Fair Queueing [170], Universal Sched. [131]

Languages

Defining Policy: DevoFlow [41], Pyretic [56], NetCore [134], Maple [188], PFQ [20]

Defining Low-level Processing: Packet Programs [89], P4 [22], Domino [174], Netdiff [48]

Fig. 6. Taxonomy of works laying the foundations of programmable data plane technology

Applications
Monitoring: OpenSketch [196], Marple [137], Sonata [69], INT [98], *Flow [177]

Switching: OVS [147], OVS Security [184], AccelNet [54], Network Virt. [102]

In-network computation: Camdoop [39], IncBricks [116], NetAI [161], N2Net [173]

Consensus: NetPaxos [44], Switchy Paxos [43], NetChain [86], NetCache [87]

Resiliency: Connectivity in the Data Plane [114], Blink [75], Hedera [3]

Load balancing: CONGA [5], SilkRoad [128], Hula [95], MBalancer [25]

Fig. 7. Taxonomy of key applications built on top of programmable data planes

plane plays, the success of novel data plane technologies will depend on the reliability and security
guarantees they can provide.

8 Conclusion

Before concluding, we present a broad classification of the key papers discussed throughout
this survey. This taxonomy is split between foundational contributions that enable data plane
programmability (Figure 6) and works that leverage programmable data planes for novel use cases
and applications (Figure 7). Additionally, as an annex to this survey, a reading list for students,
practitioners, and researchers interested in programmable data planes is available online [129].
Motivated by the changing demands in packet processing toward flexibility, programmability,

and high performance, novel ideas and solutions are needed to quickly and cost-efficiently support
change. Programmable networks in general and programmable data planes in particular provide
exactly that: an inexpensive alternative to supporting all possible packet processing functionality
at once. Programmable networks hence also enable niche solutions: solutions which would not
have been worthwhile realizing for vendors, due to the small-scale market. While greater flexibility
through comprehensive programmability and reconfigurability benefits operators and vendors who
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wish to provide custom-tailored solutions and new use cases for clients, it also vastly increases the
complexity of networking abstractions. Finally, low-level programmability introduces more ways
to introduce bugs and vulnerabilities into highly critical data plane. Apart from uncovering novel
use cases, accelerating existing applications, or enabling them at unprecedented scale, we see the
largest fundamental challenges in providing powerful, universal abstractions with security and
scalability in mind that span the vast array of available platforms, languages, and use cases.
While the body of existing work covered in this survey is already vast, we believe network

programmability is still in its infancy. We expect that this rapidly evolving field will significantly
affect the interfaces and interactions between applications and networks and therefore contribute
to the design of future computer architectures.
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